
ogic, according to Webster’s dic- 
tionary, is the science of the nor- 
mative formal principles of 

reasoning. In this sense, fuzzy logic is con- 
cerned with the formal principles of 
approximate reasoning, with precise 
reasoning viewed as a limiting case. 

In more specific terms, what is central 
about fuzzy logic is that, unlike classical 
logical systems, it aims at modeling the 
imprecise modes of reasoning that play an 
essential role in the remarkable human 
ability to make rational decisions in an 
environment of uncertainty and impreci- 
sion. This ability depends, in turn, on our 
ability to infer an approximate answer to 
a question based on a store of knowledge 
that is inexact, incomplete, or not totally 
reliable. For example: 

(1) Usually it takes about an hour to 
drive from Berkeley to Stanford and about 
half an hour to drive from Stanford to San 
Jose. How long would it take to drive from 
Berkeley to San Jose via Stanford? 

(2) Most of those who live in Belvedere 
have high incomes. It is probable that 
Mary lives in Belvedere. What can be said 
about Mary’s income? 

(3) Slimness is attractive. Carol is slim. 
Is Carol attractive? 

(4) Brian is much taller than most of his 
close friends. How tall is Brian? 

There are two main reasons why classi- 
cal logical systems cannot cope with prob- 
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lems of this type. First, they do not provide 
a system for representing the meaning of 
propositions expressed in a natural lan- 
guage when the meaning is imprecise; and 
second, in those cases in which the mean- 
ing can be represented symbolically in a 
meaning representation language, for 
example, a semantic network or a 
conceptual-dependency graph, there is no 
mechanism for inference. 

As will be seen, fuzzy logic addresses 
these problems in the following ways. 

First, the meaning of a lexically imprecise 
proposition is represented as an elastic 
constraint on a variable; and second, the 
answer to a query is deduced through a 
propagation of elastic constraints. 

During the past several years, fuzzy 
logic has found numerous applications in 
fields ranging from finance to earthquake 
engineering. But what is striking is that its 
most important and visible application 
today is in a realm not anticipated when 
fuzzy logic was conceived, namely, the 
realm of fuzzy-logic-based process con- 
trol. The basic idea underlying fuzzy logic 
control was suggested in notes published 
in 1968 and 1972l,* and described in 
greater detail in 1973.3 The first imple- 
mentation was pioneered by Mamdani and 
Assilian in 19744 in connection with the 
regulation of a steam engine. In the ensu- 
ing years, once the basic idea underlying 
fuzzy logic control became well under- 
stood, many applications followed. In 
Japan, in particular, the use of fuzzy logic 
in control processes is being pursued in 
many application areas, among them 
automatic train operation (Hitachi),’ 
vehicle control (Sugeno Laboratory at 
Tokyo Institute of Technology),’ robot 
control (Hirota Laboratory at Hosei Uni- 
versity),’ speech recognition (Ricoh),’ 
universal controller (Fuji),’ and stabiliza- 
tion control (Yamakawa Laboratory at 
Kumamoto Univer~i ty) .~  More about 
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Figure 1. Representation of “usually” 
as a fuzzy proportion. 

some of these projects will be said in the 
section dealing with applications. 

In most of the current applications of 
fuzzy logic, software is employed as a 
medium for the implementation of fuzzy 
algorithms and control rules. What is 
clear, however, is that it would be cheaper 
and more effective to use fuzzy logic chips 
and, eventually, fuzzy computers. The 
first logic chip was developed by Togai and 
Watanabe at Bell Telephone Laboratories 
in 1985, and it is likely to become available 
for commercial use in 1988 or 1989. On the 
heels of this important development came 
the announcement of a fuzzy computer 
designed by Yamakawa at Kumamoto 
University. These developments on the 
hardware front may lead to an expanded 
use of fuzzy logic not only in industrial 
applications but, more generally, in 
knowledge-based systems in which the 
deduction of an answer to a query requires 
the inference machinery of fuzzy logic. 

One important branch of fuzzy logic 
may be called dispositional logic. This 
logic, as its name implies, deals with dis- 
positions, that is, propositions that are 
preponderantly but not necessarily always 
true. For example, “snow is white” is a 
disposition, as are the propositions 
“Swedes are blond” and “high quality is 
expensive.” A disposition may be viewed 
as a usuality-qualified proposition in 
which the qualifying quantifier “usually” 
is implicit rather than explicit. In this 
sense, the disposition “snow is white” may 
be viewed as the result of suppressing the 
fuzzy quantifier “usually” in the usuality- 
qualified proposition 

usually (snow is white) 

In this proposition, “usually” plays the 
role of a fuzzy proportion of the form 
shown in Figure 1. 

The importance of dispositional logic 
stems from the fact that most of what is 
usually referred to as common sense 
knowledge may be viewed as a collection 
of dispositions. Thus, the main concern of 
dispositional logic lies in the development 
of rules of inference from common sense 
knowledge. 

In what follows, I present a condensed 
exposition of some basic ideas underlying 
fuzzy logic and describe some representa- 
tive applications. More detailed informa- 
tion regarding fuzzy logic and its 
applications may be found in the cited 
literature. 

