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Abstract 

This paper presents accounts of several real case applications using grid farms with data- and 
functional-parallelism. For data parallelism a job submission system (EasyGrid) provided an 
intermediate layer between grid and user software. Performance results suggest new directions of 
research for optimizing throughput. For functional parallelism a PVM algorithm ran user’s software 
in parallel as a master / slave implementation. This was applied to typical particle physics 
applications using real data and Monte Carlo simulation:  hadronic tau decays, searching for anti-
deuterons, and neutral pion discrimination using genetic programming algorithms.  (This 
discrimination is used to obtain high purity samples to compare experimental results with 
theoretical predictions.) Studies of performance show considerable reduction of time execution 
using functional gridification.  

1. INTRODUCTION 
he GridPP collaboration [7][8] and several 
other e-science projects have provides a 

distributed infrastructure and software 
middleware in UK. The LCG  (Large Hadrons 
Collider Computing Grid) [4][5][6] software, 
developed by an international collaboration 
centred at CERN, provides a system for batch 
processing for High Energy Physics (HEP) 
through hundreds of computers connected by 
the Internet. 

In HEP processing each event is independent, 
and Monte Carlo simulation and data analysis 
can be divided in several hundreds of 
independent jobs running in parallel over each 
data file with thousands of million of events. It 
is therefore suitable for data parallelism, but less 
so for functional parallelism. The merged 
results provide physicists with information to 
study fundamental matter constituents. To 
manage this complex process, a reliable job 
submission system for data parallelism 
integrating resources to user’s software was 
developed (EasyGrid) and is described in this 
paper.  

Functional parallelism [1][2][3] is  a 
technique where functions in the program are 
executed independently in parallel more 
efficiently. There is a master program (or client) 
that request slave programs (or servers) for 
some service and coordinates effort and 
synchronization.  

To use LCG in scientific processing with 
functional parallelism, an efficient and secure 

communication mechanism is necessary to 
allow data transfer between jobs in different 
worker nodes. The time needed to establish the 
partition and transferring of information cannot 
be bigger than the processing time, or the 
solution will be inefficient (it will take longer 
than running in one computer).  

Another important concern is the server’s 
reliability. If any server goes down, the master 
program must re-submit the task to another 
server, and not stay waiting forever. To 
overcome these difficulties, a gridification 
algorithm was developed and described in this 
paper. Data and functional gridification 
algorithms can be used together. 

To test the gridification algorithm, this paper 
addresses the problem of neutral pions 
discrimination obtained by genetic 
programming.  Genetic programming (GP) 
[9][10][11][12][13] is an artificial intelligence 
algorithm that mimics the evolutionary process 
to obtain the best mathematical model given an 
economic function to evaluate performance 
(called the fitness function).  

Genetic programming has been used to 
determinate cuts to maximize event selection 
[14][15][16]. Genetic algorithms can also be 
associated with neural networks to implement 
discriminate functions [17] for Higgs boson.  

Our approach is innovative because the 
mathematical model obtained with GP maps the 
variables hyperspace to a real value through the 
discriminator function, an algebraic function of 
pions kinematics variables.  Applying the 
discriminator to a given pair of gammas, if the 
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discriminate value is bigger than zero, the pair 
of gammas is deemed to come from pion decay. 
(The neutral pion, with a mass of 135 MeV/c2, 
decays to two photons.) Otherwise, the pair is 
deemed to come from another (background) 
source.  This approach has been successfully 
applied to medical diagnostics [18][19][20][21]. 

This paper starts describing LCG architecture 
(section 2), moving to Data gridification 
(section 3), how EasyGrid works (section 4), 
and its performance (section 5). Functional 
gridification is described in section 6, followed 
by its installation procedures (section 7), 
Genetic programming (section 8), the BaBar 
experiment (section 9), neutral pion 
discrimination (section 10), and finally 
functional gridification performance (section 
11).   

2. LCG grid architecture. 

Grid middleware, working over the Internet, 
provides the necessary hardware infrastructure 
grouped in functional modules. It can be seen as 
a homogeneous common ground in a 
heterogeneous platform. 

LCG grid implementation has been used in 
HEP experiments due its characteristics of 
independent parallel processing. There are many 
worker nodes (WN), managed by Compute 
Elements (CE), running jobs distributed by 
resource brokers (RB). 

