

8085
Microprocessor

Programs
Courtesy : www.8085projects.infoCourtesy : www.8085projects.infoCourtesy : www.8085projects.infoCourtesy : www.8085projects.info

Rachit Agrawal

07-CE-52
Kalol Institute of Technology &

Research Center

PROGRAMS FOR 8085 MICROPROCESSOR

PROGRAMS FOR LEARNERSPROGRAMS FOR LEARNERSPROGRAMS FOR LEARNERSPROGRAMS FOR LEARNERS

1. Store 8-bit data in memory
2. Exchange the contents of memory locations
3. Add two 8-bit numbers
4. Subtract two 8-bit numbers
5. Add two 16-bit numbers
6. Add contents of two memory locations
7. Subtract two 16-bit numbers.
8. Finding one's complement of a number
9. Finding Two's complement of a number
10. Pack the unpacked BCD numbers
11. Unpack a BCD number
12. Execution format of instructions
13. Right shift bit of data
14. Left Shifting of a 16-bit data
15. Alter the contents of flag register in 8085

PROGRAMS FOR BEGINNERSPROGRAMS FOR BEGINNERSPROGRAMS FOR BEGINNERSPROGRAMS FOR BEGINNERS

16. Calculate the sum of series of numbers
17. Multiply two 8-bit numbers
18. Divide a 16 bit number by a 8-bit number
19. Find the negative numbers in a block of data.
20. Find the largest of given numbers
21. Count number of one's in a number
22. Arrange in ascending order
23. Calculate the sum of series of even numbers
24. Calculate the sum of series of odd numbers
25. Find the square of given number
26. Search a byte in a given number
27. Add two decimal numbers of 6 digit each
28. Add each element of array with the elements of another array
29. Separate even numbers from given numbers
30. Transfer contents to overlapping memory blocks

PROGRAMS FOR TRAINEESPROGRAMS FOR TRAINEESPROGRAMS FOR TRAINEESPROGRAMS FOR TRAINEES

31. Add parity bit to 7-bit ASCII characters
32. Find the number of negative, zero and positive numbers
33. Inserting string in a given array of characters
34. Deleting string in a given array of characters
35. Multiply two eight bit numbers with shift and add method
36. Divide 16-bit number with 8-bit number using shifting technique
37. Sub routine to perform the task of DAA
38. Program to test RAM
39. Program to generate fibonacci number
40. Generate a delay of 0.4 seconds
41. Arrange in DESCENDING Order
42. Data transfer from one memory block to other memory block.
43. Find the factorial of a number
44. Find the Square Root of a given number
45. Split a HEX data into two nibbles and store it

46. Add two 4-digit BCD numbers
47. Subtraction of two BCD numbers
48. Multiply two 2-digit BCD numbers

PROGRAMS FOR EXPERTSPROGRAMS FOR EXPERTSPROGRAMS FOR EXPERTSPROGRAMS FOR EXPERTS

a.PROGRAMS TO WORK WITH COUNTERS
49. Generate and display binary up counter
50. Generate and display BCD up counter with frequency 1Hz
51. Generate and display BCD down counter
52. Generate and display the contents of decimal counter
53. Debug the delay routine

b.PROGRAMS IN CODE CONVERSION
54. 2-Digit BCD to binary conversion.
55. Binary to BCD conversion
56. Find the 7-segment codes for given numbers
57. Find the ASCII character
58. ASCII to Decimal Conversion
59. HEX to Decimal conversion
60. HEX to binary conversion

c.PROGRAMS IN INTERFACING & APPLICTIONS

I. Interfacing with IC 8251(Serial Communcation/USART)
61. Output byte from SOD pin
62. Generate square wave from SOD pin
63. Receive ASCII character through SID pin
64. Transmit message using 8251
65. Receive message using 8251

II. Interfacing with IC 8255(Programmable Periperal Interface - PPI)
66. Initialize 8255
67. Blink port C bit 0 of 8255
68. Flashing of LEDs
69. Traffic Light Control
70. Stepper Motor Control
71. Keyboard interface(64-key-matrix-keyboard)
72. Seven Segment Display Interface (Eight Digits)

III. Interfacing with IC 8279 (Keyboard and Display Controller)
73. 8 x 8 Keyboard Interface(Without Interrupt signal)
74. 8 x 8 Keyboard Interface(With Interrupt signal)
75. 8 x 4 Matrix Keyboard Interface
76. Interfacing of eight 7-segment digits
77. Interfacing of 4x4 matrix keyboard and 4 digit 7 segment display
78. Roll a message - 'HELL0123'
79. Roll your NAME

1 Statement: Store the data byte 32H into memory location 4000H.

Program 1:

MVI A, 52H : Store 32H in the accumulator

STA 4000H : Copy accumulator contents at address 4000H

HLT : Terminate program execution

Program 2:

LXI H : Load HL with 4000H

MVI M : Store 32H in memory location pointed by HL register pair

(4000H)

HLT : Terminate program execution

The result of both programs will be the same. In program 1 direct addressing

instruction is used, whereas in program 2 indirect addressing instruction is used.

2 Statement: Exchange the contents of memory locations 2000H and 4000H

Program 1:

 LDA 2000H : Get the contents of memory location 2000H into accumulator

 MOV B, A : Save the contents into B register

 LDA 4000H : Get the contents of memory location 4000Hinto accumulator

 STA 2000H : Store the contents of accumulator at address 2000H

 MOV A, B : Get the saved contents back into A register

 STA 4000H : Store the contents of accumulator at address 4000H

Program 2:

 LXI H 2000H : Initialize HL register pair as a pointer to memory

location 2000H.

 LXI D 4000H : Initialize DE register pair as a pointer to memory

location 4000H.

 MOV B, M : Get the contents of memory location 2000H into B

register.

 LDAX D : Get the contents of memory location 4000H into A register.

 MOV M, A : Store the contents of A register into memory location

2000H.

 MOV A, B : Copy the contents of B register into accumulator.

 STAX D : Store the contents of A register into memory location

4000H.

 HLT : Terminate program execution.

In Program 1, direct addressing instructions are used, whereas in Program 2,

indirect addressing instructions are used.

3 Statement: Add the contents of memory locations 4000H and 4001H and place

the result in memory location 4002H.

Sample problem

 (4000H) = 14H

 (4001H) = 89H

 Result = 14H + 89H = 9DH

 Source program

 LXI H 4000H : HL points 4000H

 MOV A, M : Get first operand

 INX H : HL points 4001H

 ADD M : Add second operand

 INX H : HL points 4002H

 MOV M, A : Store result at 4002H

 HLT : Terminate program execution

FLOWCHART

4 Statement: Subtract the contents of memory location 4001H from the memory

location 2000H and place the result in memory location 4002H.

Program - 4: Subtract two 8-bit numbers

Sample problem:

(4000H) = 51H

(4001H) = 19H

Result = 51H - 19H = 38H

Source program:

 LXI H, 4000H : HL points 4000H

 MOV A, M : Get first operand

 INX H : HL points 4001H

 SUB M : Subtract second operand

 INX H : HL points 4002H

 MOV M, A : Store result at 4002H.

 HLT : Terminate program execution

FLOWCHART

5 Statement: Add the 16-bit number in memory locations 4000H and 4001H to the

16-bit number in memory locations 4002H and 4003H. The most significant eight

bits of the two numbers to be added are in memory locations 4001H and 4003H.

Store the result in memory locations 4004H and 4005H with the most significant

byte in memory location 4005H

Program - 5.a: Add two 16-bit numbers - Source Program 1

Sample problem:

(4000H) = 15H

(4001H) = 1CH

(4002H) = B7H

(4003H) = 5AH

Result = 1C15 + 5AB7H = 76CCH

(4004H) = CCH

(4005H) = 76H

Source Program 1:

LHLD 4000H : Get first I6-bit number in HL

XCHG : Save first I6-bit number in DE

LHLD 4002H : Get second I6-bit number in HL

MOV A, E : Get lower byte of the first number

ADD L : Add lower byte of the second number

MOV L, A : Store result in L register

MOV A, D : Get higher byte of the first number

ADC H : Add higher byte of the second number with CARRY

MOV H, A : Store result in H register

SHLD 4004H : Store I6-bit result in memory locations 4004H and 4005H.

HLT : Terminate program execution

Program - 5b: Add two 16-bit numbers - Source Program 2

Source program 2:

LHLD 4000H : Get first I6-bit number

XCHG : Save first I6-bit number in DE

LHLD 4002H : Get second I6-bit number in HL

DAD D : Add DE and HL

SHLD 4004H : Store I6-bit result in memory locations 4004H and 4005H.

HLT : Terminate program execution

NOTE: In program 1, eight bit addition instructions are used (ADD and ADC) and

addition is performed in two steps. First lower byte addition using ADD instruction

and then higher byte addition using ADC instruction.In program 2, 16-bit addition

instruction (DAD) is used.

FLOWCHART

6 Statement: Add the contents of memory locations 40001H and 4001H and place

the result in the memory locations 4002Hand 4003H.

Sample problem:

 (4000H) = 7FH

 (400lH) = 89H

Result = 7FH + 89H = lO8H

 (4002H) = 08H

 (4003H) = 0lH

Source program:

 LXI H, 4000H :HL Points 4000H

 MOV A, M :Get first operand

 INX H :HL Points 4001H

 ADD M :Add second operand

 INX H :HL Points 4002H

 MOV M, A :Store the lower byte of result at 4002H

 MVIA, 00 :Initialize higher byte result with 00H

 ADC A :Add carry in the high byte result

 INX H :HL Points 4003H

 MOV M, A :Store the higher byte of result at 4003H

 HLT :Terminate program execution

FLOWCHART

7 Statement: Subtract the

from the 16-bit number in memory locations 4000H and 4001H. The most

significant eight bits of the two numbers are in memory locations 4001H and

4003H. Store the result in memory locations 4004H and 4005H w

significant byte in memory location 4005H.

Sample problem

(4000H) = 19H

(400IH) = 6AH

(4004H) = I5H (4003H) = 5CH

Result = 6A19H - 5C15H = OE04H

(4004H) = 04H

(4005H) = OEH

Source program:

LHLD 4000H : Get first 16

XCHG : Save first 16

LHLD 4002H : Get second 16

MOV A, E : Get lower byte of the first number

SUB L : Subtract lower byte of

MOV L, A : Store the result in L register

MOV A, D : Get higher byte of the first number

SBB H : Subtract higher byte of second number with borrow

MOV H, A : Store l6

SHLD 4004H : Store l6

HLT : Terminate program execution.

Subtract the 16-bit number in memory locations 4002H and 4003H

bit number in memory locations 4000H and 4001H. The most

significant eight bits of the two numbers are in memory locations 4001H and

4003H. Store the result in memory locations 4004H and 4005H with the most

significant byte in memory location 4005H.

