MCT - Mos-Controlled Thyristor

MCT (MOS-Controlled Thyristor) é um novo tipo de dispositivo semicondutor de potência que associa as capacidades de densidade de corrente e de bloqueio de tensão típicas dos tiristores, com um controle de entrada e de saída de condução baseado em dispositivos MOS. Isto é, enquanto um GTO tem o gate controlado em corrente, o MCT opera com comandos de tensão .

Os MCTs apresentam uma facilidade de comando muito superior aos GTOs. Relembre-se o baixo ganho de corrente que um GTO apresenta no desligamento, exigindo um circuito de comando relativamente complexo. No entanto, os MCTs ainda (1995) não atingiram níveis de tensão e de corrente comparáveis aos dos GTOs, estando limitados a valores da ordem de 2000V e 600A.

O fato do MCT ser construído por milhares de pequenas células, muito menores do que as células que formam os GTOs, faz com que, para uma mesma área semicondutora, a capacidade de corrente dos MCTs seja menor do que um GTO equivalente. Mas esta é uma limitação tecnológica atual, associada à capacidade de constuirem-se maiores quantidades de células com certeza de funcionamento correto.

Princípio de funcionamento

Considerando o modelo de 2 transistores para um tiristor, um MCT pode ser representado como mostrado na figura . Nesta figura também se mostra uma seção transversal de uma célula do dispositivo. Um componente é formado pela associação em paralelo de milhares de tais células construídas numa mesma pastilha .
Em um MCT de canal P (P-MCT) o MOSFET responsável pela entrada em condução do tiristor (on-FET) é também de canal P, sendo levado à condução pela aplicação de uma tensão negativa no terminal de gate. Estando o anodo positivo, a condução do on-FET realiza uma injeção de portadores na base do transistor NPN, levando o componente à condução. Uma vez que o componente é formado pela associação de dezenas de milhares de células, e como todas elas entram em condução simultaneamente, o MCT possui excelente capacidade de suportar elevado di/dt.
O MCT permanecerá em condução até que a corrente de anodo caia abaixo do valor da corrente de manutenção (como qualquer tiristor), ou então até que seja ativado o off-FET, o que se faz pela aplicação de uma tensão positiva no gate.
A condução do off-FET, ao curto-circuitar a junção base-emissor do transistor PNP (é possível também uma estrutura que curto-circuita as junções base-emissor de ambos os transistores), reduz o ganho de corrente para um valor menor do que 1, levando ao bloqueio do MCT. A queda de tensão deve ser menor que Vbe.
O MCT não apresenta o efeito Miller, de modo que não se observa o patamar de tensão sobre o gate, o qual pode ser modelado apenas como uma capacitância.
Esta capacidade de desligamento está associada a uma intensa interdigitação entre o off-FET e as junções, permitindo absorver portadores de toda superfície condutora do anodo (e do catodo).
Assim como um GTO assimétrico, o MCT não bloqueia tensão reversa acima de poucas dezenas de volts, uma vez que as camadas n+ ligadas ao anodo curto-circuitam a junção J1, e q junção J3, por estar associada a regiões de dopagem elevada, não tem capacidade de sustentar tensões mais altas. É possível, no entanto, fazê-los com bloqueio simétrico, também sacrificando a velocidade de chaveamento.
O sinal de gate deve ser mantido, tanto no estado ligado quanto no desligado, a fim de evitar comutações (por "latch-down" ou por dv/dt) indesejáveis.
Na figura 3  mostra-se uma comparação entre a queda de tensão entre os terminais principais, em função da densidade de corrente, para componentes (MCT, IGBT e MOSFET).
Nota-se que o MCT apresenta tensões muito menores do que os transistores, devido à sua característica de tiristor. Ou seja, as perdas em condução deste dispositivo são consideravelmente menores, representando uma de suas principais características no confronto com outros componentes.

Figura 2 Circuito equivalente de MCT canal P; corte transversal de uma célula e símbolo do componente.

Mantendo o off-FET operando durante o estado bloqueado, tem-se que a corrente de fuga circula por tal componente auxiliar, resultando numa melhoria na capacidade de bloqueio, mesmo em altas temperaturas. Devido a este desvio da corrente através do MOSFET, o limite de temperatura está associado ao encapsulamento, e não a fenômenos de perda da capacidade de bloqueio. Isto significa que é possível operá-los em temperaturas bem mais elevadas do que os outros componentes como, por exemplo, 250 oC.
Devido à elevada densidade de corrente, e conseqüente alto limite de di/dt, suportável pelo MCT, circuitos amaciadores devem ser considerado basicamente para o desligamento, podendo ser implementados apenas com um capacitor entre anodo e catodo, uma vez que sua descarga sobre o MCT no momento de entrada em condução deste, não é problemático.

Figura 3. Comparação entre componentes para 600V, com 1us de tempo de desligamento, desprezando a resistência do encapsulamento.

Comparação entre P-MCT e N-MCT

Figura 4 Circuito equivalente de MCT canal N; corte transversal de uma célula e símbolo do componente.

Este componente entra em condução quando um potencial positivo é aplicado ao gate, desligando com uma tensão negativa. Como o anodo está em contato apenas com uma camada P, este dispositivo é capaz de sustentar tensões com polarização reversa.
Sabe-se que um MOSFET canal N é mais rápido e apresenta menor queda de tensão do que um MOSFET canal P.
Assim, um P-MCT, por ser desligado por um MOSFET canal N é capaz de comutar uma corrente de anodo 2 a 3 vezes maior do que a que se obtém em um N-MCT. Em contraposição, por ser ligado por um MOSFET canal P, a entrada em condução é mais lenta do que a que se tem em um N-MCT.

É possível construir MCTs que são ligados por um MOSFET de canal N, e desligado por um MOSFET de canal P, como mostrado na figura 4.

A queda no MOSFET deve ser menor que 0,7V, para garantir que o TBP não conduza. Esta queda de tensão se dá com a passagem da totalidade da corrente de anodo pelo MOSFET.

voltar semicondutor

TUNEL DO TEMPO

PERSONALIDADES HISTÓRICAS /

CONHEÇA UM POUCO SOBRE / LINKS E REFERÊNCIA BIBLIOGRÁFICAS /

NORMAS - PADRÕES - PRÁTICAS

ENTRADA NO MUSEU  FMET

 

Hosted by www.Geocities.ws

1