
Grid computing in High Energy Physics using LCG: the
BaBar experience

James Cunha Werner

University of Manchester

Abstract

This paper presents accounts of several real case applications using grid farms with data- and
functional-parallelism. For data parallelism a job submission system (EasyGrid) provided an
intermediate layer between grid and user software. Performance results suggest new directions of
research for optimizing throughput. For functional parallelism a PVM algorithm ran user’s software
in parallel as a master / slave implementation. This was applied to typical particle physics
applications using real data and Monte Carlo simulation: hadronic tau decays, searching for anti-
deuterons, and neutral pion discrimination using genetic programming algorithms. (This
discrimination is used to obtain high purity samples to compare experimental results with
theoretical predictions.) Studies of performance show considerable reduction of time execution
using functional gridification.

1. INTRODUCTION
he GridPP collaboration [7][8] and several
other e-science projects have provides a

distributed infrastructure and software
middleware in UK. The LCG (Large Hadrons
Collider Computing Grid) [4][5][6] software,
developed by an international collaboration
centred at CERN, provides a system for batch
processing for High Energy Physics (HEP)
through hundreds of computers connected by
the Internet.

In HEP processing each event is independent,
and Monte Carlo simulation and data analysis
can be divided in several hundreds of
independent jobs running in parallel over each
data file with thousands of million of events. It
is therefore suitable for data parallelism, but less
so for functional parallelism. The merged
results provide physicists with information to
study fundamental matter constituents. To
manage this complex process, a reliable job
submission system for data parallelism
integrating resources to user’s software was
developed (EasyGrid) and is described in this
paper.

Functional parallelism [1][2][3] is a
technique where functions in the program are
executed independently in parallel more
efficiently. There is a master program (or client)
that request slave programs (or servers) for
some service and coordinates effort and
synchronization.

To use LCG in scientific processing with
functional parallelism, an efficient and secure

communication mechanism is necessary to
allow data transfer between jobs in different
worker nodes. The time needed to establish the
partition and transferring of information cannot
be bigger than the processing time, or the
solution will be inefficient (it will take longer
than running in one computer).

Another important concern is the server’s
reliability. If any server goes down, the master
program must re-submit the task to another
server, and not stay waiting forever. To
overcome these difficulties, a gridification
algorithm was developed and described in this
paper. Data and functional gridification
algorithms can be used together.

To test the gridification algorithm, this paper
addresses the problem of neutral pions
discrimination obtained by genetic
programming. Genetic programming (GP)
[9][10][11][12][13] is an artificial intelligence
algorithm that mimics the evolutionary process
to obtain the best mathematical model given an
economic function to evaluate performance
(called the fitness function).

Genetic programming has been used to
determinate cuts to maximize event selection
[14][15][16]. Genetic algorithms can also be
associated with neural networks to implement
discriminate functions [17] for Higgs boson.

Our approach is innovative because the
mathematical model obtained with GP maps the
variables hyperspace to a real value through the
discriminator function, an algebraic function of
pions kinematics variables. Applying the
discriminator to a given pair of gammas, if the

T

discriminate value is bigger than zero, the pair
of gammas is deemed to come from pion decay.
(The neutral pion, with a mass of 135 MeV/c2,
decays to two photons.) Otherwise, the pair is
deemed to come from another (background)
source. This approach has been successfully
applied to medical diagnostics [18][19][20][21].

This paper starts describing LCG architecture
(section 2), moving to Data gridification
(section 3), how EasyGrid works (section 4),
and its performance (section 5). Functional
gridification is described in section 6, followed
by its installation procedures (section 7),
Genetic programming (section 8), the BaBar
experiment (section 9), neutral pion
discrimination (section 10), and finally
functional gridification performance (section
11).

2. LCG grid architecture.

Grid middleware, working over the Internet,
provides the necessary hardware infrastructure
grouped in functional modules. It can be seen as
a homogeneous common ground in a
heterogeneous platform.

LCG grid implementation has been used in
HEP experiments due its characteristics of
independent parallel processing. There are many
worker nodes (WN), managed by Compute
Elements (CE), running jobs distributed by
resource brokers (RB).