(4004H) = I5H (4003H) = 5CH

5C15H = OE04H

: Get first 16-bit number in HL

: Save first 16-bit number in DE

: Get second 16-bit number in HL

: Get lower byte of the first number

: Subtract lower byte of the second number

: Store the result in L register

: Get higher byte of the first number

: Subtract higher byte of second number with borrow

: Store l6-bit result in memory locations 4004H and 4005H.

: Store l6-bit result in memory locations 4004H and 4005H.

: Terminate program execution.

FLOWCHART

bit number in memory locations 4002H and 4003H

bit number in memory locations 4000H and 4001H. The most

significant eight bits of the two numbers are in memory locations 4001H and

ith the most

: Subtract higher byte of second number with borrow

bit result in memory locations 4004H and 4005H.

bit result in memory locations 4004H and 4005H.

8 Statement: Find the l's complement of the number stored at memory location

4400H and store the complemented number at memory location 4300H.

Sample problem:

 (4400H) = 55H

 Result = (4300B) = AAB

Source program:

LDA 4400B : Get the number

CMA : Complement number

STA 4300H : Store the result

HLT : Terminate program execution

FLOWCHART

9 Statement: Find the 2's complement of the number stored at memory location

4200H and store the complemented number at memory location 4300H.

Sample problem:

 (4200H) = 55H

 Result = (4300H) = AAH + 1 = ABH

Source program:

LDA 4200H : Get the number

CMA : Complement the number

ADI, 01 H : Add one in the number

STA 4300H : Store the result

HLT : Terminate program execution

FLOWCHART

10 Statement: Pack the two unpacked BCD numbers stored in memory locations

4200H and 4201H and store result in memory location 4300H. Assume the least

significant digit is stored at 4200H.

Sample problem:

 (4200H) = 04

 (4201H) = 09

 Result = (4300H) = 94

Source program

LDA 4201H : Get the Most significant BCD digit

RLC

RLC

RLC

RLC : Adjust the position of the second digit (09 is changed to 90)

ANI FOH : Make least significant BCD digit zero

MOV C, A : store the partial result

LDA 4200H : Get the lower BCD digit

ADD C : Add lower BCD digit

STA 4300H : Store the result

HLT : Terminate program execution

NOTE:

 BCD NO.: The numbers "0 to 9" are called BCD (Binary Coded Decimal)

numbers. A decimal number 29 can be converted into BCD number by splitting

FLOWCHART

11 Statement: Two digit BCD number is stored in memory location 4200H. Unpack

the BCD number and store the two digits in memory locations 4300H and 4301H

such that memory location 4300H will have lower BCD digit.

Sample problem

 (4200H) = 58

 Result = (4300H) = 08 and

 (4301H) = 05

Source program

LDA 4200H : Get the packed BCD number

ANI FOH : Mask lower nibble

RRC

RRC

RRC

RRC : Adjust higher BCD digit as a lower digit

STA 4301H : Store the partial result

LDA 4200H : .Get the original BCD number

ANI OFH : Mask higher nibble

STA 4201H : Store the result

HLT : Terminate program execution

12 Statement:Read the program given below and state the contents of all registers

after the execution of each instruction in sequence.

Main program:

4000H LXI SP, 27FFH

4003H LXI H, 2000H

4006H LXI B, 1020H

4009H CALL SUB

400CH HLT

Subroutine program:

4100H SUB: PUSH B

4101H PUSH H

4102H LXI B, 4080H

4105H LXI H, 4090H

4108H SHLD 2200H

4109H DAD B

410CH POP H

410DH POP B

410EH RET

13 Statement:Write a program to shift an eight bit data four bits right. Assume

that data is in register C.

Source program:

 MOV A, C

 RAR

 RAR

 RAR

 RAR

 MOV C, A

 HLT

Statement:Write a program to shift a 16 bit data, 1 bit right. Assume that data is

in BC register pair.

Source program:

 MOV A, B

 RAR

 MOV B, A

 MOV A, C

 RAR

 MOV C, A

 HLT

14 Statement: Program to shift a 16-bit data 1 bit left. Assume data is in the HL

register pair.

Source program:

DAD H : Adds HL data with HL data

15 Statement: Write a set of instructions to alter the contents of flag register in

8085.

PUSH PSW : Save flags on stack

POP H : Retrieve flags in 'L'

MOV A, L : Flags in accumulator

CMA : Complement accumulator

MOV L, A : Accumulator in 'L'

PUSH H : Save on stack

POP PSW : Back to flag register

HLT :Terminate program execution

16 Statement: Calculate the sum of series of numbers. The length of the series is

in memory location 4200H and the series begins from memory location 4201H.

a. Consider the sum to be 8 bit number. So, ignore carries. Store the sum at

memory location 4300H.

b. Consider the sum to be 16 bit number. Store the sum at memory locations

4300H and 4301H.

a. Sample problem

4200H = 04H

4201H = 10H

4202H = 45H

4203H = 33H

4204H = 22H

Result = 10 +41 + 30 + 12 = H

4300H = H

Source program:

LDA 4200H

MOV C, A : Initialize counter

SUB A : sum = 0

LXI H, 420lH : Initialize pointer

BACK: ADD M : SUM = SUM + data

INX H : increment pointer

DCR C : Decrement counter

JNZ BACK : if counter 0 repeat

STA 4300H : Store sum

HLT : Terminate program execution

FLOWCHART

b. Sample problem

4200H = 04H

420lH = 9AH

4202H = 52H

4203H = 89H

4204H = 3EH

Result = 9AH + 52H + 89H + 3EH = H

4300H = B3H Lower byte

4301H = 0lH Higher byte

Source program:

 LDA 4200H

 MOV C, A : Initialize counter

 LXI H, 4201H : Initialize pointer

 SUB A :Sum low = 0

 MOV B, A : Sum high = 0

 BACK: ADD M : Sum = sum + data

 JNC SKIP

 INR B : Add carry to MSB of SUM

 SKIP: INX H : Increment pointer

 DCR C : Decrement counter

 JNZ BACK : Check if counter 0 repeat

 STA 4300H : Store lower byte

 MOV A, B

 STA 4301H : Store higher byte

 HLT :Terminate program execution

17 Statement: Multiply two 8-bit numbers stored in memory locations 2200H and

2201H by repetitive addition and store the result in memory locations 2300H and

2301H.

Sample problem:

 (2200H) = 03H

 (2201H) = B2H

 Result = B2H + B2H + B2H = 216H

 = 216H

 (2300H) = 16H

 (2301H) = 02H

Source program

 LDA 2200H

 MOV E, A

 MVI D, 00 : Get the first number in DE register pair

 LDA 2201H

 MOV C, A : Initialize counter

 LX I H, 0000 H : Result = 0

 BACK: DAD D : Result = result + first number

 DCR C : Decrement count

 JNZ BACK : If count 0 repeat

 SHLD 2300H : Store result

 HLT : Terminate program execution

FLOWCHART

18 Statement:Divide 16 bit number stored in memory locations 2200H and 2201H

by the 8 bit number stored at memory location 2202H. Store the quotient in

memory locations 2300H and 2301H and remainder in memory locations 2302H

and 2303H.

Sample problem

 (2200H) = 60H

 (2201H) = A0H

 (2202H) = l2H

 Result = A060H/12H = 8E8H Quotient and 10H remainder

 (2300H) = E8H

 (2301H) = 08H

 (2302H= 10H

 (2303H) 00H

Source program

 LHLD 2200H : Get the dividend

 LDA 2202H : Get the divisor

 MOV C, A

 LXI D, 0000H : Quotient = 0

BACK: MOV A, L

 SUB C : Subtract divisor

 MOV L, A : Save partial result

 JNC SKIP : if CY 1 jump

 DCR H : Subtract borrow of previous subtraction

SKIP: INX D : Increment quotient

 MOV A, H

 CPI, 00 : Check if dividend < divisor

 JNZ BACK : if no repeat

 MOV A, L

 CMP C

 JNC BACK

 SHLD 2302H : Store the remainder

 XCHG

 SHLD 2300H : Store the quotient

 HLT : Terminate program execution

FLOWCHART

19 Statement:Find the number of negative elements (most significant bit 1) in a

block of data. The length of the block is in memory location 2200H and the block

itself begins in memory location 2201H. Store the number of negative elements in

memory location 2300H

Sample problem

 (2200H) = 04H

 (2201H) = 56H

 (2202H) = A9H

 (2203H) = 73H

 (2204H) = 82H

Result = 02 since 2202H and 2204H contain numbers with a MSB of 1.

Source program

 LDA 2200H

 MOV C, A : Initialize count

 MVI B, 00 : Negative number = 0

 LXI H, 2201H : Initialize pointer

 BACK: MOV A, M : Get the number

 ANI 80H : Check for MSB

 JZ SKIP : If MSB = 1

 INR B : Increment negative number count

 SKIP: INX H : Increment pointer

 DCR C : Decrement count

 JNZ BACK : If count 0 repeat

 MOV A, B

 STA 2300H : Store the result

 HLT : Terminate program execution

FLOWCHART

20 Statement:Find the largest number in a block of data. The length of the block is

in memory location 2200H and the block itself starts from memory location 2201H.

Store the maximum number in memory location 2300H. Assume that the numbers

in the block are all 8 bit unsigned binary numbers.

Sample problem

 (2200H) = 04

 (2201H) = 34H

 (2202H) = A9H

 (2203H) = 78H

 (2204H) =56H

 Result = (2202H) = A9H

Source program

 LDA 2200H

 MOV C, A : Initialize counter

 XRA A : Maximum = Minimum possible value = 0

 LXI H, 2201H : Initialize pointer

 BACK: CMP M : Is number> maximum

 JNC SKIP : Yes, replace maximum

 MOV A, M

 SKIP: INX H

 DCR C

 JNZ BACK

 STA 2300H : Store maximum number

 HLT : Terminate program execution

FLOWCHART

21 Statement:Write a program to count number of l's in the contents of D register

and store the count in the B register.

 Source program:

 MVI B, 00H

 MVI C, 08H

 MOV A, D

 BACK: RAR

 JNC SKIP

 INR B

 SKIP: DCR C

 JNZ BACK

 HLT

22 Statement:Write a program to sort given 10 numbers from memory location

2200H in the ascending order.

Source program:

 MVI B, 09 : Initialize counter

 START : LXI H, 2200H: Initialize memory pointer

 MVI C, 09H : Initialize counter 2

 BACK: MOV A, M : Get the number

 INX H : Increment memory pointer

 CMP M : Compare number with next number

 JC SKIP : If less, don't interchange

 JZ SKIP : If equal, don't interchange

 MOV D, M

 MOV M, A

 DCX H

 MOV M, D

 INX H : Interchange two numbers

 SKIP:DCR C : Decrement counter 2

 JNZ BACK : If not zero, repeat

 DCR B : Decrement counter 1

 JNZ START

 HLT : Terminate program execution

FLOWCHART

23 Statement:Calculate the sum of series of even numbers from the list of

numbers. The length of the list is in memory location 2200H and the series itself

begins from memory location 2201H. Assume the sum to be 8 bit number so you

can ignore carries and store the sum at memory location 2210H.

