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To illuminate the function of the thousands of genes that make
up the complexity of the nervous system, it is critical to be able
to introduce and express DNA in neurons. Over the past two
decades, many gene transfer methods have been developed,
including viral vectors, liposomes and electroporation.
Although the perfect gene transfer technique for every
application has not yet been developed, recent technical
advances have facilitated the ease of neuronal gene transfer
and have increased the accessibility of these techniques to all
laboratories. In order to select a transfection method for any
particular experiment, the specific advantages and
disadvantages of each technique must be considered.
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Abbreviations
AAV adeno-associated virus
AdV adenovirus
BDNF brain-derived neurotrophic factor
CNS central nervous system
EGFP enhanced green fluorescent protein
HSV herpes simplex virus
SFV Semliki Forest virus
WPRE woodchuck hepatitis virus posttranscriptional regulatory element

Introduction
A major challenge in current neuroscience research is to
understand the functions of the thousands of brain-specific
genes involved in neural development, plasticity, physiology,
and function. To accomplish this goal, we must have access
to techniques in which gene expression can be monitored
and manipulated in healthy cells, slices, embryos, and
adult animals. Historically, transfection of postmitotic 
neurons has been labor-intensive, inefficient, unreliable,
and/or cytotoxic. This inability to express foreign proteins
in postmitotic neurons has, until the past few years, 
hampered neuroscience research. Fortunately, a large
number of diverse techniques for transferring genes into
postmitotic neurons have recently been developed and
optimized (reviewed in [1]).

It is now possible to express foreign genes in either a 
single neuron or a large population of neurons in dissociated
cultures, cultured slices, or in vivo. For basic research 
purposes, the ideal transfection method should: first, be
capable of transfecting postmitotic neurons with high 
efficiency; second, allow transfection of constructs of 

varying sizes, including cotransfection with multiple 
constructs; third, have limited cellular toxicity; and fourth,
be easy and safe to perform. Despite major advances in 
this field in the past several years, the ideal gene delivery 
system for all applications has yet to be developed. 
Thus, the specific advantages and disadvantages of each 
echnique must be considered in selecting a transfection
method for any particular experiment [2] (Table 1).

Because one ultimate goal of gene transfer lies in thera-
peutic remedies, much of the research into DNA delivery
to the nervous system is geared towards gene therapy.
However, reviewing the large and rapidly growing field 
of gene therapy is outside the scope of this review; for 
gene therapy issues, including information on the use of
lentivirus in gene transfer, the reader is referred to several
recent reviews and reports [3–9]. The objective of this
review is, instead, to present an overview of neuronal
transfection methods, to provide a few illustrative examples
of applications of these techniques, and to compare the
most common methods for their suitability for gene transfer
into postmitotic neurons in the central nervous system
(CNS; Table 1).

Recombinant virus-based technologies
Gene transfer into postmitotic neurons is a young field.
One of the first major breakthroughs in transfecting post-
mitotic neurons came in 1988 with the demonstration of
the first high-efficiency, virally mediated transfer of a 
foreign gene into neurons [10]. The increasing use of viral
vectors for the transfer of DNA to neurons is undoubtedly
due to extremely high infection efficiencies (up to 95% of
neurons) compared with non-viral methods. This superiority
of virus-based systems comes as little surprise, because
one is benefiting from what viruses have evolved to do —
insert their DNA or RNA into host cells and express it.
This basic predisposition for infection makes viruses 
relatively easy to use in both young and adult tissue and 
on such diverse preparations as dissociated cells, slices 
and in vivo. 

Because many recombinant viral vectors are replication-
incompetent, most are also relatively safe to use.
Recombinant viral vectors can be locally applied or focally
injected into a group of neurons, either in culture or in 
tissue, to produce highly localized expression of a gene of
interest. However, these advantages are counterbalanced
by some serious limitations — potential toxicity to neurons,
the effort and time to construct recombinant viral vectors,
limitations on size of the DNA expression cassette, and
potential safety hazards to laboratory personnel [1,2,11,12••,13].
There are a number of viral vectors currently being used to
transfect postmitotic neurons. These viral vectors differ in
terms of infection efficiency, expression levels, lag phase,
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Table 1

Gene transfer methods for postmitotic neurons*.