The testbed platform available at University
of Manchester [22] contains the following 2
CPUs per node and 100Mbits/s network cards
computers: User interface (UI): It is the module
that allows users interact with grid. It contains
the EasyGrid program to submit jobs and
commands to the grid, check job status, recover
outputs, etc; 1 Resource broker (RB): It is
responsible for matching the jobs with
resources, implementing policies, and sending
jobs for processing in a remote resource CE.
Resources definition is written in the Job
Description File (JDF) using ClassAds; 1
Computer element (CE): it is the batch
manager (PBS) that allocates resources in the
farm to run users' software; 6 Worker Nodes
(WN): computers that will run users’ software.
They contain the packages installed, libraries,
and can access necessary data for processing; 1
Storage Element (SE): it is the grid mass
storage element , with 7 Gigabytes; 1
Information system with the Berkeley
Database (BDII): the catalogue of resources
published in the grid. It is distributed in two

levels. The first catalogue all CE BDII entries.
The second, in the CEs, contains the
information about the farm managed by the CE.
This computer also contains the Proxy manager
(PX) which stores proxies for long jobs in the
grid, and the Grid monitor database; 2 NFS file
servers with 1.7 Terabytes and a 1 Gigabits/s
network card, accessible through the farm.

The production farm contains 1 CE and 28
WNs, sharing other systems with the testbed.
The BaBar virtual organization has its own
LCG File Catalogue (LFC) in Italy.

3. Data gridification using
EasyGrid/LCG.

HEP requirements have pushed grid
establishment in data parallelism. HEP
experiments measure the results of collisions
between relativistic particles, called an event,
and store a large volume of data (hundreds of
Terabytes) for further analysis.

The total event sample is separated into
different datasets with hundreds of data files
according to simple criteria, and a physicist will
be interested in performing analysis on a
selected dataset.

Data gridification is implemented through
EasyGrid Job Submission [22] software. It is an
intermediate layer between Grid middleware
and user’s software. It integrates data,
parameters, software, and grid middleware
doing all submission and management of
several users’ software copies to grid.

EasyGrid’s commands are: a. easymoncar:
run Monte Carlo Events generation. b. easysub:
run Raw data analysis . c. easygftp: run Generic
data access applications using gridftp. d.
easyapp: run Generic applications performing
data gridification. e. easyroot: run Root
application performing data gridification. f.
easygrid: perform jobs’ follow up, recover
results in user’s directory, and recover crash
information for further analysis.

4. How EasyGrid works (users do not
need to know it!).

EasyGrid’s first task is to find what event
files are in the dataset (bookkeeper system), and
what WNs have access to them (LFC metadata
catalogue).

To manage the files of each dataset, there is
the bookkeeping system. Physicists can obtain
from it a list of dataset file names that match
their analysis requirements. These requirements,

from grid point of view, are:
a. Select the necessary number of data files

that contains some number of events. The
number of events defines the processing time
and can optimise performance.

b. Select data files from some date. Users
want to update their selected events dataset
since the last processing with new data, without
have to do all over again.

c. Some systems provide a remote query,
which allows users know what datasets are
available in a remote site, for remote job
submission. This is a wise procedure to increase
reliability and reduce bottlenecks.

d. Define the initial number of sequence for
pointer’s data files. Users will be able to have a
history directory with all pointer files that
already were processed.

The Bookkeeping system is updated every
night to guarantee synchronization between all
sites and the central experiment.

There are data distribution policies to
guarantee redundancy and availability according
to demand, geographic distribution and security.
LFC metadata has a metadata file for each
dataset name and its distribution around the
world. This method might be also used to store
file handlers of files stored in dCache or other
file system, providing the link between the
logical file name and its physical storage in the
remote site. These physical files are registered
in the LFC with the SE name.

When EasyGrid submits a job using the
clause InputData in the JDL file, only the CE
with closest SE with data available will be
selected.
VO tags describing available software releases
and packages complete the necessary
information to distribute user’s software to CEs
for processing.

The list of CEs defines the SEs/NFS that will
store analysis software binary and large
parametric files to minimize network traffic.
EasyGrid performs all necessary procedures to
store files remotely and recover them
efficiently.

The next stage is generation of all necessary
information to submit the jobs on the Grid.
GEnerator of Resources Available (GERA)
produces the Job Description Language (JDL)
files, the script with all necessary tasks to run
the analysis remotely at a WN, and some grid
dependent analysis parameters. The JDL files
define the input sandbox with all necessary files
to be transferred, and a WN balance load

algorithm matches requirements to perform the
task optimally.