Sample problem:

 2200H= 4H

 2201H= 20H

 2202H= l5H

 2203H= l3H

 2204H= 22H

 Result 22l0H= 20 + 22 = 42H

 = 42H

Source program:

 LDA 2200H

 MOV C, A : Initialize counter

 MVI B, 00H : sum = 0

 LXI H, 2201H : Initialize pointer

 BACK: MOV A, M : Get the number

 ANI 0lH : Mask Bit l to Bit7

 JNZ SKIP : Don't add if number is ODD

 MOV A, B : Get the sum

 ADD M : SUM = SUM + data

 MOV B, A : Store result in B register

 SKIP: INX H : increment pointer

 DCR C : Decrement counter

 JNZ BACK : if counter 0 repeat

 STA 2210H : store sum

 HLT : Terminate program execution

FLOWCHART

24 Statement:Calculate the sum of series of odd numbers from the list of numbers.

The length of the list is in memory location 2200H and the series itself begins from

memory location 2201H. Assume the sum to be 16-bit. Store the sum at memory

locations 2300H and 2301H.

Sample problem:

 2200H = 4H

 2201H= 9AH

 2202H= 52H

 2203H= 89H

 2204H= 3FH

 Result = 89H + 3FH = C8H

 2300H= H Lower byte

 2301H = H Higher byte

Source program

 LDA 2200H

 MOV C, A : Initialize counter

 LXI H, 2201H : Initialize pointer

 MVI E, 00 : Sum low = 0

 MOV D, E : Sum high = 0

 BACK: MOV A, M : Get the number

 ANI 0lH : Mask Bit 1 to Bit7

 JZ SKIP : Don't add if number is even

 MOV A, E : Get the lower byte of sum

 ADD M : Sum = sum + data

 MOV E, A : Store result in E register

 JNC SKIP

 INR D : Add carry to MSB of SUM

 SKIP: INX H : Increment pointer

FLOWCHART

25 Statement:Find the square of the given numbers from memory location 6100H

and store the result from memory location 7000H.

Source Program:

 LXI H, 6200H : Initialize lookup table pointer

 LXI D, 6100H : Initialize source memory pointer

 LXI B, 7000H : Initialize destination memory pointer

 BACK: LDAX D : Get the number

 MOV L, A : A point to the square

 MOV A, M : Get the square

 STAX B : Store the result at destination memory location

 INX D : Increment source memory pointer

 INX B : Increment destination memory pointer

 MOV A, C

 CPI 05H : Check for last number

 JNZ BACK : If not repeat

 HLT : Terminate program execution

26 Statement: Search the given byte in the list of 50 numbers stored in the

consecutive memory locations and store the address of memory location in the

memory locations 2200H and 2201H. Assume byte is in the C register and starting

address of the list is 2000H. If byte is not found store 00 at 2200H and 2201H.

Source program:

 LX I H, 2000H : Initialize memory pointer 52H

 MVI B, 52H : Initialize counter

 BACK: MOV A, M : Get the number

 CMP C : Compare with the given byte

 JZ LAST : Go last if match occurs

 INX H : Increment memory pointer

 DCR B : Decrement counter

 JNZ B : I f not zero, repeat

 LXI H, 0000H

 SHLD 2200H

 JMP END : Store 00 at 2200H and 2201H

 LAST: SHLD 2200H : Store memory address

 END: HLT : Stop

27 Statement: Two decimal numbers six digits each, are stored in BCD package

form. Each number occupies a sequence of byte in the memory. The starting

address of first number is 6000H Write an assembly language program that adds

these two numbers and stores the sum in the same format starting from memory

location 6200H.

Source Program:

 LXI H, 6000H : Initialize pointer l to first number

 LXI D, 6l00H : Initialize pointer2 to second number

 LXI B, 6200H : Initialize pointer3 to result

 STC

 CMC : Carry = 0

 BACK: LDAX D : Get the digit

 ADD M : Add two digits

 DAA : Adjust for decimal

 STAX.B : Store the result

 INX H : Increment pointer 1

 INX D : Increment pointer2

 INX B : Increment result pointer

 MOV A, L

 CPI 06H : Check for last digit

 JNZ BACK : If not last digit repeat

 HLT : Terminate program execution

FLOWCHART

28 Statement: Add 2 arrays having ten 8-bit numbers each and generate a third

array of result. It is necessary to add the first element of array 1 with the first

element of array-2 and so on. The starting addresses of array l, array2 and array3

are 2200H, 2300H and 2400H, respectively.

Source Program:

 LXI H, 2200H : Initialize memory pointer 1

 LXI B, 2300H : Initialize memory pointer 2

 LXI D, 2400H : Initialize result pointer

 BACK: LDAX B : Get the number from array 2

 ADD M : Add it with number in array 1

 STAX D : Store the addition in array 3

 INX H : Increment pointer 1

 INX B : Increment pointer2

 INX D : Increment result pointer

 MOV A, L

 CPI 0AH : Check pointer 1 for last number

 JNZ BACK : If not, repeat

 HLT : Stop

29 Statement: Write an assembly language program to separate even numbers

from the given list of 50 numbers and store them in the another list starting from

2300H. Assume starting address of 50 number list is 2200H.

Source Program:

 LXI H, 2200H : Initialize memory pointer l

 LXI D, 2300H : Initialize memory pointer2

 MVI C, 32H : Initialize counter

 BACK:MOV A, M : Get the number

 ANI 0lH : Check for even number

 JNZ SKIP : If ODD, don't store

 MOV A, M : Get the number

 STAX D : Store the number in result list

 INX D : Increment pointer 2

 SKIP: INX H : Increment pointer l

 DCR C : Decrement counter

 JNZ BACK : If not zero, repeat

 HLT : Stop

30 Statement: Write assembly language program with proper comments for the

following:

 A block of data consisting of 256 bytes is stored in memory starting at 3000H.

This block is to be shifted (relocated) in memory from 3050H onwards. Do not

shift the block or part of the block anywhere else in the memory.

Source Program:

 Two blocks (3000 - 30FF and 3050 - 314F) are overlapping. Therefore it is

necessary to transfer last byte first and first byte last.

 MVI C, FFH : Initialize counter

 LX I H, 30FFH : Initialize source memory pointer 3l4FH

 LXI D, 314FH : Initialize destination memory pointer

BACK: MOV A, M : Get byte from source memory block

 STAX D : Store byte in the destination memory block

 DCX H : Decrement source memory pointer

 DCX : Decrement destination memory pointer

 DCR C : Decrement counter

 JNZ BACK : If counter 0 repeat

 HLT : Stop execution

31 Statement: Add even parity to a string of 7-bit ASCII characters. The length of

the string is in memory location 2040H and the string itself begins in memory

location 2041H. Place even parity in the most significant bit of each character.

Source Program:

 LXI H, 2040H

 MOV C ,M : Counter for character

REPEAT:INX H : Memory pointer to character

 MOV A,M : Character in accumulator

 ORA A : ORing with itself to check parity.

 JPO PAREVEN : If odd parity place

 ORI 80H even parity in D7 (80).

PAREVEN:MOV M , A : Store converted even parity character.

 DCR C : Decrement counter.

 JNZ REPEAT : If not zero go for next character.

 HLT : Terminate program execution

32 Statement: A list of 50 numbers is stored in memory, starting at 6000H. Find

number of negative, zero and positive numbers from this list and store these

results in memory locations 7000H, 7001H, and 7002H respectively.

Source Program:

 LXI H, 6000H : Initialize memory pointer

 MVI C, 00H : Initialize number counter

 MVI B, 00H : Initialize negative number counter

 MVI E, 00H : Initialize zero number counter

BEGIN:MOV A, M : Get the number

 CPI 00H : If number = 0

 JZ ZERONUM : Goto zeronum

 ANI 80H : If MSB of number = 1i.e. if

 JNZ NEGNUM number is negative goto NEGNUM

 INR D : otherwise increment positive number counter

 JMP LAST

ZERONUM:INR E : Increment zero number counter

 JMP LAST

NEGNUM:INR B : Increment negative number counter

LAST:INX H : Increment memory pointer

 INR C : Increment number counter

 MOV A, C

 CPI 32H : If number counter = 5010 then

 JNZ BEGIN : Store otherwise check next number

 LXI H, 7000 : Initialize memory pointer.

 MOV M, B : Store negative number.

 INX H

 MOV M, E : Store zero number.

 INX H

 MOV M, D : Store positive number.

 HLT : Terminate execution

33 Statement:Write an 8085 assembly language program to insert a string of four

characters from the tenth location in the given array of 50 characters.

Solution:

 Step 1: Move bytes from location 10 till the end of array by four bytes

downwards.

 Step 2: Insert four bytes at locations 10, 11, 12 and 13.

Source Program:

 LXI H, 2l31H : Initialize pointer at the last location of array.

 LXI D, 2l35H : Initialize another pointer to point the last location of

array after insertion.

AGAIN: MOV A, M : Get the character

 STAX D : Store at the new location

 DCX D : Decrement destination pointer

 DCX H : Decrement source pointer

 MOV A, L : [check whether desired

 CPI 05H bytes are shifted or not]

 JNZ AGAIN : if not repeat the process

 INX H : adjust the memory pointer

 LXI D, 2200H : Initialize the memory pointer to point the string to be

inserted

REPE: LDAX D : Get the character

 MOV M, A : Store it in the array

 INX D : Increment source pointer

 INX H : Increment destination pointer

 MOV A, E : [Check whether the 4 bytes

 CPI 04 are inserted]

 JNZ REPE : if not repeat the process

 HLT : stop

34 Statement:Write an 8085 assembly language program to delete a string of 4

characters from the tenth location in the given array of 50 characters.

Solution: Shift bytes from location 14 till the end of array upwards by 4 characters

i.e. from location 10 onwards.

Source Program:

LXI H, 2l0DH :Initialize source memory pointer at the 14thlocation of the

array.

LXI D, 2l09H : Initialize destn memory pointer at the 10th location of the

array.

MOV A, M : Get the character

STAX D : Store character at new location

INX D : Increment destination pointer

INX H : Increment source pointer

MOV A, L : [check whether desired

CPI 32H bytes are shifted or not]

JNZ REPE : if not repeat the process

HLT : stop

35 Statement:Multiply the 8-bit unsigned number in memory location 2200H by

the 8-bit unsigned number in memory location 2201H. Store the 8 least significant

bits of the result in memory location 2300H and the 8 most significant bits in

memory location 2301H.