The testbed platform available at University 
of Manchester [22] contains the following 2 
CPUs per node and 100Mbits/s network cards 
computers: User interface (UI): It is the module 
that allows users interact with grid. It contains 
the EasyGrid program to submit jobs and 
commands to the grid, check job status, recover 
outputs, etc; 1 Resource broker (RB): It is 
responsible for matching the jobs with 
resources, implementing policies, and sending 
jobs for processing in a remote resource CE. 
Resources definition is written in the Job 
Description File (JDF) using ClassAds; 1 
Computer element (CE): it is the batch 
manager (PBS) that allocates resources in the 
farm to run users' software; 6 Worker Nodes 
(WN): computers that will run users’ software. 
They contain the packages installed, libraries, 
and can access necessary data for processing; 1 
Storage Element (SE): it is the grid mass 
storage element , with 7 Gigabytes; 1 
Information system with the Berkeley 
Database (BDII): the catalogue of resources 
published in the grid. It is distributed in two 

levels. The first catalogue all CE BDII entries. 
The second, in the CEs, contains the 
information about the farm managed by the CE.  
This computer also contains the Proxy manager 
(PX) which stores proxies for long jobs in the 
grid, and the  Grid monitor database; 2 NFS file 
servers with 1.7 Terabytes and a 1 Gigabits/s 
network card, accessible through the farm. 

The production farm contains 1 CE and 28 
WNs, sharing other systems with the testbed. 
The BaBar virtual organization has its own 
LCG File Catalogue (LFC) in Italy. 

3. Data gridification using 
EasyGrid/LCG. 

HEP requirements have pushed grid 
establishment in data parallelism. HEP 
experiments measure the results of collisions 
between relativistic particles, called an event, 
and store a large volume of data (hundreds of 
Terabytes) for further analysis.  

The total event sample is separated into 
different datasets with hundreds of data files 
according to simple criteria, and a physicist will 
be interested in performing analysis on a 
selected dataset. 

Data gridification is implemented through 
EasyGrid Job Submission [22] software. It is an 
intermediate layer between Grid middleware 
and user’s software. It integrates data, 
parameters, software, and grid middleware 
doing all submission and management of 
several users’ software copies to grid.   

EasyGrid’s commands are: a. easymoncar: 
run Monte Carlo Events generation. b. easysub: 
run Raw data analysis . c. easygftp: run Generic 
data access applications using gridftp. d. 
easyapp: run Generic applications performing 
data gridification. e. easyroot: run Root 
application performing data gridification. f. 
easygrid: perform jobs’ follow up, recover 
results in user’s directory, and recover crash 
information for further analysis. 

4. How EasyGrid works (users do not 
need to know it!). 

EasyGrid’s first task is to find what event 
files are in the dataset (bookkeeper system), and 
what WNs have access to them (LFC metadata 
catalogue).  

To manage the files of each dataset, there is 
the bookkeeping system. Physicists can obtain 
from it a list of dataset file names that match 
their analysis requirements. These requirements, 



from grid point of view, are: 
a. Select the necessary number of data files 

that contains some number of events. The 
number of events defines the processing time 
and can optimise performance. 

b. Select data files from some date. Users 
want to update their selected events dataset 
since the last processing with new data, without 
have to do all over again. 

c. Some systems provide a remote query, 
which allows users know what datasets are 
available in a remote site, for remote job 
submission. This is a wise procedure to increase 
reliability and reduce bottlenecks. 

d. Define the initial number of sequence for 
pointer’s data files. Users will be able to have a 
history directory with all pointer files that 
already were processed.  

The Bookkeeping system is updated every 
night to guarantee synchronization between all 
sites and the central experiment. 

There are data distribution policies to 
guarantee redundancy and availability according 
to demand, geographic distribution and security. 
LFC metadata has a metadata file for each 
dataset name and its distribution around the 
world. This method might be also used to store 
file handlers of files stored in dCache or other 
file system, providing the link between the 
logical file name and its physical storage in the 
remote site. These physical files are registered 
in the LFC with the SE name.  

When EasyGrid submits a job using the 
clause InputData in the JDL file, only the CE 
with closest SE with data available will be 
selected.  
VO tags describing available software releases 
and packages complete the necessary 
information to distribute user’s software to CEs 
for processing. 

The list of CEs defines the SEs/NFS that will 
store analysis software binary and large 
parametric files to minimize network traffic. 
EasyGrid performs all necessary procedures to 
store files remotely and recover them 
efficiently.    