Basic principles 
Fuzzy logic may be viewed as an exten- 

sion of multivalued logic. Its uses and 
objectives, however, are quite different. 
Thus, the fact that fuzzy logic deals with 
approximate rather than precise modes of 
reasoning implies that, in general, the 
chains of reasoning in fuzzy logic are short 
in length, and rigor does not play as impor- 
tant a role as it does in classical logical sys- 
tems. In a nutshell, in fuzzy logic 
everything, including truth, is a matter of 
degree. 

The greater expressive power of fuzzy 
logic derives from the fact that it contains 
as special cases not only the classical two- 
valued and multivalued logical systems but 
also probability theory and probabilistic 
logic. The main features of fuzzy logic that 
differentiate it from traditional logical sys- 
tems are the following: 

(1) In two-valued logical systems, a 
propositionp is either true or false. In mul- 
tivalued logical systems, a proposition 
may be true or false or have an intermedi- 
ate truth value, which may be an element 
of a finite or infinite truth value set T. In 
fuzzy logic, the truth values are allowed to 
range over the fuzzy subsets of T. For 
example, if T i s  the unit interval, then a 
truth value in fuzzy logic, for example, 
“very true,” may be interpreted as a fuzzy 
subset of the unit interval. In this sense, a 
fuzzy truth value may be viewed as an 
imprecise characterization of a numerical 
truth value. 

(2) The predicates in two-valued logic 
are constrained to be crisp in the sense that 
the denotation of a predicate must be a 

nonfuzzy subset of the universe of dis- 
course. In fuzzy logic, the predicates may 
be crisp-for example, “mor ta l ,”  
“even,” and “father of”-or, more 
generally, fuzzy-for example, “ill,” 
“tired, ” “large,” “tall, ” ‘‘much heav- 
ier,” and “friend of.” 

(3) Two-valued as well as multivalued 
logics allow only two quantifiers: “all” 
and “some.” By contrast, fuzzy logic 
allows, in addition, the use of fuzzy quan- 
tifiers exemplified by “most,” “many,” 
“several,” “few,” “much of,” “fre- 
quently,’’ “occasionally,” “about ten,” 
and so on. Such quantifiers may be inter- 
preted as fuzzy numbers that provide an 
imprecise characterization of the cardinal- 
ity of one or more fuzzy or nonfuzzy sets. 
In this perspective, a fuzzy quantifier may 
be viewed as a second-order fuzzy predi- 
cate. Based on this view, fuzzy quantifiers 
may be used to represent the meaning of 
propositions containing fuzzy probabili- 
ties and thereby make it possible to manip- 
ulate probabilities within fuzzy logic. 

(4) Fuzzy logic provides a method for 
representing the meaning of both non- 
fuzzy and fuzzy predicate-modifiers exem- 
plified by “not,” “very,” “more or less,” 
“extremely,” “slightly,” “much,” “a lit- 
tle,” and so on. This, in turn, leads to a 
system for computing with linguistic var- 
i a b l e ~ , ~  that is, variables whose values are 
words or sentences in a natural or synthetic 
language. For example, “Age” is a linguis- 
tic variable when its values are assumed to 
be “young,” “old,” “very young,” “not 
very old,” and so forth. More about lin- 
guistic variables will be said at a later 
point. 

(5) In two-valued logical systems, a 
propositionp may be qualified, principally 
by associating withp a truth value, “true” 
or “false”; a modal operator such as 
“possible” or “necessary”; and an inten- 
sional operator such as “know” or 
“believe.” Fuzzy logic has three principal 
modes of qualification: 

truth-qualification, as in 
(Mary is young) is not quite true, 

in which the qualified proposition 
is (Mary is young) and the qualify- 
ing truth value is “not quite true”; 
probability-qualification, as in 

(Mary is young) is unlikely, 
in which the qualifying fuzzy prob- 
ability is “unlikely”; and 
possibility-qualification, as in 

(Mary is young) is almost 
impossible, 

in which the qualifying fuzzy possi- 
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bility is “almost impossible.” 
An important issue in fuzzy logic relates 

to inference from qualified propositions, 
especially from probability-qualified 
propositions. This issue is of central 
importance in the management of uncer- 
tainty in expert systems and in the formali- 
zation of common sense reasoning. In the 
latter, it’s important to note the close con- 
nection between probability-qualification 
and usuality-qualification and the role 
played by fuzzy quantifiers. For example, 
the disposition 

1, . . ., n ,  is the domain of X;. Represen- 
tation o f p  in its canonical form requires, 
in general, the construction of an explana- 
tory database and a test procedure that 
tests and aggregates the test scores 
associated with the elastic constraints C1, 

In more concrete terms, the canonical 
form of p implies that the possibility 
distribution6 of X i s  equal t o  A-that is, 

. . ., c k . 6  

which in turn implies that 
Swedes are blond 

Poss{X=u} = pa(u), U E U 
may be interpreted as 

most Swedes are blond; 

or, equivalently, as 

(Swede is blond) is likely, 

where “likely” is a fuzzy probability that 
is numerically equal to the fuzzy quantifier 
“most”; or, equivalently, as 

usually (a Swede is blond), 

where “usually” qualifies the proposition 
“a Swede is blond.” 

As alluded earlier, inference from 
propositions of this type is a main concern 
of dispositional logic. More about this 
logic will be said at a later point. 