Sample problem:

 (2200) = 1100 (0CH)

 (2201) = 0101 (05H)

 Multiplicand = 1100 (1210)

 Multiplier = 0101 (510)

 Result = 12 x 5 = (6010)

Source program

 LXI H, 2200 : Initialize the memory pointer

 MOV E, M : Get multiplicand

 MVI D, 00H : Extend to 16-bits

 INX H : Increment memory pointer

 MOV A, M : Get multiplier

 LXI H, 0000 : Product = 0

 MVI B, 08H : Initialize counter with count 8

 MULT: DAD H : Product = product x 2

 RAL

 JNC SKIP : Is carry from multiplier 1 ?

 DAD D : Yes, Product =Product + Multiplicand

 SKIP: DCR B : Is counter = zero

 JNZ MULT : no, repeat

 SHLD 2300H : Store the result

 HLT : End of program

36 Statement:Divide the 16-bit unsigned number in memory locations 2200H and

2201H (most significant bits in 2201H) by the B-bit unsigned number in memory

location 2300H store the quotient in memory location 2400H and remainder in

2401H.

Assumption: The most significant bits of both the divisor and dividend are zero.

Source program

 MVI E, 00 : Quotient = 0

 LHLD 2200H : Get dividend

 LDA 2300 : Get divisor

 MOV B, A : Store divisor

 MVI C, 08 : Count = 8

NEXT: DAD H : Dividend = Dividend x 2

 MOV A, E

 RLC

 MOV E, A : Quotient = Quotient x 2

 MOV A, H

 SUB B : Is most significant byte of Dividend > divisor

 JC SKIP : No, go to Next step

 MOV H, A : Yes, subtract divisor

 INR E : and Quotient = Quotient + 1

SKIP:DCR C : Count = Count - 1

 JNZ NEXT : Is count =0 repeat

 MOV A, E

 STA 2401H : Store Quotient

 Mov A, H

 STA 2410H : Store remainder

 HLT : End of program.

37 Statement:Assume the DAA instruction is not present. Write a sub routine

which will perform the same task as DAA.

Sample Problem:

Execution of DAA instruction:

1. If the value of the low order four bits (03-00) in the accumulator is greater than

9 or if auxiliary carry flag is set, the instruction adds 6 '(06) to the low-order four

bits.

2. If the value of the high-order four bits (07-04) in the accumulator is greater

than 9 or if carry flag is set, the instruction adds 6(06) to the high-order four bits.

Source Program:

 LXI SP, 27FFH : Initialize stack pointer

 MOV E, A : Store the contents of accumulator

 ANI 0FH : Mask upper nibble

 CPI 0A H : Check if number is greater than 9

 JC SKIP : if no go to skip

 MOV A, E : Get the number

 ADI 06H : Add 6 in the number

 JMP SECOND : Go for second check

SKIP: PUSH PSW : Store accumulator and flag contents in stack

 POP B : Get the contents of accumulator in B register and flag

register contents in C register

 MOV A, C : Get flag register contents in accumulator

 ANI 10H : Check for bit 4

 JZ SECOND : if zero, go for second check

 MOV A, E : Get the number

 ADI 06 : Add 6 in the number

SECOND: MOV E, A : Store the contents of accumulator

 ANI FOH : Mask lower nibble

 RRC

 RRC

 RRC

 RRC : Rotate number 4 bit right

 CPI 0AH : Check if number is greater than 9

 JC SKIPl : if no go to skip 1

 MOV A, E : Get the number

 ADI 60 H : Add 60 H in the number

 JMP LAST : Go to last

SKIP1: JNC LAST : if carry flag = 0 go to last

 MOV A, E : Get the number

 ADI 60 H : Add 60 H in the number

LAST: HLT

Note: To check auxiliary carry flag it is necessary to get the flag register contents

in one of the registers and then we can check the auxiliary carry flag by checking

bit 4 of that register. To get the flag register contents in any general purpose

register we require stack operation and therefore stack pointer is initialized at the

beginning of the source program.

38 Statement:To test RAM by writing '1' and reading it back and later writing '0'

(zero) and reading it back. RAM addresses to be checked are 40FFH to 40FFH. In

case of any error, it is indicated by writing 01H at port 10H.

Source Program:

 LXI H, 4000H : Initialize memory pointer

BACK: MVI M, FFH : Writing '1' into RAM

 MOV A, M : Reading data from RAM

 CPI FFH : Check for ERROR

 JNZ ERROR : If yes go to ERROR

 INX H : Increment memory pointer

 MOV A, H

 CPI SOH : Check for last check

 JNZ BACK : If not last, repeat

 LXI H, 4000H : Initialize memory pointer

BACKl: MVI M, OOH : Writing '0' into RAM

 MOV A, M : Reading data from RAM

 CPI OOH : Check for ERROR

 INX H : Increment memory pointer

 MOV A, H

 CPI SOH : Check for last check

 JNZ BACKl : If not last, repeat

 HLT : Stop Execution

39 Statement:Write an assembly language program to generate fibonacci number.

Source Program:

 MVI D, COUNT : Initialize counter

 MVI B, 00 : Initialize variable to store previous number

 MVI C, 01 : Initialize variable to store current number

 MOV A, B :[Add two numbers]

BACK: ADD C :[Add two numbers]

 MOV B, C : Current number is now previous number

 MOV C, A : Save result as a new current number

 DCR D : Decrement count

 JNZ BACK : if count 0 go to BACK

 HLT : Stop.

40 Statement:Write a program to generate a delay of 0.4 sec if the crystal

frequency is 5 MHz.

Calculation: In 8085, the operating frequency is half of the crystal frequency,

ie.Operating frequency = 5/2 = 2.5 MHz

 Time for one T -state =

Number of T-states required =

 = 1 x 106

Source Program:

LXI B, count : 16 - bit count

BACK: DCX B : Decrement count

MOV A, C

ORA B : Logically OR Band C

JNZ BACK : If result is not zero repeat

41 Statement: Arrange an array of 8 bit unsigned no in descending order

Source Program:

 START:MVI B, 00 ; Flag = 0

 LXI H, 4150 ; Count = length of array

 MOV C, M

 DCR C ; No. of pair = count -1

 INX H ; Point to start of array

 LOOP:MOV A, M ; Get kth element

 INX H

 CMP M ; Compare to (K+1) th element

 JNC LOOP 1 ; No interchange if kth >= (k+1) th

 MOV D, M ; Interchange if out of order

 MOV M, A ;

 DCR H

 MOV M, D

 INX H

 MVI B, 01H ; Flag=1

 LOOP 1:DCR C ; count down

 JNZ LOOP ;

 DCR B ; is flag = 1?

 JZ START ; do another sort, if yes

 HLT ; If flag = 0, step execution

42 Statement: Transfer ten bytes of data from one memory to another memory

block. Source memory block starts from memory location 2200H where as

destination memory block starts from memory location 2300H.

Source Program:

 LXI H, 4150 : Initialize memory pointer

 MVI B, 08 : count for 8-bit

 MVI A, 54

 LOOP : RRC

 JC LOOP1

 MVI M, 00 : store zero it no carry

 JMP COMMON

 LOOP2: MVI M, 01 : store one if there is a carry

COMMON: INX H

 DCR B : check for carry

 JNZ LOOP

 HLT : Terminate the program

43 Statement: Program to calculate the factorial of a number between 0 to 8

Source program

 LXI SP, 27FFH ; Initialize stack pointer

 LDA 2200H ; Get the number

 CPI 02H ; Check if number is greater than 1

 JC LAST

 MVI D, 00H ; Load number as a result

 MOV E, A

 DCR A

 MOV C,A ; Load counter one less than number

 CALL FACTO ; Call subroutine FACTO

 XCHG ; Get the result in HL

 SHLD 2201H ; Store result in the memory

 JMP END

LAST: LXI H, 000lH ; Store result = 01

END: SHLD 2201H

 HLT

Subroutine Program:

FACTO:LXI H, 0000H

 MOV B, C ; Load counter

BACK: DAD D

 DCR B

 JNZ BACK ; Multiply by successive addition

 XCHG ; Store result in DE

 DCR C ; Decrement counter

 CNZ FACTO ; Call subroutine FACTO

 RET ; Return to main program

44 Statement:Write a program to find the Square Root of an 8 bit binary number.

The binary number is stored in memory location 4200H and store the square root

in 4201H.

Source Program:

 LDA 4200H : Get the given data(Y) in A register

 MOV B,A : Save the data in B register

 MVI C,02H : Call the divisor(02H) in C register

 CALL DIV : Call division subroutine to get initial value(X) in D-

reg

 REP: MOV E,D : Save the initial value in E-reg

 MOV A,B : Get the dividend(Y) in A-reg

 MOV C,D : Get the divisor(X) in C-reg

 CALL DIV : Call division subroutine to get initial value(Y/X) in D-

reg

 MOV A, D : Move Y/X in A-reg

 ADD E : Get the((Y/X) + X) in A-reg

 MVI C, 02H : Get the divisor(02H) in C-reg

 CALL DIV : Call division subroutine to get ((Y/X) + X)/2 in D-

reg.This is XNEW

 MOV A, E : Get Xin A-reg

 CMP D : Compare X and XNEW

 JNZ REP : If XNEW is not equal to X, then repeat

 STA 4201H : Save the square root in memory

 HLT : Terminate program execution

Subroutine:

 DIV: MVI D, 00H : Clear D-reg for Quotient

 NEXT:SUB C : Subtact the divisor from dividend

 INR D : Increment the quotient

 CMP C : Repeat subtraction until the

 JNC NEXT : divisor is less than dividend

 RET : Return to main program

Note: The square root can be taken y an iterative technique. First, an initial value

is assumed. Here, the initial value of square root is taken as half the value of given

number. Te new value of square root is computed by using an expression XNEW =

(X + Y/X)/2 where, X is the initial value of square root and Y is the given number.

Then, XNEW is compared wit initial value. If they are not equal then the above

process is repeated until X is equal to XNEW after taking XNEW as initial value.
(i.e., X ←XNEW)

Flowchart Main program

Flowchart subroutine

45 Statement:Write a simple program to Split a HEX data into two nibbles and

store it in memory

Source Program:

 LXI H, 4200H : Set pointer data for array

 MOV B,M : Get the data in B-reg

 MOV A,B : Copy the data to A-reg

 ANI OFH : Mask the upper nibble

 INX H : Increment address as 4201

 MOV M,A : Store the lower nibble in memory

 MOV A,B : Get the data in A-reg

 ANI FOH : Bring the upper nibble to lower nibble position

 RRC

 RRC

 RRC

 RRC

 INX H

 MOV M,A : Store the upper nibble in memory

 HLT : Terminate program execution

46 Statement: Add two 4 digit BCD numbers in HL and DE register pairs and store

result in memory locations, 2300H and 2301H. Ignore carry after 16 bit.