When the task is delivered in the WN,
scripts start running to initialize the specific
environment, and user’s software binary is
downloaded from closest the SE. Data files are
made available through transfer or providing
any access method to the application, and run
user’s software.

Users can follow up the process querying job
status. If the job is done, a task recovering
results in the user's directory is performed
automatically. If the job was aborted in the
process, the diagnostic listing is stored in the
history file for further analysis.

EasyGrid was developed using the RAP
(Rapid Application Prototyping) methodology.
Several versions were developed, covering
different approaches and functionalities, and
three real applications were used as proof-of-
case, which allowed us to evaluate each strategy
and acquire information to write the production
system specification [22].

5. LCG grid benchmark and
performance.

The benchmarks were developed to study
data transfer between file providers and
applications, test over large numbers of events,
and test under large numbers of jobs.

The Grid paradigm states applications should
go where data is available. However, there is a
potential bottleneck in a site’s data distribution
architecture. The software will be delivered to a
CE with WNs that can access data in some way
(NFS, xrootd, gridftp, etc).

The first benchmark was eta(540) [28]
reconstruction to test what is the best approach
to data distribution: copy data file locally and
read the file by application, or use a remote file
access such as NFS. The software reads 1.4
gigabytes and produces several histograms for
further analysis. Fig 1 shows the performance
for different approaches in data access. In
Figure 1a data is read directly from the local
WN disk, in ideal conditions without overload
and traffic. In Figure 1b it is first transferred
through a Storage Element. Transferring data
produces an iowait in the initial part of the job
due channel contention, and reading the data
during execution looks better and more
efficient.

However, this solution is not scalable as
result of network’s channel contention (Fig 1 c).

Iowait increases to 50% and cpuload decreases
to 50% with performance reduction.

The problem becomes even more significant
when many nodes compete to access network
(see Table I and II), increasing execution time
from 600 s when data is local, to 2522 s with 12
cpus, and 6971 s with 56 cpus. The number of
events analysed per second (EPS) decreases,
which is a massive waste of resources, and
shows the implemented paradigm may not be
suitable for data grids because its efficiency is
dependent on network availability. Using
storage systems such as dCache in the WN [31]
are also subject to this potential problem.

Efficiency could be improved if the job
submission system submits the jobs directly to
specific worker nodes that store specific data
files. There would not have file transfer, and the
execution would be local with high efficiency.
This solution is feasible because HEP data files
never change. They become available after
reconstruction, and very sporadically will suffer
any maintenance. From economical point of
view, storage hard drivers are available with
hundreds of megabytes, and are used only to
store operating system and temporary data (less
then 5 Gigabytes of data). However it does
require the data to be structured so that jobs will
not require data from datasets stored on
different nodes, and the job submission system
has to know the physical location of the data.

The second benchmark was tau decays to
neutral pions. This benchmark selected events
over 482 million real events and generated 5
million MC events using EasyGrid [29].

The third benchmark was search for anti-
deuterons in all events available in Run 3 (1,500
million events, in one week using 250
computers in parallel) [30].

There were no missing jobs, and few aborts
were related with application problems. There
were problems in grid catalogue when more
then 250 jobs access at once.

6. Functional gridification algorithm.
The gridification algorithm is a library with

several functions to run conventional software
on the grid doing functional parallelism, with
minor changes in the source code. (It is possible
at same time to apply data parallelism using
EasyGrid.)

The algorithm implements a master / slave
architecture. The master manages a task queue
that contains elementary tasks each slave can
perform independently. One task can store data

for a set of individual cases (service string) to
overcome problems with communication delays
between master/slaves.

The master software was implemented using
PVM commands [23][24], and can be changed
to web services without any problem if
necessary.

The first task in the master software is pointer
and data structure initialization, to manage the
distributed algorithm. It performs the distributed
software initialization defining internal
characteristics (pvm_setopt function), obtains
the total number of slaves available in the
cluster (pvm_config function), and starts new
slaves processes (pvm_spawn function).

The number of processes depends on the
number of machines available in the cluster, and
a machine’s cpu load. Sometimes, one computer
can host several slaves with optimal
performance, combining CPU bound with IO
bound services.