Meaning representation 
and inference 

A basic idea serving as a point of depar- 
ture in fuzzy logic is that a proposition p 
in a natural or synthetic language may be 
viewed as a collection of elastic con- 
straints, C,, . . . , ck, which restrict the 
values of a collection of variables X = 

(Xl,  . . ., Xn).6 In general, the constraints 
as well as the variables they constrain are 
implicit rather than explicit in p .  Viewed 
in this perspective, representation of the 
meaning of p is, in essence, a process by 
which the implicit constraints and vari- 
ables i n p  are made explicit. In fuzzy logic, 
this is accomplished by representing p in 
the so-called canonical form 

where pA is the membership function of A 
and Poss{X= U }  is the possibility that X 
may take U as its value. Thus, when the 
meaning o f p  is represented in the form of 
Equation 1, it signifies that p induces a 
possibility distribution n, that is equal to 
A ,  with A playing the role of an elastic 
constraint on a variable X that is implicit 
inp .  In effect, the possibility distribution 
of X ,  nx, is the set of possible values of 
X ,  with the understanding that possibility 
is a matter of degree. Viewed in this per- 
spective, a proposition p constrains the 
possible values that X can take and thus 
defines its possibility distribution. This 
implies that the meaning o f p  is defined by 
(1) identifying the variable that is con- 
strained and (2) characterizing the con- 
straint to which the variable is subjected 
through its possibility distribution. Note 
that Equation 1 asserts that the possibility 
that Xcan take U as its value is numerically 
equal to the grade of membership, pA(u) ,  
of u in A .  

As an illustration, consider the propo- 
sition 

p A John is tall 

in which the symbol1 should be read as 
“denotes” or “is equal to by definition.” 
In this case, X = Height(John), A = 
TALL, and the canonical form o f p  reads 

Height(John) is TALL 

where the fuzzy relation TALL is in upper- 
case letters to underscore that it plays the 
role of a constraint in the canonical form. 
From the canonical form, it follows that 

p - + X i s A  
Poss {Height (John) = U }  = ~ T A L L ( u )  

in which A is a fuzzy predicate or, equiva- 
lently, an n-ary fuzzy relation in U, where 
U = U, x U2 x . . . x U”, and U;, i = 

where /ATALL is the membership function 
of TALL and ~ T A L L ( u )  is the grade of 

membership of U in TALL or, equiva- 
lently, the degree to which a numerical 
height U satisfies the constraint induced by 
the relation TALL. 

Whenp is a conditional proposition, its 
canonical form may be expressed as “ Y is 
Bif XisA,” implying thatpinduces acon- 
ditional possibility distribution of Ygiven 
X ,  written as ll(ylm. In fuzzy logic, nlylm 
may be defined in a variety of ways,’ 
among which is a definition consistent 
with the definition of implication in 
Lakasiewicz’s LAleppho logic. In this case, 
the conditional possibility distribution 
function, n(yIx), which defines n(yim, may 
be expressed as 

where 

A 
n(Ylx)(u, v)=  Poss{X=u, Y = v J  

pA and pa denote the membership func- 
tions of A and B, respectively; and A 
denotes the operator min. 

When p is a quantified proposition of 
the form 

p 4 Q A’S are B‘S 

for example, 

p A most tall men are not very fat 

where Q is a fuzzy quantifier and A and B 
are fuzzy predicates, the constrained var- 
iable, X ,  is the proportion of B’s in A’s, 
with Q representing an elastic constraint 
on X .  More specifically, if Uis a finite set 
{U,, . . . , U,,,}, the proportion of B‘s in 
A‘s is defined as the relative sigma-count 

1 PA@,) A PB(U,) 

ZCount @ / A )  = ’ (3) 
/AA(u,) 

j = 1 , .  . . , m  

where pa(u,) and pB(u,) denote the grades 
of membership of uj in A and B,  respec- 
tively. Thus, expressed in its canonical 
form, Equation 3 may be written as 

zCount(B/A) is Q 

which places in evidence the constrained 
variable, X, i n p  and the elastic constraint, 
Q, to which Xi s  subjected. Note that Xis  
the relative sigma-count of B in A .  

The concept of a canonical form pro- 
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1 1 expressed as the inference rule 

Q2 

QI A‘s are B’s ( 5 )  
Q2 (A  and B)’s are C‘s 

(QI 63 Qz) A’s are (B  and C)’s 

in which QI  and Q2 are fuzzy quantifiers, 
A ,  B,  and Care  fuzzy predicates, and Q1 
€3 Q2 is the product of the fuzzy numbers 
Q1 and Qz in fuzzy arithmetic.” (See Fig- 
ure 2) .  For example, as a special case of 
Equation 5 ,  we may write 

most students are single 
a little more than a half of single 

Figure 2. Representation of fuzzy quantifiers in the intersection/product syllogism. students are 

(most €3 a little more than a half) of 
students are single and male 

vides an effective framework for formulat- 
ing the problem of inference in expert 
systems. Specifically, consider a knowl- 
edge base, KB,  which consists of a collec- 
tion of propositions { p l ,  . . . , p N } .  
Typically, a constituent proposition, p,, i 
= 1, . . . , N, may be (1) a fact that may 
be expressed in a canonical form as “Xis 
A” or (2) a rule that may be expressed in 
a canonical form as “ Y  is B,” if  “X is 
A,.” More generally, both facts and rules 
may be probability-qualified or, equiva- 
lently, expressed as quantified proposi- 
tions. For example, a rule of the general 
form “QA’s are B‘s” may be interpreted 
as the probability-qualified proposition ( X  
is B if Xis  A ) is A ,  where A is a fuzzy prob- 
ability whose denotation as a fuzzy subset 
of the unit interval is the same as that of 
the fuzzy quantifier Q and Xi s  chosen at 
random in U. 

