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Abstract

This study examines the relationship between expected stock returns and volatility in the 12

largest international stock markets during January 1980 to December 2001. Consistent with most

previous studies, we find a positive but insignificant relationship during the sample period for the

majority of the markets based on parametric EGARCH-M models. However, using a flexible

semiparametric specification of conditional variance, we find evidence of a significant negative

relationship between expected returns and volatility in 6 out of the 12 markets. The results lend some

support to the recent claim [Bekaert, G., Wu, G., 2000. Asymmetric volatility and risk in equity

markets. Review of Financial Studies 13, 1–42; Whitelaw, R., 2000. Stock market risk and return: an

empirical equilibrium approach. Review of Financial Studies 13, 521–547] that stock market returns

are negatively correlated with stock market volatility.
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1. Introduction

The relationship between the return on an asset and its variance (or volatility) as a

proxy for risk has been an important topic in financial research. The theoretical asset-

pricing models (e.g., Sharpe, 1964; Linter, 1965; Mossin, 1966; Merton, 1973, 1980)

typically link the return (or the price change) of an asset to its own return variance, or to

the covariance between its return and the return on the market portfolio. However, whether

such a relationship is positive or negative has been controversial. As summarized in Baillie

and DeGennarro (1990), most asset-pricing models (e.g., Sharpe, 1964; Linter, 1965;

Mossin, 1966; Merton, 1973) postulate a positive relationship between a stock portfolio’s

expected returns and volatility. On the other hand, there is also a long tradition in finance

that models stock return volatility as negatively correlated with stock returns (Black, 1976;

Cox and Ross, 1976; Bekaert and Wu, 2000; Whitelaw, 2000). For example, Bekaert and

Wu (2000, p. 1) recently claim that bit appears that volatility in equity markets is

asymmetric: returns and conditional volatility are negatively correlated.Q Although their

paper is critically motivated by such a claim, the empirical evidence for such a negative

relationship between expected returns and volatility is mixed in the US stock markets and

has not yet been reported in international stock markets other than the US. In this context,

our study substantially complements Bekaert and Wu (2000). Furthermore, Glosten et al.

(1993) and Nelson (1991) argue that across time there is no theoretical agreement about

the relationship between returns and volatility within a given period of time and that either

a positive or a negative relationship between current stock returns and current volatility is

possible.

Numerous empirical studies have been conducted to investigate the relationship between

stock market returns and volatility. The findings of early studies are mixed (e.g., Pindyck,

1984; Poterba and Summers, 1986). As pointed out by Bollerslev et al. (1992, pp. 17–18),

inference from early studies may not be reliable because variance modeling in these studies

does not make efficient use of the data. More recent studies have typically used (G)ARCH-

in-Mean models (Engle et al., 1987) to allow for time-varying behavior of volatility.

Surprisingly, most find an insignificant relationship between returns and conditional

variance (as defined by the parametric GARCH process) in international stock markets.

Although French et al. (1987) document a significant positive relationship betweenUS stock

market returns and the conditional variance of these returns, Baillie and DeGennarro (1990)

report that such a positive relationship is weak and almost nonexistent in the US stock

market. Similarly, Theodossiou and Lee (1995) and Lee et al. (2001) also find a positive but

insignificant relationship between stock market returns and the conditional variance in many

other international stock markets. In contrast, Nelson (1991) documents a negative but

insignificant relationship between expected returns and the conditional variance of the US

stock market. Glosten et al. (1993) show evidence that such a negative relationship is

significant in the US market. Obviously, the empirical findings remain inconclusive.

The finding of an insignificant relationship appears puzzling. Though a significant impact

of volatility on the stock prices can take place only if shocks to volatility persist over a long

period of time (Poterba and Summers, 1986), it is well documented that stock market

volatility is persistent. Hence, many of the previous studies, e.g., Baillie and DeGennarro

(1990), Theodossiou and Lee (1995), and Choudhry (1996), challenge the appropriateness
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of using the conditional variance (as modeled by a parametric GARCH process) to proxy for

risk and attribute the finding of the weak relationship to the lack of a proper measure of risk.

In view of the above mixed results, this study uses a flexible semiparametric specification of

conditional variance to examine the relationship between expected returns and volatility in

12 major stock markets. The use of a flexible functional form for conditional variance is

appealing because estimation of a parametric GARCH-M model is sensitive to model

misspecification. Consistent estimation in the (G)ARCH-M model requires that the full

model be correctly specified (Bollerslev et al., 1992, p. 14). Indeed, the problem that

inferences drawn on the basis of GARCH-M models may be highly susceptible to model

misspecification is well known to applied researchers. For example, Jones et al. (1998)

choose not to estimate a GARCH-M model to measure a possible change in the risk

premium, simply due to the concern that a potential misspecification problem may

contaminate the estimation of conditional variance parameters. Nelson (1991, p.347) also

argues that parameter restrictions imposed by GARCH models may unduly restrict the

dynamics of the conditional variance process. In contrast, a semiparametric specification of

the conditional variance allows flexible functional forms, and therefore can lead to more

reliable estimation and inference. In this paper, we propose a semiparametric test for testing

the null hypothesis of zero GARCH-M effect. The simulation results show that the proposed

test has good finite sample performance compared with a parametric test based on EGARCH

specification.We then apply the proposed test to the empirical data of 12 largest international

stock markets and show some evidence that a significant negative relationship between

