S08S

@(ﬁb’mpmdﬂfmr

Lrograms

Courtesy : www.8085projects.info

Kachit Agrawal
O/ CFH-S2
Katol Snstitute of ‘Cechnology &<

Lesearch Cenler

PROGRAMS FOR 8085 MICROPROCESSOR

PROGRAMS FOR LEARNERS

1. Store 8-bit data in memory

2. Exchange the contents of memory locations
3. Add two 8-bit numbers

4, Subtract two 8-bit numbers

5. Add two 16-bit numbers

6. Add contents of two memory locations

7. Subtract two 16-bit nhumbers.

8. Finding one's complement of a number

9. Finding Two's complement of a number

10. Pack the unpacked BCD numbers
11. Unpack a BCD number

12. Execution format of instructions

13. Right shift bit of data

14. Left Shifting of a 16-bit data

15. Alter the contents of flag register in 8085

PROGRAMS FOR BEGINNERS

16. Calculate the sum of series of humbers

17. Multiply two 8-bit numbers
18. Divide a 16 bit number by a 8-bit number

19. Find the negative numbers in a block of data.
20. Find the largest of given numbers

21. Count number of one's in a nhumber

22. Arrange in ascending order

23. Calculate the sum of series of even humbers
24, Calculate the sum of series of odd humbers
25. Find the square of given humber

26. Search a byte in a given humber

27. Add two decimal numbers of 6 digit each

28. Add each element of array with the elements of another array
29. Separate even numbers from given numbers

30. Transfer contents to overlapping memory blocks
PROGRAMS FOR TRAINEES

31. Add parity bit to 7-bit ASCII characters

32. Find the number of negative, zero and positive numbers
33. Inserting string in a given array of characters

34. Deleting string in a given array of characters

35. Multiply two eight bit numbers with shift and add method

36. Divide 16-bit number with 8-bit number using shifting technique
37. Sub routine to perform the task of DAA

38. Program to test RAM

39. Program to generate fibonacci number

40. Generate a delay of 0.4 seconds

41. Arrange in DESCENDING Order

42, Data transfer from one memory block to other memory block.
43, Find the factorial of a number

44, Find the Square Root of a given number
45, Split a HEX data into two nibbles and store it

46. Add two 4-digit BCD numbers

47. Subtraction of two BCD numbers

48. Multiply two 2-digit BCD numbers

PROGRAMS FOR EXPERTS

a.PROGRAMS TO WORK WITH COUNTERS

49, Generate and display binary up counter

50. Generate and display BCD up counter with frequenciHz
51. Generate and display BCD down counter

52. Generate and display the contents of decimal counte
53. Debug the delay routine

b.PROGRAMS IN CODE CONVERSION

54, 2-Digit BCD to binary conversion.

55. Binary to BCD conversion

56. Find the 7-segment codes for given numbers

57. Find the ASCII character

58. ASCII to Decimal Conversion

59. HEX to Decimal conversion

60. HEX to binary conversion

C.PROGRAMS IN INTERFACING & APPLICTIONS

61.
62.
63.
64.
65.

66.
67.
68.
69.
70.
71.
72.

73.
74.
75.
76.
77.
78.
79.

Interfacing with IC 8251(Serial Communcation/USART)
OQutput byte from SOD pin

Generate square wave from SOD pin

Receive ASCII character through SID pin
Transmit message using 8251

Receive message using 8251

Interfacing with 1IC 8255(Programmable Periperal Interface - PPI)
Initialize 8255
Blink port C bit 0 of 8255
Flashing of LEDs
Traffic Light Control
Stepper Motor Control
Keyboard interface(64-key-matrix-keyboard)
Seven Segment Display Interface (Eight Digits)

. Interfacing with 1C 8279 (Keyboard and Display Controller)

8 x 8 Keyboard Interface(Without Interrupt signal)

8 x 8 Keyboard Interface(With Interrupt signal)

8 x 4 Matrix Keyboard Interface

Interfacing of eight 7-segment diqits

Interfacing of 4x4 matrix keyboard and 4 digit 7 sgment display
Roll a message - 'HELL0123'

Roll your NAME

1 Statement: Store the data byte 32H into memory location 4000H.

Program 1:

MVI A, 52H
STA 4000H
HLT

Program 2:

LXI H
MVI M
(4000H)
HLT

: Store 32H in the accumulator

: Copy accumulator contents at address 4000H
: Terminate program execution

: Load HL with 4000H
: Store 32H in memory location pointed by HL register pair

: Terminate program execution

The result of both programs will be the same. In program 1 direct addressing
instruction is used, whereas in program 2 indirect addressing instruction is used.

2 Statement: Exchange the contents of memory locations 2000H and 4000H

Program 1:

LDA 2000H
MOV B, A
LDA 4000H
STA 2000H
MOV A, B
STA 4000H

Program 2:

LXI H 2000H
location 2000H.

LXI D 4000H
location 4000H.

MOV B M
register.

LDAX D

MOV M, A
2000H.

MOV A, B

STAX D
4000H.

HLT

: Get the contents of memory location 2000H into accumulator

: Save the contents into B register

: Get the contents of memory location 4000Hinto accumulator
! Store the contents of accumulator at address 2000H

: Get the saved contents back into A register

! Store the contents of accumulator at address 4000H

: Initialize HL register pair as a pointer to memory
: Initialize DE register pair as a pointer to memory
: Get the contents of memory location 2000H into B

: Get the contents of memory location 4000H into A register.
: Store the contents of A register into memory location

: Copy the contents of B register into accumulator.
: Store the contents of A register into memory location

: Terminate program execution.

In Program 1, direct addressing instructions are used, whereas in Program 2,
indirect addressing instructions are used.

3 Statement: Add the contents of memory locations 4000H and 4001H and place
the result in memory location 4002H.
Sample problem

(4000H) = 14H
(4001H) = 89H
Result = 14H + 89H = 9DH

Source program

LXI H 4000H : HL points 4000H

MOV A M : Get first operand

INX H : HL points 4001H

ADD M : Add second operand

INX H : HL points 4002H

MOV M, A : Store result at 4002H

HLT : Terminate program execution
FLOWCHART

Get the second number

¢

Badd b niumiDers

4 Statement: Subtract the contents of memory location 4001H from the memory
location 2000H and place the result in memory location 4002H.
Program - 4: Subtract two 8-bit numbers

Sample problem:

(4000H) =51H
(4001H) = 19H
Result = 51H - 19H = 38H

Source program:

LXI H, 4000H : HL points 4000H

MOV A M : Get first operand

INX H : HL points 4001H

SUB M : Subtract second operand

INX H : HL points 4002H

MOV M, A : Store result at 4002H.

HLT : Terminate program execution
FLOWCHART

1 -:[51-'1 }
'

Get the first number

Geatthe second number

1

Subtract second number from first number

Store the resuit

T
—

End >

e

5 Statement: Add the 16-bit number in memory locations 4000H and 4001H to the
16-bit number in memory locations 4002H and 4003H. The most significant eight
bits of the two numbers to be added are in memory locations 4001H and 4003H.
Store the result in memory locations 4004H and 4005H with the most significant

byte in memory location 4005H

Program - 5.a: Add two 16-bit numbers - Source Program 1
Sample problem:

(4000H) = 15H
(4001H) = 1CH
(4002H) = B7H
(4003H) = 5AH
Result = 1C15 + 5AB7H = 76CCH
(4004H) = CCH
(4005H) = 76H

Source Program 1:

LHLD 4000H : Get first I6-bit number in HL

XCHG : Save first 16-bit number in DE

LHLD 4002H : Get second I6-bit number in HL

MOV A, E : Get lower byte of the first number

ADD L : Add lower byte of the second number

MOVL, A : Store result in L register

MOV A, D : Get higher byte of the first number

ADCH : Add higher byte of the second number with CARRY
MOV H, A : Store result in H register

SHLD 4004H : Store I6-bit result in memory locations 4004H and 4005H.
HLT : Terminate program execution

Program - 5b: Add two 16-bit numbers - Source Program 2

Source program 2:

LHLD 4000H : Get first I6-bit number

XCHG : Save first I6-bit number in DE

LHLD 4002H : Get second I6-bit number in HL

DAD D : Add DE and HL

SHLD 4004H : Store I6-bit result in memory locations 4004H and 4005H.
HLT : Terminate program execution

NOTE: In program 1, eight bit addition instructions are used (ADD and ADC) and
addition is performed in two steps. First lower byte addition using ADD instruction
and then higher byte addition using ADC instruction.In program 2, 16-bit addition
instruction (DAD) is used.

FLOWCHART

1 Slar! j

et the lower by

te-of first number

Get the lower byte of second number

Add two b

oWer Dytes

Get the higher b

yte of first numbar

I

(et the higher byle of second number

Add two highe

r bytes and camry

from the previous addition

Store the result

End

6 Statement: Add the contents of memory locations 40001H and 4001H and place
the result in the memory locations 4002Hand 4003H.
Sample problem:

(4000H) = 7FH
(400I/H) = 89H

Result = 7FH + 89H = IO8H
(4002H) = 08H
(4003H) = OIH

Source program:

LXI H, 4000H :HL Points 4000H
MOV A M :Get first operand
INXH :HL Points 4001H
ADD M :Add second operand
INX H :HL Points 4002H
MOV M, A :Store the lower byte of result at 4002H
MVIA, 00 :Initialize higher byte result with OOH
ADCA :Add carry in the high byte result
INX H :HL Points 4003H
MOV M, A :Store the higher byte of result at 4003H
HLT :Terminate program execution
FLOWCHART
<D
|
Get the first number

7 Statement: Subtract the 16-bit number in memory locations 4002H and 4003H
from the 16-bit number in memory locations 4000H and 4001H. The most
significant eight bits of the two numbers are in memory locations 4001H and
4003H. Store the result in memory locations 4004H and 4005H with the most

Sample problem

(4000H) = 19H
(400IH) = 6AH

significant byte in memory location 4005H.

(4004H) = I5H (4003H) = 5CH
Result = 6A19H - 5C15H = OEO4H

(4004H) = 04H
(4005H) = OEH

Source program:

LHLD 4000H
XCHG

LHLD 4002H
MOV A, E
SUB L

MOV L, A
MOV A, D
SBBH

MOV H, A
SHLD 4004H
HLT

: Get first 16-bit number in HL
: Save first 16-bit number in DE
: Get second 16-bit number in HL
: Get lower byte of the first number
: Subtract lower byte of the second number
: Store the result in L register
: Get higher byte of the first number
: Subtract higher byte of second number with borrow
: Store 16-bit result in memory locations 4004H and 4005H.
: Store 16-bit result in memory locations 4004H and 4005H.

: Terminate program execution.

FLOWCHART

8 Statement: Find the I's complement of the number stored at memory location
4400H and store the complemented number at memory location 4300H.
Sample problem:

(4400H) = 55H
Result = (4300B) = AAB
Source program:

LDA 4400B : Get the number
CMA : Complement number
STA 4300H : Store the result
HLT : Terminate program execution
FLOWCHART
' _.:\m.
i\. otart
q.m—-!-—
§

Get the number

Complement the
numoet

9 Statement: Find the 2's complement of the number stored at memory location
4200H and store the complemented number at memory location 4300H.
Sample problem:

(4200H) = 55H
Result = (4300H) = AAH + 1 = ABH

Source program:

LDA 4200H : Get the number

CMA : Complement the number

ADI, O1 H : Add one in the number

STA 4300H : Store the result

HLT : Terminate program execution
FLOWCHART

10 Statement: Pack the two unpacked BCD numbers stored in memory locations
4200H and 4201H and store result in memory location 4300H. Assume the least
significant digit is stored at 4200H.

Sample problem:
(4200H) = 04
(4201H) = 09
Result = (4300H) = 94

Source program

LDA 4201H ! Get the Most significant BCD digit
RLC

RLC

RLC

RLC : Adjust the position of the second digit (09 is changed to 90)
ANI FOH : Make least significant BCD digit zero
MOVC, A : store the partial result

LDA 4200H : Get the lower BCD digit

ADD C : Add lower BCD digit

STA 4300H : Store the result

HLT : Terminate program execution
NOTE:

BCD NO.: The numbers "0 to 9" are called BCD (Binary Coded Decimal)
numbers. A decimal number 29 can be converted into BCD number by splitting

FLOWCHART
l Start ’

Get the number for the
most significant BCD digit

¥
Rotate 4 times

to the left and make least

significant digit zero |
¥

Add the number for

lower significant BCD digit
into rotated number

3

Store the result

End

11 Statement: Two digit BCD number is stored in memory location 4200H. Unpack
the BCD number and store the two digits in memory locations 4300H and 4301H
such that memory location 4300H will have lower BCD digit.