Now ifp, induces a possibility distribu- 
tion ili;rl, J,,), where X,, . . . , X,, are 
the variables constrained by p , ,  then the 
possibility distribution n,,,, ,x,,), which 
is induced by the totality of propositions 
in KB is given by the intersection3 of the 
nix1, .X,). That is, 

or, equivalently, 

n(x l , ,  , , ,,,) is the possibility distribution 
function of fl,,,, , , , , ?,). Note that there is 
no loss of generality in assuming that the 

Since the intersection of B and Cis con- 
tained in C, the following corollary of 
Equation 5 is its immediate consequence. 

( 6 )  

constrained variables XI ,  . . . , X,, are the 
same for all propositions in KB since the 
set {XI ,  . . . , X,,} may be taken to be the 
union of the constrained variables for each 

QI A’s are B‘s 
0, ( A  and BYs are C‘s I- ~ 

proposition. 
2 (Ql 63 (22) A‘s are C’s Now suppose that we are interested in ~. 

inferring the value of a specified function 
f(X1, . . . ,X,,), f: U -, V,  of the vari- 
ables constrained by the knowledge base. 
Because of the incompleteness and impre- 
cision of the information resident in KB,  
what we can deduce, in general, is not the 
value of f (Xl ,  . . . , X,,) but its possibility 
distribution, n,. By employing the exten- 
sion principle,’ it can be shown that the 
possibility distribution function of f is 
given by the solution of the nonlinear 
program 

where the fuzzy number 2 (Q1 63 Q2) 
should be read as “at least (Q1 63 e’).” In 
particular, if the fuzzy quantifiers Q1 and 
Q2 are monotone increasing (for example, 
when “QI  = Q2 !! most”), then 

and Equation 6 becomes 

QI  A‘s are B’s (7) 
Q2 ( A  and B)’s are C‘s 

(Q1 63 Q2) A’s are C’s 

m t x , , .  
. . .  

, x , , ) ( U , ,  . . . , U , > A  
Furthermore, if B is a subset of A ,  then A 
and B = B ,  and Equation 7 reduces to the 
chaining rule A n k I ,  , x,,) ( ~ 1 ,  . . . 9 

subject to the constraint 

whereuJE UJ, i = 1 , .  . . , n,  and v E  V. 
The reduction to the solution of a non- 
linear program constitutes the principal 
tool for inference in fuzzy logic. 

Fuzzy syllogisms. A basic fuzzy syllo- 
gism in fuzzy logic that is of considerable 
relevance to the rules of combination of 
evidence in expert systems is the intersec- 
tionlproduct syllogism-a syllogism that 
serves as a rule of inference for quantified 
propositions.’ This syllogism may be 

QI A‘s are E’s 
Q2 B’s are C’s 

(QI 63 Q2) A’s are C’s 

For example, 

most students are undergraduates 
most undergraduates are young 

most‘ students are young 

where “most’” represents the product of 
the fuzzy number “most” with itself (see 
Figure 3). 

What is important to observe is that the 
chaining rule expressed by Equation 8 
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serves the same purpose as the chaining 
rules in Mycin, Prospector, and other 
probability-based expert systems. How- 
ever, Equation 8 is formulated in terms of 
fuzzy quantifiers rather than numerical 
probabilities or certainty factors, and it is 
a logical consequence of the concept of a 
relative sigma-count in fuzzy logic. Fur- 
thermore, the chaining rule (Equation 8) 
is robust in the sense that if Q1 and Q2 are 
close to unity, so is their product QI C3 Q 2 .  

More specifically, if QI and Q2 are 
expressed as 

where E~ and c2 are small fuzzy numbers, 
then, to a first approximation, Q may be 
expressed as 

An important issue concerns the general 
properties QI, Q2, A ,  B ,  and C must have 
to ensure robustness. As shown above, the 

containment of B in A and the monotonic- 
ity of Ql and Q2 are conditions for robust- 
ness in the case of the intersection/product 
syllogism. 

Another basic syllogism is the conse- 
quent conjunction sylIogism 

QI A’s are B’s 
Q2 A’s are C’s 

(9) 

Q A’s are (B  and C)’s 

where 

in which the operators a, Q, e, 0, and the 
inequality 5 are the extensions of A ,  V, 
+,  -, and 5 ,  respectively, to fuzzy 
numbers. 