After the handshake, the master must confirm
a slave’s processes resources availability,
keeping record of them to deliver tasks from the
queue.

The Master process initializes the application
and prepares data buffers with necessary
information to run each slave process
independently.

The Master initializes the communication
channel (pvm_initsend), pack the data
(pvm_pkDATA_TYPE, where DATA_TYPE is
float, etc), and sends the data to the slaves. Task
state and id are stored in the master in case of
re-submission.

After all slaves have received the packages,
the master starts a probe loop (pvm_probe) in
the communication channel, listens for results
from slave processes, or waits for timeout from
any slave processor. A delay is necessary to
avoid a traffic jam in the communication
channel, and will contribute to the total
communication time between master/slaves.
Every cycle a timeout counter is increased.

Tasks are stored in a queue. Every time one
slave sends results, it receives a new package of
data. This implementation does not require a
loading balance algorithm because the master
holds all remain processes and provides idle
slaves with more tasks.

Every time a new process is sent to one slave,
the timeout counter is initialized. If there is a
timeout signaling, the task has to be sent to
another slave (while there are slaves available)
and the slave is marked as out-of-order to avoid

 Percentage of CPU use (%user) Percentage of IO wait (%wait)
a.NFS
100Mb/s
Bf40

b.SE
Bf40

c.NFS
1Gbs
Arthur

Fig. 1 CPU load and IO wait performance for data transfer paradigm in time frames of 15 seconds. (a) NFS access by application. (b) File copy
locally and later access. (c) NFS access with jammed network.

T ABLE I DATA DISTRIBUTION ANALYSIS. PERFORMANCE WAS DEFINED AS (100 * EPS/EPS_LOCAL), WHERE EPS IS EVENTS PER SECOND.

EPS_LOCAL (1577) IS NUMBER OF EVENTS PER SECOND, USING LOCAL STORED FILES AND TAKES 600 SECONDS.

c.NFS Arthur a.NFS Bf40 b.SE 100Mb #
Jobs EPS Perf EPS Perf EPS Perf

1 855 54 1574 100 1193 76

3 481 31 1457 92 949 60

6 492 31 1388 88 725 46

12 412 26 1372 87 495 31

T ABLE II: AVERAGE EXECUTION TIME OF 500 JOBS IN 12 AND 56 CPUS IN PARALLEL WITH FILE TRANSFER AND REMOTE ACCESS.

500 Jobs
File

Transfer Exec Total

12 CPUs Time 00:15:00 00:27:00 00:42:02

 Seconds 900 1620 2522

56 CPUs Time 01:43:52 00:12:19 01:56:11

 Seconds 6232 739 6971

new submissions to it.
Every time new messages come from the

channel, the result is stored and a new data
string is sent to the slave.

When the task queue is empty, the master
does the next cycle in the application and
returns to feeding the task queue, repeating all
distribution process.

The slave software running in each worker
node performs the following tasks. First, it get
its task id (pvm_mytid), master process
(pvm_parent), set distributed environment
(pvm_setopt), checks the resources available
and prepares the handshake with the master.

While the slave does not receive a package
finishing the process, it listens to the
communication channel for new data packages.

When a new data package is available, it gets
the packaged information and type
(pvm_bufinfo).

Package labels define what type of task has to
be performed by slave process. For example,
type 2 is answer master handshake, type 3 is
perform some mathematical routine and send
results back to master, and type 5 is end of
processing.

7. PVM installation with LCG grid
middleware.

We have studied gridification algorithm
implementations using Parallel Virtual Machine
(PVM) package running at LCG worker nodes.
System managers should perform the following

configuration to use it:
a. Install PVM in a shared NFS system and

export directory (/etc/exports) to all computers’
farm. Every computer farm should mount PVM
directory (auto-mount or /etc/fstab).

b. Set PVM variables in ~/.bashrc:
PVM_SSH should point globus ssh
(/opt/globus/bin/ssh.d/ssh) and PVM_ROOT
should point the mounted NFS directory.

c. All farms computers should have an entry
in the ~/.rhosts file.

d. All farms should have a
~/.ssh/authorized_keys file (no passphrase) with
all worker nodes public keys (.ssh/id_dsa.pub)
created with ssh-keygen -t dsa .

e. A copy of compiled master and slave
programs should be stored in pvm3/bin/LINUX.