Recombinant viral vectors Non-viral transfection methods

HSV AdV AAV Vaccinia Sindbis/SFV Ca-Phos Lipofection Microinjection Biolistics
Electropora-
tion

Efficiency High Moderate for High High Highest Low Low Low Low to High
  of neuronal   neurons; high   medium
  transfection   for glia

Level of High Low High High High Moderate Moderate/ High High High
  expression   high

Onset of Hours Days Weeks Hours Hours Hours Hours Hours Hours Hours
  expression

Ratio of High Low High Low High ~1 ~1 ~1 ~1 ~1
  neuron/glia
  expression†

Targeted Yes Yes Yes Yes Yes No No Yes Possible Yes
  expression

Single neuron No No No No No No No Yes No Yes
  expression

Integration No No Yes No No No No No No No

Insert size <30kb <7.5kb <5kb <30kb 6.5kb No limit No limit No limit No limit No limit
Application:
  dissociated Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
  neurons

  slice Yes Yes Yes Yes Yes No Yes No Yes Yes
  cultures

  in vivo Yes Yes Yes Yes Yes No Yes Yes; embryos No Yes
  and oocytes

Toxicity/ cell High (less with High with high Minimal High in High after 24 hr Minimal Variable Variable damage Minimal with Minimal
  damage   amplicon-   titers   mammalian   (culture), 3–5   from cell   optimization

  based   tissue; low in   days (slices),   injection
  vectors)   Xenopus   48–72 hrs (in

  vivo)

Information included in this table is based on current published reports.  It is possible that results may vary depending on laboratory experience and, especially, the health of the neuronal
preparation. *A comparison of the most commonly used methods for gene transfer for postmitotic neurons. Please find references for each point in text. †Ratio determined using general
cytomegalovirus promoters; this could be changed by using neuron-specific promoters.
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and toxicity for the host cell or animal [12••,14,15•]
(Table 1). Thus, the choice of viral vector depends greatly
on the experimental application.

Herpes simplex virus
The first virus to be used for gene transfer was herpes 
simplex virus (HSV) [10]. Neurons are a natural host for
HSV and expression of HSV-transduced genes can last for
months to years. However, because of its cellular toxicity,
its difficulty to construct, and its high potential risk to
humans, HSV is not commonly used [1]. Recent advances
in amplicon-based HSV vectors [16], decreases in toxicity,
and increasing ease of use may allow these viruses to live
up to their early promise in the near future.

Adenovirus
Adenovirus (AdV) has historically been the most commonly
used viral vector, with applications ranging from gene
transfer in vivo, to in vitro slices and dissociated neurons
[17–20]. The first reports of recombinant AdV as an effective
gene delivery system for postmitotic neurons in vivo were
published in 1993 [21–23]. Expression begins a few days
following infection and lasts for weeks to months [11,12••].
Although this vector can transduce postmitotic neurons in
culture well [17], the success of recombinant AdV in trans-
ducing postmitotic neurons in intact tissue can be variable
[12••,17,18,20]. Furthermore, first-generation AdV is path-
ogenic at high titers, transduces glia better than neurons, 
is relatively difficult to construct, and can cause severe
immune reactions in vivo [1,2]. The new, second-generation,
helper-dependent, ‘gutless’ adenoviral vectors developed
in the past few years may alleviate these disadvantages
[15•] and recent adenoviral vectors designed with neuron-
specific, inducible promoters are especially exciting [15•,24••].

Adeno-associated virus
One of the most promising viral vectors is adeno-associated
virus (AAV) [25]. In 1994, Kaplitt et al. [26] discovered that
AAV vectors can selectively transfect neurons. AAV is the
least toxic of all viral vectors, leads to high levels of gene
expression and has the potential for site-specific integration,
leading to long-lasting gene expression. The limitations of
AAV vectors are two-fold: the recombinant protein starts to
be expressed after a delay of about two weeks post-infection
and the maximal insert size is only about 5000 nucleotides
[11,12••,13]. Recently, AAV vectors have been used to
transduce postmitotic neurons in vivo, in dissociated primary
cultures, and in cultured brain slices [12••,13,25,27,28].

Vaccinia virus
Vaccinia virus was one of the first viral vectors to be used
successfully in transducing hippocampal slice cultures at
extremely high efficiencies [29–31]. Recombinant protein
starts to be expressed from 6–16 h post-infection [1]. In
mammalian tissue, vaccinia quickly becomes highly toxic,
causing 50% of transduced neurons to die within 18 h 
following infection (R Malinow, personal communication).
However, this toxicity is not seen in non-mammalian

organisms. In Xenopus laevis, vaccinia vectors have been
used successfully to transduce tectal neurons in dissociated
cultures (H Cline, personal communication) and in vivo
(see [32,33•] for examples).

Sindbis and Semliki Forest viruses
Recently, the related RNA viruses, Sindbis and Semliki
Forest virus (SFV) have received a lot of attention
[12••,34]. These viruses are selective for neurons (depending
on the strain) and can mediate recombinant protein
expression rapidly, reliably, and to high levels [12••,34].
Relative to other viral vectors, they are less labor-intensive
thanks to commercially available kits (Invitrogen). Sindbis
and SFV have been used with great success in vivo and 
in dissociated neurons and cultured slices (see [35,36] for
examples). In particular, Sindbis has been used to successfully
transduce large numbers of hippocampal neurons in slices
and in vivo [36–38,39•,40]. 

