

Data Acquisition
and

Interfacing to Microprocessor

Tanvir Al Amin Popel

Student, Department of CSE, BUET

tanviralamin@gmail.com

 2

This report contains our
study about Data Acquisition
systems and details of our
idea and implementation of

the low cost solution.

We would like to thank
almighty that the project
could be finished in time.

We would like to thank our
respected teachers for their
suggestion, support and
constant help during the

project.

Thanks to Digital Lab and
personnel there for helping
us during the project.

Thanks to all other persons
and institutions, who helped
us in various ways and

Finally we would like to
thank our parents, family and
friends for their support.

 1 Introduction 3

2 Data Acquisition Systems 4

3 Project Idea 10

4 Component Specification 11

5 Circuit Diagram 13

6 Software Specification 14

7 Testing 15

8 Performance Analysis 17

9 Walkthrough 18

10 Future Works 19

Reference 19

Appendix A – Source Code 20

Table of Contents

 3

Section Introduction 1

Signal contain information about a variety of things and activities in our physical world.
Examples abound : Information about the weather is contained in signals that represent
the air temperature, pressure, wind speed etc. The voice into a microphone provides an
acoustic signal. To monitor the status of a nuclear reactor, instruments are used to
measure a multitude of relevant parameter, each instrument producing a signal.

Signal from a transducer is generally analog. They can be described in terms of
frequency spectrum.

To get information from signal, we must process it. We may use the analog signal from
transducer and amplify it and process. Or we can also use Digital Techniques. By using
microprocessor or microcontroller based technology we can offer more and more
sophisticated processing. Moreover, if we want to automate a system that need to use
signals from various source and then take some decision, we must convert it to digital.
Then we can easily save the data, display it or perform any operation using it.

In this report we discuss the technical issues of a Microprocessor based Data Acquisition
system which at first converts the analog data to digital and then interface it to a
microprocessor.

The report is organized as following :

Section 2 briefly describes Data Acquisition systems and some of their technical issues.

Section 3 introduces the idea of a project for Data Acquisition System via digital
techniques.

Section 4 enlists the components we used.

Section 5 describes the circuit.

Section 6 describes the software operation and handling of data.

Section 7 describes the testing phase of the project

Section 8 is evaluation of the project. We have done a performance analysis on it.

Section 9 is a discussion about our future thinking about this project.

Section 10 is a walkthrough.

 4

Section Data Acquisition 2
2.1 State of the Art
Digital Data acquisition means gathering signals from sources and digitizing the signal
for storage, analysis, and presentation on a personal computer (PC). There are five
components to be considered :

1)Transducers and sensors
2) Signals
3) Signal conditioning portions
4) DAQ hardware
5) Software

Figure 2.1 Data Acquisition System

2.1.1 Transducers

A transducer converts a physical phenomenon to a measurable electrical signal, such as
voltage or current. Transducers are synonymous with sensors in DAQ systems. There
are specific transducers for many different applications, such as measuring temperature,
pressure, or fluid flow.

2.1.2 Signals

The appropriate transducer converts the physical phenomena into measurable signals.
However, different signals need to be measured in different ways. For this reason, it is
important to understand the different types of signals and their corresponding attributes.

 5

Signals can be categorized into two groups:

 Analog Signals

An analog signal can be at any value with respect to time. A few examples of analog
signals include voltage, temperature, pressure, sound, and load. The three primary
characteristics of an analog signal include level, shape, and frequency (Figure 2.2).

Figure 2.2. Primary Characteristics of an Analog Signal

Level
Analog signals can take on any value, the level gives information about the measured
analog signal. The intensity of a light source, the temperature in a room, and the
pressure inside a chamber are all examples that demonstrate the importance of the level
of a signal. When measuring the level of a signal, the signal generally does not change
quickly with respect to time. The accuracy of the measurement, however, is very
important.

Shape
Several wave shapes exist - sine, square, saw tooth, and triangle.. Signals where shape
is of interest generally change rapidly with respect to time, but system accuracy is still
important. The analysis of heartbeats, video signals, sounds, vibrations, and circuit
responses are some applications involving shape measurements.