The consequent conjunction syllogism 
plays the same role in fuzzy logic as the rule 
of combination of evidence for conjunc- 
tive hypotheses does in Mycin and 
Prospector.” However, whereas in Mycin 
and Prospector the qualifying probabili- 

Figure 3. Representation of “most” 
and “most2.” 

ties and certainty factors are real numbers, 
in the consequent conjunction syllogism 
the fuzzy quantifiers are fuzzy numbers. 
As can be seen from the result expressed by 
Equation 9, the conclusion yielded by the 

Inference with fuzzy probabilities 
An example of an important problem to which the reduction 

to a nonlinear program may be applied is the following. 
Assume that from a knowledge base K B  = {p , ,  . . . , p N }  in 
which the constituent propositions are true with probability 
one, we can infer a proposition q which, like the premises, is 
true with probability one. Now suppose that each p, in K 6  is 
replaced with a probability-qualified proposition “p,*b p, is A,,” 
in which A, is a fuzzy probability. For example 

p,! x is small 

and 

p, * i  X is small is very likely 

As a result of the qualification of the p,, the conclusion, q, will 
also be a probability-qualified proposition that may be expressed 
as 

q‘ = qisA 

in which A is a fuzzy probability. The problem is to determine A 
as a function of the A,, if such a function exists. A special case 
of this problem, which is of particular relevance to the manage- 
ment of uncertainty in expert systems, is one in which the 
fuzzy probabilities Ai are close to unity. We shall say that the 
inference process is compositional i f  A can be expressed as a 
function of the A,; it is robust if whenever the A, are close to 
unity, so is A. 

By reducing the determination of A to the solution of a non- 

linear program, it can be shown that, in general, the inference 
process is not compositional if the Ai and A are numerical prob- 
abilities. This result calls into question the validity of the rules 
of combination of evidence in those expert systems in which 
the certainty factor of the conclusion is expressed as a func- 
tion of the certainty factors of the premises. However, com- 
positionality does hold, in general, if the A, and I are assumed 
to be fuzzy probabilities, for this allows the probability of q to 
be interval-valued when the A, are numerical probabilities, 
which is consistent with known results in inductive logic. 

Another important conclusion relating to the robustness of 
the inference process is that, in general, robustness does not 
hold without some restrictive assumptions on the premises. 
For example, the brittleness of the transitivity of implication is 
an instance of the lack of robustness when no assumptions 
are made regarding the fuzzy predicates A, 6, and C. On the 
other hand, if in the inference schema 

X isA 
Y is 6 i f  X is A 
Y i s B  

the major premise is replaced by “X is A is probable,” where 
“probable” is a fuzzy probability close to unity, then it can be 
shown that, under mildly restrictive assumptions on A, the 
resulting conclusion may be expressed as “ Y  is B is 2 proba- 
ble,” where ‘‘2 probable” is a fuzzy probability that, as a fuzzy 
number, is greater than or equal to the fuzzy number “proba- 
ble.” In this case, then, robustness does hold, for if “probable” 
is close to unity, so is ‘‘2 probable.” 
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application of fuzzy logic to the premises 
in question is both robust and composi- 
tional. 

A more complex problem is presented 
by what in Mycin and Prospector cor- 
responds to the conjunctive combination 
of evidence. Stated in terms of quantified 
premises, the inference rule in question 
may be expressed as 

Q1 A‘s are C’s 
O7 B’s are C‘s 

~ 

Q (A  and B)‘s are C’s 

where the value of Q is to be determined. 
To  place in evidence the symmetry 
between Equation 9 and Equation 10, we 
shall refer to the rule in question as the 
antecedent conjunction syllogism. 

It can readily be shown that, without 
any restrictive assumptions on Q,, Q2, A ,  
E ,  and C, there is nothing that can be said 
about Q, which is equivalent to saying that 
“Q = none to all.” A basic assumption in 

Mycin, Prospector, and related systems is 
that the items of evidence are conditionally 
independent, given the hypothesis (and its 
complement). That is, 

where P (E,,  E2 1 H )  is the joint probabil- 
ity of El and E,, given the hypothesis H 
and P (E,  I H )  and P (E2 1 H )  are the con- 
ditional probabilities of E ,  given H and 
E2 given H ,  respectively. Expressed in 
terms of the relative sigma-counts, this 
assumption may be written as 

where n denotes the intersection of fuzzy 
sets.3 

To determine the value of Q in Equation 
10 we have to compute the relative sigma- 
count of Cin A fl B. It can be verified that, 
under the assumption (Equation 1 l ) ,  the 
sigma-count in question is given by 

ZCount  ( C /  A n B )  = 
ECount ( C I A )  ZCount ( C / B )  d 

where the factor d is expressed by 

t c o u n t  ( A )  Z c o u n t  ( B )  
d =  (12) 

t c o u n t  (A  n B )  t c o u n t  (c) 

Inspection of Equation 12 shows that 
the assumption expressed by Eqaution 11 
does not ensure the compositionality of Q. 
However, it can be shown that composi- 
tionality can be achieved through the use 
of the concept of a relative esigma-count, 
which is defined as 

where +? denotes the negation of B. The 
use of esigma-counts in place of sigma- 
counts is analogous to the use of odds 
instead of probabilities in Prospector, and 
it serves the same purpose. 

Interpolation 
An important problem that arises in the operation of any 

rule-based system is the following. Suppose the user supplies 
a fact that, in its canonical form, may be expressed as “X is 
A,” where A is a fuzzy or nonfuzzy predicate. Furthermore, sup- 
pose that there is no conditional rule in K6 whose antecedent 
matches A exactly. The question arises: Which rules should 
be executed and how should their results be combined? 