Sample problem

(4200H) = 58

Result = (4300H) = 08 and
(4301H) = 05

Source program

LDA 4200H
ANI FOH
RRC

RRC

RRC

RRC

STA 4301H
LDA 4200H
ANI OFH
STA 4201H
HLT

: Get the packed BCD number
: Mask lower nibble

: Adjust higher BCD digit as a lower digit
: Store the partial result
! .Get the original BCD number

: Mask higher nibble
: Store the result

: Terminate program execution

12 Statement:Read the program given below and state the contents of all registers
after the execution of each instruction in sequence.
Main program:

4000H LXI SP, 27FFH
4003H LXI H, 2000H
4006H LXI B, 1020H
4009H CALL SUB
400CH HLT

Subroutine program:

4100H SUB: PUSH B
4101H PUSHH
4102H LXI B, 4080H
4105H LXI H, 4090H
4108H SHLD 2200H
4109H DAD B
410CH POP H
410DH POP B
410EH RET
- T trwotiomes Repgisters ondends In Hex M ernory Lo aticms
Ho. A B C 1] E(H L b FC (addresses are in HEX)
1 LXI SP I7FF | X X X | x x ZVFF| 4007
2 LXI H 000 X X X |20 0 27FF| 4006
3 LET&1020 X Lo || X X |HM 00 27FF| 4000
4 CALL SUB X 0| | X X |20 00 27F0)| 4100 (I7FE -- 40, 27FD L)
5 FUSHE X 0 || X X (X o0 I7FE| 4101 | (27Fe_ I8 27FB -I0)
[FUSH H XN Lo || X X | 00 27FY| 4102 (FTFA-- 20 2TFY —00)
7 LXI B 4080 X 40 |80 | X X (M 00 I7TFY| 4105
g L¥1 H4080 A =17 ¥ |40 S0 2YF3| 4108
o DAD B X 40 |80 | X X |81 W0 27F%| 4109
10 SHLDZzz00 | £ 40 [20| X o181 1 2VFI| 4100 (X300 --10, 201 - §1)
11 FOPH X 40 || X X |20 00 27TFE | 4100
12 FOF B X || X X |w o Z2FFD|410E
12 RET ¥ 10 |20 ¥ |2 00 Z2YFF (400C
14 HLT ¥ o110 |20 ¥ ¥ |20 00 ZYFF | 4000

13 Statement:Write a program to shift an eight bit data four bits right. Assume

that data is in register C.
Source program:

MOV A, C
RAR
RAR
RAR
RAR
MOV C A
HLT

Statement:Write a program to shift a 16 bit data, 1 bit right. Assume that data is

in BC register pair.
Source program:

MOV A, B
RAR
MOV B, A
MOV A, C
RAR
MoV, A
HLT

Geat the number in
accumdator from
C register

Rotate 4 times

right

l

Store rasult in
C register

=5

Get the number in accumulator
from register B

:

Rotate accumulator right
such that LSB of A register
will move in the carry

Store resultin B register

Get the number in accumulator

fram register C

L

Rotate accumulator right
such that carry
will move in the MSB of
A register

Store result in C ragister

14 Statement: Program to shift a 16-bit data 1 bit left. Assume data is in the HL
register pair.
Source program:

DAD H Adds HL data with HL data
Hi= 1025 = 0001 00060 0016 0101

HL = 0601 0000 G016 0161
+HL = 0001 G000 G016 6161

Resuft = 0010 0000 0100 IGIO

15 Statement: Write a set of instructions to alter the contents of flag register in
8085.

PUSH PSW : Save flags on stack

POP H ! Retrieve flags in 'L’
MOVA, L : Flags in accumulator

CMA : Complement accumulator
MOVL A : Accumulator in 'L’

PUSH H : Save on stack

POP PSW : Back to flag register

HLT :Terminate program execution

16 Statement: Calculate the sum of series of numbers. The length of the series is
in memory location 4200H and the series begins from memory location 4201H.

a. Consider the sum to be 8 bit humber. So, ignore carries. Store the sum at
memory location 4300H.

b. Consider the sum to be 16 bit number. Store the sum at memory locations
4300H and 4301H.

a. Sample problem

4200H = 04H

4201H = 10H

4202H = 45H

4203H = 33H

4204H = 22H

Result = 10 +41 + 30 + 12 = H
4300H = H

Source program:

LDA 4200H

MOVC, A : Initialize counter

SUB A :sum=0

LXI H, 420IH : Initialize pointer
BACK: ADD M : SUM = SUM + data
INX H : increment pointer

DCR C : Decrement counter

JNZ BACK : if counter O repeat

STA 4300H : Store sum

HLT : Terminate program execution

FLOWCHART

Sum=0
Pointer = 2201H
Count = (2200H)

T
!

| sum = sum + (Pointer) |

l

Pointer = Pointer +1
Count = Count -1

No

Yes

(2300H) = Sum ‘

4

b. Sample problem

4200H = 04H
420/H = 9AH
4202H = 52H
4203H = 89H
4204H = 3EH

Result = 9AH + 52H + 89H + 3EH = H

4300H = B3H Lower byte
4301H = OIH Higher byte

Source program:

LDA 4200H
MOV C, A
LXI H, 4201H
SUB A
MOV B, A
BACK: ADD M
JNC SKIP
INR B
SKIP: INX H
DCR C
JIJNZ BACK
STA 4300H
MOV A, B
STA 4301H
HLT

: Initialize counter

: Initialize pointer
:Sum low = 0

: Sum high =0

: Sum = sum + data

: Add carry to MSB of SUM
: Increment pointer
: Decrement counter
: Check if counter 0 repeat
: Store lower byte

: Store higher byte

:Terminate program execution

17 Statement: Multiply two 8-bit numbers stored in memory locations 2200H and
2201H by repetitive addition and store the result in memory locations 2300H and
2301H.

Sample problem:

(2200H) = O03H
(2201H) = B2H
Result = B2H + B2H + B2H = 216H
= 216H
(2300H) = 16H
(2301H) = 02H

Source program

LDA 2200H
MOVE, A
MVI D, 00 : Get the first number in DE register pair
LDA 2201H
MOVC, A : Initialize counter
LXIH, 0000H ! Result =0
BACK: DAD D : Result = result + first number
DCR (o) : Decrement count
INZ BACK : If count O repeat
SHLD 2300H : Store result
HLT : Terminate program execution
FLOWCHART

Get the first number

Initialize second
number as a counter

Result=0

1 Result = Result + First numberl
|

Decrement counter

|

No

18 Statement:Divide 16 bit number stored in memory locations 2200H and 2201H
by the 8 bit number stored at memory location 2202H. Store the quotient in
memory locations 2300H and 2301H and remainder in memory locations 2302H
and 2303H.
Sample problem

(2200H) = 60H

(2201H) = AOH

(2202H) = I2H

Result = AO60H/12H = 8E8H Quotient and 10H remainder

(2300H) = ES8H

(2301H) = O8H

(2302H= 10H

(2303H) OOH
Source program

LHLD 2200H : Get the dividend
LDA 2202H : Get the divisor
MOV C, A
LXI D, 0000H ! Quotient = 0
BACK: MOV A, L
SUB C : Subtract divisor
MOVL, A : Save partial result
JNC SKIP PifCY 1 jump
DCR H : Subtract borrow of previous subtraction
SKIP: INX D : Increment quotient
MOV A H
CPI, 00 : Check if dividend < divisor
JNZ BACK : if no repeat
MOVA, L
CMP C
JNC BACK
SHLD 2302H : Store the remainder
XCHG
SHLD 2300H : Store the quotient

HLT : Terminate program execution

FLOWCHART

{ Start I'

Get the dividend

Gel the divisor

Quaotient = 0

Division = Dividend — divisor

Quotient = quotient + 1

Is
dividend <
divisor

Remainder = dividend

Store the quotient and remainder

End

19 Statement:Find the number of negative elements (most significant bit 1) in a
block of data. The length of the block is in memory location 2200H and the block
itself begins in memory location 2201H. Store the number of negative elements in
memory location 2300H
Sample problem

(2200H) = 04H

(2201H) = 56H

(2202H) = A9H

(2203H) = 73H

(2204H) = 82H
Result = 02 since 2202H and 2204H contain numbers with a MSB of 1.
Source program

LDA 2200H

MOVC, A : Initialize count

MVI B, 00 : Negative number = 0

LXI H, 2201H : Initialize pointer
BACK: MOV A, M : Get the number

ANI 80H : Check for MSB

JZ SKIP :IFMSB =1

INR B : Increment negative number count
SKIP: INX H : Increment pointer

DCR C : Decrement count

JNZ BACK : If count O repeat

MOV A, B

STA 2300H : Store the result

HLT : Terminate program execution

FLOWCHART

Start

L

Neg number = 0
Pointer = 2201H
Count = (2200H)

¢ Yes

| Neg number =Neg number+ 1

—

Pointer = Pointer + 1
Count = Count -1

Yes
l (2300H) = Neg number I

End

20 Statement:Find the largest number in a block of data. The length of the block is
in memory location 2200H and the block itself starts from memory location 2201H.
Store the maximum number in memory location 2300H. Assume that the numbers
in the block are all 8 bit unsigned binary numbers.
Sample problem
(2200H) = 04
(2201H) = 34H
(2202H) = A9H
(2203H) = 78H
(2204H) =56H
Result = (2202H) = A9H
Source program
LDA 2200H
MOVC, A : Initialize counter
XRA A : Maximum = Minimum possible value = 0
LXI H, 2201H : Initialize pointer
BACK: CMP M : Is number> maximum
JNC SKIP : Yes, replace maximum
MOV A M
SKIP: INX H
DCR C
JNZ BACK
STA 2300H : Store maximum number
HLT : Terminate program execution

FLOWCHART

Count = 2200H
Pointer = (2201H)
Max =0

Max = (Pointar)

|
Pointer = Pointer + 1
Count = Count =1

\m‘
L b
Yes

(2300H) = Max

21 Statement:Write a program to count number of I's in the contents of D register
and store the count in the B register.

Source program:

MVI B, 00H
MVI C, 08H
MOV A, D

BACK: RAR
JNC SKIP
INR B

SKIP: DCR C
JNZ BACK

HLT

¥ i |
i Sian i

I
|

bnifaniize oount = O
Imfliglise counies = B

Gart the conbents of

ACCRIMUIEIoT

P
-

Rotate conlans of

[
Smesegey §FEE 08D ST G HTRSEE
B | B ISR e o e

LS8 will go W Carry

N
iy = 1/)

S
Yk

!

Irrgraraznt SO

Diescriroviang l:ﬁ*..-"'-"'::j

22 Statement:Write a program to sort given 10 numbers from memory location
2200H in the ascending order.

Source program:

MVI B, 09

START

MVI C, 09H
BACK: MOV A, M

INXH

CMP M

JC SKIP

JZ SKIP

MOV D, M

MOV M, A

DCX H

MOV M, D

INXH
SKIP:DCR C

JNZ BACK

DCR B

JNZ START

HLT

: Initialize counter
: LXI H, 2200H: Initialize memory pointer
: Initialize counter 2
: Get the number
: Increment memory pointer

: Compare number with next number

: If less, don’'t interchange
: If equal, don't interchange

: Interchange two numbers
: Decrement counter 2
: If not zero, repeat

: Decrement counter 1

: Terminate program execution

FLOWCHART

Sart

Initinkza ooy 1= 3

Irstinbze resbory Doanior
Indiadize Sounler = FaH

er._,.m:'mm | |
“ |

InCresTHENE MGy padnlan

—

{Ponler = 1) >(Poindar]
¥

23 Statement:Calculate the sum of series of even numbers from the list of
numbers. The length of the list is in memory location 2200H and the series itself
begins from memory location 2201H. Assume the sum to be 8 bit number so you
can ignore carries and store the sum at memory location 2210H.

Sample problem:

2200H= 4H

2201H= 20H

2202H= I5H

2203H= I3H

2204H= 22H

Result 22I0H= 20 + 22 = 42H
= 42H

Source program:

LDA 2200H

MOV C, A : Initialize counter

MVI B, OOH :sum=0

LXI H, 2201H : Initialize pointer
BACK: MOV A, M : Get the number

ANI OIH : Mask Bit] to Bit7

JNZ SKIP : Don't add if number is ODD

MOV A, B : Get the sum

ADD M : SUM = SUM + data

MOV B, A : Store result in B register
SKIP: INX H : increment pointer

DCR (o) : Decrement counter

INZ BACK : if counter O repeat

STA 2210H : store sum

HLT : Terminate program execution

FLOWCHART

' Start ,

Sum =0
Pointer = 2201H
Count = (2200H)

Is
(Pointer) = even
number
7

Yas

Sum = Sum + (Pointer)

Pointer = Pointer +1
Count = Count = 1

(2300H) = Sum

G

24 Statement:Calculate the sum of series of odd numbers from the list of numbers.
The length of the list is in memory location 2200H and the series itself begins from
memory location 2201H. Assume the sum to be 16-bit. Store the sum at memory
locations 2300H and 2301H.

Sample problem:

2200H = 4H
2201H= 9AH
2202H= 52H
2203H= 89H
2204H= 3FH
Result = 89H + 3FH = C8H
2300H= H Lower byte
2301H = H Higher byte

Source program

LDA 2200H
MOV C A : Initialize counter
LXI H, 2201H : Initialize pointer
MVI E, 00 : Sum low =0
MOV D, E : Sum high =0
BACK: MOV A, M : Get the number
ANI OIH : Mask Bit 1 to Bit7
JZ SKIP : Don't add if number is even
MOV A, E : Get the lower byte of sum
ADD M : Sum = sum + data
MOVE,A : Store result in E register
JNC SKIP
INR D : Add carry to MSB of SUM

SKIP: INX H : Increment pointer

FLOWCHART

Sum=0
Painter = 2201H
Count = (2200H)

s
{Paointer) = odd
number
7

Yes

Sum = Sum + (Pointer)

Painter = Pointer +1
Count = Count = 1

: Is
Mo carry =0

?.

Yes

{2300H) = Sum

End

25 Statement:Find the square of the given numbers from memory location 6100H
and store the result from memory location 7000H.
Source Program:

LXI H, 6200H : Initialize lookup table pointer

LXI D, 6100H : Initialize source memory pointer

LXI B, 7000H : Initialize destination memory pointer
BACK: LDAX D : Get the number

MOVL, A : A point to the square

MOV A M : Get the square

STAX B : Store the result at destination memory location

INX D : Increment source memory pointer

INX B : Increment destination memory pointer

MOV A, C

CPI O5H : Check for last number

JNZ BACK : If not repeat

HLT : Terminate program execution

i
Initialize lookup tabbe poinier

Lookup Table

igl Square
Initialize source memaory poiner Dig t_ q
Inialize destinalion mamo ines
itzalize ry po o o
|
1 1H
Gof tha number -
F 4H
Fined 1he squang | G
4 i 10H
Store Squans in the r T =
destination mamany location 5 J' 19H
—-
& J 24K
InecraETennl SOWNGcE menmory Pl.'l!ﬂ:ﬂ'-' - | 3-1"'\-
InerEment destinalion mamary poanker _'_ |
8 | 40H
| 9 | 51H
1. s
Mo Il rusnybear

26 Statement: Search the given byte in the list of 50 numbers stored in the
consecutive memory locations and store the address of memory location in the
memory locations 2200H and 2201H. Assume byte is in the C register and starting
address of the list is 2000H. If byte is not found store 00 at 2200H and 2201H.
Source program:

LXIH, 2000H : Initialize memory pointer 52H
MVI B, 52H : Initialize counter
BACK: MOV A M : Get the number
CMP C : Compare with the given byte
JZ LAST : Go last if match occurs
INXH : Increment memory pointer
DCR B : Decrement counter
JNZ B : I f not zero, repeat
LXI H, 0OO0O0H
SHLD 2200H
JMP END : Store 00 at 2200H and 2201H
LAST: SHLD 2200H : Store memory address
END: HLT : Stop
Fa Y
v San S

Initialize memony poinber 'r
Initialize counter = 32H

& s
tan:?\k‘ﬂés

Incremant memory pointer
E Decramant counter

S'lI:IrE MEMIQrY &0 ﬂI&Sﬂ

I — i
Store 00 a5 a resul‘ﬂ
———

—

:f: Stop)

27 Statement: Two decimal numbers six digits each, are stored in BCD package
form. Each number occupies a sequence of byte in the memory. The starting
address of first number is 6000H Write an assembly language program that adds
these two numbers and stores the sum in the same format starting from memory
location 6200H.