(current) stock market returns and (current) market volatility prevails in most major stock

markets, which has not yet been reported in the literature. The rest of this paper is organized

as follows. Section 2 discusses the empirical methodology, Section 3 first presents a small-

scale Monte Carlo simulations to examine the finite sample performance of the proposed

semiparametric test for GARCH-M effect, and then reports the empirical findings, and

finally, Section 4 concludes the paper.
2. Empirical methodology

This section presents a brief review of empirical methodology used in this study. To

examine the relationship between stock market returns and volatility, we use both a

parametric and a semiparametric method. The time-varying pattern of stock market

volatility has been widely recognized and modeled as a conditional variance in the

parametric GARCH framework, as originally developed by Engle (1982) and generalized

by Bollerslev (1986).

2.1. A parametric GARCH-M specification

The parametric method in this study is based on an AR(k)-EGARCH ( p,q)-M model

specified as follows:

yt ¼ l þ
Xk
s¼1

S s yt�s þ dr2
t þ et ð1Þ
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where yt is the stock market return,1 et is the innovation distributed as a generalized

exponential distribution (GED) with zero mean and time-varying conditional variance rm
2,

m represents the scale parameter for the tail-thickness of the GED distribution that takes

particular values for some particular density functions, l, S , d, m, x, a/, ac, and b are

parameters to be estimated. Eq. (1) represents dynamic changes in the mean returns, while

Eq. (3) describes time variation in the conditional variance. Among all the parameters to

be estimated, the most relevant one for this study is the parameter d, because the sign and

significance of the parameter d directly shed light on the nature of the relationship between

stock market returns and its volatility. Also of interest is the product of ai/. The EGARCH

method allows the conditional variance process to respond asymmetrically to positive and

negative shocks in stock returns, which may be reflected in the value of the parameter ai/.

If ai/ b0 (N0), such an asymmetry exists and the variance tends to rise (fall) when the

shock is negative (positive).

Estimating the above model requires the adoption of some density function for the

innovation vector et. The most commonly used density function is the Normal distribution

(see Engle, 1982). However, the Normal density function may not be appropriate here

because it fails to capture the bfat-tailQ which is a common feature of stock return

distributions. Following Nelson (1991), we employ the GED distribution to model stock

return innovations. The density function of the GED takes the following form:

f ðetÞ ¼ m exp � 0:5
��ðet=rtÞ=k

��mih on
k2 1þ1=mð ÞC 1=mð Þ
n o�1

;

where C(d ) is the gamma function, and k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�2=mÞC 1=mð Þ

�
=C 3=mð

�q
. The GED is quite

general. It encompasses many different density functions, depending on various values of

the parameter m. For example, when m =2 we have the standard normal density, for m =1 we
get the double exponential distribution, and if mYl we obtain the uniform distribution.

2.2. A semiparametric GARCH-M specification

The semiparametric GARCH-M model we will estimate is given by:

yt ¼ a0 þ a1yt�1 þ dr2
t þ utuxta þ ut ð4Þ

where yt is the stock market returns, xt =(1, yt�1, rt
2), a =(a0, a1, d)V, rt

2=var( ytjXt�1) is

the conditional variance of yt conditional on Xt�1, Xt�1 is the information set available at

time t�1. The error term is a martingale difference process, i.e., E(utjXt�1)=0. We are
1 The use of the stock return is consistent with Baillie and DeGennarro (1990), Nelson (1991), Choudhry

(1996), and Lee et al. (2001), among others. Also see more related discussion on this issue in the data section

below.
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interested in testing the null hypothesis of H0: d =0 versus H1: d p 0. The null hypothesis
says that rt

2 does not affect return yt. If H0 is rejected, a positive d implies that the

expected stock return and volatility are positively related, while a negative d implies that

they are negatively related.

Before we discuss our semiparametric specification of rt
2, we first briefly review the

nonparametric specification considered by Pagan and Ullah (1988). Pagan and Ullah

(1988) suggest to use a truncated fixed r-lag specification to approximate rt
2, i.e., using

var( yt|yt�1, . . . , yt�r) to approximate var( yt|Xt�1), and they suggested to estimate

var( yt|yt�1, . . . , yt�r) by the nonparametric kernel method. This approach can only allow a

small number of lags (say r =2 or 3) to be used in practice because it suffers the dcurse of
dimensionalityT problem if r is large. Therefore, this approach is difficult to capture the

highly persistent nature of the variance process.

