# Generalized Chinese Remainder Theorem 

## Harry J. Smith

March 23, 2005

Let $a, b, r$, and $s$ be any four integers. Then there may be an integer $N$ such that

$$
N \equiv a(\bmod r)
$$

and

$$
N \equiv b(\bmod s) .
$$

There is a solution if and only if $a \equiv b(\bmod d)$, where $\mathrm{d}=(r, s)$. Of course, if $d=1$ there is a solution for any $a$ and $b$ as determined by the normal Chinese remainder theorem. Moreover, if an $N$ exists it is uniquely determined modulo $M=r s / d$.

To determine $N$ and $M$, first get all of the numbers nonnegative by replacing $r$ with $|r|, s$ with $|s|, a$ with $\bmod (a, r)$, and $b$ with $\bmod (b, s)$, where $\bmod (a, r)$ is the common residue of $a(\bmod r)$. Now use the extended form of Euclid's algorithm to compute $d$, $u$ and $v$ such that

$$
d=\operatorname{GCD}(r, s)=r u+s v .
$$

Note that $u$ and $v$ may be zero or negative. Now if $b-a$ is not divisible by $d$ there is no solution. If $d \mid(a-b)$ there is a solution. Let

$$
p=r / d
$$

and

$$
q=a+u p(b-a) .
$$

Then

$$
M=p s
$$

and

$$
N=\bmod (q, M) .
$$

To solve a set of simultaneous congruences such as

$$
x \equiv a_{i}\left(\bmod m_{i}\right)
$$

with $i=1, \ldots, r$, solving the first two will reduce the number of congruences by one. Repeat this process if possible until there is only one congruence and you have the final answer.

## References:

Knuth, The Art of Computer Programming Vol.2, Section 4.3.2, exercise 3. http://www-cs-faculty.stanford.edu/~knuth/taocp.html

PARI/GP Calculator http://pari.math.u-bordeaux.fr/
Eric W. Weisstein. "Chinese Remainder Theorem." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/ChineseRemainderTheorem.html

## Notes:

If you are not familiar with some of the notation, I will explain: $N \equiv a(\bmod r)$ is a congruence and is read $N$ is congruent to $a$ modulo $r$ and it means $N$ and $a$ have the same remainder when divided by $r$. This is an integer divide like $14 / 4=3$ with a remainder of 2. http://mathworld.wolfram.com/Congruence.html
$d=(r, s)$ is read $d$ is the greatest common divisor GCD of $r$ and $s$ and it means that $r \equiv 0(\bmod d), s \equiv 0(\bmod d)$, and there is no larger number than $d$ that evenly divides both $r$ and $s$. http://mathworld.wolfram.com/GreatestCommonDivisor.html
$N$ is uniquely determined modulo $M=r s / d$ means that there are an infinite number of solutions for $N$ but they all have the same remainder when divided by $M$, and all numbers with this remainder when divided by $M$ are solutions. Of course $r s / d$ is $r$ multiplied by $s$ and divided by $d$.
$|r|$ is the absolute value of $r .|-7|=7,|7|=7$. http://mathworld.wolfram.com/AbsoluteValue.html
$c=\bmod (a, r)$ is the common residue of $a(\bmod r)$ means that $c \equiv a(\bmod r)$ and $c$ is nonnegative and less than $r$, i.e. $0 \leq c<r$. http://mathworld.wolfram.com/Mod.html http://mathworld.wolfram.com/CommonResidue.html

The normal Chinese remainder theorem is the same as this but it assumes that $(r, s)=1$. In this form, it always has a solution for any $a$ and $b$. The method presented to compute $N$ and $M$ will still work if $(r, s)=1$.
http://mathworld.wolfram.com/ChineseRemainderTheorem.html
Euclid's algorithm is the oldest algorithm in the book (see Euclid's Elements, Book 7, Propositions 1 and 2). It is used to compute $d=\operatorname{GCD}(r, s)$. http://mathworld.wolfram.com/EuclideanAlgorithm.html The extended form of Euclid's algorithm also determines $u$ and $v$ such that $d=\operatorname{GCD}(r, s)=r u+s v$. http://mathworld.wolfram.com/ExtendedGreatestCommonDivisor.html

The | in $d \mid(a-b)$ says that $d$ divides the difference $a$ minus $b$, i.e. $a$ minus $b$ is divisible by $d$. http://mathworld.wolfram.com/Divide.html
$x \equiv a_{i}\left(\bmod m_{i}\right)$ with $i=1, \ldots, r$, says that there is a set of $r$ different congruences

$$
\begin{aligned}
& x \equiv a_{1}\left(\bmod m_{1}\right) \\
& x \equiv a_{2}\left(\bmod m_{2}\right)
\end{aligned}
$$

etc. ...

$$
x \equiv a_{r}\left(\bmod m_{r}\right)
$$

and $x$ represents the maximum set of integers that satisfies all of them. If while you are solving this set, taking two at a time, you find a pair that has no solution, then the set has no solution.

Here is a note I sent to John Hopkins:
John:
Around A.D. 100, the Chinese mathematician Sun-Tsu solved the following problem: There is a number that has a remainder of 2 when divided by 3 , a remainder of 3 when divided by 5 , and a remainder of 2 when divided by 7 . Mathematicians write this as

$$
x=2(\bmod 3)
$$

$$
\begin{aligned}
& x=3(\bmod 5) \\
& x=2(\bmod 7)
\end{aligned}
$$

The solution is $x=23(\bmod 105)$, which says that 23 is the smallest number $>0$ that satisfies the three equations and $x=23+105^{*} n$ with $n=0,1,2, \ldots$ are all of the solutions $>0$ (actually $-82=23-105$ is also a solution).

There are some problems like

$$
\begin{aligned}
& x=2(\bmod 6) \\
& x=3(\bmod 8)
\end{aligned}
$$

that have no solutions, but

$$
\begin{aligned}
& x=2(\bmod 6) \\
& x=4(\bmod 8)
\end{aligned}
$$

has the solution $x=20(\bmod 24)$.
My calculator program, XICalc, can now solve all such problems that have a solution and tell you when there is no solution.

Look at http://www.cut-the-knot.org/blue/chinese.shtml
and
http://www.math.swt.edu/~haz/prob sets/notes/node $25 . \mathrm{html}$
-Harry