Source Program:

LXI H, 6000H : Initialize pointer I to first number
LXI D, 6/100H : Initialize pointer2 to second number
LXI B, 6200H : Initialize pointer3 to result
STC
CMC :Carry =0
BACK: LDAX D : Get the digit
ADD M : Add two digits
DAA : Adjust for decimal
STAX.B : Store the result
INX H : Increment pointer 1
INX D : Increment pointer2
INX B : Increment result pointer
MOVA, L
CPI O6H : Check for last digit
JNZ BACK : If not last digit repeat

HLT : Terminate program execution

FLOWCHART

l Start }

Initiafize memary poaler
1 10 paint the first number

Inifialize memory pointer
2 1o point the second number
Initialize result pointer

Set carry =

Add two number pointed by
b memory poinbers
with carry

Adjust result for decimal valuas

Store the result at memory
location pointed by
resil poinlar

|

Incrament mamory pointer 1

| Incrament memary pointer 2
| Increment result pointar

Check
tor last

gl

Mo

28 Statement: Add 2 arrays having ten 8-bit numbers each and generate a third
array of result. It is necessary to add the first element of array 1 with the first
element of array-2 and so on. The starting addresses of array |, array2 and array3
are 2200H, 2300H and 2400H, respectively.

Source Program:

LXI H, 2200H : Initialize memory pointer 1
LXI B, 2300H : Initialize memory pointer 2
LXI D, 2400H : Initialize result pointer

BACK: LDAX B : Get the number from array 2
ADD M : Add it with number in array 1
STAX D : Store the addition in array 3
INX H : Increment pointer 1
INX B : Increment pointer2
INX D : Increment result pointer
MOVA, L
CPI OAH : Check pointer 1 for last number
JIJNZ BACK : If not, repeat
HLT : Stop

Iniliakizé memory poinler 1
for armay 1

1
Initislize memory pointar 2
tor array 2

nibalize mamaory poinber X
far mray 3

29 Statement: Write an assembly language program to separate even numbers
from the given list of 50 numbers and store them in the another list starting from
2300H. Assume starting address of 50 number list is 2200H.

Source Program:

LXI H, 2200H : Initialize memory pointer |
LXI D, 2300H : Initialize memory pointer2
MVI C, 32H : Initialize counter
BACK:MOV A, M : Get the number
ANI OIH : Check for even number
JNZ SKIP : If ODD, don't store
MOVA M : Get the number
STAX D : Store the number in result list
INX D : Increment pointer 2
SKIP: INX H : Increment pointer |
DCR C : Decrement counter
JNZ BACK : If not zero, repeat
HLT : Stop

|
1]

Indialrg ey Pl 1 1
Pkl il of 50 rpmtean

I

MG oy posnier 2 0
POt Il it Bl

| Indiptip s Comthar = 3 EEd |

| Fes

I|I-'.-..|!.-' 21 '._u-l:-u.-'l

1 i

II"-'\‘u!-r.' 2 = posnder T £ 'I

i J.._._.

I.I-'._'t.:mr' g 1 + ||

T
|
1

LI:-:-u'-:-:r Coiprvbi — 1 |

| o

Ene

30 Statement: Write assembly language program with proper comments for the
following:

A block of data consisting of 256 bytes is stored in memory starting at 3000H.
This block is to be shifted (relocated) in memory from 3050H onwards. Do not
shift the block or part of the block anywhere else in the memory.

Source Program:

Two blocks (3000 - 30FF and 3050 - 314F) are overlapping. Therefore it is
necessary to transfer last byte first and first byte last.

MVIC, FFH : Initialize counter

LX I H, 30FFH : Initialize source memory pointer 314FH

LXI D, 314FH : Initialize destination memory pointer
BACK: MOV A, M : Get byte from source memory block

STAX D : Store byte in the destination memory block

DCX H : Decrement source memory pointer

DCX : Decrement destination memory pointer

DCR C : Decrement counter

JNZ BACK : If counter O repeat

HLT : Stop execution

31 Statement: Add even parity to a string of 7-bit ASCII characters. The length of
the string is in memory location 2040H and the string itself begins in memory
location 2041H. Place even parity in the most significant bit of each character.
Source Program:

LXI H, 2040H

MOV C M : Counter for character
REPEAT:INX H : Memory pointer to character
MOV A M : Character in accumulator
ORA A : ORing with itself to check parity.
JPO PAREVEN : If odd parity place
ORI 80H even parity in D7 (80).
PAREVEN:MOV M, A : Store converted even parity character.
DCR C : Decrement counter.
JNZ REPEAT : If not zero go for next character.

HLT : Terminate program execution

32 Statement: A list of 50 numbers is stored in memory, starting at 6000H. Find
number of negative, zero and positive numbers from this list and store these
results in memory locations 7000H, 7001H, and 7002H respectively.

Source Program:

LXI H, 6000H
MVI C, 00H
MVI B, 00H
MVI E, 00H

BEGIN:MOV A, M
CPI 00H
JZ ZERONUM
ANI 80H
JNZ NEGNUM
INR D
JMP LAST

ZERONUM:INR E
JMP LAST

NEGNUM:INR B

LAST:INX H
INRC
MOV A, C
CPI 32H
JNZ BEGIN
LXI H, 7000
MOV M, B
INXH
MOV M, E
INXH
MOV M, D
HLT

: Initialize memory pointer
: Initialize number counter
: Initialize negative number counter
: Initialize zero number counter
: Get the number
: If number = 0
: Goto zeronum
: If MSB of number = 1li.e. if
number is negative goto NEGNUM
: otherwise increment positive number counter

: Increment zero number counter
: Increment negative number counter
: Increment memory pointer

: Increment number counter

: If number counter = 5010 then

: Store otherwise check next number
: Initialize memory pointer.
: Store negative number.
: Store zero number.

: Store positive number.
: Terminate execution

Irelialne mamaony poEnier indlislie
coumbier Bo counl iolal numben

Initsplies oounbiers for megabnee,
EodiinsE il ZonD nuambors

Increment zerm
number counler M3

33 Statement:Write an 8085 assembly language program to insert a string of four
characters from the tenth location in the given array of 50 characters.
Solution:

Step 1: Move bytes from location 10 till the end of array by four bytes
downwards.

Step 2: Insert four bytes at locations 10, 11, 12 and 13.

Source Program:

LXIH, 2I31H : Initialize pointer at the last location of array.

LXI D, 2I35H : Initialize another pointer to point the last location of
array after insertion.
AGAIN: MOV A M : Get the character

STAX D : Store at the new location

DCX D : Decrement destination pointer

DCX H : Decrement source pointer

MOVA, L : [check whether desired

CPI O5H bytes are shifted or not]

JNZ AGAIN : if not repeat the process

INX H : adjust the memory pointer

LXI D, 2200H : Initialize the memory pointer to point the string to be
inserted
REPE: LDAX D : Get the character

MOV M, A : Store it in the array

INX D : Increment source pointer

INX H : Increment destination pointer

MOV A, E : [Check whether the 4 bytes

CPI 04 are inserted]

JNZ REPE : if not repeat the process

HLT : stop

34 Statement:Write an 8085 assembly language program to delete a string of 4
characters from the tenth location in the given array of 50 characters.

Solution: Shift bytes from location 14 till the end of array upwards by 4 characters
i.e. from location 10 onwards.

Source Program:

LXI H, 2I0DH :Initialize source memory pointer at the 14thlocation of the
array.

LXI D, 2I09H : Initialize destn memory pointer at the 10th location of the
array.

MOVA M : Get the character

STAX D : Store character at new location

INX D : Increment destination pointer

INX H : Increment source pointer

MOVA, L : [check whether desired

CPI 32H bytes are shifted or not]

JNZ REPE ! if not repeat the process

HLT : stop

35 Statement:Multiply the 8-bit unsigned number in memory location 2200H by
the 8-bit unsigned number in memory location 2201H. Store the 8 least significant
bits of the result in memory location 2300H and the 8 most significant bits in
memory location 2301H.

Sample problem:

(2200) = 1100 (OCH)

(2201) = 0101 (O5H)
Multiplicand = 1100 (1210)
Multiplier = 0101 (510)
Result =12x5 = (6010)

Source program

LXIH, 2200 : Initialize the memory pointer

MOV E M : Get multiplicand

MVI D, OOH : Extend to 16-bits

INX H : Increment memory pointer

MOV A M : Get multiplier

LXI H, 0000 : Product = 0

MVI B, O8H : Initialize counter with count 8
MULT: DAD H : Product = product x 2

RAL

JNC SKIP : Is carry from multiplier 1 ?

DAD D : Yes, Product =Product + Multiplicand
SKIP: DCR B : Is counter = zero

JNZ MULT : no, repeat

SHLD 2300H : Store the result

HLT : End of program

Start

Product = 0
Count = 8
Multsplicand = (2200H)
Multiplier = {(Z201H)
|

!

Product = 2 X produc
{ Shift left 1 bt }
Multiplier = 2 X multipher |
' (Shift left 1 bit)

1%

carry Irom

Rullipher 1
-

(2300H) and (2301H) = product

36 Statement:Divide the 16-bit unsigned number in memory locations 2200H and
2201H (most significant bits in 2201H) by the B-bit unsigned number in memory
location 2300H store the quotient in memory location 2400H and remainder in
2401H.

Assumption: The most significant bits of both the divisor and dividend are zero.

Source program

MVIE, 00 : Quotient = 0
LHLD 2200H : Get dividend
LDA 2300 : Get divisor
MOV B, A : Store divisor
MVI C, 08 :Count =8
NEXT: DAD H : Dividend = Dividend x 2
MOV A, E
RLC
MOVE, A : Quotient = Quotient x 2
MOV A H
SUB B : Is most significant byte of Dividend > divisor
JC SKIP : No, go to Next step
MOVH, A : Yes, subtract divisor
INRE : and Quotient = Quotient + 1
SKIP:DCR C : Count = Count - 1
INZ NEXT : Is count =0 repeat
MOV A, E
STA 2401H : Store Quotient
Mov A, H
STA 2410H : Store remainder

HLT : End of program.

G

Dividand [F200H) and (2201H]
Dhvisor [2300H)
Coun] = B
Clucsias] & 0

Dividend = Dividend X 2
Cuchen] & Cualbnt X 2

B MEES of dividarsd = 8 MSES of
deddond = divisor
Chaotissny| & Chaatspni + 1

(A0} = Chighiang
(2401 H} = Remaindar

End

37 Statement:Assume the DAA instruction is not present. Write a sub routine
which will perform the same task as DAA.

Sample Problem:

Execution of DAA instruction:
1. If the value of the low order four bits (03-00) in the accumulator is greater than
9 or if auxiliary carry flag is set, the instruction adds 6 '(06) to the low-order four

bits.

2. If the value of the high-order four bits (07-04) in the accumulator is greater
than 9 or if carry flag is set, the instruction adds 6(06) to the high-order four bits.

Source Program:

LXI SP, 27FFH

MOVE, A

ANI OFH

CPIOAH

JC SKIP

MOV A, E

ADI O6H

JMP SECOND
SKIP: PUSH PSW

POP B
register contents in

MOV A, C

ANI 10H

JZ SECOND

MOV A, E

ADI 06
SECOND: MOV E, A

ANI FOH

RRC

RRC

RRC

RRC

CPI OAH

JC SKIPI

MOV A, E

ADI 60 H

JMP LAST
SKIP1: JNC LAST

MOV A, E

ADI 60 H
LAST: HLT

: Initialize stack pointer

: Store the contents of accumulator
: Mask upper nibble

: Check if number is greater than 9

: if no go to skip

: Get the number
: Add 6 in the number
: Go for second check
: Store accumulator and flag contents in stack
: Get the contents of accumulator in B register and flag
C register
: Get flag register contents in accumulator
: Check for bit 4
: if zero, go for second check
: Get the number

: Add 6 in the number

: Store the contents of accumulator
: Mask lower nibble

: Rotate number 4 bit right
: Check if number is greater than 9
:if no go to skip 1

: Get the number

: Add 60 H in the number

: Go to last

: if carry flag = 0 go to last
: Get the number
: Add 60 H in the number

Note: To check auxiliary carry flag it is necessary to get the flag register contents
in one of the registers and then we can check the auxiliary carry flag by checking
bit 4 of that register. To get the flag register contents in any general purpose
register we require stack operation and therefore stack pointer is initialized at the
beginning of the source program.

|'| Start I'

Mask upper nibble

number > 9% No

Add G in thie number

et the number

Mask lower nibble

Rotate number right 4 bits

Add 60H in the number

GO

38 Statement:To test RAM by writing '1' and reading it back and later writing '0’
(zero) and reading it back. RAM addresses to be checked are 40FFH to 40FFH. In
case of any error, it is indicated by writing 01H at port 10H.