Sample Problem:

 (HL) =3629

 (DE) =4738

 Step 1 : 29 + 38 = 61 and auxiliary carry flag = 1

 :.add 06

 61 + 06 = 67

 Step 2 : 36 + 47 + 0 (carry of LSB) = 7D

Lower nibble of addition is greater than 9, so add 6.

 7D + 06 = 83

 Result = 8367

Source program

 MOV A, L : Get lower 2 digits of no. 1

 ADD E : Add two lower digits

 DAA : Adjust result to valid BCD

 STA 2300H : Store partial result

 MOV A, H : Get most significant 2 digits of number

 ADC D : Add two most significant digits

 DAA : Adjust result to valid BCD

 STA 2301H : Store partial result

 HLT : Terminate program execution.

47 Statement: Subtract the BCD number stored in E register from the number

stored in the D register.

Source Program:

 MVI A,99H

 SUB E : Find the 99's complement of subtrahend

 INR A : Find 100's complement of subtrahend

 ADD D : Add minuend to 100's complement of subtrahend

 DAA : Adjust for BCD

 HLT : Terminate program execution

Note: When two BCD numbers are subtracted, we can use DAA instruction for

ajusting the result to BCD. Therefore, the subtraction of BCD number is carried out

10's complement or 100's complement.

The 10's complement of a decimal number is equal to the 99's complement plus 1.

The 99's complement of a number can be found by subtracting the number from

99.

The steps for finding 100's complement BCD subtraction are :

� Find the 100's complement of subtrahend

� Add two numbers using BCD adition

48 Statement: Write an assembly language program to multiply 2 BCD numbers

Source Program:

 MVI C, Multiplier : Load BCD multiplier

 MVI B, 00 : Initialize counter

 LXI H, 0000H : Result = 0000

 MVI E, multiplicand : Load multiplicand

 MVI D, 00H : Extend to 16-bits

BACK: DAD D : Result Result + Multiplicand

 MOV A, L : Get the lower byte of the result

 ADI, 00H

 DAA : Adjust the lower byte of result to BCD.

 MOV L, A : Store the lower byte of result

 MOV A, H : Get the higher byte of the result

 ACI, 00H

 DAA : Adjust the higher byte of the result to BCD

 MOV H, A : Store the higher byte of result.

 MOV A, B : [Increment

 ADI 01H : counter

 DAA : adjust it to BCD and

 MOV B,A : store it]

 CMP C : Compare if count = multiplier

 JNZ BACK : if not equal repeat

 HLT : Stop

49 Statement:Write a program for displaying binary up counter. Counter should

count numbers from 00 to FFH and it should increment after every 0.5 sec.

Assume operating frequency of 8085 equal to 2MHz. Display routine is available.

Source Program:

 LXI SP, 27FFH : Initialize stack pointer

 MVI C, OOH : Initialize counter

BACK: CALL Display : Call display subroutine

 CALL Delay : Call delay subroutine

 INR C : Increment counter

 MOV A, C

 CPI OOH : Check counter is > FFH

 JNZ BACK : If not, repeat

 HLT : Stop

Delay Subroutine:

Delay: LXI B, count : Initialize count

 BACK: DCX D : Decrement count

 MOV A, E

 ORA D : Logically OR D and E

 JNZ BACK : If result is not 0 repeat

 RET : Return to main program

Program flowchart

Delay routine flowchart

50 Statement:Write a program for displaying BCD up counter. Counter should

count numbers from 00 to 99H and it should increment after every 1 sec. Assume

operating frequency of 8085 equal to 3MHz. Display routine is available.

Source Program:

 LXI SP, 27FFH : Initialize stack pointer

 MVI C, OOH : Initialize counter

BACK: CALL Display : Call display subroutine

 CALL Delay : Call delay subroutine

 MOV A, C

 ADI A, 0 1 : Increment counter

 DAA : Adjust it for decimal

 MOV C,A : Store count

 CPI ,00 : Check count is > 99

 JNZ BACK : If not, repeat

 HLT : Stop

Delay Subroutine:

Delay:MVI B, Multiplier-count : Initialize multiplier count

BACK 1:LXI D, Initialize Count

BACK: DCX D : Decrement count

 MOV A, E

 ORA D : Logically OR D and E

 JNZ BACK : If result is not a, repeat

 DCR B : Decrement multiplier count

 JNZ BACK 1 : If not zero, repeat

 RET : Return to main program.

Operating Frequency : 3MHz

Source program flowchart

Routine flowchart

51 Statement:Write a program for displaying BCD down counter. Counter should

count numbers from 99 to 00 and it should increment after every 1 sec. Assume

operating frequency of 8085 equal to 3MHz. Display routine is available

Source Program 1:

 LXI SP, 27FFH : Initialize stack pointer

 MVI C, 99H : Initialize counter = 99

BACK:CALL Display : Call display subroutine

 CALL Delay : Call delay subroutine

 ADI 99H : See Addition below

 DAA : Adjust for decimal

 CPI 99H : Compare with last count

 JNZ BACK :If no, repeat

 HLT

Source Program2:

 LXI SP, 27FFH : Initialize stack pointer

 MVI C, 99H : Initialize counter = 99

BACK: CALL Display : Call display subroutine

 CALL Delay : Call delay subroutine

 MOV A, C : Get count

 ANI 0FH : Check for lower nibble

 JNZ SKIP : If it is not 0FH go to skip

 MOV A,C : Else get the count

 SBI ,06 : Subtract 06

 MOV C,A : Store the count

 DCR C : Decrement count

 CPI 99H : Check it for last count

 JNZ BACK : If not, repeat

 HLT : Stop

52 Statement:Write assembly language program to with proper comments for the

following: To display decimal decrementing counter (99 to 00) at port 05 H with

delay of half seconds between .each count. Write as well the delay routine giving

delay of half seconds. Operating frequency of microprocessor is 3.072 MHz.

Neglect delay for the main program.

Source Program:

 MVI C, 99H : Initialize counter

BACK: MOV A, C

 ANI OF : Mask higher nibble

 CPI OF

 JNZ SKIP

 MOV A, C

 SUI 06 : Subtract 6 to adjust decimal count

 MOV D, A

SKIP: MOV A, C

 OUT 05 : send count on output port

 CALL Delay : Wait for 0.5 seconds

 DCR C : decrement count

 MOV A, C

 CPI FF

 JNZ BACK : If not zero, repeat

 HLT : Stop execution

Delay subroutine:

Delay: LXI D, Count

Back: DCX D : 6 T-states

 MOV A, D : 4 T-states

 ORA E : 4 T-states

 JNZ Back : 10 T-states

 RET

53 Statement:The delay routine given below is in infinite loop, identify the error

and correct the program.

Delay routine with error:

 DELAY : LXI H, N

 L1 : DCX H

 JNZ L1

Sol.: 1) The fault in the above program is at instruction JNZ L1. This condition

always evaluates to be true hence loops keep on executing and hence infinite loop.

2) Reason for infinite looping: - The instruction DCX H decrease the HL pair count

one by one but it does not affect the zero flag. So when count reaches to OOOOH

in HL pair zero flag is not affected and JNZ L1 evaluates to be true and loop

continues. Now HL again decrements below OOOOH and HL becomes FFFFH and

thus execution continues.

3) The modification in the program is as follows:

 DELAY : LXI H, N :Load 16 bit count

 L1 : DCX H : Decrement count

 MOV A, L

 ORA H : logically OR Hand L

 JNZ L1 : If result is not 0 repeat

54 Statement: Convert a 2-digit BCD number stored at memory address 2200H

into its binary equivalent number and store the result in a memory location 2300H.

Sample Problem

(2200H) = 67H

(2300H) = 6 x OAH + 7 = 3CH + 7 = 43H

Source Program:

 LDA 2200H : Get the BCD number

 MOV B, A : Save it

 ANI OFH : Mask most significant four bits

 MOV C, A : Save unpacked BCDI in C register

 MOV A, B : Get BCD again

 ANI FOH : Mask least significant four bits

 RRC : Convert most significant four bits into unpacked BCD2

 RRC

 RRC

 RRC

 MOV B, A : Save unpacked BCD2 in B register

 XRA A : Clear accumulator (sum = 0)

 MVI D, 0AH : Set D as a multiplier of 10

Sum: ADD D : Add 10 until (B) = 0

 DCR B : Decrement BCD2 by one

 JNZ SUM : Is multiplication complete? i if not, go back and add again

 ADD C : Add BCD1

 STA 2300H : Store the result

 HLT : Terminate program execution

55 Statement: Write a main program and a conversion subroutine to convert the

binary number stored at 6000H into its equivalent BCD number. Store the result

from memory location 6100H.

Sample Problem: (6000) H = 8AH

 1.8AH ? 64H (Decimal 100) :. Divide by 64H (Decimal 100)

 8AH/64H ? Quotient = 1, Remainder = 26H

 26H < 64H (Decimal 100) :. Go to step 2 and Digit 2 = 1

 2.26H ? OAH (Decimal 10) :. Divide by OAH (Decimal 10)

 26H/OAH ? Quotient = 3, Remainder = O8H

 OSH < OAH (Decimal 10) :. Go to step 3 and Digit 1 =

3

 3. Digit 0 = O8H

Source Program:

 LXI SP, 27FFH : Initialize stack pointer

 LDA 6000H : Get the binary number in accumulator

 CALL SUBROUTINE : Call subroutine

 HLT : Terminate program execution

Subroutine to convert binary number into its equivalent BCD number:

 PUSH B : Save BC register pair contents

 PUSH D : Save DE register pair contents

 MVI B, 64H : Load divisor decimal 100 in B register

 MVI C, 0AH : Load divisor decimal 10 in C register

 MVI D, 00H : Initialize Digit 1

 MVI E, 00H : Initialize Digit 2

STEP1: CMP B : Check if number < Decimal 100

 JC STEP 2 : if yes go to step 2

 SUB B : Subtract decimal 100

 INR E : update quotient

 JMP STEP 1 : go to step 1

STEP2: CMP C : Check if number < Decimal 10

 JC STEP 3 : if yes go to step 3

 SUB C : Subtract decimal 10

 INR D : Update quotient

 JMP STEP 2 : Continue division by 10

STEP3: STA 6100H : Store Digit 0

 MOV A, D : Get Digit 1

 STA 6101H : Store Digit 1

 MOV A, E : Get Digit 2

 STA 6102H : Store Digit 2

 POP D : Restore DE register pair

 POP B : Restore BC register pair

 RET : Return to main program

56 Statement: Find the 7-segment codes for given 5 numbers from memory

location 6000H and store the result from memory location 7000H.