The semiparametric GARCH model we consider below does not suffer from the dcurse
of dimensionalityT problem as in Pagan–Ullah’s specification. We first consider a simple

semiparametric GARCH model (rt
2=var( yt|It�1)=var(ut|It�1)):

r2
t ¼ mðut�1Þ þ cr2

t�1 ð5Þ

where the functional form of m(d ) is unspecified. If m(ut�1)=a +but�1
2 , (5) reduces to a

standard GARCH(1,1) model. Under the null (H0) of d =0 and from (4), we have

ut�1=yt�1�a0�a1yt�2. A more general form of (5) would be to let

varðytjIt�1Þ ¼ r2
t ¼ gðyt�1; yt�2Þ þ cr2

t�1: ð6Þ

When g( yt�1, yt�2)=m( yt�1�a0�a1yt�2)=m(ut�1), (6) reduces back to (5). (6)

allows the conditional variance to have general interactions between yt�s and yt�s�1

(s=1, . . . , l).

Denoting zt�1= ( yt�1, yt�2) and substituting (6) recursively yields

r2
t ¼ gðzt�1Þ þ cgðzt�2Þ þ c2gðzt�3Þ þ N þ cd�1g zt�dÞ þ N Nð ð7Þ

Given that 0bc b1, we may approximate (7) by a finite lag model if d is sufficiently large:

r2
tigðzt�1Þ þ cgðzt�2Þ þ c2gðzt�3Þ þ N þ cd�1g zt�dÞ:ð ð8Þ

Eq. (8) is a restricted additive model with the restriction that the different additive

functions are proportional to each other. Therefore, for a fixed value of d, (8) is one-

dimensional nonparametric model because there is only one univariate g(d ) function that

needs to be estimated. This model can allow many lagged yt�s’s to be included at the

right-hand side of (8). Unlike a purely nonparametric model with d-lagged valued

regressors (e.g., Pagan and Ullah, 1988), the additive model (8) does not suffer from the

dcurse of dimensionalityT problem (e.g., Newey, 1994; Li, 2000).

Yang (2002) considers a similar model but with yt =ut (hence zt�1 becomes the

univariate yt�1 in Yang, 2002). Yang suggests a kernel-based method to estimate model

(8). Although Eq. (8) is only a two-dimensional nonparametric model, it can be difficult to

estimate by the popular kernel method when d is large. This is because at the initial

estimation stage, the kernel method requires one to estimate a d-dimensional

nonparametric regression model: E( yt|yt�1, . . . , yt�d). Then at the second stage, one uses
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the additive proportional model structure of (8) to obtain an estimate of the two-

dimensional g( yt�1, yt�2) function. In finite sample applications and when d is large, the

kernel method can give quite unreliable estimation results due to its failure to impose the

additive model structure at the initial estimation stage.

We suggest to estimate model (8) by the nonparametric series method (say, spline or

power series). The advantage of using the series method is that the additive proportional

model structure is imposed directly and the estimation is done in one step. To see this, let

{/l( y)}l=0
l denote a series-based function that can be used to approximate any univariate

function m( y), we can use a linear combination of the product base function to

approximate g( yt�1, yt�2), i.e., we approximate g( yt�s, yt�s�1) by

Xq
l¼0

Xq
lV¼0

allV/lðyt�sÞ/lVðyt�s�1Þ ¼ a00/0ðyt�sÞ/0ðyt�s�1Þþ N þ a0q/0ðyt�sÞ/qðyt�s�1Þ

þa10/1ðyt�sÞ/0ðyt�s�1Þþ N þa1q/1ðyt�sÞ/qðyt�s�1Þ
þ N þ aq0/qðyt�sÞ/0ðyt�s�1Þ þ N

þ aqq/qðyt�sÞ/qðyt�s�1Þ;

for s =1, . . . , d. The approximating function, after re-arranging terms, becomes:

r2
tia00

Xd
s¼1

cs�1/0ðyt�sÞ/0ðyt�s�1Þ þ N þ a0q
Xd
s¼1

cs�1/0ðyt�sÞ/qðyt�s�1Þ

þ a10
Xd
s¼1

cs�1/1ðyt�sÞ/0ðyt�s�1Þ þ N þ a1q

 Xd
s¼1

cs�1/1ðyt�sÞ/qðyt�s�1Þ þ N

þ aq0
Xd
s¼1

cs�1/qðyt�sÞ/0ðyt�s�1Þ þ N þ aqq
Xd
s¼1

cs�1/qðyt�sÞ/qðyt�s�1Þ: ð9Þ

There are ( q +1)2+1 parameters: c and aij (i, j=0, . . . , q). Note that the number of

parameters in model (9) does not depend on d, the number of lags included in the model.

For example, if q is fixed, then the number of parameters is also fixed, it does not change

as d increases. Therefore, we can let dYl as TYl (with d/TY0). Asymptotically, it

allows an infinite lag structure without having the curse of dimensionality problem (since

q is independent of d).