Source Program:

LXI H, 4000H : Initialize memory pointer
BACK: MVI M, FFH : Writing '1' into RAM

MOV A M : Reading data from RAM

CPI FFH : Check for ERROR

JNZ ERROR : If yes go to ERROR

INX H : Increment memory pointer

MOV A H

CPI SOH : Check for last check

JNZ BACK : If not last, repeat

LXI H, 4000H : Initialize memory pointer
BACKI: MVI M, OOH : Writing '0' into RAM

MOV A M : Reading data from RAM

CPI OOH : Check for ERROR

INX H : Increment memory pointer

MOV A H

CPI SOH : Check for last check

JNZ BACKI : If not last, repeat

HLT : Stop Execution

39 Statement:Write an assembly language program to generate fibonacci number.

Source Program:

MVI D, COUNT : Initialize counter
MVI B, 00 : Initialize variable to store previous number
MVIC, 01 : Initialize variable to store current number
MOV A, B :[Add two numbers]

BACK: ADD C :[Add two numbers]
MOV B, C : Current number is now previous number
MOVC, A : Save result as a new current number
DCR D : Decrement count
JNZ BACK : if count 0 go to BACK
HLT : Stop.

40 Statement:Write a program to generate a delay of 0.4 sec if the crystal
frequency is 5 MHz.

Calculation: In 8085, the operating frequency is half of the crystal frequency,
ie.Operating frequency =5/2=2.5MHz

Time for one T -state =
Number of T-states required =

=1x106
Source Program:
LXI B, count : 16 - bit count
BACK: DCX B : Decrement count
MOV A, C
ORA B : Logically OR Band C

JNZ BACK : If result is not zero repeat

41 Statement: Arrange an array of 8 bit unsigned no in descending order

Source Program:

START:MVI B, 00 ; Flag =0
LXI H, 4150 ; Count = length of array
MOV C M
DCR C ; No. of pair = count -1
INX H ; Point to start of array
LOOP:MOV A, M ; Get kth element
INX H
CMP M ; Compare to (K+1) th element
JNC LOOP 1 ; No interchange if kth >= (k+1) th
MOVD, M ; Interchange if out of order
MOV M, A ;
DCR H
MOV M, D
INX H
MVI B, O1H ; Flag=1
LOOP 1:DCR C ; count down
JNZ LOOP ;
DCR B ;isflag = 1?
JZ START ; do another sort, if yes
HLT ; If flag = 0, step execution

42 Statement: Transfer ten bytes of data from one memory to another memory
block. Source memory block starts from memory location 2200H where as
destination memory block starts from memory location 2300H.

Source Program:

LXI H, 4150 : Initialize memory pointer
MVI B, 08 : count for 8-bit
MVI A, 54
LOOP : RRC
JC LOOP1
MVI M, 00 : store zero it no carry
JMP COMMON
LOOP2: MVI M, 01 : store one if there is a carry
COMMON: INX H
DCR B : check for carry
JNZ LOOP

HLT : Terminate the program

43 Statement: Program to calculate the factorial of a number between 0 to 8
Source program

LXI SP, 27FFH ; Initialize stack pointer

LDA 2200H ; Get the number
CPI O2H ; Check if number is greater than 1
JC LAST
MVI D, OOH ; Load number as a result
MOVE, A
DCR A
MOV C,A ; Load counter one less than number
CALL FACTO ; Call subroutine FACTO
XCHG ; Get the result in HL
SHLD 2201H ; Store result in the memory
JMP END

LAST: LXI H, 000IH ; Store result = 01

END: SHLD 2201H
HLT

Subroutine Program:

FACTO:LXI H, 0000H

MOV B, C ; Load counter
BACK: DAD D
DCR B
JNZ BACK ; Multiply by successive addition
XCHG ; Store result in DE
DCR C ; Decrement counter
CNZ FACTO ; Call subroutine FACTO

RET ; Return to main program

! Hesull = Result
J"A'ﬁ.
P r
= o il
numbe < 2 » | Mo=t
-l"':-\. " i

i ,.f’
é e
CALL fecto 'k
‘_J P
II e Faapilr
- - b FEET 8 ELSEALL ‘-

44 Statement:Write a program to find the Square Root of an 8 bit binary number.
The binary number is stored in memory location 4200H and store the square root
in 4201H.

Source Program:

reg

REP:

reg

LDA 4200H
MOV B,A
MVI C,02H
CALL DIV

MOV E,D
MOV A,B
MoV C,D
CALL DIV

MOV A, D
ADD E

MVI C, 02H
CALL DIV

reg.This is XNEW

MOV A, E
CMP D

JNZ REP
STA 4201H
HLT

Subroutine:

DIV:

MVI D, OOH

NEXT:SUB C

INR D
CMP C
JIJNC NEXT
RET

: Get the given data(Y) in A register
: Save the data in B register
: Call the divisor(02H) in C register
: Call division subroutine to get initial value(X) in D-

: Save the initial value in E-reg
: Get the dividend(Y) in A-reg
: Get the divisor(X) in C-reg
: Call division subroutine to get initial value(Y/X) in D-

: Move Y/X in A-reg
: Get the((Y/X) + X) in A-reg
: Get the divisor(02H) in C-reg
: Call division subroutine to get ((Y/X) + X)/2 in D-

! Get Xin A-reg
: Compare X and XNEW

: If XNEW is not equal to X, then repeat

: Save the square root in memory
: Terminate program execution

: Clear D-reg for Quotient
: Subtact the divisor from dividend
: Increment the quotient
: Repeat subtraction until the
: divisor is less than dividend
: Return to main program

Note: The square root can be taken y an iterative technique. First, an initial value
is assumed. Here, the initial value of square root is taken as half the value of given
number. Te new value of square root is computed by using an expression XNEW =
(X + Y/X)/2 where, X is the initial value of square root and Y is the given number.
Then, XNEW is compared wit initial value. If they are not equal then the above
process is repeated until X is equal to XNEW after taking XNEW as initial value.
(i.e., X —XNEW)

i Flowchart subroutine

Lewd prew duls T Som pamarg
Ao previm Beg

umm-%wi:-u-.: | {:‘._ Start _:)
* !

| Tl OV redwosaard 1o o alal
=i e v 3 Ee iy Clear Dureg
: :
| et ot v B
Subisect the condents of C-reg
l.'.‘-!li-lp--l-ll_'l":l- Fy— (dsviged) from the eorlend of A-mag
T ————
'I'-';l::i[ll-nt l
I Mier the intasts s ELsrtm A rmi [ncrement D-reg (Quotzent)

!
l Al B comdem o B o g

T ChPpT—— Compare the contend of
e et .|'|. ngmmmmmm:
g
*
Gl B ke of e ek

PARIFES RS SR erd iy
o

Tt D o Al dpde r = O re i
LRl]

@ Fefum to mean Frogram

Flowchart Main program

45 Statement:Write a simple program to Split a HEX data into two nibbles and
store it in memory
Source Program:

LXI H, 4200H : Set pointer data for array
MOV B.M : Get the data in B-reg

MOV A,B : Copy the data to A-reg

ANI OFH : Mask the upper nibble

INXH : Increment address as 4201
MOV M, A : Store the lower nibble in memory
MOV A,B : Get the data in A-reg

ANI FOH : Bring the upper nibble to lower nibble position
RRC

RRC

RRC

RRC

INX H

MOV M, A : Store the upper nibble in memory

HLT : Terminate program execution

46 Statement: Add two 4 digit BCD numbers in HL and DE register pairs and store
result in memory locations, 2300H and 2301H. Ignore carry after 16 bit.
Sample Problem:

(HL) =3629

(DE) =4738
Step 1 : 29 + 38 = 61 and auxiliary carry flag = 1
:.add 06
61 + 06 = 67

Step2: 36 + 47 + 0 (carry of LSB) = 7D
Lower nibble of addition is greater than 9, so add 6.

7D + 06 = 83

Result = 8367

Source program

MOVA, L ! Get lower 2 digits of no. 1

ADD E : Add two lower digits

DAA : Adjust result to valid BCD

STA 2300H : Store partial result

MOV A, H : Get most significant 2 digits of number
ADCD : Add two most significant digits

DAA : Adjust result to valid BCD

STA 2301H : Store partial result

HLT : Terminate program execution.

il 1 a0 lovwar digpita of first BCD numEser i

Gl the bara loend digits of second BGD numbaer

Add beo lowar digits

Acfjust rosull o walid BCD number

Store the reault ‘

Gl tha twe mosl significant
cliggita of tha firsl numiser

Gl e o meoat significani
digils of the second Aumber

Agdd v Dao oSt significant
digits and carry of
Eriicus mddithon

Ajust resull o walid BOD numbser

I Storg the reasuld

«»

47 Statement: Subtract the BCD number stored in E register from the number
stored in the D register.
Source Program:

MVI A,99H

SUBE ! Find the 99's complement of subtrahend

INR A : Find 100's complement of subtrahend

ADD D : Add minuend to 100's complement of subtrahend
DAA : Adjust for BCD

HLT : Terminate program execution

Note: When two BCD numbers are subtracted, we can use DAA instruction for
ajusting the result to BCD. Therefore, the subtraction of BCD number is carried out
10's complement or 100's complement.

The 10's complement of a decimal number is equal to the 99's complement plus 1.
The 99's complement of a number can be found by subtracting the number from
99.

The steps for finding 100's complement BCD subtraction are :

* Find the 100's complement of subtrahend
* Add two numbers using BCD adition

48 Statement: Write an assembly language program to multiply 2 BCD numbers
Source Program:

MVI C, Multiplier : Load BCD multiplier
MVI B, 00 : Initialize counter
LXI H, 0000H ! Result = 0000
MVI E, multiplicand : Load multiplicand
MVI D, OOH : Extend to 16-bits
BACK: DAD D ! Result Result + Multiplicand
MOVA, L : Get the lower byte of the result
ADI, OOH
DAA : Adjust the lower byte of result to BCD.
MOVL, A : Store the lower byte of result
MOV A, H : Get the higher byte of the result
ACI, OOH
DAA : Adjust the higher byte of the result to BCD
MOVH, A : Store the higher byte of result.
MOV A, B : [Increment
ADI O1H : counter
DAA : adjust it to BCD and
MOV B,A : store it]
CMP C : Compare if count = multiplier
JNZ BACK : if not equal repeat

HLT : Stop

49 Statement:Write a program for displaying binary up counter. Counter should
count numbers from 00 to FFH and it should increment after every 0.5 sec.
Assume operating frequency of 8085 equal to 2MHz. Display routine is available.
Source Program:

LXI SP, 27FFH : Initialize stack pointer
MVI C, OOH : Initialize counter
BACK: CALL Display : Call display subroutine
CALL Delay : Call delay subroutine
INRC : Increment counter
MOV A, C
CPI OOH : Check counter is > FFH
JNZ BACK : If not, repeat
HLT : Stop

Delay Subroutine:

Delay: LXI B, count : Initialize count
BACK: DCX D : Decrement count
MOV A, E
ORA D : Logically OR D and E
JNZ BACK : If result is not 0 repeat
RET ! Return to main program

ie.Operating frequency = 2 MHz

: 1
Time for one T -state = = 0.3 gsec
2MIz

Number of T-states required = Required Time _ 0.5sec

Time required for 1 T- state 05 HSEC

=1x10°
1 x10° = 10 + (comnf - 1) x 24 + 21
1 x10° - 31
count = - 1 1 »41666,,
24
counf = 41666

A2C2H

Initialize counter = 00

i

|

Call display

Cail delay

Increment counter

Mo

Yes

Program flowchart

Delay routine flowchart

‘ Delay }

Initialize counter

Decrement counter

50 Statement:Write a program for displaying BCD up counter. Counter should
count numbers from 00 to 99H and it should increment after every 1 sec. Assume
operating frequency of 8085 equal to 3MHz. Display routine is available.

Source Program:

LXI SP, 27FFH : Initialize stack pointer

MVI C, OOH : Initialize counter
BACK: CALL Display : Call display subroutine

CALL Delay : Call delay subroutine

MOV A, C

ADIA, 01 : Increment counter

DAA : Adjust it for decimal

MOV C,A : Store count

CPI ,00 : Check count is > 99

JNZ BACK : If not, repeat

HLT : Stop

Delay Subroutine:

Delay:MVI B, Multiplier-count : Initialize multiplier count
BACK 1:LXI D, Initialize Count
BACK: DCX D : Decrement count
MOV A, E

ORA D : Logically OR D and E

JIJNZ BACK : If result is not a, repeat

DCR B : Decrement multiplier count

JNZ BACK 1 : If not zero, repeat

RET ! Return to main program.
Operating Frequency : 3MHz

1
3MIHz

Time for one T - state = 0.333 msec

Required Time
Time required for 1 T- state

3x10%

1
0.333 usec
3

Let us take multipli er count

L+
No. of T states required by inner loep = ¥ ~1x10%

1 x10° = 10 + (comnf - 1) x 24 + 21
1 x 10° - 31
count = - T 1 »41666,,
24
counf = 41666,

A2C2H

Initialize counter = 0

[[candispay |

1

u Call delay ”

| Increment counter |

* Adjust it for decimal I

Is
count > 99
?

Source program flowchart

Routine flowchart

(Delay)

i

Initialize counter

L

Decrement counter

51 Statement:Write a program for displaying BCD down counter. Counter should
count numbers from 99 to 00 and it should increment after every 1 sec. Assume
operating frequency of 8085 equal to 3MHz. Display routine is available

Source Program 1:

LXI SP, 27FFH

: Initialize stack pointer

MVI C, 99H : Initialize counter = 99
BACK:CALL Display : Call display subroutine
CALL Delay : Call delay subroutine
ADI 99H : See Addition below
DAA : Adjust for decimal
CPI 99H : Compare with last count
JNZ BACK :If no, repeat
HLT
F = Addition:
LSt | 1001 1001 99H
! + 1001 1001 9g9H
I. Initiliza counter = 95 | T
: i 10011 0010
: i D AA+ o1i0 0110
i Call digplay | e
T 1001 1000 98H
Cal detay i

far its dacimal value

| Decrement and adjusi counter I

Source Program?2:

LXI SP, 27FFH

MVIC, 99H
BACK: CALL Display

CALL Delay

MOV A, C

ANI OFH

JIJNZ SKIP

MOV A,C

SBI 06

MOV C,A

DCR C

CPI 99H

JNZ BACK

HLT

: Initialize stack pointer
: Initialize counter = 99
: Call display subroutine
: Call delay subroutine

! Get count

: Check for lower nibble

: If it is not OFH go to skip
! Else get the count

: Subtract 06

: Store the count
: Decrement count

: Check it for last count

: If not, repeat
: Stop

52 Statement:Write assembly language program to with proper comments for the
following: To display decimal decrementing counter (99 to 00) at port 05 H with
delay of half seconds between .each count. Write as well the delay routine giving
delay of half seconds. Operating frequency of microprocessor is 3.072 MHz.
Neglect delay for the main program.