Sample Problem: (6000) H = 8AH

Source Program

LXI H, 6200H : Initialize lookup table pointer

LXI D, 6000H : Initialize source memory pointer

LXI B, 7000H : Initialize destination memory pointer

BACK: LDAX D : Get the number

MOV L, A : A point to the 7-segment code

MOV A, M : Get the 7-segment code

STAX B : Store the result at destination memory location

INX D : Increment source memory pointer

INX B : Increment destination memory pointer

MOV A, C

CPI O5H : Check for last number

JNZ BACK : If not repeat

HLT : End of program

57 Statement: Write an assembly language program to convert the contents of the

five memory locations starting from 2000H into an ASCII character. Place the

result in another five memory locations starting from 2200H.

Sample Problem

 (2000H) = 1

 (2001H) = 2

 (2002H) = 9

 (2003H) = A

 (2004H) = B

 Result:(2200H) = 31

 (2201H) = 32

 (2202H) = 39

 (2203H) = 41

 (2204H) = 42

Source program:

 LXI SP, 27FFH : Initialize stack pointer

 LXI H, 2000H : Source memory pointer

 LXI D, 2200H : Destination memory pointer

 MVI C, O5H : Initialize the counter

BACK: MOV A, M : Get the number

 CALL ASCII : Call subroutine ASCII

 STAX D : Store result

 INX H : Increment source memory pointer

 INX D : Increment destination memory pointer

 DCR C : Decrement count by 1

 CJNZ : if not zero, repeat

 HLT : Stop program execution subroutine ASCII

ASCII: CPI, OAH : Check if number is OAR

 JNC NEXT : If yes go to next otherwise continue

 ADI 30H

 JMP LAST

NEXT: ADI 37H

LAST: RET : Return to main program

Subroutine:

Subroutine 'ASCII' converts a hexadecimal digit to ASCII.The digit is passed using

accumulator and the result is stored in accumulator.Stack starts From 27FEH to

27FDH.

Note: The ASCII Code (American Standard Code for Information Interchange) is

commonly used for communication. In such cases we need to convert binary

number to its ASCII equivalent. It is a seven bit code. In this code number 0

through 9 are represented as 30 through 39 respectively and letters A through Z

are represented as 41H through 5AH. Therefore, by adding 30H we can convert

number into its ASCII equivalent and by adding 37H we can convert letter to its

ASCII equivalent.

58 Statement: convert the ASCII number in memory to its equivalent decimal

number

Source Program:

 LXI H, 4150 : Point to data

 MOV A, M : Get operand

 SUI 30 : convert to decimal

 CPI 0A : Check whether it is valid decimal number

 JC LOOP : yes, store result

 MVI A, FF : No, make result=FF

LOOP: INX H

 MOV M, A

 HLT : (A) = (4151)

Note: The ASCII Code (American Standard Code for Information Interchange) is

commonly used for communication. It is a seven bit code. In this code number 0

through 9 are represented as 30 through 39 respectively and letters A through Z

are represented as 41H through 5AH. Therefore, by subtracting 30H we can

convert an ASCII number into its decimal equivalent.

59 Statement: Convert the HEX number in memory to its equivalent decimal

number

Source Program:

 LXI H, 4150 ; Point to data

 LXI B, 0000 ; Initialize hundreds= 0, Tens=0

 MOV A, M ; Get hex data to A

LOOP: SUI 64

 JC LOOP 1

 INR B ; hundreds= hundreds+1

 JMP LOOP

LOOP 1: ADI 64 ; if subtracted extra, add it clear carry flag

LOOP 2: SUI 0A

 JC LOOP 3

 INR C ; Tens=tens+1

 JMP LOOP 2

LOOP 3: ADI 0A ; If subtracted extra, add it again

 INX H ; A = Units

 MOV M, B ; store hundreds

 MOV B, A ; Combine Tens in C &

 MOV A, C ; Units in A to form a

 RLC ; Single 8-bit number

 RLC

 RLC

 RLC

 ADD B

 INX H

 MOV M, A ; Store tens & Units

 HLT

Note: In this experiment the number is converted to its equivalent decimal

number using the following logic.

First count the number of hundreds, the number of tens & units present in that

hex number. Then add up to get the equivalent decimal number.

Converting A9 we get:

A9 /64=45 Hundreds = 01

Since 64(100 decimal) cannot be subtracted from 45 no. of hundreds = 01. Now

count tens

45/0A=3B Tens = 01

Now from 09, 0A cannot be subtracted. Hence tens = 06 the decimal equivalent of

A9 is 169.

60 Statement: Convert an 8 bit hex no to its binary form & store in memory.

Source Program:

 LXI H, 4150 : Initialize memory pointer

 MVI B, 08 : count for 8-bit

 MVI A, 54

 LOOP : RRC

 JC LOOP1

 MVI M, 00 : store zero it no carry

 JMP COMMON

 LOOP2: MVI M, 01 : store one if there is a carry

COMMON: INX H

 DCR B : check for carry

 JNZ LOOP

 HLT : Terminate the program

61 Statement: Write a program to output contents of B register LSB to MSB on the

SOD pin.

Source program:

 MVI C, 08H : Initialize count with 8

 MOV A, B

BACK: RRC : Rotate B register contents right

 MOV B, A : Save contents of register B

 JNC SKIP : If no carry skip

 MVI A, COH

 SIM : If carry, send high on SOD

 JMP NEXT

SKIP: MVI A, 40H

 SIM : If no carry, send low on SOD.

NEXT: CALL DELAY : Wait for specific time

 DCR C : Decrement count by 1

 JNZ BACK : if count = 0 Stop, if not repeat

 HLT : Stop program execution

Delay subroutine:

Delay: LXI D, Count

Back: DCX D

 MOV A, D

 ORA E

 JNZ Back

 RET

62 Statement: Write a program to output square wave of 1 kHz frequency on the

SOD pinof 8085 for 5 seconds. Operating frequency of 8085 is 2 MHz.

Source program

 LXI SP, 27FFH : Initialize stack pointer

 LXI B, 1388H : Initialize counter with count 5000.

BACK: MVI A, COH

 SIM : Send high on SOD pin

 CALL DELAY : Wait for 0.5 msec

 MVI A, 40H : Send low on SOD pin

 CALL DELAY : wait for. 5 msec

 DCX B : Decrement count by 1

 MOV A, C

 ORA B : Check if count = 0

 JNZ BACK : If not, repeat

 HLT : Stop program execution

Delay subroutine:

Delay: LXI D, Count

Back: DCX D

 MOV A, D

 ORA E

 JNZ Back

 RET

63 Statement: An ASCII character is being received on SID pin of 8085. Write a

program in assembly language of 8085 to assemble this character and store it in

memory. Write comment for each instruction.

Source program:

 LXI SP, 27FFH

 LXI H, 2000H : Memory pointer

 RIM : Read SID

 ANI 80H : Check D7 bit of Accumulator

 CALL Delay : 1/2 bit time delay for stop bit

 MVI B, 08H : Initialize bit counter

 MVI D, 00H : Clear data register

 UP1: ALL Delay : 1 bit time

 RIM : Read SID line

 ANI 80H : Mask bits B6 - Bo

 ORA D : OR data bit with previous bits

 RRC

 MOV D, A : Store data bit at appropriate position

 DCR B

 JNZ UP1

 RLC : Shift left to correct result

 MOV M, A : Store result

 RIM : Read stop bit

 ANI 8OH

 CZ error : If not stop bit call error

 HLT : Terminate program.

Delay subroutine:

Delay: LXI D, Count

Back: DCX D

 MOV A, D

 ORA E

 JNZ Back

 RET

64 Statement: Write a assembly program to transmit a message from an 8085 to a

CRT terminal for the following requirements and draw the interfacing diagram.

 i) A message of 50 characters is stored as ASCII characters (without parity) in

memory locations starting at 2200H.

 ii) Baud rate x 16

 iii) Stop bits 2

Solution Description:

• CRT terminal uses normal RS 232C standard serial communication interface.

Therefore, to transmit data to CRT it is necessary to have RS 232C interface

at the sending end.

• Fig. shows the interfacing of 8251 with RS 232C to 8085.

• As shown in the Fig. three RS-232C signals (TxD, RxD are Ground) are used

for serial communication between the CRT terminal and the 8085 system.

• Line drivers and receivers are used to transfer logic levels from TTL logic to

RS-232C logic.

• For RS-232C the voltage level +3V to +15V is defined as logic 0 and voltage

level from -3V to -15V is defined as logic 1.

• The line driver, MC 1488, converts logic 1 of TIL to approximately -9V and

logic a of TIL to approximately +9V. These levels at the receiving end are

again converted by the line receiver, MC1489, into TTL compatible logic.

Source program:

 LXI H, 2200H : Initialize memory pointer to pointer the message

 MVI C, 32H : Initialize counter to send 50 characters

 MVI A, 00H

 OUT FFH

 OUT FFH : Dummy mode word

 OUT FFH

 MVI A, 40H : Reset command word

 OUT FFH : Reset 8251A

 MVI A, CAH : Mode word initialization

 OUT FFH

 MVI A, 11H : Command word initialization

 OUT FFH

CHECK: IN FFH

 ANI 0lH : Check TxRDY

 JZ CHECK : Is TxRDY I? if not, check again

 MOV A, M : Get the character in accumulator

 OUT FEH : Send character to the transmitter

 INX H : Increment memory pointer

 DCR C : Decrement counter

 JNZ CHECK : if not zero, send next character

 HLT : Stop program execution

65 Statement: Write a assembly program to receive 25 bytes from an CRT terminal

to 8085 for the following requirements.

 i) Baud rate x 16

 ii) Stop bits 2

Note: Reading of status word is necessary for checking the status of RxD line of

8085 that whether receiver is ready to give data or not.

Source program:

 LXI H, 2300 H : Initialize memory pointer

 MVI C, FFH : Initialize counter to accept 25 characters

 MVI A, 00H

 OUT FFH

 OUT FFH : Dummy mode word

 OUT FFH

 MVI A, 40H : Reset command word

 OUT FFH : Reset 8251 A

 MVI A, CAH : Mode word initialization

 OUT FFH

 MVI A, 14 H : Command word initialization

 OUT FFH

CHECK: IN FFH

 ANI 02 H : Check RxRDY

 JZ CHECK : Is RxRDY ? If not, check again

 IN FEH : Get the character

 MOV M, A : save the character

 INX H : Increment memory pointer

 DCR C : Decrement memory pointer

 OUT FEH : Send character to the transmitter

 JNZ CHECK : If not zero, accept next character

 HLT : Stop program execution

66 Statement:

Write a program to initialize 8255 in the configuration given below

Sample 1:

 Write a program to initialize 8255 in the configuration given below:

 1. Port A: Simple input

 2. Port B: Simple output

 3. Port CL: Output

 4. Port Cu: Input

 Assume address of the control word register of 8255 as 83H.