The estimation procedure is as follows. Under H0, d =0 so that yt =a0+a1yt�1+ut.

Denotes ỹt=yt�a0�a1yt�1, then we have E(ỹt
2jXt�1)=rt

2, or

ỹy2t ¼ r2
t þ vt; ð10Þ

with E(vt|Xt�1)=0. Using the series approximation of rt
2 given in (9) to replace rt

2 in (10),

and replacing a0 and a1 by the least squares estimators of a0 and a1, we can estimate c and

aij’s by the nonlinear least squares method. Or we can fix a value of c, and estimate aij’s (i,

j =0, 1, . . . q) by the least squares regression of regressing ỹt
2 on the series approximating

base functions, and then search over ca [0,1].

In order to ensure that the above procedure leads to a consistent estimate of the g(d )

function, we need to let qYl and q/TY0 as TYl. The condition qYl ensures that the
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series approximation error (the asymptotic bias) goes to zero. For example, if one uses

power series as the base function, then it is well known that the approximation error of

using a qth-order polynomial to approximate a smooth function g(d ) goes to zero as

qYl. The condition q/TY0 ensures that the estimation variance goes to zero as sample

increases. See Newey (1997) and de Jong (2002) for more details on the rate of

convergence of series estimation.

Let r̂t
2 denote the resulting nonparametric series estimator of rt

2, replacing rt
2 by r̂t

2 in

Eq. (4), we get

yt ¼ a0 þ a1yt�1 þ dr̂r2
t þ et; ð11Þ

where et=ut +d(rt
2� r̂t

2). We estimate a =(a0, a1, d)V by the least squares method of

regressing yt on the vector (1, yt�1, r̂t
2). Eq. (11) contains a nonparametrically generated

regressor r̂t
2. Let â =(â0, â1, d̂)V denote the resulting estimator of a. If one ignores the

additive structure of rt
2, and estimate rt

2=Var( yt|Xt�1)iVar( yt|yt�1, . . . , yt�d) by the

nonparametric kernel-based method (e.g., Pagan and Ullah, 1988) and the lag number d is

finite (d can be an arbitrarily large fixed positive integer), the asymptotic distribution of â
is derived in Baltagi and Li (2001) who demonstrate thatffiffiffi

n
p

âa � að ÞYN 0;Rð Þ in distribution ð12Þ

where R is the asymptotic variance of
ffiffiffi
n

p
âa � að Þ. Baltagi and Li (2001) show that R

consists of two parts. One part corresponds to the case when rt
2 is observable. The other

part comes from the fact that rt
2 is in fact not observable but has to be estimated. Newey

(1994) has shown that, for a general semiparametric model, the asymptotic variance of the

semiparametric estimator (of a finite dimensional parameter) is invariant to the

nonparametric estimation techniques used to estimate the model. Thus, if one ignores

the additive structure of var( yt|yt�1, . . . , yt�d) and estimate it by the nonparametric series

method, Newey’s result implies that whether one uses the nonparametric series method or

kernel method to estimate rt
2, the asymptotic variance of â will be the same as given in

Baltagi and Li (2001). However, we used the additive structure when estimating

var( yt|yt�1, . . . , yt�d), intuitively, the asymptotic variance of d should be smaller (at least

no larger) than the one given in Baltagi and Li (2001) because using the additive structure

will lead to more accurate estimation of the conditional variance. The asymptotic

distribution of our d̂ is quite complicated and we leave it as a future research topic. In the

empirical application below, we will assume that d is a fixed positive integer and we will

use the result of Baltagi and Li (2001) to compute the asymptotic variance of d̂ which

should provide an upper bound for the asymptotic variance of d̂.
Our nonparametric estimator r̂t

2 based on the least squares estimation of (9) is a

consistent estimator for rt
2 under the null hypothesis of d =0. However, if the null

hypothesis is false, then r̂t
2 is, in general, not a consistent estimator for rt

2 because when

d p 0, yt follows a very complex nonlinear process. Following the approach of Carrasco

and Chen (2002), it might be possible to show that a general GARCH-M process (with

d p 0) is a stationary b-mixing process, and one may be able to establish the asymptotic

theory for d̂ when d p 0. We leave this challenging task as a future research topic. Note that

the lack of related asymptotic theory does not affect the null distribution of our test statistic

since under H0, d =0, any proxy for rt
2 would suffice to produce a consistent test for d =0
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provided that it is correlated with rt
2. So the question is whether the nonparametric proxy

can lead to a better finite sample power of the test compared with some conventional

parametric tests, say a test based on the EGARCH specification of the conditional variance.

In Section 3, we report a small-scale Monte Carlo simulations to examine the finite sample

performance of the test based on nonparametric estimation of rt
2 and the test based on an

EGARCH specification. The simulation reported there show that our proposed test compare

favorably with the parametric test based on an EGARCH specification.