The package is compatible with LCG
software and Globus Toolkit 4.

8. Genetic Programming

GP is an optimization algorithm that mimics
the evolution and improvement of life through
reproduction. Each individual contributes with
its own genetic information to the building of
new ones (offspring) adapted to the
environment with higher chances of surviving.
This is the basis of genetic algorithms and
programming. Specialized Markov Chains
underline the theoretical bases of this algorithm,
changes of states and searching procedures.

Chromosome representation. The
chromosome represents the model of the
problem solution using trees. A tree is a model
representation that contains nodes and leaves.

Nodes are mathematical operators. We have
used multiplication, addition, subtraction, and
division. Leaves are terminals (the attributes of
the dataset and random numbers). The
discriminator function in a GP context is a tree
using operators and leaves (or so called
Terminals). Let us consider the following
discriminator function:

X1+3.14 · X2+5.3 / X3
In the tree representation it can be rewritten

as following:
(+ X1 (+ (· 3.14 X2) (/ 5 .3 X3)))

where X1, X2, and X3 are the terminals, and
multiplication(·), addition(+), subtraction (-),
and division(/) are the operators. Replacing the
values in the equation results in a number that
should be positive or negative.

Genetic operators. Trees are manipulated
through genetic operators. The crossover
operator points a tree branch and exchanges it

with another branch and obtains new trees. The
mutation operator changes the branch for a
random new branch. The length of the
chromosome is variable.

The probability of crossover is 60% and the
probability of mutation is 20%. We adopt a high
value of the mutation probability to spread the
population over all solution space.

Fitness function. The Fitness function
defines the quality of chromosome as a solution
to the problem. It is a numerical positive value.
The dataset is divided in two parts: one is for
training and the second for validation. The
training dataset is used to obtain the model and
the validation dataset is used to measure the
accuracy of the model with data that was not
used in training.

The fitness function evaluates how accurate
the mathematical model coded in chromosome
is, over all the training dataset counting the
number of times the discriminator function is
correct.

Receiver Operating Characteristics (ROC)
evaluates the accuracy using the number of true
negative (NTN), true positive (NTP), false
negative (NFN), and false positive (NFP):

FNFPTNTP

TNTP

FPTN

TN

FNTP

TP

NNNN
NN

NN
N

NN
N

+++
+

=

+
=

+
=

γ

βα
 (1)

where a is the Sensitivity, ß is the Specificity,
and γ is the accuracy. Sensitivity is the
probability that a test result will be positive
when the condition is true (true positive rate,
expressed as a percentage). Specificity is the
probability that a test result will be negative
when the condition is false (true negative rate,
expressed as a percentage). Accuracy is the
probability of correct forecasts.

9. The BaBar High Energy
Experiment.

The BaBar experiment [25][26][27] studies
the differences between matter and antimatter,
to throw light on the problem, posed by
Sakharov, of how the matter-antimatter
symmetric Big Bang can have given rise to
today’s matter-dominated universe. High energy
collisions between electrons (matter) and
positrons (antimatter) produce other elementary
particles (tau leptons, pions, kaons, etc), giving
tracks and clusters which are recorded by
several high granularity detectors and from
which the properties of the short-lived particles

T ABLE III T RAINING AND TESTS RE SULTS FROM DISCRIMINATE FUNCTION OBTAINED USING GENETIC PROGRAMMING WITH
DIFFERENT DATASETS. α, β , AND γ DEFINED IN EQUATION (1).

 Case 1:Forecast Case 2: Forecast Case 3: Forecast
Real D>0 D<0 D>0 D<0 D>0 D<0

1 23299 4819 23368 4750 22491 5627
0 3093 26781 3040 26834 2731 27143
γ 86 86 85
α 82 83 80

Training
57992
records

β 89 89 90
Real D>0 D<0 D>0 D<0 D>0 D<0

1 117268 41037 117215 41090 111999 46306
0 14153 129916 13870 130199 12543 131526
γ 81 81 80

α 74 74 70

Test
302374
records

β 90 90 91

T ABLE IV TRAINING RESULTS FROM DISCRIMINATE FUNCTION OBTAINED USING GENETIC PROGRAMMING.
Forecast

D>0 D<0
1 129169 29136 Real
0 24110 119959

T ABLE V EXECUTION TIME FOR THE SAME SOFTWARE WITH DIFFERENT NUMBER OF SLAVES AND NODES.