Source Program:

MVI C, 99H : Initialize counter
BACK: MOV A, C
ANI OF : Mask higher nibble
CPI OF
JIJNZ SKIP
MOV A, C
SUI 06 : Subtract 6 to adjust decimal count
MOV D, A
SKIP: MOV A, C
ouT 05 : send count on output port
CALL Delay : Wait for 0.5 seconds
DCR C : decrement count
MOV A, C
CPI FF
JNZ BACK : If not zero, repeat
HLT : Stop execution
Delay subroutine:

Delay: LXI D, Count

Back: DCX D ! 6 T-states
MOV A, D ! 4 T-states
ORA E : 4 T-states
JNZ Back : 10 T-states
RET
1 T-state = . ! = 1 =
Operating frequency 3.072X 10
= 3.2552x 107
. 0.5 sec 5
Number of T-states required = = = 1.536x 10
3.2552x10
1.536x 10° = 10 + (commt - 1) x 24 + 21

[}
count = 1'53“214“ 31 1 — 63900708
count = 64000
— FACOH

53 Statement:The delay routine given below is in infinite loop, identify the error
and correct the program.

Delay routine with error:

DELAY :LXIH, N
L1 :DCXH
IJNZ L1

Sol.: 1) The fault in the above program is at instruction JNZ L1. This condition
always evaluates to be true hence loops keep on executing and hence infinite loop.

2) Reason for infinite looping: - The instruction DCX H decrease the HL pair count
one by one but it does not affect the zero flag. So when count reaches to OOOOH
in HL pair zero flag is not affected and JNZ L1 evaluates to be true and loop
continues. Now HL again decrements below OOOOH and HL becomes FFFFH and
thus execution continues.

3) The modification in the program is as follows:

DELAY : LXIH, N :Load 16 bit count
L1 : DCXH ! Decrement count
MOVA, L
ORA H : logically OR Hand L
JNZ L1 : If result is not O repeat

54 Statement: Convert a 2-digit BCD number stored at memory address 2200H
into its binary equivalent number and store the result in a memory location 2300H.
Sample Problem

(2200H) = 67H
(2300H) = 6 x OAH + 7 = 3CH + 7 = 43H

Source Program:

LDA 2200H : Get the BCD number
MOV B, A : Save it
ANI OFH : Mask most significant four bits
MOV C A : Save unpacked BCDI in C register
MOV A, B : Get BCD again
ANI FOH : Mask least significant four bits
RRC : Convert most significant four bits into unpacked BCD2
RRC
RRC
RRC
MOV B, A : Save unpacked BCD2 in B register
XRA A : Clear accumulator (sum = 0)
MVI D, OAH : Set D as a multiplier of 10
Sum: ADD D : Add 10 until (B) = 0
DCR B : Decrement BCD2 by one
JNZ SUM : Is multiplication complete? i if not, go back and add again
ADD C : Add BCD1
STA 2300H : Store the result

HLT : Terminate program execution

Star

et the number l

II'._'._..__'.'._ = o=
| Mask upper Nibble
| and
{ slore number as E:Eﬂ

l

[Get number agaiq

Mask lower KNibble
exchange nibble
positions of result and

store it as BCD2

—r

Multiply BCD2
number by 10

-

Add BCDA

Store result

«=»

55 Statement: Write a main program and a conversion subroutine to convert the
binary number stored at 6000H into its equivalent BCD number. Store the result
from memory location 6100H.

Sample Problem: (6000) H = 8AH

1.8AH ? 64H (Decimal 100) :. Divide by 64H (Decimal 100)
8AH/64H ? Quotient = 1, Remainder = 26H
26H < 64H (Decimal 100) ;. Go to step 2 and Digit 2 = 1
2.26H ? OAH (Decimal 10) :. Divide by OAH (Decimal 10)
26H/0OAH ? Quotient = 3, Remainder = O8H
OSH < OAH (Decimal 10) ;. Go to step 3 and Digit 1 =

3
3. Digit 0 = O8H

Source Program:

LXI SP, 27FFH : Initialize stack pointer

LDA 6000H : Get the binary number in accumulator
CALL SUBROUTINE : Call subroutine

HLT : Terminate program execution

Subroutine to convert binary number into its equivalent BCD number:

PUSH B : Save BC register pair contents
PUSH D : Save DE register pair contents
MVI B, 64H : Load divisor decimal 100 in B register
MVI C, OAH : Load divisor decimal 10 in C register
MVI D, OOH : Initialize Digit 1
MVI E, OOH : Initialize Digit 2
STEP1: CMP B : Check if number < Decimal 100
JC STEP 2 : if yes go to step 2
SuB B : Subtract decimal 100
INRE : update quotient
JMP STEP 1 :gotostep 1
STEP2: CMP C : Check if number < Decimal 10
JC STEP 3 : if yes go to step 3
SUB C : Subtract decimal 10
INR D : Update quotient
JMP STEP 2 : Continue division by 10
STEP3: STA 6100H : Store Digit 0
MOV A, D : Get Digit 1
STA 6101H : Store Digit 1
MOV A, E : Get Digit 2
STA 6102H : Store Digit 2
POP D : Restore DE register pair
POP B : Restore BC register pair

RET : Return to main program

Gatl the binary
T T

Divide numbar by 100

Dipt 2 =10 CHgin 2 ® Qwotient

i

Chasck if
resmindiEr
%= 10
Dvide number by 10
to !
Digit 1= Dhggit 1 = Cotienl

Dwgit 0 = remingar

56 Statement: Find the 7-segment codes for given 5 numbers from memory

location 6000H and store the result from memory location 7000H.

Sample Problem: (6000) H = 8AH

Source Program

LXI H, 6200H
LXI D, 6000H
LXI B, 7000H

BACK: LDAX D
MOVL, A

MOV A M
STAX B

INX D
INX B

MOV A, C

CPI O5H

JIJNZ BACK

HLT

: Initialize lookup table pointer
: Initialize source memory pointer
: Initialize destination memory pointer
: Get the number
: A point to the 7-segment code
: Get the 7-segment code
: Store the result at destination memory location

: Increment source memory pointer

: Increment destination memory pointer

: Check for last number
: If not repeat
: End of program

{ _ Starl)

,._]._.__.-r*
i

Initialize lookup (able ponnler |

4

r
.

f,,_
(_sor)

e e
4 Logkun Tabla
Imtiahze Source Memaory poanier Digh —I— Cads _._Tl
Inifiahge destinabion memany pointer _'!
i 0 IF
——iir |
1 1 I 06
Gél ther Aurmbar 1 |'
| & i L
e)
i—l"'u'l-:! Hit i £ e laplipH oode I 4 4F
| ' 4 65 i
Store T segrment codea in thea 5 60
daslination mamony lacaticen & 0
]
——re .._.__I..._ — ~ L F)
Increment source mamary pointar 5 -
noreman! destnalion mamary poantar
i S - g BE
/J’i\\\
#
Mo &~ lasi \"\’
*w, nuamhear
s
Yes

57 Statement: Write an assembly language program to convert the contents of the
five memory locations starting from 2000H into an ASCII character. Place the
result in another five memory locations starting from 2200H.

Sample Problem

(2000H) = 1
(2001H) = 2
(2002H) = 9
(2003H) = A
(2004H) = B
Result:(2200H) = 31
(2201H) = 32
(2202H) = 39
(2203H) = 41
(2204H) = 42

Source program:

LXI SP, 27FFH : Initialize stack pointer
LXI H, 2000H : Source memory pointer
LXI D, 2200H : Destination memory pointer
MVI C, O5H : Initialize the counter
BACK: MOV A M : Get the number
CALL ASCII : Call subroutine ASCII
STAX D : Store result
INX H : Increment source memory pointer
INX D : Increment destination memory pointer
DCR C : Decrement count by 1
CINZ : if not zero, repeat
HLT : Stop program execution subroutine ASCII
ASCII: CPI, OAH : Check if number is OAR
JNC NEXT : If yes go to next otherwise continue
ADI 30H
JMP LAST
NEXT: ADI 37H
LAST: RET ! Return to main program
Subroutine:

Subroutine 'ASCII' converts a hexadecimal digit to ASCII.The digit is passed using
accumulator and the result is stored in accumulator.Stack starts From 27FEH to
27FDH.

Note: The ASCII Code (American Standard Code for Information Interchange) is
commonly used for communication. In such cases we need to convert binary
number to its ASCII equivalent. It is a seven bit code. In this code number 0
through 9 are represented as 30 through 39 respectively and letters A through Z
are represented as 41H through 5AH. Therefore, by adding 30H we can convert
number into its ASCII equivalent and by adding 37H we can convert letter to its
ASCII equivalent.

Slart

intiakiae SOcE Moy
et R

Inflialize dashinaod masmdry
[Enkar

T l

Irsteahize Gount = 5

i
Gel the mumbes

CALL ASCH i

Sl this number

uimeT & A,

Mo

Mumber = namter + 30

Mumbar = naimies + 37

Darcramurn SOUETE MiHTONY poinier

I
1

Decrement deslinalice memony poinbar

Drecrmmand counloe

L

i

RET

58 Statement: convert the ASCII number in memory to its equivalent decimal
number
Source Program:

LXI H, 4150 : Point to data

MoV A M : Get operand

Sur 30 : convert to decimal

CPI 0A : Check whether it is valid decimal number
JC LOOP : yes, store result

MVI A, FF : No, make result=FF

LOOP: INX H

MoV M, A

HLT : (A) = (4151)
Note: The ASCII Code (American Standard Code for Information Interchange) is
commonly used for communication. It is a seven bit code. In this code number 0
through 9 are represented as 30 through 39 respectively and letters A through Z
are represented as 41H through 5AH. Therefore, by subtracting 30H we can
convert an ASCII number into its decimal equivalent.

59 Statement: Convert the HEX number in memory to its equivalent decimal

number

Source Program:

LXIH, 4150 ; Point to data
LXI B, 0000 ; Initialize hundreds= 0, Tens=0
MOVA M ; Get hex data to A
LOOP: SUI 64
JCLOOP 1
INR B ; hundreds= hundreds+1
JMP LOOP

LOOP 1: ADI 64
LOOP 2: SUI OA

; if subtracted extra, add it clear carry flag

JC LOOP 3

INRC ; Tens=tens+1

JMP LOOP 2

LOOP 3: ADI 0A ; If subtracted extra, add it again

INX H ; A = Units
MOV M, B ; store hundreds
MOV B, A ; Combine Tens in C &
MOV A, C ; Units in A to form a
RLC ; Single 8-bit number
RLC
RLC
RLC
ADD B
INX H
MOV M, A ; Store tens & Units
HLT

Note: In this experiment the number is converted to its equivalent decimal
number using the following logic.

First count the number of hundreds, the number of tens & units present in that
hex number. Then add up to get the equivalent decimal number.

Converting A9 we get:

A9 /64=45 Hundreds = 01

Since 64(100 decimal) cannot be subtracted from 45 no. of hundreds = 01. Now
count tens

45/0A=3B Tens = 01

Now from 09, OA cannot be subtracted. Hence tens = 06 the decimal equivalent of
A9 is 169.

60 Statement: Convert an 8 bit hex no to its binary form & store in memory.
Source Program:

LXI H, 4150 : Initialize memory pointer
MVI B, 08 : count for 8-bit
MVI A, 54
LOOP : RRC
JC LOOP1
MVI M, 00 : store zero it no carry
JMP COMMON
LOOP2: MVI M, 01 : store one if there is a carry
COMMON: INX H
DCR B : check for carry
JNZ LOOP
HLT : Terminate the program

61 Statement: Write a program to output contents of B register LSB to MSB on the
SOD pin.
Source program:

MVI C, O8H : Initialize count with 8
MOV A, B
BACK: RRC ! Rotate B register contents right
MOV B, A : Save contents of register B
JNC SKIP : If no carry skip
MVI A, COH
SIM : If carry, send high on SOD
JMP NEXT
SKIP: MVI A, 40H
SIM : If no carry, send low on SOD.
NEXT: CALL DELAY : Wait for specific time
DCR C : Decrement count by 1
JNZ BACK : if count = 0 Stop, if not repeat
HLT : Stop program execution
Delay subroutine:

Delay: LXI D, Count
Back: DCX D

MOV A, D

ORA E

JNZ Back

RET

| Start }

Initialize counter = 38

Send the LSE of B reg on SOD

}

Call delay

Delay

Initialize counter I

Fotate contents of B reg right

Count = Count - 1

Decrement counter

62 Statement: Write a program to output square wave of 1 kHz frequency on the
SOD pinof 8085 for 5 seconds. Operating frequency of 8085 is 2 MHz.
Source program

LXI SP, 27FFH : Initialize stack pointer

LXI B, 1388H : Initialize counter with count 5000.
BACK: MVI A, COH

SIM : Send high on SOD pin

CALL DELAY : Wait for 0.5 msec

MVI A, 40H : Send low on SOD pin

CALL DELAY : wait for. 5 msec

DCX B : Decrement count by 1

MOV A, C

ORA B : Check if count = 0

JNZ BACK : If not, repeat

HLT : Stop program execution
Delay subroutine:

Delay: LXI D, Count
Back: DCX D

MOV A, D

ORA E

JNZ Back

RET

Initialize counter = 5000

L I

Send high on SOD pin-l

| Call delay of 0.5 msec ‘]

| EEE|

Count = Count - 1

Delay

Initialize counter I

Decrement counter

counter = 0

63 Statement: An ASCII character is being received on SID pin of 8085. Write a
program in assembly language of 8085 to assemble this character and store it in
memory. Write comment for each instruction.