Frequency
All analog signals can be categorized by their frequency. Unlike the level or shape of the
signal, frequency cannot be directly measured. The signal must be analyzed using
software to determine the frequency information. This analysis is usually done using
Fourier Transform.

When frequency is the most important piece of information, it is important to consider
include both accuracy and acquisition speed. Although the acquisition speed for

 6

acquiring the frequency of a signal is less than the speed required for obtaining the
shape of a signal, the signal must still be acquired fast enough that the pertinent
information is not lost while the analog signal is being acquired. The condition that
stipulates this speed is known as the Nyquist Sampling Theorem. Speech analysis,
telecommunication, and earthquake analysis are some examples of common
applications where the frequency of the signal must be known.

Digital Signals

A digital signal cannot take on any value with respect to time. Instead, a digital signal
has two possible levels: high and low. Digital signals generally conform to certain
specifications that define characteristics of the signal. The useful information that
can be measured from a digital signal includes the state and the rate (Figure 2.3).

Figure 2.3. Primary Characteristics of a Digital Signal

State
Digital signals cannot take on any value with respect to time. The state of a digital signal
is essentially the level of the signal – on or off, high or low. Monitoring the state of a
switch – open or closed – is a common application showing the importance of knowing
the state of a digital signal.

Rate
The rate of a digital signal defines how the digital signal changes state with respect to
time. An example of measuring the rate of a digital signal includes determining how fast
a motor shaft spins. Unlike frequency, the rate of a digital signal measures how often a
portion of a signal occurs. A software algorithm is not required to determine the rate of a
signal.

 7

2.1.3 Signal Conditioning Portions

Sometimes transducers generate signals too difficult or too dangerous to measure
directly with a DAQ device. For instance, when dealing with high voltages, noisy
environments, extreme high and low signals, or simultaneous signal measurement,
signal conditioning is essential for an effective DAQ system. Signal conditioning
maximizes the accuracy of a system, allow sensors to operate properly, and guarantees
safety.

· Amplification
· Attenuation
· Isolation
· Bridge completion
· Simultaneous sampling
· Sensor excitation
· Multiplexing

2.1.4 DAQ Hardware

The DAQ hardware acts as the interface between the computer and the outside world. It
primarily functions as a device that digitizes incoming analog signals so that the
computer can interpret them.

2.1.5 Software

Software transforms the PC and the DAQ hardware into a complete data acquisition,
analysis, and presentation tool. Without software to control or drive the hardware, the
DAQ device will not work properly. Driver software is the layer of software that allows
easy communication to the hardware. It forms the middle layer between the application
software and the hardware.

 8

2.2 Interfacing via Parallel Port

Fig 2.4: Parallel Port

The lines in DB25 connector are divided in to three groups, they are (Figure 2.4)
 1) Data lines (data bus) (RED)
 2) Control lines (ORANGE)
 3) Status lines (BLUE)

Pin
No

Signal
name

Direction Register
– bit

Inverted

1 nStrobe Out Control-0 Yes
2 Data0 In/Out Data-0 No
3 Data1 In/Out Data-1 No
4 Data2 In/Out Data-2 No
5 Data3 In/Out Data-3 No
6 Data4 In/Out Data-4 No
7 Data5 In/Out Data-5 No
8 Data6 In/Out Data-6 No
9 Data7 In/Out Data-7 No
10 nAck In Status-6 No
11 Busy In Status-7 Yes
12 Paper-

Out
In Status-5 No

13 Select In Status-4 No
14 Linefeed Out Control-1 Yes
15 nError In Status-3 No
16 nInitialize Out Control-2 No
17 nSelect-

Printer
Out Control-3 Yes

18-
25

Ground - - -

 9

The registers found in standard parallel port are ,

 1) data register
 2) Status register
 3) Control register

In an IBM PC, these registers are IO mapped and will have unique address.