Solution:

SOURCE PROGRAM 1:

 MVI A, 98H : Load control word

 OUT 83H : Send control word

Sample 2:

 Write a program to initialize 8255 in the configuration given below:

 1. Port A: Output with handshake

 2. Port B: Input with handshake

 3. Port CL: Output

 4. Port Cu: Input

 Assume address of the control word register of 8255 as 23H.

Solution:

SOURCE PROGRAM 2:

 MVI A, AEH : Load control word

 OUT 23H : Send control word

67 Statement: Write a program to blink Port C bit 0 of the 8255. Assume address

of control word register of 8255 as 83H. Use Bit Set/Reset mode.

Source program:

BACK: MVI A, 0lH : Load bit pattern to make PCο high

 OUT 83H : Send it to control word register

 CALL DELAY : Call Delay subroutine

 MVI A, 00H : Load bit pattern to make PCο Low

 OUT 83H : Send it to control word register

 CALL Delay : Call Delay subroutine

 JMP BACK : Repeat

Delay subroutine:

Delay: LXI D, Count

Back: DCX D

 MOV A, D

 ORA E

 JNZ Back

 RET

68 Statement: Design a system (both Software and Hardware) that will cause 4

LEDs to flash 10 times when a push button switch is pressed. Use 8255. Assume

persistence of vision to be 0.1 seconds.

Source program:

 LXI SP, 2000 H : Initialize stack pointer

 MVI A, 90H

 OUT CR : Initialize 8255

BACK: IN PA : [Read status

 ANI 01 : of push

 JNZ BACK : button]

 MVI B, 0AH : Initialize counter

AGAIN: MVI A, 00H : Load data to light LEDs

 OUT PC : Send data on port C

 CALL Delay : Call. Delay of 0.1 sec

 MVI A, FFH : Load data to switch off LEDs

 OUT PC : Send data on port C

 CALL Delay : Call Delay of 0.1 sec

 DCR B : Decrement count

 JNZ AGAIN : If not zero repeat

 JMP BACK : Jump back to read status

Delay subroutine:

Delay: LXI D, Count

Back: DCX D

 MOV A, D

 ORA E

 JNZ Back

 RET

69 Statement: Design a microprocessor system to control traffic lights. The traffic

light arrangement is as shown in Fig. The traffic should be controlled in the

following manner.

1) Allow traffic from W to E and E to W transition for 20 seconds. 2) Give

transition period of 5 seconds (Yellow bulbs ON) 3) Allow traffic from N to 5 and 5

to N for 20 seconds 4) Give transition period of 5 seconds (Yellow bulbs ON) 5)

Repeat the process.

HARDWARE FOR TRAFFIC LIGHT CONTROL

Fig. shows the interfacing diagram to control 12

electric bulbs. Port A is used to control lights on N-S road and Port B is used to

control lights on W-E road. Actual pin connections are listed in Table 1 below.

The electric bulbs are controlled by relays.

The 8255 pins are used to control relay on-off action with the help of relay driver

circuits. The driver circuit includes 12 transistors to drive 12 relays. Fig. also

shows the interfacing of 8255 to the system.

INTERFACING DIAGRAM

SOFTWARE FOR TRAFFIC LIGHT CONTROL

Source program:

 MVI A, 80H : Initialize 8255, port A and port B

 OUT 83H (CR) : in output mode

START: MVI A, 09H

 OUT 80H (PA) : Send data on PA to glow R1 and R2

 MVI A, 24H

 OUT 81H (PB) : Send data on PB to glow G3 and G4

 MVI C, 28H : Load multiplier count (40ıο) for delay

 CALL DELAY : Call delay subroutine

 MVI A, 12H

 OUT (81H) PA : Send data on Port A to glow Y1 and Y2

 OUT (81H) PB : Send data on port B to glow Y3 and Y4

 MVI C, 0AH : Load multiplier count (10ıο) for delay

CALL: DELAY : Call delay subroutine

 MVI A, 24H

 OUT (80H) PA : Send data on port A to glow G1 and G2

 MVI A, 09H

 OUT (81H) PB : Send data on port B to glow R3 and R4

 MVI C, 28H : Load multiplier count (40ıο) for delay

 CALL DELAY : Call delay subroutine

 MVI A, 12H

 OUT PA : Send data on port A to glow Y1 and Y2

 OUT PB : Send data on port B to glow Y3 and Y4

 MVI C, 0AH : Load multiplier count (10ıο) for delay

 CALL DELAY : Call delay subroutine

 JMP START

Delay Subroutine:

DELAY: LXI D, Count : Load count to give 0.5 sec delay

BACK: DCX D : Decrement counter

 MOV A, D

 ORA E : Check whether count is 0

 JNZ BACK : If not zero, repeat

 DCR C : Check if multiplier zero, otherwise repeat

 JNZ DELAY

 RET : Return to main program

70 Statement: Interface a Stepper Motor to the 8085 microprocessor system and

write an 8085 assembly language program to control the Stepper Motor.

HARDWARE FOR STEPPER MOTOR CONTROL

A stepper motor is a digital motor. It can be driven by digital signal. Fig. shows the

typical 2 phase motor rated 12V /0.67 A/ph interfaced with the 8085

microprocessor system using 8255. Motor shown in the circuit has two phases,

with center-tap winding. The center taps of these windings are connected to the

12V supply. Due to this, motor can be excited by grounding four terminals of the

two windings. Motor can be rotated in steps by giving proper excitation sequence

to these windings. The lower nibble of port A of the 8255 is used to generate

excitation signals in the proper sequence. These excitation signals are buffered

using driver transistors. The transistors are selected such that they can source

rated current for the windings. Motor is rotated by 1.80 per excitation.

INTERFACING SCHEME

SOFTWARE FOR STEPPER MOTOR CONTROL

As port A is used as an output port, control word for 8255 is 80H.

Stepper Motor Control Program:

 6000H Excite code DB 03H, 06H,

 09H, OCH : This is the code sequence for clockwise

rotation

Subroutine to rotate a stepper motor clockwise by 360° - Set the counts:

 MVI C, 32H : Set repetition count to 50ıο

START: MVI B, 04H : Counts excitation sequence

 LXI H, 6000H : Initialize pointer

BACK1: MOV A, M : Get the Excite code

 OUT PORTA : Send Excite code

 CALL DELAY : Wait

 INX H : Increment pointer

 DCR B : Repeat 4 times

 JNZ BACK l

 DCR C

 JNZ START : Repeat 50 times

 RET

Delay subroutine:

Delay: LXI D, Count

Back: DCX D

 MOV A, D

 ORA E

 JNZ Back

 RET

71 Statement: Interface a 64-key matrix keyboard to the 8085 microprocessor

using 8255. Write an 8085 assembly language program to initialize 8255 and to

read the key code.

HARDWARE FOR MATRIX KEYBOARD INTERFACE

Fig. shows a matrix keyboard with 64 keys connected to the 8085 microprocessor

using 8255. A matrix keyboard reduces the number of connections, thus the

number of interfacing lines. In this example, the keyboard with 64 keys, is

arranged in 8 x 8 (8 rows and 8 columns) matrix. This requires sixteen lines from

the microprocessor to make all the connections instead of 64 lines if the keys are

connected individually. The interfacing of matrix keyboard requires two ports: one

input port and other output port. Rows are connected to the input port, port A and

columns are connected to the output port, port B.

INTERFACING SCHEME

SOFTWARE FOR MATRIX KEYBOARD INTERFACE

Source program

 MVI A, 90H : Initialize Port A as input and

 OUT CR : Port B as Output

START: MVI A, 00 : Make all scan lines zero

 OUT PB

BACK: IN PA

 CPI FF : Check for key release

 JNZ BACK : If not, wait for key release

 CALL DELAY : Wait for key debounce

BACK 1: IN PA

 CPI FF : Check for key press

 JZ BACK 1 : If not, wait for key press

 CALL DELAY : Wait for key debounce

 MVI L, 00H : Initialize key counter

 MVI C, 08H

 MVI B, FEH : Make one column low

NEXTCOL: MOV A, B

 OUT PB

 MVI D, 08H : Initialize row counter

 IN PA : Read return line status

NEXTROW: RRC : Check for one row

 JNC DISPLAY : If zero, goto display else continue

 INR L : Increment key counter

 DCR D : Decrement row counter

 JNZ NEXTROW : Check for next row

 MOV A, B

 RLC : Select the next column

 MOV B, A

 DCR C : Decrement column count

 JNZ NEXTCOL : Check for last column if not repeat

 JMP START : Go to start

Delay subroutine:

Delay: LXI D, Count

Back: DCX D

 MOV A, D

 ORA E

 JNZ Back

 RET

72 Statement: Interface an 8-digit 7 segment LED display using 8255 to the 8085

microprocessor system and write an 8085 assembly language routine to display

message on the display.

HARDWARE FOR EIGHT DIGIT SEVEN SEGMENT DISPLAY INTERFACE

Fig. shows the multiplexed eight 7-segment display connected in the 8085 system

using 8255. In this circuit port A and port B are used as simple latched output

ports. Port A provides the segment data inputs to the display and port B provides a

means of selecting a display position at a time for multiplexing the displays. A0-A7

lines are used to decode the addresses for 8255. For this circuit different

addresses are:

 PA = 00H PB = 01H

 PC = 02H CR = 03H.

The register values are chosen in Fig. such that the segment current is 80 mA. This

current is required to produce an average of 10 mA per segment as the displays

are multiplexed. In this type of display system, only one of the eight display

position is 'ON' at any given instant. Only one digit is selected at a time by giving

low signal on the corresponding control line. Maximum anode current is 560 mA

(7-segments x 80 mA = 560 mA), but the average anode current is 70 mA.

INTERFACING SCHEME

SOFTWARE FOR EIGHT DIGIT SEVEN SEGMENT DISPLAY INTERFACE

For 8255, Port A and B are used as output ports. The control word format of 8255

according to hardware connections is:

Source program:

 SOFTWARE TO INITIALIZE 8255:

 MVI A, 80H : Load control word in AL

 OUT CR : Load control word in CR

SUBROUTINE TO DISPLAY MESSAGE ON MULTIPLEXED LED DISPLAY:

 SET UP REGISTERS FOR DISPLAY:

 MVI B, 08H : load count

 MVI C, 7FH : load select pattern

 LXI H, 6000B : starting address of message

DISPLAY MESSAGE:

DISP 1: MOV A, C : select digit

 OUT PB

 MOV A, M : get data

 OUT PA : display data

 CALL DELAY : wait for some time

DISP 1: MOV A, C

 RRC

 MOV C, A : adjust selection pattern

 INX H

 DCR B : Decrement count

 JNZ DISP 1 : repeat 8 times

 RET

Note: This "display message subroutine" must be called continuously to display

the 7-segment coded message stored in the memory from address 6000H.