 Standalone 1node / 2 slaves 5 nodes / 10 slaves
Time(1,000s) 80 47 19
Improvement 58% 24%

can be deduced.

10. Genetic programming
gridification to obtain a Neutral Pion
discriminator function.

Genetic programming expends most
computational effort evaluating fitness
functions. Each generation hundreds of
individuals have their chromosome decoded
into the problem solution that is tested against
data. The service we will distribute in grid will
be the evaluation, in parallel by many WNs,
using Monte Carlo events.

Experimental analysis uses Monte Carlo
(MC) generators with particle decays + detector
system transfer function. MC events contain all
information from each track particle and gamma
radiation, which allows event selection for
training dataset with no mistakes.

Two datasets were built, one for training with
57,992 records, and one for test with 302,374
records. Events with one real neutral pion were
selected and marked as 1. Events without real
pions and invariant mass reconstruction in the
same region of real neutral pions where also
selected and marked 0.

Kinematics data from each gamma used in
the reconstruction were written in the datasets:
angles of the gamma ray, 3-vector momentum,
total momentum, and energy in the calorimeter.
To avoid unit problems, we use sine, cosine and
tangent values for each angle measured in the
genetic trees. All other attributes are measured
in GeV (1,000 million electron-volts).

Table III shows the results for training and
test of 3 different runs. All results where in
agreement and shows high specificity,
fundamental to study observable variables from
neutral pion particles. High specificity means
there will be low non-neutral pions
contamination in the sample (less then 10%).
Sensitivity of 83% means there will be a lost of
17% of real neutral pions from the sample, with
decrease in number and increase of statistical
error.

If the large dataset is used in training, the
discriminator function obtained by genetic
programming is:

D = 3*ener1+ener2+sinteta2+sinteta1-2.5428
And the analysis can be seen in table IV.

Accuracy was 82%, sensitivity 81%, and
specificity 83% - equation (1).

A better performance could perhaps be
obtained by including knowledge of the
kinematics of pion decay, but for this analysis
we make no such prior assumptions and rely
entirely on the training and the algorithm.

11. Functional grid performance.
Table V shows the time expended running

standalone and with several numbers of slaves,
with good performance: 10 slaves should reduce
the time in ideal conditions to 10%, and our
implementation achieved 24% despite all
necessary communication overheads.

 12. Conclusion.
In this paper implementations of data and

functional parallelism using LCG/PVM grid
environment are discussed and applied for
several real case studies. A reliable job
submission system (EasyGrid) manages all
aspects of integration between user’s
requirements and resources for data grid.
Functional gridification algorithm was
implemented in client server architecture with
good performance.

All software is available from the Internet
[22], and is fully operational and easily
adaptable for any application and experiment.

Discriminator functions can be used to
discriminate neutral pions from background
with 80% accuracy and 91% specificity. This
will allow the study of observable and check
with values obtained from theoretical Standard
Model, such as energy, differential cross section
and momentum distribution, from a sample of
events with little contamination.

The main bottleneck in data gridification
processes is related with data transfer from
storage system to the client. To overcome this
difficulty, we suggest data files could be stored
in a WN disk partition. A catalogue linking files
and WN names could be implemented using the
approach described in section 4. Files with high
demand could be replicated in more than one
WN. The job submission system should drive
jobs to WNs with the data file available locally,
without need of data transfer. This is a major
change in LCG approach, but efficiency
improvement could justify its development.

The author thanks GridPP and PPARC for
funding this project, and the BaBar
collaboration for granting access to their data.

REFERENCE
[1] Kameda, H., et al; “Optimal load balancing in

distributed computing systems”; Springer, 1996
[2] Fonlupt, C.; Marquet, P.; Dekeyser, J.; “Data-parallel

load balancing strategies” Parallel Computing 24
(1998) 1665-1684

[3] Cao, J. et al; “Grid load balancing using intelligent
agents” Future generation computer systems 21 (2005)
135-149.