The next stage is generation of all necessary 
information to submit the jobs on the Grid. 
GEnerator of Resources Available (GERA) 
produces the Job Description Language (JDL) 
files, the script with all necessary tasks to run 
the analysis remotely at a WN, and some grid 
dependent analysis parameters. The JDL files 
define the input sandbox with all necessary files 
to be transferred, and a WN balance load 

algorithm matches requirements to perform the 
task optimally. 

When the task is delivered in the WN, 
scripts start running to initialize the specific 
environment, and user’s software binary is 
downloaded from closest the SE.  Data files are 
made available through transfer or providing 
any access method to the application, and run 
user’s software. 

Users can follow up the process querying job 
status. If the job is done, a task recovering 
results in the user's directory is performed 
automatically. If the job was aborted in the 
process, the diagnostic listing is stored in the 
history file for further analysis.  

EasyGrid was developed using the RAP 
(Rapid Application Prototyping) methodology. 
Several versions were developed, covering 
different approaches and functionalities, and 
three real applications were used as proof-of-
case, which allowed us to evaluate each strategy 
and acquire information to write the production 
system specification [22].  

5. LCG grid benchmark and 
performance. 

The benchmarks were developed to study 
data transfer between file providers and 
applications, test over large numbers of events, 
and test under large numbers of jobs. 

The Grid paradigm states applications should 
go where data is available. However, there is a 
potential bottleneck in a site’s data distribution 
architecture. The software will be delivered to a 
CE with WNs that can access data in some way 
(NFS, xrootd, gridftp, etc).    

The first benchmark was eta(540) [28] 
reconstruction to test what is the best approach 
to data distribution: copy data file locally and 
read the file by application, or use a remote file 
access such as NFS. The software reads 1.4 
gigabytes and produces several histograms for 
further analysis.  Fig 1 shows the performance 
for different approaches in data access. In 
Figure 1a data is read directly from the local 
WN disk, in ideal conditions without overload 
and traffic.  In Figure 1b it is first transferred 
through a Storage Element.  Transferring data 
produces an iowait in the initial part of the job 
due channel contention, and reading the data 
during execution looks better and more 
efficient.  

However, this solution is not scalable as 
result of network’s channel contention (Fig 1 c). 



Iowait increases to 50% and cpuload decreases 
to 50% with performance reduction.  

The problem becomes even more significant 
when many nodes compete to access network 
(see Table I and II), increasing execution time 
from 600 s when data is local, to 2522 s with 12 
cpus, and 6971 s with 56 cpus. The number of 
events analysed per second (EPS) decreases, 
which is a massive waste of resources, and 
shows the implemented paradigm may not be 
suitable for data grids because its efficiency is  
dependent on network availability.   Using 
storage systems such as dCache in the WN [31] 
are also subject to this potential problem. 

Efficiency could be improved if the job 
submission system submits the jobs directly to 
specific worker nodes that store specific data 
files. There would not have file transfer, and the 
execution would be local with high efficiency. 
This solution is feasible because HEP data files 
never change. They become available after 
reconstruction, and very sporadically will suffer 
any maintenance. From economical point of 
view, storage hard drivers are available with 
hundreds of megabytes, and are used only to 
store operating system and temporary data (less 
then 5 Gigabytes of data).  However it does 
require the data to be structured so that jobs will 
not require data from datasets stored on 
different nodes, and the job submission system 
has to know the physical location of the data. 

The second benchmark was tau decays to 
neutral pions. This benchmark selected events 
over 482 million real events and generated 5 
million MC events using EasyGrid [29]. 

The third benchmark was search for anti-
deuterons in all events available in Run 3 (1,500 
million events, in one week using 250 
computers in parallel) [30].   

There were no missing jobs, and few aborts 
were related with application problems. There 
were problems in grid catalogue when more 
then 250 jobs access at once. 

6. Functional gridification algorithm. 
The gridification algorithm is a library with 

several functions to run conventional software 
on the grid doing functional parallelism, with 
minor changes in the source code. (It is possible 
at same time to apply data parallelism using 
EasyGrid.)  

The algorithm implements a master / slave 
architecture. The master manages a task queue 
that contains elementary tasks each slave can 
perform independently. One task can store data 

for a set of individual cases (service string) to 
overcome problems with communication delays 
between master/slaves. 

The master software was implemented using 
PVM commands [23][24], and can be changed 
to web services without any problem if 
necessary. 