Delay subroutine:

Delay: LXI D, Count

Back: DCX D

 MOV A, D

 ORA E

 JNZ Back

 RET

73 Statement: Interface an 8 x 8 matrix keyboard to 8085 through 8279 in 2-key

lockout mode and write an assembly language program to read keycode of the

pressed key. The external clock frequency is 2MHz. Use I/O mapped I/O

technique. (Dont use any Interrupts)

HARDWARE FOR 8 x 8 MATRIX KEYBOARD INTERFACE

SOFTWARE FOR 8 x 8 MATRIX KEYBOARD INTERFACE

SOFTWARE FOR 8 x 8 MATRIX KEYBOARD INTERFACE

The three steps needed to write the software are:

 Step 1: Find keyboard/display command word.

Step 2: Find program clock command word

Step 3: Find Read FIFO/sensor RAM command word.

Source program:

 MVI A, 00H : Initialize keyboard/display

 OUT 81H : in encoded scan keyboard-2 keylockout mode

 MVI A, 34H

 OUT 81H : Initialize prescaler count

BACK: IN 81H : Read FIFO status word

 ANI 07H : Mask bit B3 to B7

 JZ BACK : If 0, key is not pressed wait for key press else read FIFO

RAM

 MVI A, 40H : Initialize 8279 in read

 OUT 81H : FI FO RAM mode

 IN 80H : Read FIFO RAM (keycode)

 HLT : Stop program execution.

FLOWCHART

74 Statement: Interface an 8 x 8 matrix keyboard to 8085 through 8279 in 2-key

lockout mode and write an assembly language program to read keycode of the

pressed key. The external clock frequency is 2MHz. Use I/O mapped I/O

technique.

HARDWARE FOR 8 x 8 MATRIX KEYBOARD INTERFACE(With Interrupt)

Fig. shows the interfacing of 8 x 8 matrix keyboard in interrupt driven keyboard

mode. In the interrupt driven mode interrupt line from 8279 is connected to the

one of the interrupt input of 8085 except INTR. Here, INT line from 8279 is

connected to the interrupt RST 7.5 of 8085. Other signal connections are same as

in the non interrupt mode.

SOFTWARE FOR 8 x 8 MATRIX KEYBOARD INTERFACE(With Interrupt)

The three steps needed to write the software are:

 Step 1: Find keyboard/display command word.

Step 2: Find program clock command word

Step 3: Find Read FIFO/sensor RAM command word.

Source program:

 MVI A, 00H : Initialize keyboard/display in encoded

 OUT 81H : scan keyboard 2 key lockout mode

 MVI A, 34H

 OUT 81H : Initialize prescaler count

 MVI A, 0BH : Load mask pattern to enable RST 7.5

 SIM : mask other interrupts

 EI : Enable Interrupt

HERE: JMP HERE : Wait for the interrupt

Interrupt Subroutine:

 MVI A, 40H : Initialize 8279 in read FIFO

 OUT 81H : RAM mode

 IN 80H : Read FIFO RAM (keycode)

 EI : Enable Interrupt

 RET : Return to main program

Note: In the interrupt driven keyboard, when key is pressed, key code is loaded

into FIFO RAM and interrupt is generated. This interrupt signal is used to tell CPU

that there is a keycode in the FIFO RAM. CPU then initiates read command with in

the interrupt service routine to read key code from the FIFO RAM.

FLOWCHART

75 Statement:

Interface an 8 x 4 matrix keyboard to 8085 through 8279.

HARDWARE FOR INTERFACING 8x4 MATRIX KEYBOARD

NOTE: As keyboard is having 8 rows and 4 columns, only 4 scan lines are required

and we can avoid external decoder to generate scan lines by selecting decoded

scan keyboard mode.

SOFTWARE FOR INTERFACING 8x4 MATRIX KEYBOARD

Source program:

 MVI A, 00H : Initialize keyboard/display in encoded

 OUT 81H : scan keyboard 2 key lockout mode

 MVI A, 34H

 OUT 81H : Initialize prescaler count

 MVI A, 0BH : Load mask pattern to enable RST 7.5

 SIM : mask other interrupts

 EI : Enable Interrupt

HERE: JMP HERE : Wait for the interrupt

Interrupt Subroutine:

 MVI A, 40H : Initialize 8279 in read FIFO

 OUT 81H : RAM mode

 IN 80H : Read FIFO RAM (keycode)

 EI : Enable Interrupt

 RET : Return to main program

76 Statement:

Interface 8/7-segment digits (common cathode) to 8085 through 8279 and write

an 8085 assembly language program to display 1 to 8 on the eight seven segment

digits. External clock frequency is 3 MHz.

HARDWARE FOR EIGHT SEVEN SEGMENT DIGITS INTERFACE

Fig. shows the interfacing of eight 7-segment digits to 8085 through 8279. As

shown in the figure eight display lines (Bo-B3 and Ao-A3) are buffered with the

help of transistor and used to drive display digits. These buffered lines are

connected in parallel to all display digits. So, Sl and S2 lines are decoded and

decoded lines are used for selection of one of the eight digits.

SOFTWARE FOR EIGHT SEVEN SEGMENT DIGITS INTERFACE

To display 1 to 8 numbers on the eight 7-segment digits we have to load 7-

segment codes for 1 to 8 numbers in the corresponding display locations.

The three steps needed to write the software are:

Step 1: Find keyboard/display command word.

Step 2: Find program clock command word

Step 3: Find display RAM command word.

Source program:

 LXI B, 6200B : Initialize lookup table pointer

 MVI C, 08H : Initialize counter

 MVI A, 00H : Initialize keyboard/display

 OUT 8IH : Mode

 MVI A, 3EH : Initialize prescaler count

 OUT 8IH

 MVI A, 90H : Initial size 8279 in write Display

 OUT 8IH : RAM-mode

BACK : MOV A, M : Get the 7-segment code

 OUT 80H : Write 7-segment code in display RAM

 INX H : Increment lookup table pointer

 DCR C : Decrement counter

 JNZ BACK : if count = 0 stop, otherwise go to back

 HLT : Stop program execution

LOOK UP TABLE

FLOWCHART

77 Statement:

Interface 4 x 4 matrix keyboard and 4 digit 7-segment display and write an

tssembly language program to read keycode of the pressed key and display same

key on :he 7 segment display.

HARDWARE FOR 4x4 MATRIX KEYBOARD & 4 DIGIT 7 SEGMENT DISPLAY

INTERFACE

Fig. shows interfacing diagram. Here, 4 scan lines are sufficient to scan matrix

keyboard and to select display digits. Hence decoded mode is used.

SOFTWARE FOR 4x4 MATRIX KEYBOARD & 4 DIGIT 7 SEGMENT DISPLAY

INTERFACE

The three steps needed to write the software are:

 Step 1: Find keyboard/display command word.

Step 2: Find program clock command word

Step 3: Find Read FIFO RAM command word.

Step 3: Find Write FIFO RAM command word.

Source program:

 MVI A, 00H : Initialize keyboard/display in encoded

 OUT 81H : scan keyboard 2 key lockout mode

 MVI A, 34H

 OUT 81H : Initialize prescaler count

 MVI A, 0BH : Load mask pattern to enable RST 7.5

 SIM : mask other interrupts

 EI : Enable Interrupt

HERE: JMP HERE : Wait for the interrupt

Interrupt service routine

 MVI A, 40H : Initialize 8279 in read FIFO RAM mode

 OUT 81H

 IN 80H : Get keycode

 MVI H, 62H : Initialize memory pointer to point

 MOV L, A : 7-Segment code

 MVI A, 80H : Initialize 8279 in write display RAM mode

 OUT 81H

 MOV A, M : Get the 7 segment code

 OUT 80H : Write 7-segment code in display RAM

 EI : Enable interrupt

 RET : Return to main program

FLOWCHARTS

Source Program and Interrupt Service Routine

78 Statement: Write an assembly language program to roll message 'HELL0123'

from right to left

HARDWARE FOR ROLLING HELLO123

Fig. shows the interfacing of eight 7-segment digits to 8085 through 8279. As

shown in the figure eight display lines (Bo-B3 and Ao-A3) are buffered with the

help of transistor and used to drive display digits. These buffered lines are

connected in parallel to all display digits. So, Sl and S2 lines are decoded and

decoded lines are used for selection of one of the eight digits.

SOFTWARE FOR ROLLING HELLO123

To roll above message we have to load 7-segment codes for characters within the

message and it is necessary to configure 8279 in right entry mode

The three steps needed to write the software are:

 Step 1: Find keyboard/display command word.

Step 2: Find program clock command word

Step 3: Find display RAM command word.

Clear command word.

Source program:

 LXI B, 6200B : Initialize lookup table pointer

 MVI C, 08H : Initialize counter

 MVI A, 10H : Initialize keyboard/display in right entry mode

 OUT 8IH : Mode

 MVI A, 3EH : Initialize prescaler count

 OUT 8IH

 MVI A, D0H : Clear Display

 OUT 8IH

 MVI A, 90H : Initialize 8279 in write display

 OUT 81H : RAM mode

BACK : MOV A, M : Get the 7-segment code

 OUT 80H : Write 7-segment code in display RAM

 INX H : Increment lookup table pointer

 DCR C : Decrement counter

 JNZ BACK : if count = 0 stop, otherwise go to back

 HLT : Stop program execution

LOOK UP TABLE

FLOWCHART

79 Statement: Write an assembly language program to your name from right to

left

HARDWARE FOR ROLLING HELLO123

Fig. shows the interfacing of eight 7-segment digits to 8085 through 8279. As

shown in the figure eight display lines (Bo-B3 and Ao-A3) are buffered with the

help of transistor and used to drive display digits. These buffered lines are

connected in parallel to all display digits. So, Sl and S2 lines are decoded and

decoded lines are used for selection of one of the eight digits

SOFTWARE FOR ROLLING THE NAME - J.BINU

To roll the above namewe have to load 7-segment codes for characters within the

message and it is necessary to configure 8279 in right entry mode

The three steps needed to write the software are:

 Step 1: Find keyboard/display command word.

Step 2: Find program clock command word

Step 3: Find display RAM command word.

Clear command word.

Source program:

 LXI B, 6200B : Initialize lookup table pointer

 MVI C, 08H : Initialize counter

 MVI A, 10H : Initialize keyboard/display in right entry mode

 OUT 8IH : Mode

 MVI A, 3EH : Initialize prescaler count

 OUT 8IH

 MVI A, D0H : Clear Display

 OUT 8IH

 MVI A, 90H : Initialize 8279 in write display

 OUT 81H : RAM mode

BACK : MOV A, M : Get the 7-segment code

 OUT 80H : Write 7-segment code in display RAM

 INX H : Increment lookup table pointer

 DCR C : Decrement counter

 JNZ BACK : if count = 0 stop, otherwise go to back

 HLT : Stop program execution

LOOK UP TABLE

FLOWCHART