Source program:

LXI SP, 27FFH

LXI H, 2000H : Memory pointer
RIM ! Read SID
ANI 80H : Check D7 bit of Accumulator
CALL Delay : 1/2 bit time delay for stop bit
MVI B, O8H : Initialize bit counter
MVI D, OOH : Clear data register
UP1: ALL Delay : 1 bit time
RIM ! Read SID line
ANI 80H : Mask bits B6 - Bo
ORA D : OR data bit with previous bits
RRC
MOV D, A : Store data bit at appropriate position
DCR B
JNZ UP1
RLC : Shift left to correct result
MOV M, A : Store result
RIM : Read stop bit
ANI 80OH
CZ error : If not stop bit call error
HLT : Terminate program.
Delay subroutine:

Delay: LXI D, Count
Back: DCX D

MOV A, D

ORA E

JNZ Back

RET

I_@

A

AN

iy 17 bk bme

Iz bl g vl

sy 1 b v

[Delay]

I Initialize counter |

!

Decrement counter

64 Statement: Write a assembly program to transmit a message from an 8085 to a
CRT terminal for the following requirements and draw the interfacing diagram.

i) A message of 50 characters is stored as ASCII characters (without parity) in
memory locations starting at 2200H.

ii) Baud rate x 16

iili) Stop bits 2
Solution Description:

¢« CRT terminal uses normal RS 232C standard serial communication interface.
Therefore, to transmit data to CRT it is necessary to have RS 232C interface
at the sending end.

 Fig. shows the interfacing of 8251 with RS 232C to 8085.

« As shown in the Fig. three RS-232C signals (TxD, RxD are Ground) are used
for serial communication between the CRT terminal and the 8085 system.

« Line drivers and receivers are used to transfer logic levels from TTL logic to
RS-232C logic.

e For RS-232C the voltage level +3V to +15V is defined as logic 0 and voltage
level from -3V to -15V is defined as logic 1.

e The line driver, MC 1488, converts logic 1 of TIL to approximately -9V and
logic a of TIL to approximately +9V. These levels at the receiving end are
again converted by the line receiver, MC1489, into TTL compatible logic.

L0y Map :

Address

Register Address lines

. e

[AsiAyiAg 1Ay Ay 1Ay |

1

Mode word necessary for the given specification is as follows

8, B B 8 B, B, B, 8,
1 1 1+ 0 1 0 i [=CAH
k___"‘\f'"__—_} \"'""‘w"_‘—" \1__""'\/"_'_"’ M
Step bit 2 Mo party Character length Baud rata
T bits 16
Command word necessary for the given specification is as follows
B, B B, B, 8, B, B 8,
K o X X a X =11H
Emor Recana Transmil
reset dsabie enabic
Status word necessary for the given specification is as follows
B, By B B, = B, B, B,
x x X X x X A 1 =01H
Transmitter
reaady

If bit 0 of the Status word is logic 17 then transmitter is readv to accept the character

Source program:

LXI H, 2200H : Initialize memory pointer to pointer the message
MVIC, 32H : Initialize counter to send 50 characters
MVI A, OOH
OUT FFH
OUT FFH : Dummy mode word
OUT FFH
MVI A, 40H ! Reset command word
OUT FFH ! Reset 8251A
MVI A, CAH : Mode word initialization
OUT FFH
MVIA, 11H : Command word initialization
OUT FFH
CHECK: IN FFH
ANI OIH : Check TxRDY
JZ CHECK : Is TxRDY I? if not, check again
MOV A M : Get the character in accumulator
OUT FEH : Send character to the transmitter
INX H : Increment memory pointer
DCR C : Decrement counter
JNZ CHECK : if not zero, send next character
HLT : Stop program execution
+5Y
26 .
D, 21p, Veo 2 _ M
N L] i 1<)
— o .Tﬁ_ﬁgahi e k
= : j:'.'. Lime drivir RS 730 'y ;;
— 1 ;"‘ DCE cable E B
?H" D, Hall L—%JD Ao 2 |& E:
- 2T o Hetaiye Transmil =
5V ' Line feoeiver
i 7
8044 10K B25% A —
- \J
A,y i’ =
1 '-‘-lLEu}m—-—u &5
Ay
Ay LP R Rl =y From pail s GEneralon
i) SR S T
RESETOLT § o ;1 R
CLE (OUT] . 1) RESET
CLE
ZT5 GHD

Fig- Schematic of interfacing an RS-232C terminal with an B085 system using
the B251A

Initialize: memary poinies
Intialize character counfer

Initialize 8251 |

Read status I

Send characier 1o
transmitter

Incremen medmdary pointer I

Decrement counter

65 Statement: Write a assembly program to receive 25 bytes from an CRT terminal
to 8085 for the following requirements.

i) Baud rate x 16

ii) Stop bits 2
B, B, B B, B, B, B, B,
1 1 0 0 1 4] 1 0 =CAH

Stop bt 2 Mo panty Character length Baud rate
7 bils x 16
Command word necessary for the given specification is as follows
B, B, B, B, B, B, B, B,
X 0 X 1 X 1 x Q = 1dH
Error Receive Transmit
resal enable disable
B B B. B, 8. B, B, B,
X X X x X X 1 X =02
Racawer
ready
K hit 1 of the status word s logic 17 then receiver is ready to give the
character

Note: Reading of status word is necessary for checking the status of RxD line of
8085 that whether receiver is ready to give data or not.

Source program:

LXI H, 2300 H

: Initialize memory pointer

MVI C, FFH : Initialize counter to accept 25 characters
MVI A, OOH
OUT FFH
OUT FFH : Dummy mode word
OUT FFH
MVI A, 40H : Reset command word
OUT FFH ! Reset 8251 A
MVI A, CAH : Mode word initialization
OUT FFH
MVIA, 14 H : Command word initialization
OUT FFH
CHECK: IN FFH
ANI O2 H : Check RxRDY

JZ CHECK

: Is RxRDY ? If not, check again

IN FEH : Get the character

MOV M, A ! save the character

INX H : Increment memory pointer

DCR C : Decrement memory pointer

OUT FEH : Send character to the transmitter
JNZ CHECK : If not zero, accept next character
HLT : Stop program execution

Initealize memory poanter

}

Inttialize charadior Counter

!

Initialize 8251

Read status

I5

N PR er

ready
7

Read and save
the character

InCrament memaory pointer

Dacremant cownber

I
counter = 0

66 Statement:
Write a program to initialize 8255 in the configuration given below
Sample 1:
Write a program to initialize 8255 in the configuration given below:
1. Port A: Simple input
2. Port B: Simple output
3. Port CL: Output
4. Port Cu: Input
Assume address of the control word register of 8255 as 83H.

Solution:
0 0 . v | o 0 | o = 9BH
‘ I | |
gt .« b oMt C, -~ Output
I | ! | | = ot B - Outpat
! = Mode 0 Port B - Simple 10

i | , — Fort C,; = input
: N— Fort A - Simple input
| b o O Port A - Simple 10

R T NIy g
It PAOGE

SOURCE PROGRAM 1:

MVI A, 98H : Load control word
ouUT 83H : Send control word
Sample 2:

Write a program to initialize 8255 in the configuration given below:

1. Port A: Output with handshake

2. Port B: Input with handshake

3. Port CL: Output

4. Port Cu: Input

Assume address of the control word register of 8255 as 23H.
Solution:

'1|7|1‘|:| = AEH

|
] | '| “—= Port C - Output
Port B

: —— Mode 1 Pont B - Handshake
| Y Pairt CI_E

n
Fort A

| b= Moda 1 Port A - Handshake
VO Mode

SOURCE PROGRAM 2:
MVI A, AEH : Load control word
OouT 23H : Send control word

67 Statement: Write a program to blink Port C bit 0 of the 8255. Assume address
of control word register of 8255 as 83H. Use Bit Set/Reset mode.
Control word e make Bit 0 high

-1 .1 T
0 | X X)'ij 4 l o ! 0 1 = 01H
r— i :
 — |—'—]—--Maun Bit=1
i —— Ba 0 of Port C

—= Don'l care

[——'i- BSR Mode

Control word to make Bin O low

u!x]_xix]n[a!ﬂ 0 = DOH

| | i |
I

] [—— Make Bit = 0
Bit 0 of Port C

E‘ S Cran't care

t——= BSR Mode
Source program:

BACK: MVI A, OIH : Load bit pattern to make PCo high
OouUT 83H : Send it to control word register
CALL DELAY : Call Delay subroutine
MVI A, OOH : Load bit pattern to make PCo Low
OuUT 83H : Send it to control word register
CALL Delay : Call Delay subroutine
JMP BACK ! Repeat

Delay subroutine:

Delay: LXI D, Count Start

Back: DCX D
MOV A, D
ORA E Make PC High
JNZ Back
RET |

Call delay

l

Make PC, Low

:

Call delay

68 Statement: Design a system (both Software and Hardware) that will cause 4
LEDs to flash 10 times when a push button switch is pressed. Use 8255. Assume
persistence of vision to be 0.1 seconds.

Source program:

LXI SP, 2000 H : Initialize stack pointer
MVI A, 90H
OUT CR : Initialize 8255
BACK: IN PA : [Read status
ANI 01 : of push
JNZ BACK : button]
MVI B, OAH : Initialize counter
AGAIN: MVI A, OOH : Load data to light LEDs
ouT PC : Send data on port C
CALL Delay : Call. Delay of 0.1 sec
MVI A, FFH : Load data to switch off LEDs
ouT PC : Send data on port C
CALL Delay : Call Delay of 0.1 sec
DCR B : Decrement count
IJNZ AGAIN : If not zero repeat
JMP BACK : Jump back to read status
Delay subroutine:

Delay: LXI D, Count
Back: DCX D
MOV A, D
ORA E
JNZ Back
RET
*Wee

Phg

L
==

oW —dWR g2s55

CE—CE

PCq
PC, -
PC, _
PC, -

69 Statement: Design a microprocessor system to control traffic lights. The traffic
light arrangement is as shown in Fig. The traffic should be controlled in the
following manner.

1) Allow traffic from W to E and E to W transition for 20 seconds. 2) Give
transition period of 5 seconds (Yellow bulbs ON) 3) Allow traffic from Nto 5 and 5
to N for 20 seconds 4) Give transition period of 5 seconds (Yellow bulbs ON) 5)
Repeat the process.

HARDWARE FOR TRAFFIC LIGHT CONTROL

N

W E
®OE ®OE
] ki 4 4 4

3

2
s 1© Fig. shows the interfacing diagram to control 12
electric bulbs. Port A is used to control lights on N-S road and Port B is used to
control lights on W-E road. Actual pin connections are listed in Table 1 below.

Pins Light Pins Light
PAg Ry PBy Ry
PA, Y, PE, Yy
Ph, Gy PB, Gy
PA, R, PB4 Ry
y 7. - :_ T S
" PA, G, | PBs | G,
Table 1 The electric bulbs are controlled by relays.

The 8255 pins are used to control relay on-off action with the help of relay driver
circuits. The driver circuit includes 12 transistors to drive 12 relays. Fig. also
shows the interfacing of 8255 to the system.

INTERFACING DIAGRAM

230 W AC
—0 5] HZ
Ay Dy
AD; D, —
Ay ——% |
Ay ——t Ay PA L & v
oR —dRD TSof—-
PBy |—» Free
oW —qWR = PY whealing
PB, | . dicde |}<1
RESET QUT —= RESET PB, v ocax i
OF 8083 rz PBs—Wa— BC547
B255
A —a
Ay—p
A, v,
As i,
As—T,
Ar— G T4LS138
o MAP:
|
Ports ! Control Register | Address lines : Address
[
_____ Aq Ag B Ay Mg Ay Ay Ag !
Port A tGUUDGDG| A0
Port B 1 0 ¢ 0 0o 0 a1 Bi1H
Part A T R « A R R v R B2H
[Contral Register 1000 00 1 | 53H
Table 2
SOFTWARE FOR TRAFFIC LIGHT CONTROL
Control word ; For initialization of 8255,
|
BSRIO | WODE 4 | P F"FH | MODE B Pg . FCL = 80H
e L _0 — - > » . : ; »

Fig. Control word

tes X specitic © vinations.
Table shows the data bytes to be sent for specific combi h

I |
—T.;. glow |PB:|PBs “FL:,IIF?B.,;.PB; PB2 F'B1|F>Eln Phg PA{,EP:'I..!, F'.ﬁ..‘lP."x, F‘.ﬁ.zlipr‘n Piyg P::p: F::Pj
SR N T . -
Ry R.Gy | x| X[1] ﬂi ol 11 ol o| x| x| o] of 1| of 0] 1} 24H 0oH
and Gy | o
v *.Y_ | x n| ‘ ol ol 1] ol x! x| el 1] of o] 1] 0] 12+ 12H
ar1!JY.._J | i | | |
HH_u__}'{ wl ol ol 1! alol 1| x| x)1)ofel 1] o] o]0 24h
and é-? | | |

Source program:

MVI A, 80H

OUT 83H (CR)
START: MVI A, 09H
OUT 80H (PA)

MVI A, 249H

OUT 81H (PB)

MVI C, 28H

CALL DELAY

MVI A, 12H

OUT (81H) PA
OUT (81H) PB

MVI C, 0AH
CALL: DELAY
MVI A, 24H

OUT (80H) PA

MVI A, O9H

OUT (81H) PB

MVI C, 28H

CALL DELAY

MVI A, 12H
OUT PA
OUT PB
MVI C, 0AH

CALL DELAY

JMP START

Delay Subroutine:

DELAY: LXI D, Count

BACK: DCX D
MOV A, D
ORA E
JNZ BACK
DCR C
JNZ DELAY
RET

: Initialize 8255, port A and port B
: in output mode

: Send data on PA to glow R1 and R2

: Send data on PB to glow G3 and G4
: Load multiplier count (4010) for delay
: Call delay subroutine

: Send data on Port A to glow Y1 and Y2
: Send data on port B to glow Y3 and Y4
: Load multiplier count (1010) for delay
: Call delay subroutine

: Send data on port A to glow G1 and G2
: Send data on port B to glow R3 and R4

: Load multiplier count (4010) for delay
: Call delay subroutine

: Send data on port A to glow Y1 and Y2
: Send data on port B to glow Y3 and Y4

: Load multiplier count (1010) for delay
: Call delay subroutine

: Load count to give 0.5 sec delay
: Decrement counter

: Check whether count is 0
: If not zero, repeat
: Check if multiplier zero, otherwise repeat

: Return to main program

Assume Operating Frequency = 2MHz

Time for one T - state = = 0.5usec
MIz
Count=_ Reqmr.ed Delay
Time required for1 loop
__ O5sec "1 loop needs 24 T-states
0.5 psecx 24

= 41666, = A2C2H

70 Statement: Interface a Stepper Motor to the 8085 microprocessor system and
write an 8085 assembly language program to control the Stepper Motor.