Next, we discuss how to select the number of lag d and the order of series

approximation q, in finite sample applications. For a fixed value of q (for a fixed order of

series approximation), the number of parameters to be estimated is fixed and does not

depend on d. In particular, choosing a large value of d does not lead to over fitting because

the number of parameters (that need to be estimated) does not vary as d increases.

Therefore, it makes sense to select the value of d that minimizes the sum of squares of

residuals. In this manner, we can pick up all the necessary lags to capture the persistent

dynamics without overfitting the model. Therefore, we recommend to select the value of d

that minimizes the sum of squares of residuals.

The series approximating terms q is selected as follows. Again we use a linear

combination of a product base function to approximate g( yt�1, yt�2). If we use up to the

qth univariate base functions for each component of xt, to approximate g(xt)=g( yt�1,

yt�2), the number of approximating base function is k =( q +1)2(/l1
( yt�1)/l2

( yt�2) for

0V l1, l2Vq). For a fixed value of T (the sample size), the larger the k, the smaller the

series approximation error (smaller bias), but the larger the estimation variance. One

should choose k optimally in balancing the bias square term and the variance term, i.e.,

minimizing the mean square error. It is known that the leave-one-out least squares cross-

validation method can lead to optimal selection of the smoothing parameter k in the sense

that it minimizes the asymptotic estimation mean squares errors (e.g., Li, 1987). We will

use the least squares cross-validation method to select k in the empirical applications

reported in the next section. One problem with the least squares cross-validation method is

that it is computationally quite costly as one has to estimate the model at each observation

point. Alternatively, one may select k by minimizing some kind of modified AIC criteria

which can be computationally simple. In nonparametric kernel estimations, Hurvich et al.

(1998), Li and Racine (2004), and Racine and Li (2004) show that an improved (a

modified) AIC criterion performs well in selecting smoothing parameters. We leave the

exploration for alternative computationally simple methods as a future research topic.
3. Monte Carlo and empirical results

3.1. Monte Carlo results

In this section, we conduct a small-scale Monte Carlo simulations to examine the finite

sample performance of our proposed test. The true data generating process is that of a

GARCH(1,1)-in-mean process:

yt ¼ a0 þ a1yt�1 þ drt�1 þ ut
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r2
t ¼ b0 þ b1u

2
t�1 þ b2r

2
t�1

utfet

ffiffiffiffiffi
r2
t

q
where et is i.i.d. N(0,1). Following Engle and Ng (1993), we choose b0=0.01, b1=0.09,

b2=0.9 for the GARCH(1,1) process, and we choose a0=0.002, a1=�0.004 for the main

equation. d =0 when H0 is true and d p 0 when the null hypothesis is false. The sample

sizes we consider are n =200 and n=400, and the number of replications are 2000 for all

cases.

We use two different estimation methods to estimate the above model. (i) The proposed

semiparametric estimation method, and (ii) estimation based on an EGARCH(1,1) model.

First, we examine the size estimation. Under H0 of d =0, the estimated sizes is reported

in Table 1. From Table 1, we observe that both tests are somewhat oversized for sample

sizes we consider. However, size distortion for n =400 is much smaller than that for

n =200, and its performance seems to be acceptable for n=400.

To examine the power of the proposed test, we set d =(0.5, 1, 2, �0.5, �1, �2). In

order to get a fair comparison for power, we compute size-adjusted power and the results

are given in Table 2. From Table 2, we observe that for most cases, the semiparametric-

based test is more powerful than the EGARCH-based test. Also, it is interesting to observe

that the power of the semiparametric test is monotonically increasing as the model moves

further away from the null model (i.e., as |d| increases), while the parametric EGARCH-

specification-based test does not have this monotonic power property. For example, for the

case of n=400, as d changes from 1 (�1) to 2 (�2), the power of the EGARCH-based test

decreases. Similar phenomenon is also observed by Juhl and Xiao (2005) who show, via

Monte Carlo simulations, that a parametric test for testing a structural break does not

exhibit monotonic power while a nonparametric test enjoys the monotonic power property.

We also computed the mean (over 2000 replications) values of the test statistics under H1,

for example, for n =400, and for d =0.5, 1 and 2, the mean statistics for the semiparametric

test are 2.21, 4.36 and 6.21, respectively, and for d =� .5, �1 and �2, the mean statistics

are �2.17, �4.30 and �6.14, respectively. Hence, as |d| increases, the absolute value of

the semiparametric test statistic also increases, leading to a monotonic power for our

semiparametric test. In contrast, for n =400 and for d =0.5, 1 and 2, the mean statistics for

the EGARCH-specification-based test are 2.19, 3.84 and 3.54, respectively (a similar

pattern is observed for the d b0 case), which does not increase monotonically as d
increases.
Table 1