An approach to this problem, sketched in Reference 8, 
involves the use of an interpolation technique in fuzzy logic 
which requires a computation of the degree of partial match 
between the user-supplied fact and the rows of a decision 
table. More specifically, suppose that upon translation into 
their canonical forms, a group of propositions in K6 may be 
expressed as a fuzzy relation of the form 

in which the entries are fuzzy sets; the input variables are X,, 
. . . , X,, with domains U,,. . . , U,; and the output variable is 
X,+,, with domain U,,,. The problem is: Given an input n-tuple 
(R, ,  . . . , R,), in which R,, i = 1, . . . , n, is a fuzzy subset of U,, 
what is the value of X,,, expressed as a fuzzy subset of U,,,? 

A possible approach to the problem is to compute for each 
pair (R,,, R,) the degree of consistency of the input R, with the 
R,, element of R, i = 1,. . . , m, i = 1,. . . , n. The degree of 

consistency, yf,, is defined as 

A 
Yl, = SUP (R,l n RI) 

= (Me,, A pR, 

in which pe and pe are the membership functions of R,, and R, 
respectivelv; U, is dgeneric element of U,; and the supremum 
is taken over U,. 

Next, we compute the overall degree of consistency, Y,, of 
the input n-tuple (R, ,  . . . , R,) with the i t h  row of R, i = 1,. . . , 
m, by employing A (min) as the aggregation operator. Thus, 

Y, = Y,I A Yi2 A . . . A Ym 

which implies that y ,  may be interpreted as a conservative 
measure of agreement between the input n-tuple (R,,  . . . , R,) 
and the ith-row n-tuple (R,,, . . . , R,,). Then, employing y, as a 
weighting coefficient, the desired expression for X,,, may be 
written as a “linear” combination 

X,+, = ~1 A Z1 i- . , . + Ym A Z,,, 

in which + denotes the union, and Y, A z, is a fuzzy set defined 
by 

p liui (U,+ , )  = Yi A pz, ( U i + r ) ,  i = 1, . . . v m 

The above approach ceases to be effective, however, when R 
is a sparse relation in the sense that no row of R has a high 
degree of consistency with the input n-tuple. For such cases, 
a more general interpolation technique has to be employed. 
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Basic rules of inference 
One distinguishing characteristic of 

fuzzy logic is that premises and conclu- 
sions in an inference rule are generally 
expressed in canonical form. This repre- 
sentation places in evidence the fact that 
each premise is a constraint on a variable 
and that the conclusion is an induced con- 
straint computed through a process of 
constraint propagation - a process that, 
in general, reduces to the solution of a non- 
linear program. The following briefly 
presents - without derivation - some of 
the basic inference rules in fuzzy logic. 
Most of these rules can be deduced from 
the basic inference rule expressed by Equa- 
tion 4. 

The rules of inference in fuzzy logic may 
be classified in a variety of ways. One basic 
class is categoricalrules, that is, rules that 
d o  not contain fuzzy quantifiers. A more 
general class is dispositionalrules, rules in 
which one or more premises may contain, 
explicitly or implicitly, the fuzzy quantifier 
“usually.” For example, the inference rule 
known as the entailment principle: 

X i s A  
A C B  

X i s  B 

where Xis  a variable taking values in a uni- 
verse of discourse U ,  and A and B are 
fuzzy subsets of U ,  is a categorical rule. On 
the other hand, the dispositional entail- 
ment principle is an inference rule of the 
form 

usually ( X  is A ) 
A C B  

usually (Xis  B )  

In the limiting case where “usually” 
becomes “always,” Equation 14 reduces 
to Equation 13. 

In essence, the entailment principle 
asserts that from the proposition “XisA” 
we can always infer a less specific propo- 
sition “ X i s  B.” For example, from the 
proposition “Mary is young,” which in its 
canonical form reads 

Age(Mary) is YOUNG 

where YOUNG is interpreted as a fuzzy set 
or, equivalently, as a fuzzy predicate, we 
can infer “Mary is not old,” provided 
YOUNG is a subset of the complement of 
OLD. That is 

where PYOUNC and  OLD are, respectively, 
the membership functions of YOUNG and 
OLD, and the universe of discourse is the 
interval [0, 1001. 

Viewed in a different perspective, the 
entailment principle in fuzzy logic may be 
regarded as a generalization to fuzzy sets 
of the inheritance principle widely used in 
knowledge representation systems. More 
specifically, if the proposition “XisA” is 
interpreted as “X has property A ,” then 
the conclusion “ X  is B” may be inter- 
preted as “X has property B,” where B is 
any superset of A.  In other words, X 
inherits property B if B is a superset of A .  

Among other categorical rules that play 
a basic role in fuzzy logic are the follow- 
ing. In all of these rules, X ,  Y, Z,  . . . are 
variables ranging over specified universes 
of discourse, and A ,  B,  C, . . . are fuzzy 
predicates or ,  equivalently, fuzzy 
relations. 

Conjunctive rule. 

X i s A  
X i s  B 

X i s A  n B 

where A n B is the intersection of A and 
B defined by 

Cartesian product. 

X i s A  
Yis B 

( X ,  Y) is A x B 

where (X, Y) is a binary variable and A x 
B is defined by 

Projection rule. 

(X, Y) is R 

of R and the supremum is taken over v E 
V. 

Compositional rule. 