HARDWARE FOR STEPPER MOTOR CONTROL

A stepper motor is a digital motor. It can be driven by digital signal. Fig. shows the
typical 2 phase motor rated 12V /0.67 A/ph interfaced with the 8085
microprocessor system using 8255. Motor shown in the circuit has two phases,
with center-tap winding. The center taps of these windings are connected to the
12V supply. Due to this, motor can be excited by grounding four terminals of the
two windings. Motor can be rotated in steps by giving proper excitation sequence
to these windings. The lower nibble of port A of the 8255 is used to generate
excitation signals in the proper sequence. These excitation signals are buffered
using driver transistors. The transistors are selected such that they can source
rated current for the windings. Motor is rotated by 1.80 per excitation.

INTERFACING SCHEME

;‘.':;"-s' ¥f ‘3::-“'4::“ }’u’ ;’:ﬂ };‘a’ J};u" ;’u‘
. g (0 "t e e el e e el 2o e
Ly D5 RL, 2l | le|plo)|o]|e
. s RL, J}:ﬂ‘ J};"a"’ ;’:’ ?;n’ J.‘:;’:"' ;-u’ ;;d" ;J
L, 7 2 2 2] 2 2
o~ yPe L, 2 % 2 2] 2 5 e 7
T] WH Rig 5’4’ ‘};«w" J}:-n’ ;u' }fa‘ E;"-u‘ E:;’u' J:.:;Er
RESET OUT———=] RESET Rl ;a' ‘:;’1:"' ‘:'-.;"nf ?__;"s’ ;& _33';"9" ;u' }?
CEK OUT CLK AL, J};u’ ‘3;”-5"' ‘::a' yu' f_j’a’ ;’f ?p-"s’ ;’s‘
To RST 7.5 IMT 8279
il] - ;
S c
As—>o ? 3:8
Aﬁ—_[}g._ Dacodar

e L
e L]
Ao

F|B~—flntnrfauing of 8= 8 matrix keyboard in interrupt driven keyboard mode

SOFTWARE FOR STEPPER MOTOR CONTROL
As port A is used as an output port, control word for 8255 is 80H.

Stepper Motor Control Program:
6000H Excite code DB 03H, O6H,

O9H, OCH : This is the code sequence for clockwise
rotation

Subroutine to rotate a stepper motor clockwise by 360° - Set the counts:

MVI C, 32H : Set repetition count to 5010
START: MVI B, 04H : Counts excitation sequence
LXI H, 6000H : Initialize pointer
BACK1: MOV A, M : Get the Excite code
OUT PORTA : Send Excite code
CALL DELAY : Wait
INX H : Increment pointer
DCR B : Repeat 4 times
JNZ BACK |
DCR C
JNZ START : Repeat 50 times
RET
Delay subroutine:

Delay: LXI D, Count
Back: DCX D

MOV A, D

ORA E

JNZ Back

RET

71 Statement: Interface a 64-key matrix keyboard to the 8085 microprocessor
using 8255. Write an 8085 assembly language program to initialize 8255 and to
read the key code.

HARDWARE FOR MATRIX KEYBOARD INTERFACE

Fig. shows a matrix keyboard with 64 keys connected to the 8085 microprocessor
using 8255. A matrix keyboard reduces the number of connections, thus the
number of interfacing lines. In this example, the keyboard with 64 keys, is
arranged in 8 x 8 (8 rows and 8 columns) matrix. This requires sixteen lines from
the microprocessor to make all the connections instead of 64 lines if the keys are
connected individually. The interfacing of matrix keyboard requires two ports: one
input port and other output port. Rows are connected to the input port, port A and
columns are connected to the output port, port B.

INTERFACING SCHEME

ol xol >l o
ey o i i :f E: i i i i
Cy Uy RL, -2 2 I I I o o
iy ¥ 2 2
N AL, 2 54 % 3 2 % ¥ %
TOR ———eo| RO AL, ;& J};"u’ ;-n" r:.:;f.-:r 3;#‘ J}:n‘ ",:5? J:;Er
TN ——g e RLg 2 27 27 27 2% 27 27 &
RESET OUT——=] RESET Rl }*’u’ ;’a‘ ;& gf :‘:;'u' ;‘u‘ J}p”u' ‘}P?
CEK OUT CLK AL, %’a* ‘:;'a"' ?;"-u" ga' ;‘:-;s ;-' JJ;&" J%"s‘
To RST 7.6 =—]INT 8279
r——] e |
A > S, 4 :
A0 Decoder

Aa—.{}g_
-ﬂ.z-—.i:::.g_
A, -—DQ_

1

1T

Flg,—rlntnrfm;ing of B= 8 matrix keyboard in interrupt driven keyboard mode

SOFTWARE FOR MATRIX KEYBOARD INTERFACE
Source program

MVI A, 90H : Initialize Port A as input and
OuUT CR : Port B as Output

START: MVI A, 00 : Make all scan lines zero
ouT PB

BACK: IN PA
CPI FF : Check for key release
JNZ BACK : If not, wait for key release
CALL DELAY : Wait for key debounce

BACK 1: IN PA

CPI FF : Check for key press

JZ BACK 1 : If not, wait for key press
CALL DELAY : Wait for key debounce
MVI L, OOH : Initialize key counter
MVI C, O8H
MVI B, FEH : Make one column low
NEXTCOL: MOV A, B
OUT PB
MVI D, O8H : Initialize row counter
IN PA : Read return line status
NEXTROW: RRC : Check for one row
JNC DISPLAY : If zero, goto display else continue
INR L : Increment key counter
DCR D : Decrement row counter
JNZ NEXTROW : Check for next row
MOV A, B
RLC : Select the next column
MOV B, A
DCR C : Decrement column count
JIJNZ NEXTCOL : Check for last column if not repeat
JMP START ! Go to start
Delay subroutine:

Delay: LXI D, Count
Back: DCX D

MOV A, D

ORA E

JNZ Back

RET

{ Delay ’

Initialize counter

Decrement counter

72 Statement: Interface an 8-digit 7 segment LED display using 8255 to the 8085
microprocessor system and write an 8085 assembly language routine to display
message on the display.

HARDWARE FOR EIGHT DIGIT SEVEN SEGMENT DISPLAY INTERFACE

Fig. shows the multiplexed eight 7-segment display connected in the 8085 system
using 8255. In this circuit port A and port B are used as simple latched output
ports. Port A provides the segment data inputs to the display and port B provides a
means of selecting a display position at a time for multiplexing the displays. A0-A7
lines are used to decode the addresses for 8255. For this circuit different
addresses are:

PA = O0OH PB = 01H

PC = 02H CR = O3H.
The register values are chosen in Fig. such that the segment current is 80 mA. This
current is required to produce an average of 10 mA per segment as the displays
are multiplexed. In this type of display system, only one of the eight display
position is 'ON' at any given instant. Only one digit is selected at a time by giving
low signal on the corresponding control line. Maximum anode current is 560 mA
(7-segments x 80 mA = 560 mA), but the average anode current is 70 mA.

INTERFACING SCHEME

w| xo| Yo Yo
e
Cr Uy RL, - I B B B
- ;'::ue‘ ‘::;u*' bl gnf E?;? {:;q' ;& ;"
A% AL, 7 7 % 7 7= 7] 5
o] S), L, EE‘_"’D" 3;«’ J};u" ‘.}:u‘ ;# J::n' ;a-* E;"#"
e L, A e A
RESET QUT———s| RESET RLe %0 2 2| % w2 77 3
cokour —ok o 24 2 2 2 A
To RST 7.5 ——] INT 8279
g S |
Ao s '
A, I:: Decoder

3

T

F|ﬂ.—rlntnrfm;ing of B:x 8 matrix keyboard in interrupt driven keyboard mode

SOFTWARE FOR EIGHT DIGIT SEVEN SEGMENT DISPLAY INTERFACE

For 8255, Port A and B are used as output ports. The control word format of 8255
according to hardware connections is:

BSR Mode A P, P Mode B P Pey

1 0 0] X 0 a X = BOH

Fig. == Control word format for 8255

Source program:
SOFTWARE TO INITIALIZE 8255:

MVI A, 80H : Load control word in AL
ouT CR : Load control word in CR

SUBROUTINE TO DISPLAY MESSAGE ON MULTIPLEXED LED DISPLAY:

SET UP REGISTERS FOR DISPLAY:

MVI B, O8H : load count
MVI C, 7FH : load select pattern
LXI H, 6000B : starting address of message
DISPLAY MESSAGE:
DISP 1: MOV A, C : select digit
ouT PB
MOV A M : get data
OUT PA : display data
CALL DELAY : wait for some time
DISP 1: MOV A, C
RRC
MOV C A : adjust selection pattern
INX H
DCR B ! Decrement count
JNZ DISP 1 : repeat 8 times
RET

Note: This "display message subroutine” must be called continuously to display
the 7-segment coded message stored in the memory from address 6000H.

Delay subroutine:

Delay: LXI D, Count
Back: DCX D

MOV A, D

ORA E

JNZ Back

RET

73 Statement: Interface an 8 x 8 matrix keyboard to 8085 through 8279 in 2-key
lockout mode and write an assembly language program to read keycode of the
pressed key. The external clock frequency is 2MHz. Use I/0 mapped I/0
technique. (Dont use any Interrupts)

HARDWARE FOR 8 x 8 MATRIX KEYBOARD INTERFACE

S e PP
Cy Uy RL, = I - I I e e
L, P]
R A o
T 2 2 2 e e e
N —q RLg P 7 F
RESET OUT=———s RESET ALy %’d J};«‘ ;’nf E‘i‘:uf‘ %’qr ;_;’ur ;nf }?
CEK OUT CLK RL, VRSIR S :;ar 4 J>_(ur ;&r }f‘s‘
ToRST 7.5 =—]INT 8279
A g: - E
2—
S 2
'h'-h

3

2

b]

¢7ﬁ?

1

Flg,—rlntarfacing of 8« 8 matrix keyboard in interrupt driven keyboard mode

SOFTWARE FOR 8 x 8 MATRIX KEYBOARD INTERFACE

O Map
Data/Control Register ! Address lines Address
A A As A | AL A AL A |
Data Register 1 0 0 0 0 0 0 0 1I__“ 80 H
Control Re;g.imer 1 0 0 0 G 1:!_“ 0 1 | Bi_H

SOFTWARE FOR 8 x 8 MATRIX KEYBOARD INTERFACE

The three steps needed to write the software are:
Step 1: Find keyboard/display command word.

0 0 0 D D K K K
| |
0 |l 0 0 | X '! x | o 0 0 | =004
Step 2: Find program clock command word
F P P =] P

GEI!1|1EI‘IC' = 34H

Step 3: Find Read FIFO/sensor RAM command word.

Al A A A

o | 1

0 0 X 0 0 0 = 40H

Source program:

MVI A, 00H
OUT 81H
MVI A, 34H
OUT 81H
BACK: IN 81H
ANI O7H
JZ BACK
RAM
MVI A, 40H
OUT 81H
IN 80H
HLT

FLOWCHART

Start

: Initialize keyboard/display
: in encoded scan keyboard-2 keylockout mode

: Initialize prescaler count
: Read FIFO status word
: Mask bit B3 to B7
: If 0, key is not pressed wait for key press else read FIFO

: Initialize 8279 in read

: FI FO RAM mode
! Read FIFO RAM (keycode)
: Stop program execution.

Inetialize keyboard |
display mode of B273

I

counk

Initiglize: prescalar '

worndl

Faead FIFC status ,

na. of
Wis

characlers
inFIFD =10

Read FIFO RAM

GO

74 Statement: Interface an 8 x 8 matrix keyboard to 8085 through 8279 in 2-key
lockout mode and write an assembly language program to read keycode of the
pressed key. The external clock frequency is 2MHz. Use I/0 mapped I/0
technique.

HARDWARE FOR 8 x 8 MATRIX KEYBOARD INTERFACE(With Interrupt)
Fig. shows the interfacing of 8 x 8 matrix keyboard in interrupt driven keyboard
mode. In the interrupt driven mode interrupt line from 8279 is connected to the
one of the interrupt input of 8085 except INTR. Here, INT line from 8279 is
connected to the interrupt RST 7.5 of 8085. Other signal connections are same as
in the non interrupt mode.

¥ ol el
D00 i f: 5: 5: E: if ir ir ir
= D7 RL; -l I I I I B)
L, 2 5 3 2 A
T , 22 2 2 2 5
R ¥ A A
TRy W RL, 24 2 2 2 2 2 2 A
RESET OUT=———« RESET Rig 7 % ;’:r ?;-:r :j;’qr ;‘i ;nf ;’s‘
CEK OUT CLK AL, ;’ff ;‘d’ :;’ur D;a')};:r);-' ;’J);s'
To RST 7.5 =——— INT 8279
N by
A i S

A.ﬁ__[},_ Decoder
AA

>

WE@

3

b

7
'ﬁ"l

F|ﬂ.—r|rrtarfacing of 8« 8 matrix keyboard in interrupt driven keyboard mode

o Map
Data/Control Register ! Address lines Address
Ay Ag As Ay | Ay A AL Ay |
Data Register 1 0 0 0 v 0 0 0 1I__“ B0 H
Control Re;g.is'ler 1 0 0 0 G 1:'_“ 0 1 | E-i_H

SOFTWARE FOR 8 x 8 MATRIX KEYBOARD INTERFACE(With Interrupt)

The three steps needed to write the software are:
Step 1: Find keyboard/display command word.
o 0 0 D 1] K K K

I | I
ﬁ'la o | x | x| o | o | o |=o00H

Step 2: Find programpclock command word

P P P P

0

0_|

1

0

| 1 1 (] 0

= 34H

Step 3: Find Read FIFO/sensor RAM command word.