The potential major drawback to these viruses is that they
shut off host protein synthesis within approximately 8 h of
infection, leading to neuronal toxicity and death at variable
times post-infection [1]. By carefully monitoring synaptic
transmission, membrane potential, and input resistance,
Malinow and colleagues have found that Sindbis infection
leads to significant toxicity only after 48 h (and probably
72 h) post-infection in hippocampal slices (R Malinow,
personal communication). Toxicity in dissociated neuronal
cultures arises approximately 24–48 h after infection
(J Sullivan, personal communication) and between 48 and
72 h in vivo (R Malinow, personal communication).

Non-viral transfection methods
Non-viral transfection methods comprise an eclectic mix of
chemical, physical and electrical methods for gene transfer.
Non-viral methods are advantageous for gene transfer into
postmitotic neurons because they are generally easier to
use, less toxic, and not constrained to delivering plasmids
below a relatively small size (see Table 1 for comparison
with viral techniques). However, transfection efficiencies
resulting from non-viral transfection methods are generally
considerably lower (except for electroporation) than effi-
ciencies obtained with recombinant viral vectors [1] (Table 1).

Chemical transfection methods
The first subgroup of non-viral technologies, the chemical
transfection methods, includes calcium phosphate 
coprecipitation, liposomes, non-liposomal lipids such as
Effectene (Qiagen), and high molecular weight cationic
polymers. Calcium phosphate-mediated transfection is one
of the oldest methods for gene transfer and is, along with
lipofection, one of the most commonly used gene transfer
methods for basic neuroscience applications. The physical
basis for this method is unclear, although it is believed that
the DNA-calcium phosphate coprecipitate enters the neuron
through endocytosis [1]. Although calcium phosphate
coprecipitation has not been used to transfect neurons in
intact tissue, it has been used extensively and successfully



to transfect dissociated neuronal cultures from the CNS
and peripheral nervous system of many diverse species
[41–44]. Cotransfection is also possible with calcium 
phosphate coprecipitation, leading to almost 100% cotrans-
fection, although ratios of expression vary. The major
drawback to this method is that transfection efficiencies
are highly variable but consistently low, in the range of
1–3% [1,41,42].

Despite reduced transfection efficiency compared to viruses,
gene transfer using liposomes (lipofection) has had a 
significant impact in many areas of neuroscience by virtue of
its user-friendliness and versatility. Liposomes are positively
charged lipid spheres with a diameter between 100 and
500 nm [45•]. The surface positive charges on liposomes
attract the negative charges of both DNA and neuronal sur-
faces. In general, liposomes are believed to be endocytosed
by cells, although the precise mechanisms of DNA entry into
the cell and transport to the nucleus are unknown [46]. The
charge ratio and size of the liposomal particles strongly influ-
ence the efficiency and cell specificity of endocytic uptake
[45•,46]. Most recently, Invitrogen has developed a new mix-
ture of lipids called Lipofectamine 2000, which significantly
increases the efficiency of neuronal transfection (routinely
10–25%; PRMA Gomes and AK McAllister, unpublished
data). Since the first description of lipofection in 1987 [47]
and its first use in vivo in 1990 [48], lipofection has been used
in several different applications in vitro [49–51,52•] (Figure 1)
and in vivo [53•,54]. Recent attempts to improve on the
transfection efficiency of lipofection have led to the 
discovery that anionic liposomes largely increase transfection
efficiency of oligonucleotides in neurons [55•], but it remains
to be seen whether this will be made commercially available.

Several additional methods related to lipofection can 
also be used to transfect postmitotic neurons. Effectene, a 
non-liposomal lipid produced by Qiagen, has been used to
transfect dissociated neuronal cultures specifically to
achieve low levels of protein expression [56•]. High mole-
cular weight polycationic polymers have also been used
successfully to transfect neurons [57]. Finally, immuno-
liposomes or antibody-directed liposomes can be
generated by encapsulating liposomes with antibody-
bound poly-ethylene glycol. These antibodies target the
complexes to specific cells, even across the blood–brain
barrier [58••], thus allowing brain-specific expression after
intravenous administration. The importance of this
method for gene therapy is striking and it should not be
ignored by the basic neuroscience community, because
immunoliposomes may constitute an inexpensive and less
labor-intensive alternative to producing transgenic and
knockout mice.