Estimated sizes

EGARCH Semiparametric

1% 5% 10% 1% 5% 10%

n =200 1.72 6.85 13.1 2.16 7.23 13.8

n =400 1.65 6.20 11.6 1.86 6.43 12.3



Table 2

Estimated power

d =0.5 d =1 d =2 d =� .5 d =�1 d =�2

n=200

EGARCH 1% 0.198 0.341 0.393 0.074 0.011 0.169

5% 0.327 0.447 0.495 0.303 0.443 0.425

10% 0.376 0.486 0.529 0.384 0.514 0.537

1% 0.156 0.383 0.680 0.109 0.377 0.662

Semiparametric 5% 0.272 0.504 0.775 0.280 0.485 0.752

10% 0.323 0.567 0.811 0.343 0.544 0.801

n=400

EGARCH 1% 0.530 0.699 0.668 0.017 0.067 0.30

5% 0.674 0.783 0.747 0.680 0.769 0.706

10% 0.734 0.811 0.778 0.739 0.801 0.740

1% 0.340 0.756 0.952 0.345 0.748 0.934

Semiparametric 5% 0.468 0.832 0.973 0.435 0.820 0.955

10% 0.557 0.861 0.976 0.517 0.854 0.964
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Another advantage of the semiparametric-based test is its computational simplicity,

because the nonparametric series estimator for rt
2 only involves a simply least square

regression, the semiparametric-based test is much faster to compute than the EGARCH-

based test. EGARCH-based test requires that one estimates a highly nonlinear

(misspecified) EGARCH model and it can be computationally quite costly. Sometimes

in the simulation iterations, the EGARCH model does not lead to a convergent estimation

result, and we have to throw away the non-convergence results. The unstable EGARCH

performance is also reported by Engle and Ng (1993, p.1771).

Although one cannot draw general conclusions regarding the relative performance of

the semiparametric-based test and the EGARCH-based test from a small-scale Monte

Carlo simulations, the simulation results reported here at least show that the proposed

semiparametric test is a worthy alternative to the popular EGARCH-based test in testing

the GARCH-in-mean effect.

3.2. Empirical results

In this subsection, we report the result of an empirical application. Following Lo and

Mackinlay (1988), we use weekly data from January 1980 to December 2001 for the 12

largest stock markets in the world in terms of market capitalization. These indexes include

the United States (US), Canada (CA), Japan (JP), Australia (AU), Hong Kong (HK),

Singapore (SG), the United Kingdom (UK), Germany (GM), France (FR), Italy (IT),

Netherlands (NT), and Switzerland (SW). All the data are in local currency terms and

obtained from Morgan Stanley Capital International (MSCI). The MSCI indexes

represents approximately 60% of the aggregate market value of the stock markets in

these countries. All the indexes are market-value weighted.

The stock returns used in this study are defined as the first difference of the logarithm of

stock index prices including dividends ( yt =ln( pt/pt�1)). Table 3 provides some basic

statistics. Because risk-free interest rate data are not available to all the markets under



Table 3

Summary statistics

Country Mean Standard deviation Skewness Kurtosis

United States 0.002*** 0.023 �1.737 20.584***

Canada 0.001* 0.024 �0.936*** 9.70***

Japan 0.001 0.026 �0.333*** 4.318***

Australia 0.002** 0.027 �1.781*** 17.986***

Hong Kong 0.002*** 0.045 �0.98*** 6.866***

Singapore 0.001 0.034 �2.016*** 23.272***

United Kingdom 0.002*** 0.023 �1.597*** 16.370***

Germany 0.002** 0.027 �1.224*** 7.196***

France 0.002*** 0.027 �0.912*** 5.115***

Italy 0.003*** 0.034 �0.339*** 2.522***

Netherlands 0.002*** 0.024 �1.457*** 12.915***

Switzerland 0.002*** 0.023 �1.370*** 8.355***

* Denotes significance at the 10% level.

** Denotes significance at the 5% level.

*** Denotes significance at the 1% level.
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consideration during the whole sample period, stock market volatility is measured based

on stock returns instead of excess stock returns (which is equal to stock returns minus the

risk-free interest rate). Many researchers (Baillie and DeGennarro, 1990; Nelson, 1991;

Choudhry, 1996; Lee et al., 2001) argue that such a practice produces little difference in

estimation and inference in this line of research. In particular, Baillie and DeGennarro

(1990) compare two models based on stock returns and excess stock returns, with the

former ignoring and the latter allowing for the risk-free interest rate. They find that the

results of the two models are very similar (p. 207). Similarly, Nelson (1991) fits two

EGARCH-M models with one including and the other excluding both dividends and the

risk-free interest rate. He concludes that there is bvirtually no difference in either the

estimated parameters or the fitted variancesQ (p. 356).
The preliminary analysis is conducted on AR(k)-EGARCH ( p,q)-M specifications for

p,q =1, 2, 3, 4. An AR(1)-EGARCH (1,1)-M process generally provides a good

approximation of the data generating process for stock returns under consideration, with

the exception that AR(2)-EGARCH (1,1)-M appears most appropriate for Hong Kong. To

conserve space, only the results for the two most relevant parameters, d and a1/, are

reported in Table 4 (the complete results are available upon request). The time-varying

pattern of stock market volatility is confirmed because the coefficients of GARCH effects

(a1c and b1 in Eq. (3), not reported here) are significant at any conventional significance

level in all markets. As discussed previously, in this study it is particularly important to

check the sign and significance of the coefficient estimate d. Table 4 shows that the

coefficient d is positive for all markets with the exception of Japan and Singapore, where

there exists a negative but insignificant estimate of the parameter d for these two countries.

