MOSFET

Atualmente não existem transistores MOSFET para aplicações em potências mais elevadas. Os componentes disponíveis tem características típicas na faixa de: 1000V/20A ou 100V/200A. Sua principal vantagem é a facilidade de acionamento, feita em tensão, e a elevada velocidade de chaveamento, tornando-o indicado para as aplicações de freqüência elevada (centenas de kHz).

Princípio de funcionamento (canal N)

O terminal de gate é isolado do semicondutor por SiO2. A junção PN- define um diodo entre Source e Drain, o qual conduz quando Vds<0. A operação como transistor ocorre quando Vds>0. A figura 1 mostra a estrutura básica do transistor .

Quando uma tensão Vgs>0 é aplicada, o potencial positivo no gate repele as lacunas na região P, deixando uma carga negativa, mas sem portadores livres. Quando esta tensão atinge um certo limiar (Vth), elétrons livres (gerados principalmente por efeito térmico) presentes na região P são atraídos e formam um canal N dentro da região P, pelo qual torna-se possível a passagem de corrente entre D e S. Elevando Vgs, mais portadores são atraídos, ampliando o canal, reduzindo sua resistência (Rds), permitindo o aumento de Id. Este comportamento caracteriza a chamada "região resistiva".

A passagem de Id pelo canal produz uma queda de tensão que leva ao seu afunilamento, ou seja, o canal é mais largo na fronteira com a região N+ do que quando se liga à região N-. Um aumento de Id leva a uma maior queda de tensão no canal e a um maior afunilamento, o que conduziria ao seu colapso e à extinção da corrente! Obviamente o fenômeno tende a um ponto de equilíbrio, no qual a corrente Id se mantém constante para qualquer Vds, caracterizando a região ativa do MOSFET. A figura 1 mostra a característica estática do MOSFET,

Figura 1. Estrutura básica de transistor MOSFET.

Uma pequena corrente de gate é necessária apenas para carregar e descarregar as capacitâncias de entrada do transistor. A resistência de entrada é da ordem de 1012 ohms.

Estes transistores, em geral, são de canal N por apresentarem menores perdas e maior velocidade de comutação, devido à maior mobilidade dos elétrons em relação às lacunas.

A máxima tensão Vds é determinada pela ruptura do diodo reverso. Os MOSFETs não apresentam segunda ruptura uma vez que a resistência do canal aumenta com o crescimento de Id. Este fato facilita a associação em paralelo destes componentes.

A tensão Vgs é limitada a algumas dezenas de volts, por causa da capacidade de isolação da camada de SiO2.

Característica de chaveamento - carga indutiva

a) Entrada em condução (figura 3)

Ao ser aplicada a tensão de acionamento (Vgg), a capacitância de entrada começa a se carregar, com a corrente limitada por Rg. Quando se atinge a tensão limiar de condução (Vth), após td, começa a crescer a corrente de dreno. Enquanto Id<Io, Df se mantém em condução e Vds=Vdd. Quando Id=Io, Df desliga e Vds cai. Durante a redução de Vds ocorre um aparente aumento da capacitância de entrada (Ciss) do transistor (efeito Miller), fazendo com que a variação de Vgs se torne muito mais lenta (em virtude do "aumento" da capacitância). Isto se mantém até que Vds caia, quando, então, a tensão Vgs volta a aumentar, até atingir Vgg.

Figura 2. Característica estática do MOSFET.

O que ocorre é que, enquanto Vds se mantém elevado, a capacitância que drena corrente do circuito de acionamento é apenas Cgs. Quando Vds diminui, a capacitância dentre dreno e source se descarrega, o mesmo ocorrendo com a capacitância entre gate e dreno. A descarga desta última capacitância se dá desviando a corrente do circuito de acionamento, reduzindo a velocidade do processo de carga de Cgs, o que ocorre até que Cgd esteja descarregado.

b) Desligamento

O processo de desligamento é semelhante ao apresentado, mas na ordem inversa. O uso de uma tensão Vgg negativa apressa o desligamento, pois acelera a descarga da capacitância de entrada.

Como os MOSFETs não apresentam cargas estocadas, não existe o tempo de armazenamento, por isso são muito mais rápidos que os TBP.

Figura 3 Formas de onda na entrada em condução de MOSFET com carga indutiva.

voltar a semicondutores

 

TUNEL DO TEMPO

PERSONALIDADES HISTÓRICAS /

CONHEÇA UM POUCO SOBRE / LINKS E REFERÊNCIA BIBLIOGRÁFICAS /

NORMAS - PADRÕES - PRÁTICAS

ENTRADA NO MUSEU  FMET

 

Hosted by www.Geocities.ws

1