[4] CERN site:
http://public.web.cern.ch/Public/Welcome.html

[5] LHC site: http://lhc.web.cern.ch/lhc/
[6] LCG site: http://lcg.web.cern.ch/LCG/
[7] GridPP site: http://www.gridpp.ac.uk/
[8] The GridPP Collaboration: P J W Faulkner et al

“GridPP: development of the UK computing Grid for
particle physics” 2006 J. Phys. G: Nucl. Part. Phys. 32
N1-N20 doi:10.1088/0954-3899/32/1/N01

[9] Holland,J.H. “Adaptation in natural and artificial
systems: na introductory analysis with applications to
biology, control and artificial intelligence.”
Cambridge: Cambridge press 1992.

[10] Goldberg,D.E. “Genetic Algorithms in Search,
Optimisation, and Machine Learning.” Reading,
Mass.: Addison-Whesley, 1989.

[11] Chambers,L.; “The practical handbook of Genetic
Algorithms” Chapman & Hall/CRC,2000.

[12] Koza,J.R. “Genetic programming: On the
programming of computers by means of natural
selection.” Cambridge,Mass.: MIT Press, 1992.

[13] Werner,J.C.; “Active noise control in ducts using
genetic algorithm” PhD. Thesis- São Paulo University-
São Paulo-Brazil-1999.

[14] Cranmer,K.; Bowman,R.S.; “PhysicsGP: A genetic
programming approach to event selection” Computer
Physics Communications 167 (2005) 165-176.

[15] Focus Collaboration, “Application of genetic
programming to high energy physics event selection”
Nuclear instruments and methods in physics research
A 551 (2005) 504-527.

[16] Focus Collaboration; “Search for L+c -> pK+p- and
D+s -> K+K+p- using genetic programming event
selection” Physics letters B 624 (2005) 166-172

[17] Mjahed, M.; “Search for Higgs boson at LHC by using
genetic algorithms” To be published in Nuclear
Instruments and Methods in Physics Research.

[18] Kalganova,T.; Karol, I.M.; Werner,J.C.; Silkou,N.I.;
Lipnitskaya,N.G.; Probability prediction method of
throat cancer with use of discriminate function (in
Russian) 2nd International Belarusian-Polish
Conference on Otorhinolaryngology: Actual Problems
in Otorhinolaryngology, Grodno, 29-30 May 2003

[19] Werner,J.C.; Kalganova,J.C.; Disease modeling using
Evolved Discriminate Function. LNCS 2610,
Proceedings 6th European Conference, EuroGP 2003,
Essex, UK, April 14-16, 2003.

[20] Werner,J.C.; Fogarty,T.C.; Severe diseases diagnostics
using Genetic Programming. Intelligent Data Analysis
in medicine and pharmacology IDAMAP2001;
September 4th, 2001 London

[21] Werner,J.C.; Fogarty,T.C.; Genetic programming
applied to Collagen disease & thrombosis. PKDD
2001 Challenge on Thrombosis data Germany/
Freiburg September 3-7

[22] Werner,J.C.; “HEP analysis, Grid and EasyGrid Job
Submission Prototype: Babar/CM2 showcase” at
http://www.hep.man.ac.uk/u/jamwer/

[23] Parallel Virtual Machine site:
http://www.csm.ornl.gov/pvm/pvm_home.html

[24] Geist,A. et al; “PVM: Parallel Virtual Machine. A
Users' Guide and Tutorial for Networked Parallel
Computing” MIT Press, 1994 available from
http://www.netlib.org/pvm3/book/pvm-book.html

[25] BaBar Collaboration, “The BaBar experiment home
page”, http://www.slac.stanford.edu/BFROOT/

[26] Harrison,P.F.; Quinn,H.R.; The BaBar Physics Book”
SLAC Report 504, October 1998, available at
http://www.slac.stanford.edu/pubs/slacreports/slac-r-
504.html

[27] BaBar Collaboration; “The BaBar detector”, Nuclear
Instruments and Methods in Physics Research
A479(2002) 1-116 available at
http://www.hep.man.ac.uk/u/jamwer/babarnucl.pdf

[28] Tavera, M.; Private communication on eta
reconstruction from TauUser data, PhD Thesis.

[29] Werner,J.C.; “Neutral Pion project”
http://www.hep.man.ac.uk/u/jamwer/pi0alg5.html

[30] Werner,J.C.; “Search for anti-deuteron”
http://www.hep.man.ac.uk/u/jamwer/deutdesc.html

[31] Forti, A.; “Cluster distributed dynamic storage”
CHEP06, Mumbai, India