The first task in the master software is pointer 
and data structure initialization, to manage the 
distributed algorithm. It performs the distributed 
software initialization defining internal 
characteristics (pvm_setopt function), obtains 
the total number of slaves available in the 
cluster (pvm_config function), and starts new 
slaves processes (pvm_spawn function). 

The number of processes depends on the 
number of machines available in the cluster, and 
a machine’s cpu load. Sometimes, one computer 
can host several slaves with optimal 
performance, combining CPU bound with IO 
bound services. 

After the handshake, the master must confirm 
a slave’s processes resources availability, 
keeping record of them to deliver tasks from the 
queue.  

The Master process initializes the application 
and prepares data buffers with necessary 
information to run each slave process 
independently. 

The Master initializes the communication 
channel (pvm_initsend), pack the data 
(pvm_pkDATA_TYPE, where DATA_TYPE is 
float, etc), and sends the data to the slaves. Task 
state and id are stored in the master in case of 
re-submission. 

After all slaves have received the packages, 
the master starts a probe loop (pvm_probe) in 
the communication channel, listens for results 
from slave processes, or waits for timeout from 
any slave processor. A delay is necessary to 
avoid a traffic jam in the communication 
channel, and will contribute to the total 
communication time between master/slaves. 
Every cycle a timeout counter is increased. 

Tasks are stored in a queue. Every time one 
slave sends results, it receives a new package of 
data. This implementation does not require a 
loading balance algorithm because the master 
holds all remain processes and provides idle 
slaves with more tasks. 

Every time a new process is sent to one slave, 
the timeout counter is initialized. If there is a 
timeout signaling, the task has to be sent to 
another slave (while there are slaves available) 
and the slave is marked as out-of-order to avoid 



 Percentage of CPU use (%user) Percentage of IO wait (%wait) 
a.NFS 
100Mb/s 
Bf40 

  
b.SE 
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c.NFS  
1Gbs 
Arthur 

  
Fig. 1 CPU load and IO wait performance for data transfer paradigm in time frames of 15 seconds. (a) NFS access by application. (b) File copy 
locally and later access. (c) NFS access with jammed network. 
 
T ABLE I DATA DISTRIBUTION ANALYSIS. PERFORMANCE WAS DEFINED AS (100 * EPS/EPS_LOCAL), WHERE EPS IS EVENTS PER SECOND. 

EPS_LOCAL (1577) IS NUMBER OF EVENTS PER SECOND, USING LOCAL STORED FILES AND TAKES 600 SECONDS.  

c.NFS Arthur a.NFS Bf40 b.SE 100Mb # 
Jobs EPS Perf EPS Perf EPS Perf 

1 855 54 1574 100 1193 76 

3 481 31 1457 92 949 60 

6 492 31 1388 88 725 46 

12 412 26 1372 87 495 31 

 
T ABLE II: AVERAGE EXECUTION TIME OF 500 JOBS IN 12 AND 56 CPUS IN PARALLEL WITH FILE TRANSFER AND REMOTE ACCESS. 

500 Jobs 
File 

Transfer Exec Total 

12 CPUs Time 00:15:00 00:27:00 00:42:02 

 Seconds 900 1620 2522 

56 CPUs Time 01:43:52 00:12:19 01:56:11 

 Seconds 6232 739 6971 
 

new submissions to it.  
Every time new messages come from the 

channel, the result is stored and a new data 
string is sent to the slave. 

When the task queue is empty, the master 
does the next cycle in the application and 
returns to feeding the task queue, repeating all 
distribution process. 

The slave software running in each worker 
node performs the following tasks. First, it get 
its task id (pvm_mytid), master process 
(pvm_parent), set distributed environment 
(pvm_setopt), checks the resources available 
and prepares the handshake with the master. 

While the slave does not receive a package 
finishing the process, it listens to the 
communication channel for new data packages. 

When a new data package is available, it gets 
the packaged information and type 
(pvm_bufinfo).  

Package labels define what type of task has to 
be performed by slave process. For example, 
type 2 is answer master handshake, type 3 is 
perform some mathematical routine and send 
results back to master, and type 5 is end of 
processing. 

