Euclides e o Método Axiomático

 

Com sua obra Elementos, o matemático grego Euclides (330 a 277 a.C. aproximadamente) deu forma sistemática ao saber geométrico. No primeiro livro dos Elementos, ele enuncia vinte e três definições, cinco postulados e algumas noções comuns ou axiomas 8 [As definições pretendem substancialmente explicitar os conceitos da geometria ("ponto é aquilo que não tem partes"; "linha é comprimento sem largura", etc.). Os postulados representam verdades indubitáveis típicas do saber geométrico ("pode-se levar uma reta de qualquer ponto a qualquer ponto"; "todos os ângulos retos são iguais"; etc.). Os axiomas são verdades que valem universalmente, não só na geometria ("o todo é maior que a parte"; "coisas que são iguais a uma mesma coisa são iguais entre si", etc.]. . Em seguida ele deduz proposições ou teoremas, os quais constituem o saber geométrico, como por exemplo: "se em um triângulo dois ângulos são iguais entre si, também os lados opostos a esses ângulos são iguais entre si".

Esse é portanto o modo como Euclides ordena o conhecimento geométrico no chamado sistema euclidiano. Durante séculos esse sistema valeu como modelo insuperável do saber dedutivo: os termos da teoria são introduzidos depois de terem sido definidos e as proposições não são aceitas se não foram demonstradas. As proposições primitivas, base da cadeia sobre a qual se desenvolvem as deduções sucessivas, Euclides as escolhia de tal modo que ninguém pudesse levantar dúvidas sobre a sua veracidade: eram auto-evidentes, portanto isentas de demonstração. Leibniz afirmaria mais tarde que os gregos raciocinavam com toda a exatidão possível em matemática e deixaram à humanidade modelos de arte demonstrativa .

Em resumo, Euclides, como já fizera Aristóteles, buscou o ideal de uma organização axiomática, que em última instância se reduz à escolha de um pequeno número de proposições notoriamente verdadeiras daquele domínio do conhecimento, e à posterior dedução de todas as outras proposições verdadeiras desse domínio, a partir delas.

Surge com Euclides e Aristóteles (estará plenamente desenvolvida no início do século XX com a escola formalista de Hilbert) a busca de uma economia do pensamento . A História da Computação tem um marco significativo nesse ponto da História: o começo da busca da automatização do raciocínio e do cálculo.

Mas havia um problema no sistema de Euclides: suas "evidências" não eram assim tão evidentes. O seu quinto postulado não convenceu de modo algum, e despertou perplexidade na história do próprio pensamento grego, depois no árabe e no renascentista. No século XIX, Karl Friedrich Gauss (1777-1855) viu com toda a clareza a não demonstrabilidade do quinto postulado e a possibilidade da construção de sistemas geométricos não euclidianos. Janos Boulay (1802-1860), húngaro, e Nicolai Ivanovic Lobacewskiy (1793-1856), russo, trabalhando independentemente, constroem uma geometria na qual o postulado da paralela não vale mais.

A conseqüência desses fatos foi a eliminação dos poderes da intuição na fundamentação e elaboração de uma teoria geométrica: os axiomas não são mais "verdades evidentes" que garantem a "fundação" do sistema geométrico, mas puros e simples pontos de partida, escolhidos convencionalmente para realizar uma construção dedutiva. Mas, se os axiomas são puros pontos de partida, quem garantirá que, continuando-se a deduzir teoremas, não se cairá em contradição?

Esta questão crucial dos fundamentos da matemática levará aos grandes estudos dos finais do século XIX e inícios do XX e será o ponto de partida do projeto formalista de David Hilbert, assim como de outras tentativas de se fundamentar a matemática na lógica e na teoria dos conjuntos, como as propostas por Frege, Russell e Cantor. Mas será dessa seqüência de sucessos e fracassos que se produzirá a base da Computação, com Turing, von Neumann, Post, Church, e outros mais.

TUNEL DO TEMPO

PERSONALIDADES HISTÓRICAS /

CONHEÇA UM POUCO SOBRE / LINKS E REFERÊNCIA BIBLIOGRÁFICAS /

NORMAS - PADRÕES - PRÁTICAS

ENTRADA NO MUSEU  FMET

 

 

Hosted by www.Geocities.ws

1