X i s  A 
(X, Y ) i s R  

YisA 0 R 

where A o R ,  the composition of the 
unary relation A with the binary relation 
R ,  is defined by 

The compositional rule of inference may 
be viewed as a combination of the con- 
junctive and projection rules. 

Generalized modus ponens. 

X i s A  
Y is Cif X i s  B 

Y is A 0 (TB  8 C )  

where 1 B  denotes the negation of B and 
the bounded sum is defined by 

An important feature of the generalized 
modus ponens, which is not possessed by 
the modus ponens in binary logical sys- 
tems, is that the antecedent “Xis B” need 
not be identical with the premise “XisA.” 
I t  should be noted that the generalized 
modus ponens is related to the interpola- 
tion rule which was described earlier. An 
additional point that should be noted is 
that the generalized modus ponens may be 
regarded as an instance of the composi- 
tional rule of inference. 

Dispositional modus ponens. In many 
applications involving common sense 
reasoning, the premises in the generalized 
modus ponens are usuality-qualified. In 
such cases, one may employ a dispositional 
version of the modus ponens. I t  may be 
expressed as 

X i s  xR usually (X is A ) 
usually (Y is B i f  X is A ) 

usually’ ( Y  is B )  
where xR, the projection of the binary 
relation R on the domain of X,  is defined 
by where “usually’” is the square of 

“usually” (see Figure 4). For simplicity, 
it’s assumed that the premise “ X i s  A” 
matches the antecedent in the conditional 
proposition; also, the conditional propo- 
sition is interpreted as the statement, “The where pR(u ,v)  is the membership function 

April 1988 89 



COMPATIBILITY 

USUALLY 

0 1 
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Figure 4. Representation of “usually” 
and 6‘usually2.11 

Figure 5. The linguistic values of “Age.” 

value of the fuzzy conditional probability 
of B given A is the fuzzy number 
USUALLY .” 

Extension principle. The extension prin- 
ciple plays an important role in fuzzy logic 
by providing a mechanism for computing 
induced constraints. More specifically, 
assume that a variable X taking values in 
a universe of discourse Uis constrained by 
the proposition “Xis  A .” Furthermore, 
assume that f is a mapping from U to V 
so that X i s  mapped intof(X). The ques- 
tion is: What is the constraint on f ( X )  
which is induced by the constraint on X? 

The answer provided by the extension 
principle may be expressed as the inference 
rule 

X i s A  

where the membership function offlA) is 
defined by 

subject to the condition 

v = f ( u ) ,  u E U, v E v 

In particular, if the functionfis 1: 1, then 
Equation 15 simplifies to 

where v - ’  is the inverse of v .  For 
example, 

X i s  small 

x is small2 

and 

As in the case of the entailment rule, the 
dispositional version of the extension prin- 
ciple has the simple form 

usually (X  is A ) 

usually Cf(X)isf(A)) 

The dispositional extension principle 
plays an important role in inference from 
common sense knowledge. In particular, 
it is one of the inference rules that play an 
essential role in answering the questions 
posed in the introduction. 

The linguistic variable 
and its application to 
fuzzy control 

A basic concept in fuzzy logic that plays 
a key role in many of its applications, espe- 
cially in the realm of fuzzy control and 
fuzzy expert systems, is a linguistic 
variable. 

A linguistic variable, as its name sug- 
gests, is a variable whose values are words 
or sentences in a natural or synthetic lan- 
guage. For example, “Age” is a linguistic 
variable if its values are “young,” “not 
young,” “very young,” “old,” “not 
old,” “very old,” and so on. 

In general, the values of a linguistic var- 
iable can be generated from a primary 
term (for example, “young”) its antonym 
(“old”), acollection of modifiers (“not,” 
“very,” “more or less,” “quite,” “not 
very,” etc.), and the connectives “and” 
and “or.” For example, one value of 
“Age” may be “not very young and not 
very old.” Such values can be generated by 
a context-free grammar. Furthermore, 
each value of a linguistic variable 
represents a possibility distribution, as 
shown in Figure 5 for the variable “Age.” 
These possibility distributions may be 
computed from the given possibility distri- 
butions of the primary term and its anto- 
nym through the use of attributed 
grammar techniques. 

An interesting application of the linguis- 
tic variable is embodied in the fuzzy car 
conceived and designed by Sugeno of the 
Tokyo Institute of Technology.’ The 
car’s fuzzy-logic-based control system lets 
it move autonomously along a track with 
rectangular turns and park in a designated 
space (see Figure 6). An important feature 
is the car’s ability to learn from examples. 

The basic idea behind the Sugeno fuzzy 
car is the following. The controlled vari- 
able Y,  which is the steering angle, is 
assumed to be a function of the state vari- 
ables X I ,  x , ,  x , ,  . . . , x,,, which repre- 
sent the distances of the car from the 
boundaries of the track at a corner (see 
Figure 7). These values are treated as lin- 
guistic variables, with the primary terms 
represented as triangular possibility distri- 
butions (see Figure 8). 
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The control policy is represented as a 
finite collection of rules of the form 

R': if (X, is A ' ' )  and . . . (X , is A i ) ,  
then 

Y ' = a b + d l x , +  . . .  +a;x,, 

where R' is the ith rule; A; is a linguistic 
value of X, in RI; Y '  is the value of the 
control variable suggested by R'; and ah, 
. . . , a i  are adjustable parameters, which 
define Y ' as a linear combination of the 
state variables. 