7. PVM installation with LCG grid 
middleware. 

We have studied gridification algorithm 
implementations using Parallel Virtual Machine 
(PVM) package running at LCG worker nodes. 
System managers should perform the following 



configuration to use it: 
a. Install PVM in a shared NFS system and 

export directory (/etc/exports) to all computers’ 
farm. Every computer farm should mount PVM 
directory (auto-mount or /etc/fstab). 

b. Set PVM variables in ~/.bashrc: 
PVM_SSH should point globus ssh 
(/opt/globus/bin/ssh.d/ssh) and PVM_ROOT 
should point the mounted NFS directory.  

c. All farms computers should have an entry 
in the ~/.rhosts file. 

d. All farms should have a 
~/.ssh/authorized_keys file (no passphrase) with 
all worker nodes public keys (.ssh/id_dsa.pub) 
created with ssh-keygen -t dsa .  

e. A copy of compiled master and slave 
programs should be stored in pvm3/bin/LINUX. 

The package is compatible with LCG 
software and Globus Toolkit 4.  

8. Genetic Programming 

GP is an optimization algorithm that mimics 
the evolution and improvement of life through 
reproduction. Each individual contributes with 
its own genetic information to the building of 
new ones (offspring) adapted to the 
environment with higher chances of surviving. 
This is the basis of genetic algorithms and 
programming. Specialized Markov Chains 
underline the theoretical bases of this algorithm, 
changes of states and searching procedures.  

Chromosome representation. The 
chromosome represents the model of the 
problem solution using trees. A tree is a model 
representation that contains nodes and leaves.  

Nodes are mathematical operators. We have 
used multiplication, addition, subtraction, and 
division. Leaves are terminals (the attributes of 
the dataset and random numbers). The 
discriminator function in a GP context is a tree 
using operators and leaves (or so called 
Terminals).  Let us consider the following 
discriminator function:  

X1+3.14 · X2+5.3 / X3 
In the tree representation it can be rewritten 

as following: 
(+ X1 (+ (· 3.14  X2) (/ 5 .3  X3))) 

where X1, X2, and X3 are the terminals, and 
multiplication(·), addition(+), subtraction (-), 
and division(/) are the operators. Replacing the 
values in the equation results in a number that 
should be positive or negative. 

Genetic operators. Trees are manipulated 
through genetic operators. The crossover 
operator points a tree branch and exchanges it 

with another branch and obtains new trees. The 
mutation operator changes the branch for a 
random new branch. The length of the 
chromosome is variable.  

The probability of crossover is 60% and the 
probability of mutation is 20%. We adopt a high 
value of the mutation probability to spread the 
population over all solution space. 

Fitness function. The Fitness function 
defines the quality of chromosome as a solution 
to the problem. It is a numerical positive value. 
The dataset is divided in two parts: one is for 
training and the second for validation. The 
training dataset is used to obtain the model and 
the validation dataset is used to measure the 
accuracy of the model with data that was not 
used in training. 

The fitness function evaluates how accurate 
the mathematical model coded in chromosome 
is, over all the training dataset counting the 
number of times the discriminator function is 
correct. 

Receiver Operating Characteristics (ROC) 
evaluates the accuracy using the number of true 
negative (NTN), true positive (NTP), false 
negative (NFN), and false positive (NFP):  
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+
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where a is the Sensitivity, ß is the Specificity, 
and γ is the accuracy. Sensitivity is the 
probability that a test result will be positive 
when the condition is true (true positive rate, 
expressed as a percentage). Specificity is  the 
probability that a test result will be negative 
when the condition is false (true negative rate, 
expressed as a percentage). Accuracy is the 
probability of correct forecasts.   

9. The BaBar High Energy 
Experiment. 

The BaBar experiment [25][26][27] studies 
the differences between matter and antimatter, 
to throw light on the problem, posed by 
Sakharov, of how the matter-antimatter 
symmetric Big Bang can have given rise to 
today’s matter-dominated universe. High energy 
collisions between electrons (matter) and 
positrons (antimatter) produce other elementary 
particles (tau leptons, pions, kaons, etc), giving 
tracks and clusters which are recorded by 
several high granularity detectors and from 
which the properties of the short-lived particles 



T ABLE III T RAINING AND TESTS RE SULTS FROM DISCRIMINATE FUNCTION OBTAINED USING GENETIC PROGRAMMING WITH 
DIFFERENT DATASETS. α, β , AND γ DEFINED IN EQUATION (1).  