Register LPT1 LPT2

data registar(baseaddress + 0) 0x378 0x278

status register (baseaddress + 1) 0x379 0x279

control register (baseaddress + 2) 0x37a 0x27a

 10

Section Project Idea 3
Our Idea of a Data Acquisition System:
We plan about a project for Data Acquisition. Commercially high precision Analog to
Digital Converter Chips are available. We use ADC 0804 LCN to convert analog signal
to digital. ADC The ADC080X family are CMOS 8-Bit, successive approximation A/D
converters which use a modified potentiometric ladder and are designed to operate with
the 8080A control bus via three-state outputs. These converters appear to the processor
as memory locations or I/O ports, and hence no interfacing logic is required. The
differential analog voltage input has good common mode-rejection and permits offsetting
the analog zero-input voltage value. In addition, the voltage reference input can be
adjusted to allow encoding any smaller analog voltage span to the full 8 bits of resolution.

After converting the analog signal to digital we buffer it, and the digital signal is then fed
to parallel port.

For data input in parallel port we can use status and control pins.

Fig 3.1 Idea of Our Project

For upper 4 bit nibble we can use status bits and for lower 4 bit nibble we can use control
bits. In together 1 byte of data is fed each time.

In software part, we use Windows 98 operating system and Turbo C for the application
program Turbo C has some built in functions for reading and writing to ports.

 11

Section Components 4
4.1 Major Components

Name Quantity Comment

ADC 0804 LCN 1 Analog to Digital Converter CMOS IC. Must be
handled with care

Fig 4.1 : ADC 0804 Pinout

74 LS 373 1 TTL Low power Schottky 8 Bit Transparent
Latch with Input / Output enable.

Parallel port adapter 1 Used for connectivity to parallel port. Generally
attached with motherboard of a PC

 12

4.2 Discrete Components
Name Quantity Comment

10 K Resistance 3 1 Resistance used for internal pulse generator
circuit.
Rest 2 used for Obtaining +2.5V voltage.

10 uF capacitor 1 Power Supply spike capacitor

150 pF Capacitor 1 Pulse generator Circuit capacitor

4.3 Auxiliary Systems

Name Quantity Comment

MALE 25 DB Connector 1 Used for connecting the output to parallel port

Bread Board 1 Used for making the circuit.

+5 V Power Supply 1 Power supply for project

+2.5 Volt Power Supply 1 Auxiliary level shifter for input.

 13

Section Circuit Diagram 5

Fig 5.1 : The Total Circuit Diagram

This is the complete circuit diagram for the project. The ADC operates in Free Running
Mode. Output of the Latch in Connected to Parallel Port pins 10,12,13,15,17,16,14,1
respectively from MSB to LSB. 10,12,13,15 are status pins and the rest 4 are control
pins.

This circuit diagram is drawn with PSpice Capture A/D included with Orcad Family
Release 9.2

 14

Section Software 6
6.1 Software to Read from Port
For reading 1 byte we need to read both status port and control port. From status port
we get Upper Nibble of a byte. And from Control port we get the lower Nibble.

For the status port we use S6(pin 10), S5(pin12), S4(pin 13), S3(pin 15). S6 being MSB.
So we use a mask = 001111000 (bin) = 120 (dec).
Right shifting the masked value to 1 bit Left makes it the upper nibble of our result.

For control port we use C3(pin 17), C2(pin 16), C1(pin 14), C0(pin 1), where C3, C1, and
C0 are active Low. As they are tri stated before taking data we at first make all these
high, by sending 0x4 to 0x37A port.

After reading from Control port, we use a mask 0xF (=1111 in bin). We then XOR this
value by 11(dec) = 1011 (bin). As C3,C1 and C0 are inverted and C2 is non-inverted this
value is chosen to find the actual value.

int readPort()
{

int status;
 int control;
 int result_byte= 0;
 outportb(0x378+2,0x4);
 status = inportb(0x378+1);
 control = inportb(0x378+2);
 status &= 120;
 control &= 15;
 status <<= 1;
 control ^= 11;
 result_byte |= status;
 result_byte |= control;

 return result_byte;

}

6.2 Software to display Graphically
Using several Functions from Turbo C++ 3.0 BGI graphics library, we implement the
software, which shows the output like an oscilloscope. Full source code is at Appendix A

 15

Section Testing 7

The Completed project was tested with various frequency and amplitude sine wave,
square wave and triangular wave taken from function generators. The snapshots of
output during lab test of the project are given below.