Al A A A

0

I

0 0 0 D = 40H

Source program:

HERE: JMP HERE

MVI A, OOH : Initialize keyboard/display in encoded
OouUT 81H : scan keyboard 2 key lockout mode

MVI A, 34H

OuUT 81H : Initialize prescaler count

MVI A, OBH : Load mask pattern to enable RST 7.5
SIM : mask other interrupts

EI : Enable Interrupt

: Wait for the interrupt

Interrupt Subroutine:

MVI A, 40H : Initialize 8279 in read FIFO
ourt 81H ! RAM mode

IN 80H ! Read FIFO RAM (keycode)

EI : Enable Interrupt

RET ! Return to main program

Note: In the interrupt driven keyboard, when key is pressed, key code is loaded
into FIFO RAM and interrupt is generated. This interrupt signal is used to tell CPU
that there is a keycode in the FIFO RAM. CPU then initiates read command with in

the interrupt service routine to read key code from the FIFO RAM.

FLOWCHART

1 Start I

iratialize keyboard f
display mode of 8273

t Slart)

Initialize FIFC RAM

Initialize prescaler count

Enabdhi |

{ Heturm I

mbermupl

E nable inlarup

Wait Tor the infermupt

75 Statement:
Interface an 8 x 4 matrix keyboard to 8085 through 8279.

HARDWARE FOR INTERFACING 8x4 MATRIX KEYBOARD

|
n - He
T “ EEE
Dy ? RL,
S - ¥
y F'H"'I F ;ﬂ‘ F, F
TR ——=q RD AL, ?‘ .:Eu‘ %d' .gd
OA—ed R s219 BB R
RESET OUT RESET RL; PIEPF
SLK OUT meed CLK FL F P
To RST 75 WY Sz
5,
Ay 5:
' SHIFT —-6"6-1
M e CNTL —G"b--j_'_
Ay =

=
o
Do

NOTE: As keyboard is having 8 rows and 4 columns, only 4 scan lines are required
and we can avoid external decoder to generate scan lines by selecting decoded
scan keyboard mode.

SOFTWARE FOR INTERFACING 8x4 MATRIX KEYBOARD
Source program:

MVI A, OOH : Initialize keyboard/display in encoded
OuUT 81H : scan keyboard 2 key lockout mode
MVI A, 34H
OouT 81H : Initialize prescaler count
MVI A, OBH : Load mask pattern to enable RST 7.5
SIM : mask other interrupts
EI : Enable Interrupt
HERE: JMP HERE : Wait for the interrupt
Interrupt Subroutine:
MVI A, 40H : Initialize 8279 in read FIFO
ouTt 81H ! RAM mode
IN 80H : Read FIFO RAM (keycode)
EI : Enable Interrupt

RET ! Return to main program

76 Statement:
Interface 8/7-segment digits (common cathode) to 8085 through 8279 and write

an 8085 assembly language program to display 1 to 8 on the eight seven segment
digits. External clock frequency is 3 MHz.

HARDWARE FOR EIGHT SEVEN SEGMENT DIGITS INTERFACE

Fig. shows the interfacing of eight 7-segment digits to 8085 through 8279. As
shown in the figure eight display lines (Bo-B3 and Ao-A3) are buffered with the
help of transistor and used to drive display digits. These buffered lines are
connected in parallel to all display digits. So, SI and S2 lines are decoded and
decoded lines are used for selection of one of the eight digits.

R ———o ™ 1
RESET QUT——of RESET

A
B Fa1s

CLE QLT wmeernd CLKE &,
— iy 823 % c

i

NS ; T
ﬂ: s - L s

Ay —"[3-'-‘0-‘_“-:}_

Ag—]2ros

A — -

SOFTWARE FOR EIGHT SEVEN SEGMENT DIGITS INTERFACE
To display 1 to 8 numbers on the eight 7-segment digits we have to load 7-

sgjment codes for 1 to 8 numbers in the correqundin display locations.
Mumber h s f [d c b a ':Eodcr
1 o o o0 o0 o0 1 1 o | o6
2 | o 1 0 1 1 0 1 1 58
3 | o 1 0o o0 1 1 1| 4F
~ 4 Jo 1 1 0 0o 1 1 o |68
s |0 1 1 0 1 0 1 | €D
6 0 1 1 11 1 0 1 0 |
7 o o0 o0 o0 o0 11 1]|o7|
B 0 1 1 1 1 1 1 1 | 7F

Table — 7-Segment codes for common cathode display

The three steps needed to write the software are:

Step 1: Find keyboard/display command word.
8] D K K K

o | o | o] o] o] o o | o |=oo0m

Step 2: Find program clock command word
p P P = P

u01111|1[n=3EH

Step 3: Find display RAM command word.
Al Ay Al Ay Ap

1 | o 0 1 0 0 0 0 |=g0H

Source program:

LXI B, 6200B : Initialize lookup table pointer
MVI C, O8H : Initialize counter
MVI A, OOH : Initialize keyboard/display
ouUT 8IH ! Mode
MVI A, 3EH : Initialize prescaler count
OuUT 8IH
MVI A, 90H : Initial size 8279 in write Display
OUT 8IH : RAM-mode
BACK : MOV A, M : Get the 7-segment code
OouUT 80H : Write 7-segment code in display RAM
INX H : Increment lookup table pointer
DCR C : Decrement counter
JNZ BACK : if count = 0 stop, otherwise go to back
HLT : Stop program execution
LOOK UP TABLE @
Memory Address i - Contents | Initadize lookip b
6200 ! 66 P .
P70 | 5B rhatize Kiyboaed |
Il aF Dispday mods of 8279
6203 6 |
E204 _ &D I Irefialize prescalon Count]
5205 7D]
E g 8273
6206 -."l}? rruﬂ.-‘uh'l Wil mi-;iph
5207 | F _..__.1

! Gt T segmenl code]

FLOWCHART !

Wide T segment codo
in th Chipday RAM

J

Encrpmgnl pkup Ll
e 1 i

b

I Dhezrg mhaed coinbes |

77 Statement:

Interface 4 x 4 matrix keyboard and 4 digit 7-segment display and write an
tssembly language program to read keycode of the pressed key and display same
key on :he 7 segment display.

HARDWARE FOR 4x4 MATRIX KEYBOARD & 4 DIGIT 7 SEGMENT DISPLAY
INTERFACE
Fig. shows interfacing diagram. Here, 4 scan lines are sufficient to scan matrix

keyboard and to select display digits. Hence decoded mode is used.
W

LF

[Iﬂlﬂz
- Ay
P A
L By
iy
[l Ay T
ol § Dy e [
= H
AST S5 -
RSTES
TRAP :) oo Ay
IMTR 4
= BOBES i
Vg - A E |t B lm 8 %
L m C Y O lom 2 5
Wil Q T
e g 3 5
E &
H 3
RETET
c
I RESETOUT RESET Rig
- ELROUT CLK RLy
ALy
" RETTS NT
Ry
| WALy
SHFT CHTL GNDY

Fig. == Keyboard and display int-ur'fan:ing in decoded mode using 8279
SOFTWARE FOR 4x4 MATRIX KEYBOARD & 4 DIGIT 7 SEGMENT DISPLAY

INTERFACE

The three steps needed to write the software are:

Step 1: Find keyboard/display command word.
D 1] K K K

0 0 0 0 0 0 2 1 =01H

Step 2: Find program clock command word
2 - P P g

0 0 1 1 1 0 0 1 = 3H

Step 3: Find Read FIFO RAM command word.
A Al A A A

0 1 o o X 0 0 0 = 40H

Al

Step 3: Find Write FIFO RAM command word.

Ay Ay Ay Ag

0

0 0 o | o |-=son

Source program:

MVI A, 00H
OUT 81H
MVI A, 34H
OuUT 81H
MVI A, 0BH
SIM

EI

HERE: JMP HERE

MVI A, 40H
OUT 81H
IN 80H
MVI H, 62H
MOVL, A
MVI A, 80H
OuUT 81H
MOV A, M
OUT 80H
EI

RET

FLOWCHARTS

Interrupt service routine

: Initialize keyboard/display in encoded
: scan keyboard 2 key lockout mode

: Initialize prescaler count
: Load mask pattern to enable RST 7.5
: mask other interrupts

: Enable Interrupt

: Wait for the interrupt

: Initialize 8279 in read FIFO RAM mode

: Get keycode

: Initialize memory pointer to point
: 7-Segment code
: Initialize 8279 in write display RAM mode

: Get the 7 segment code
: Write 7-segment code in display RAM

: Enable interrupt

! Return to main program

Source Program and Interrupt Service Routine

Stan

Initialize keyboard /

display mode of 8279

|

Initialize prescaler count

Enable mtermupt

Wait for the interrupt

i

Read FIFO RAM

Find 7 segment code

Write into Display RAM

{ Return }

78 Statement: Write an assembly language program to roll message '"HELL0123'
from right to left

HARDWARE FOR ROLLING HELLO123

Fig. shows the interfacing of eight 7-segment digits to 8085 through 8279. As
shown in the figure eight display lines (Bo-B3 and Ao-A3) are buffered with the
help of transistor and used to drive display digits. These buffered lines are
connected in parallel to all display digits. So, SI and S2 lines are decoded and
decoded lines are used for selection of one of the eight digits.

e

T*Yee
A—] 4, :
FO et :
¥ 'A'J

RESET OUT———] RESET

CLK OUT] CK Qf —
— mr a2y %
PyS—
Ao .
Ay—rod 5 ; B
o
e
.ﬁ.;—{:.':a_
Aq—l::z:t;.-

SOFTWARE FOR ROLLING HELLO123

To roll above message we have to load 7-segment codes for characters within the
message and it is necessary to configure 8279 in right entry mode

Character | h g { e d © b a Code
H 00t 1 1.0 1 1 0} 7eH

E lo 1 1 11 0 o 11 7om

L o 0 1 1 1 0 0 | agH

L fo o 1 1 1 0o o of 3
o 0 1 1 1 1 1 1] 3

1 o o 0 0 0 1 1 o o6H

2 o 1t 0 1 1+ o 1 1] s8BH

3 Lo 1 ¢ 0 1 1 1 1 4FH

Table = T-segment codes for given message

The three steps needed to write the software are:

Step 1: Find keyboard/display command word.
3] D

K K K
] 0] 1 0 0] 0 =10H
Step 2: Find program clock command word
= P p =]]
0 0 1 ! 1 1 1| i o |=3eH
Step 3: Find display RAM command word.
Al Al As Ay Ag
i | o 0 1 0 0 0 o |=90H
Clear command word.
Coy Iy Coy CF CA
1 1 0 1 0 0 0 0 = DOH

CDy-CDy = 00 (Blanking code)

Source program:

LXI B, 6200B

: Initialize lookup table pointer

BACK : MOV A M

MVI C, O8H : Initialize counter

MVI A, 10H : Initialize keyboard/display in right entry mode
OUT 8IH ! Mode

MVI A, 3EH : Initialize prescaler count

OouUT 8IH

MVI A, DOH : Clear Display

ouT 8IH

MVI A, 90H : Initialize 8279 in write display

ouT 81H ! RAM mode

: Get the 7-segment code

OuUT 80H : Write 7-segment code in display RAM
INXH : Increment lookup table pointer

DCR C : Decrement counter

JNZ BACK : if count = 0 stop, otherwise go to back
HLT : Stop program execution

LOOK UP TABLE

Memory address Contents
6200H TEH
6201H TaH
6202H 38H
G6203H 3BH
G204H - 3FH
6205H 0BH
G206H 58H
6207TH 4FH

FLOWCHART

Inftalizn lookup Whie
[A2RrEis Sri COUrSET

Inbalize Koyhodsd /
Drsgis y mods of 8279

Irshakze prescolgr Coamt

Irefahte 8375 v display
B weridin st

Gt T segmeni codip

}

Wirde 7 degment codo
in the Dhsgdary FAM

79 Statement: Write an assembly language program to your name from right to
left

HARDWARE FOR ROLLING HELLO123

Fig. shows the interfacing of eight 7-segment digits to 8085 through 8279. As
shown in the figure eight display lines (Bo-B3 and Ao-A3) are buffered with the
help of transistor and used to drive display digits. These buffered lines are

connected in parallel to all display digits. So, Sl and S2 lines are decoded and
decoded lines are used for selection of one of the eight digits

o — L
RESET QOUT———= RESET

CLK OUT o] CLK
S Y T

Aﬂ—t?s:n- c" —_—

SOFTWARE FOR ROLLING THE NAME - J.BINU

To roll the above namewe have to load 7-segment codes for characters within the
message and it is necessary to configure 8279 in right entry mode
The three steps needed to write the software are:

Step 1: Find keyboard/display command word.
D D K K K

o 0 0 1 0 0 0 0 =10H

Step 2: Find program clock command word
= P P P P
0 0 1 ! 1 1 K i 0 | =3€eH

Step 3: Find display RAM command word.
Al A As Ay Ao

1 | o 0 1 0 0 0 0 |=g0H

Clear command word.

Coy Chy Chy CF CA
1 1 0 1 0 y 0 0 = DOH
CDy-CDy = 00 (Blanking code)
Source program:
LXI B, 6200B : Initialize lookup table pointer
MVI C, O8H : Initialize counter
MVI A, 10H : Initialize keyboard/display in right entry mode
ouT 8IH : Mode
MVI A, 3EH : Initialize prescaler count
ouT 8IH
MVI A, DOH : Clear Display
ouT 8IH
MVI A, 90H : Initialize 8279 in write display
ouT 81H ! RAM mode
BACK : MOV A, M : Get the 7-segment code
OouUT 80H : Write 7-segment code in display RAM
INX H : Increment lookup table pointer
DCR C : Decrement counter
JNZ BACK : if count = 0 stop, otherwise go to back
HLT : Stop program execution
LOOK UP TABLE
Memory address Contents
6200H 1FH
6201H 80H
6202H BFH
6203H 06H
6204H BfH
6205H BEH
6208H 00H
6207H 0O0H

FLOWCHART

Seant

Infalizn okup b
Paleribds’ Ja'e] COLINAET

I KoyDoaed |
Dispday mods of BETS

Irshalee prescalor fdunt I

Irefraktd 8279 wh didplay
B widdnn et

—

I Gt T segmonl coda]

}

Wirde T segpment code
in thip Dhsgday FAM