  Case 1:Forecast  Case 2: Forecast  Case 3: Forecast  
Real D>0 D<0 D>0 D<0 D>0 D<0 

1 23299 4819 23368 4750 22491 5627 
0 3093 26781 3040 26834 2731 27143 
γ 86 86 85 
α 82 83 80 

Training 
57992 
records 

β  89 89 90 
Real D>0 D<0 D>0 D<0 D>0 D<0 

1 117268 41037 117215 41090 111999 46306 
0 14153 129916 13870 130199 12543 131526 
γ 81 81 80 

α 74 74 70 

Test  
302374 
records 

β  90 90 91 

 

T ABLE IV TRAINING RESULTS FROM DISCRIMINATE FUNCTION OBTAINED USING GENETIC PROGRAMMING.  
Forecast   

D>0 D<0 
1 129169 29136 Real 
0 24110 119959 

 
T ABLE V EXECUTION TIME FOR THE SAME SOFTWARE WITH  DIFFERENT NUMBER OF SLAVES AND NODES.  

 Standalone 1node / 2 slaves 5 nodes / 10 slaves 
Time(1,000s)  80 47 19 
Improvement  58% 24% 

 

can be deduced. 

10. Genetic programming 
gridification to obtain a Neutral Pion 
discriminator function. 

Genetic programming expends most 
computational effort evaluating fitness 
functions. Each generation hundreds of 
individuals have their chromosome decoded 
into the problem solution that is tested against 
data. The service we will distribute in grid will 
be the evaluation, in parallel by many WNs, 
using Monte Carlo events. 

Experimental analysis uses Monte Carlo 
(MC) generators with particle decays + detector 
system transfer function. MC events contain all 
information from each track particle and gamma 
radiation, which allows event selection for 
training dataset with no mistakes.  

Two datasets were built, one for training with 
57,992 records, and one for test with 302,374 
records. Events with one real neutral pion were 
selected and marked as 1. Events without real 
pions and invariant mass reconstruction in the 
same region of real neutral pions where also 
selected and marked 0.  

Kinematics data from each gamma used in 
the reconstruction were written in the datasets: 
angles of the gamma ray, 3-vector momentum, 
total momentum, and energy in the calorimeter.  
To avoid unit problems, we use sine, cosine and 
tangent values for each angle measured in the 
genetic trees. All other attributes are measured 
in GeV (1,000 million electron-volts).  

Table III shows the results for training and 
test of 3 different runs. All results where in 
agreement and shows high specificity, 
fundamental to study observable variables from 
neutral pion particles. High specificity means 
there will be low non-neutral pions 
contamination in the sample (less then 10%). 
Sensitivity of 83% means there will be a lost of 
17% of real neutral pions from the sample, with 
decrease in number and increase of statistical 
error.  

If the large dataset is used in training, the 
discriminator function obtained by genetic 
programming is: 

D = 3*ener1+ener2+sinteta2+sinteta1-2.5428 
And the analysis can be seen in table IV. 

Accuracy was 82%, sensitivity 81%, and 
specificity 83% - equation (1).  

A better performance could perhaps be 
obtained by including knowledge of the 
kinematics of pion decay, but for this analysis 
we make no such prior assumptions and rely 
entirely on the training and the algorithm. 

11. Functional grid performance. 
Table V shows the time expended running 

standalone and with several numbers of slaves, 
with good performance: 10 slaves should reduce 
the time in ideal conditions to 10%, and our 
implementation achieved 24% despite all 
necessary communication overheads. 

 12. Conclusion. 
In this paper implementations of data and 



functional parallelism using LCG/PVM grid 
environment are discussed and applied for 
several real case studies. A reliable job 
submission system (EasyGrid) manages all 
aspects of integration between user’s 
requirements and resources for data grid. 
Functional gridification algorithm was 
implemented in client server architecture with 
good performance. 

All software is available from the Internet 
[22], and is fully operational and easily 
adaptable for any application and experiment. 

Discriminator functions can be used to 
discriminate neutral pions from background 
with 80% accuracy and 91% specificity. This 
will allow the study of observable and check 
with values obtained from theoretical Standard 
Model, such as energy, differential cross section 
and momentum distribution, from a sample of 
events with little contamination.  

The main bottleneck in data gridification 
processes is related with data transfer from 
storage system to the client. To overcome this 
difficulty, we suggest data files could be stored 
in a WN disk partition. A catalogue linking files 
and WN names could be implemented using the 
approach described in section 4. Files with high 
demand could be replicated in more than one 
WN. The job submission system should drive 
jobs to WNs with the data file available locally, 
without need of data transfer. This is a major 
change in LCG approach, but efficiency 
improvement could justify its development. 

The author thanks GridPP and PPARC for 
funding this project, and the BaBar 
collaboration for granting access to their data. 
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