Square Wave of 5 V peak to
Peak

Frequency 250 Hz

Sine Wave 5 V Peak to
Peak. (+2.5V to -2.5V)

Frequency : 300 Hz approx.

 16

Triangular wave of 7 V
Peak to Peak. As the ADC
is calibrated to measure

-2.5 V to +2.5 volt, Portions
of the wave >2.5V or <-2.5V
are clipped. Which gives it
the shape of a Trapezoidal

wave on display.

Sine wave 2.4 V Peak to
Peak.

Frequency : 200 Hz

(+1.2 V to -1.2V)

Triangular Wave 100 Hz, 5
V Peak to Peak (+2.5 V to -

2.5V)

Frequency : 150 Hz

 17

Section Performance 8

Our Data Acquisition system can successfully acquire data and display the varying
signal in the range +2.5V to -2.5 V.

Our system can successfully display signals of frequency up to 450 / 500 Hz without any
visible error. Frequency >500Hz suffer from Data loss, and distorted signal is observed.

There are several issues for the development of this project :

1) The +2.5 V to -2.5V range can be easily expanded by using resistive ladder
techniques in the input part.

2) If we use multithreaded operating system, and buffer the data in PC, frequency
range of this acquisition system will increase. Because in DOS environment, we
take a data by our software, then plot it and then again take another data. Data
loss is occurred when we are plotting one point. Because graphical functions are
time consuming. So a better idea is using multi threaded systems like Linux or
Windows XP. Then data input from port and plotting the data will be separate and
data loss will be less.

3) There are limitations for the ADC chip we used. By using a better ADC we can
increase the frequency range.

4) A pc monitor refresh rate is in the range of 60 Hz to 100 Hz. So to view high
frequency data, we need high refresh rate display.

This project was actually an educational project, and we built it experimentally. If we want
commercial quality Data Acquisition system, then we need to consider about noise
elimination, frequency range, data loss and hence design of the analog-digital part
should be more fault tolerant. The software also needs to have a better design.

 18

Section Walkthrough 9

How to Start:

Software part:

1. Double Click SCOPE.EXE to run the program.

Hardware Part:

1. Connect the circuit with power supply.

2. Connect the (+) lead of the signal source with the wire labelled "Signal"

3. Connect the (‐) lead of the signal source with the (+) point of a 2.5V DC Source

4. Connect the (‐) of the 2.5V DC source to circuit ground.

4. For free running mode, connect the wire labelled "start" to ground and then disconnect it.

5. Now the ADC has entered Free Running mode

You should now see the waveshapes in the display.

 19

Section Future Works 10

In future we plan to research on how to increase the frequency range. We also think to
improve the software. Such a Data Acquisition system can be a replacement to a costly
oscilloscope in some cases.

For high frequency, oscilloscope is the only solution, but for medium to Low frequency
such data acquisition systems are low cost solutions.

 Reference

[1] Sedra, Adel S. and Smith, Kenneth C., 2004-2005 Microelectronic Circuits.
Fifth Edition. Oxford University Press.

[2] Microprocessor Data Handbook, 2003 Edition, BPB Publications.

[3] Taub Herbert and Schilling Donald, 1977, Digital Integrated Electronics,
McGraw-Hill International Editions.

[4] ADC0801/ADC0802/ADC0803/ADC0804/ADC0805 8-Bit μP Compatible
A/D Converters Data Sheet, November 1999, National Semiconductor
Corporation

[5] National Instruments http://www.ni.com

 20

Appendix Source Code A

#include<graphics.h>
#include<stdio.h>
#include<conio.h>
#include<stdlib.h>
#include<dos.h>
#include<string.h>
#include<time.h>

/* Digital Oscilloscope Source Code. This software continuously reads values
from parallel port, and plots them graphically using Turbo C, graphics
functions.