Furthermore, none of the d parameter estimates is statistically significant at any

conventional significance level, with the exception of the UK at the 10% significance

level. This may be interpreted as lack of evidence for a significant relationship between

expected return and volatility in international stock markets. The results are generally

consistent with many previous works, including Baillie and DeGennarro (1990), Nelson



Table 4

EGARCH (1,1)-M estimation results

Coefficient

(t-ratio)

US CA JP AU HK SG

d 2.30 (0.87) 0.68 (0.33) �0.30 (�0.14) 2.82 (1.08) 0.11 (0.10) �0.07 (�0.05)

a1/ 0.12 (0.68) 0.22 (1.56) 0.28** (2.76) 0.25 (1.35) 0.49*** (3.99) 0.29** (2.25)

Coefficient

(t-ratio)

UK GM FR IT NT SW

d 7.73* (1.78) 0.32 (0.17) 0.96 (0.37) 2.28 (1.23) 1.66 (0.71) 0.59 (0.25)

a1/ 0.58 (1.56) 0.15 (1.52) 0.38** (2.62) �0.07 (�0.64) 0.17 (1.41) 0.22** (2.04)

See the note in Table 3.
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(1991), Theodossiou and Lee (1995), Choudhry (1996), and Lee et al. (2001). In addition,

the parameter estimate of a1/ is significant at the 5% significance level for five of the

markets (Japan, Hong Kong, Singapore, France and Switzerland). This suggests that there

is an asymmetric response of conditional variance to negative and positive stock return

innovations in these markets. However, the EGARCH-M(1,1) estimation results should be

interpreted with caution, because the following semiparametric analysis shows that (at

least part of) EGARCH-M(1,1) model may be misspecified and its estimation results may

not be reliable.

Next, we conduct the semiparametric analysis. We estimate model (8) and we use B-

spline (Schumaker, 1981) as the approximating base function. The estimation results for

the whole sample period are reported in Table 5. From Table 5, we observe that the

estimated coefficients of d are negative in 11 out of 12 markets. Moreover, the parameter

estimate is significantly different from zero at 5% level for four markets (Australia, France,

Italy, Netherlands) and in two more markets (US and Switzerland) at the 10% significant

level. This provides some evidence of a negative relationship between stock market return

and volatility in international stock markets. Such a finding implies that high/low volatility

precedes low/high returns.

It has been argued that the 1987 international stock market crash may have had a

substantial impact on international stock market behavior. In particular, Choudhry (1996)

provides evidence of changes in the ARCH parameters, the risk premium and volatility
Table 5

Semiparametric GARCH-M estimation results (01/80–12/01)

Coefficient

(t-ratio)

US CA JP AU HK SG

d (t-ratio) �11.99*

(�1.88)

�1.83

(�0.25)

�11.86

(�1.06)

�9.89**

(�2.32)

�0.04

(�0.03)

�4.86

(�0.96)

Coefficient

(t-ratio)

UK GM FR IT NT SW

d (t-ratio) 3.37

(0.40)

�3.07

(�0.70)

�7.29**

(�2.17)

�10.24**

(�1.99)

�14.32**

(�2.23)

�6.96*

(�1.81)

See the note in Table 3.



Table 6

Semiparametric GARCH-M estimation results (01/80–09/87)

Coefficient

(t-ratio)

US CA JP AU HK SG

d (t-ratio) �7.00

(�0.17)

4.00

(0.18)

12.19

(0.82)

9.23

(0.43)

�1.09

(�0.23)

1.22

(0.19)

Coefficient

(t-ratio)

UK GM FR IT NT SW

d (t-ratio) �25.52**

(�2.29)

5.40

(0.24)

�10.47***

(�3.11)

�12.41**

(�2.77)

�21.97

(�1.15)

�18.39

(�0.83)

See the note in Table 3.
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persistence before and after the 1987 crash in several developing markets. Ignoring such a

potential structural change due to the 1987 crash may bias the estimates based on the

whole sample period. To address the impact of the 1987 crash, we further divide the data

into two subperiods: the pre-crash period (January 1980–September 1987) and the post-

crash period (November 1987–December 2001). The observations for October 1987 are

excluded. The semiparametric analysis is conducted on the two periods and the results are

reported in Tables 6 and 7. As shown in Table 6, the coefficient estimates of d are negative

in 7 out of 12 markets and significant for 3 markets (Italy at the 1% level, UK and France

at the 5% level). It is also interesting to note that the coefficient estimates of d are positive

in 5 out of 12 markets in the pre-crash period, although none of them are statistically

significant at any conventional significance levels.