In a given state ( X I ,  . . . , X,,), the truth 
value of the antecedent of R' may be 
expressed as 

w' = A' , (X' )  A .  . . A Ai(X, , )  

where A;(X,) is the grade of membership 
of X, in A;. The aggregated value of the 
controlled variable Y is computed as the 
normalized linear combination 

WI Y' + . . . + w, Y" 
W' + . . .  + w,, 

Y =  (16) 

Thus, Equation 16 may be interpreted 
as the result of a weighted vote in which the 
value suggested by R' is given the weight 

The values of the coefficients a',, . . . , 
a', are determined through training. 
Training consists of an operator guiding a 
model car along the track a few times until 
an identification algorithm converges on 
parameter values consistent with the con- 
trol rules. By its nature, the training pro- 
cess cannot guarantee that the 
identification algorithm will always con- 
verge on the correct values of the coeffi- 
cients. The justification is pragmatic: the 
system works in most cases. 

Variations on this idea are embodied in 
most of the fuzzy-logic-based control sys- 
tems developed so far. Many of these sys- 
tems have proven to be highly reliable and 
superior in performance to conventional 
systems.' 

Since most rules in expert systems have 
fuzzy antecedents and consequents, expert 
systems provide potentially important 
applications for fuzzy logic. For 
example'': 

W,/(W, + . . . + W,,). 

IF the search "space" is moderately 

THEN exhaustive search is feasible 
small 

kk 
,car B L1 

Figure 6. The Sugeno fuzzy car. Figure 7. The state variables in Sugeno's 
car. 

XS'Y 0 

X1 P 

IF a piece of code is called frequently 
THEN it is worth optimizing Figure 8. The linguistic values of state variables. 
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IF large oil spill or strong acid spill 
THEN emergency is strongly suggested 

The fuzziness of such rules is a con- 
sequence of the fact that a rule is a sum- 
mary, and summaries, in general, are 
fuzzy. However, in the context of expert 
systems and fuzzy logic control, fuzziness 
has the positive effect of reducing the num- 
ber of rules needed to approximately 
characterize a functional dependence 
between two or more variables. 

Fuzzy hardware. Several expert system 
shells based on fuzzy logic are now com- 
mercially available, among them Reveal 
and Flops.’ The seminal work of Togai 
and Watanabe at Bell Telephone Labora- 
tories, which resulted in the development 
of a fuzzy logic chip, set the stage for using 
such chips in fuzzy-logic-based expert sys- 
tems and, more generally, in rule-based 
systems not requiring a high degree of pre- 
cision.’* More recently, the fuzzy com- 
puter developed by Yamakawa of 
Kumamoto University has shown great 
promise as a general-purpose tool for pro- 
cessing linguistic data at high speed and 
with remarkable robus tne~s .~  

Togai and Watanabe’s fuzzy inference 
chip consists of four major components: 
a rule set memory, an inference processor, 
a controller, and 1 / 0  circuitry. In a recent 
implementation, a rule set memory is real- 
ized by a random-access memory. In the 
inference processor, there are 16 data 
paths; one data path is laid out for each 
rule. All 16 rules on the chip are executed 
in parallel. The chip requires 64 clock 
cycles to produce an output. This trans- 
lates to an execution speed of approxi- 
mately 250,000 fuzzy logical inferences per 
second (FLIPS) at 16 megahertz clock. A 
fuzzy inference accelerator, which is a 
coprocessor board for a designated com- 
puter, is currently being designed. This 
board accommodates the new chips. 

In the current implementation, the con- 
trol variables are assumed to range over a 
finite set having no more than 31 elements. 
The membership function is quantized at 
16 levels, with 15 representing full mem- 
bership. Once the Togai/Watanabe chip 
becomes available commercially in 1988 or 
1989, it should find many uses in both 
fuzzy-logic-based intelligent controllers 
and expert systems. 

Yamakawa’s fuzzy computer, whose 
hardware was built by OMRON Tateise 
Electronics Corporation, is capable of per- 
forming fuzzy inference at  the very high 
speed of 10 megaFLIPS. Yamakawa’s 

computer employs a parallel architecture. 
Basically, it has a fuzzy memory, a set of 
inference engines, a MAX block, and a 
defuzzifier. The computer is designed to 
process linguistic inputs, for example, 
“more or less small” and “very large,” 
which are represented by analog voltages 
on data buses. A binary RAM, an array of 
registers and a membership function 
generator form the computer’s fuzzy 
memory. 

The linguistic inputs are fed to inference 
engines in parallel, with each rule yielding 
an output. The outputs are aggregated in 
the MAX block, yielding an overall fuzzy 
output that appears in the output data bus 
as a set of distributed analog voltages. In 
intelligent fuzzy control and other appli- 
cations requiring nonfuzzy commands, the 
fuzzy output is fed to a defuzzifier for 
transformation into crisp output. 

Yamakawa’s fuzzy computer may be an 
important step toward a sixth-generation 
computer capable of processing common 
sense knowledge. This capability is a 
prerequisite to solving many AI problems 
- for example, handwritten text recogni- 
tion, speech recognition, machine transla- 
t ion,  summarization, and  image 
understanding - that do not lend them- 
selves to cost-effective solution within the 
bounds of conventional technology. 0 
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