Author : Md. Tanvir Al Amin Popel
http://popel.vze.com

For any problem, comments, and bug report : tanviralamin@gmail.com

*/

//#define SIMULATION_MODE

class ParallelPort{

 int prevData;
 int LIM ;

public:

 ParallelPort()
 {
 LIM= 128;
 prevData = rand()% LIM;
 }

 void writePort(int x)
 {

 }

 int readPort()

 {
#ifdef SIMULATION_MODE

 int x = rand() % 20;
 if(rand()%10 >= 5) x = -x;
 int temp = prevData+x;

 21

 if(temp >= LIM)temp = prevData -x;
 else if(temp <= -LIM)temp = prevData -x;
 prevData = temp;
 return temp;

 #endif

 int status;
 int control;
 int result_byte= 0;
 outportb(0x378+2,0x4);
 status = inportb(0x378+1);
 control = inportb(0x378+2);
 status &= 120;
 control &= 15;
 status <<= 1;
 control ^= 11;
 result_byte |= status;
 result_byte |= control;
 return result_byte;

 }

 ~ParallelPort()

 {

 }

};

class Oscilloscope{

 int height,width,startX ,startY;
 int screenHeight,screenWidth,penColor;
 int timeBase;
 int curPos;
 int prevPos;
 int prevX;

public:

 void setScreenPosition(int x,int y)
 {
 startX = x;
 startY = y;

 }

 22

 Oscilloscope(){

 height = 300;
 width = 600;
 startX = 20;
 startY = 100;
 int gdriver=DETECT,gmode,errorcode;
 initgraph(&gdriver, &gmode, "");
 errorcode = graphresult();

 if (errorcode != grOk) /* an error occurred */
 {
 printf("Graphics error: %s\n", grapherrormsg(errorcode));
 printf("Press any key to halt:");
 getch();
 exit(1); /* return with error code */

 }
 screenHeight = getmaxx();
 screenWidth = getmaxy();
 penColor = WHITE;
 curPos = 0;
 setfillstyle(0,0);
 timeBase= 1;

 }

 void drawWindow()
 {

 setcolor(BROWN);
 rectangle(startX,startY,startX+width,startY+height);
 bar(startX+1,startY+1,startX+width-1,startY+height-1);
 setcolor(WHITE);
 line(startX+1,startY+height/2,startX+width-1,startY+height/2);
 setcolor(GREEN);

 }

 void feedData(int x)
 {

 int newPos = startY + height/2 - x;

 if(curPos==0)

 putpixel(curPos+startX+1,newPos,penColor);

 else
 {
 line(curPos-timeBase+startX+1,prevPos,curPos+startX+1,newPos);
 }
 curPos+=timeBase;
 prevPos = newPos;

 23

 if(curPos>=width-1)
 {

 setcolor(WHITE);
 //bar(startX+1,startY+1,startX+width-1,startY+height-1);
 bar(startX+1,startY+1,startX+width-1,startY+height/2-1);
 bar(startX+1,startY+height/2+1,startX+width-
1,startY+height-1);
 line(startX+1,startY+height/2,startX+width-
1,startY+height/2);
 setcolor(GREEN);
 curPos = 0;

 }

 }

};

void drawTitle()

{
 char title1[] = "Digital Oscilloscope CSE-A1-Group 2";
 settextjustify(CENTER_TEXT,TOP_TEXT);
 setcolor(LIGHTCYAN);
 settextstyle(9,0,2);
 outtextxy(getmaxx()/2,0,title1);

}

void main()

{
 Oscilloscope osc;
 ParallelPort prt;
 osc.drawWindow();
 drawTitle();
 int y;
 clock_t nowClock,prevClock;

 while(!kbhit())

 {

 //clock1 = clock();
 y = prt.readPort();
 //y gives data in the range 0 to 255
 // but we need -128 to +127
 osc.feedData(y>>1);

 }

}

 24