In contrast, the results for the post-crash period show that coefficient estimates of d are

negative for 11 out of 12 markets (with the exception of Canada) and are significant for 7

markets. These 7 markets include Australia (1% level), Hong Kong, UK, Germany,

France, Switzerland (5% level), and Singapore (10% level). Also noteworthy, comparing

the results in Tables 6 and 7, the coefficient estimates of d are larger during the post-crash

period than during the pre-crash period for some markets, including Australia, Hong

Kong, Singapore, Germany, and France. In contrast, the coefficient estimates of d are

somewhat smaller in the post-crash period than in the pre-crash period for several

European markets (UK, Italy and Switzerland). The evidence shows that risk premiums
Table 7

Semiparametric GARCH-M estimation results (11/87–12/01)

Coefficient

(t-ratio)

US CA JP AU HK SG

d (t-ratio) �20.23

(�1.41)

5.41

(0.42)

�4.92

(�0.53)

�20.04***

(�3.82)

�7.06**

(�2.68)

�8.75*

(�1.74)

Coefficient

(t-ratio)

UK GM FR IT NT SW

d (t-ratio) �19.19**

(�2.63)

�18.91**

(�2.13)

�17.32**

(�2.27)

�5.19

(�1.08)

�15.4

(�1.30)

�16.67**

(�1.97)

See the note in Table 3.
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have increased after the 1987 crash in some stock markets, though not for some other

markets. Consistent with Choudhry (1996), the fact that the change in risk premium is not

uniform and depends on the individual market, suggests that factors other than the 1987

crash may also be responsible for the change.
4. Conclusions

This study examines the relationship between expected stock returns and volatility in

the 12 largest international stock markets. We show that the estimated relationships

between return and volatility are sensitive to the way volatilities are estimated. When

parametric EGARCH-M models are estimated, we obtain results that are similar to

previous findings. Ten out of 12 markets have positive but statistically insignificant

relationship (with the only possible exception at the 10% significance level). On the other

hand, using a flexible semiparametric specification of conditional variance, we show that

negative relationships between returns and volatility prevail in most of these markets.

Moreover, the negative relationships are significant in six markets based on the whole

sample period and seven markets after the 1987 international stock market crash.

Given the fact that the semiparametric specification is more robust than a parametric

conditional variance specification, the result of this study lends some support to the claim

that stock return volatility is negatively correlated with stock returns (Black, 1976; Cox

and Ross, 1976; Bekaert and Wu, 2000). One explanation of such a negative relationship

is based on leverage (Black, 1976). A drop in the value of the firm’s stock (negative

return) increases financial leverage used by the firm and its debt-to-equity ratio, which

makes the stock riskier and increases its volatility. Another explanation based on volatility

feedback (Pindyck, 1984; French et al., 1987) suggests that if volatility is priced, an

anticipated increase in volatility raises the required return on equity, leading to an

immediate stock price decline (negative return). More formally, Whitelaw (2000)

theoretically shows that a general equilibrium exchange economy characterized by a

regime-switching consumption process generates a negative unconditional relationship

between expected returns and volatility at the market level. Our results are also consistent

with the empirical findings of Glosten et al. (1993) and Whitelaw (2000). However, it

contradicts the prediction of a positive relation made by many asset pricing models (e.g.,

Sharpe, 1964; Linter, 1965; Mossin, 1966; Merton, 1973) and the empirical finding of an

insignificant relationship consistently reported in the previous literature (Baillie and

DeGennarro, 1990; Nelson, 1991; Theodossiou and Lee, 1995; Choudhry, 1996; Lee et al.,

2001).

The findings of this study have some important implications. For example, as pointed

out in Bekaert and Wu (2000, p. 2), the negative relationship between market volatility and

expected market return immediately implies that the time-varying risk premium theory

cannot be valid to explain the stock market behavior. Further investigation may be

conducted on whether such a negative relationship is time-varying, as suggested in the

model of Whitelaw (2000), and also prevails in emerging stock markets. It is also of

interest to examine whether different explanations exist for such a negative relationship in

international stock markets following the work of Bekaert and Wu (2000). For example,
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although both explanations based on leverage effects and volatility feedback may explain

the negative (contemporaneous) relationship between stock returns and volatility, they

carry different implications for causality between the returns and volatility (Bekaert and

Wu, 2000). Future research may also employ the semiparametric specification of

conditional variance used in this study to explore other topics concerning the relationship

between mean and conditional variance, such as that between inflation rate and inflation

volatility.
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