Physical transfection methods
The physical methods for transfection include micro-
injection and biolistics. Microinjection involves directly
injecting plasmid DNA into the nucleus of a neuron [59],
or injecting cRNA into the cytoplasm [60]. Whereas this
method is standard for transfecting oocytes, Xenopus
blastomeres (see [53•] for example), and invertebrate 
neurons, it requires considerable skill with mammalian
CNS neurons and has not become a routine approach.
Microinjection is quite labor-intensive and can be used on
only a small number of neurons at a time. However, for
applications in which only one identified neuron needs to
be transfected, this method can be used effectively and
elegantly [61•].
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Figure 1

Cis and trans cotransfection of fluorescently
tagged proteins into young dissociated
primary cortical cultures using lipofection
[52•]. This figure demonstrates cotransfection
of the same neuron with two constructs, or
neighboring neurons with distinct constructs.
Neurons were dissociated and cultured as
described [52•] and then transfected using
Lipofectamine 2000 (Gibco) at four days in
vitro. (a) Neurons were cis cotransfected with
a postsynaptic scaffolding protein
(postsynaptic density protein 95kDa
[PSD95]) linked to EGFP (PSD95–EGFP; 
in green) and an N-methyl-D-aspartate
(NMDA) receptor subunit coupled to DsRed
(NR1–DsRed; in red). Both fusion proteins
are expressed in dendrites but show distinct
subcellular distributions in young cortical
pyramidal neurons. (b) Neurons were trans
cotransfected with growth-associated protein
43 (GAP43) — an abundant protein in growth
cones — coupled to EGFP (GAP43–EGFP; 
in green) and NR1–DsRed (in red). The
NMDA receptor subunit is localized to
dendrites, where it is highly expressed in the

cell body and proximal apical dendrite, but
expressed at levels comparable to
endogenous levels in puncta in basal and
distal apical dendrites [52•]. GAP43,

transfected into a neighboring neuron out of
the illustrated field, is expressed in the axons
contacting the neuron transfected with
NR1–DsRed.



Biolistics, short for biological ballistics, involves bombarding
neurons at high velocity with DNA-coated gold particles
[62,63]. Neurons whose nuclei are penetrated by a gold
particle have a high likelihood of becoming transfected.
Transfection efficiencies are relatively low in dissociated
cultures (1–5%), but higher in cultured slices (up to several
hundred neurons per slice) [62]. Biolistics is straight-
forward and reliable but requires optimization to minimize
physical damage to cells or tissue and investment in a gene
gun (BioRad). Although biolistics has not, to date, been
successful in transfecting neurons in vivo, it is particularly
useful for transfecting neurons in a dispersed manner in
slices and primary cultures [63,64].

Electrical transfection methods
Perhaps the most promising non-viral method for trans-
fecting postmitotic neurons is electroporation. Although
the physical basis for this method is unknown, it is
believed that electric shock transiently opens pores in the
cell membrane, allowing charged molecules to enter cells
by electrophoresis [65•]. In the past, this method has been
limited by the damage caused by these electrical pulses;
however, recent advances have dramatically improved
neuronal health. Unlike the other non-viral transfection
methods, electroporation results in large numbers of
healthy, highly expressing transfected neurons. Single cells
to entire tissues can be transfected with single or multiple
constructs by varying the size of the electrodes and 
modifying the pattern of stimulation. In fact, in vivo
electroporation is now routinely used by both chick and
mouse embryologists [66–68]. Electroporation has also
been adapted to transfect dissociated neurons in culture
[69]. Perhaps most exciting, Cline and colleagues have
developed a new method to target gene transfer to single
neurons in vivo using single-cell electroporation [33•,70••].
Electroporation is also the most versatile of the non-viral
technologies; it can be used not only for gene transfer, but
also potentially to target any charged macromolecule to
neurons including dyes, drugs, antibodies, antisense
oligonucleotides, double-stranded RNAs, and bacterial or
yeast artificial chromosomes [65•].

Conclusions and future directions
Recent advances in technologies for gene transfer to post-
mitotic neurons present neuroscientists with an abundance
of methods, each with their individual advantages and 
disadvantages (Table 1). Thus, researchers must choose a
transfection technique which best serves their experimental
goals. For transfecting dissociated cultures, both viral and
non-viral approaches are options. Viruses, such as Sindbis
and SFV, transduce large numbers of neurons with
extremely high levels of expression, but take over the 
neuron’s protein synthesis machinery after 8 h [1,2,12••].
Liposomes, calcium phosphate coprecipitation, and
Effectene result in lower transfection efficiencies but can
be used to express constructs at near endogenous levels for
weeks, with the option of cotransfecting single neurons 
or synaptically coupled cells [41-43,52•,56•] (Figure 1).

Transfecting neurons in slices is optimal using either viral
vectors to transiently transduce large groups of neurons
[12••,19,24••,31,37,38,40] or biolistics to achieve a large
number of healthy, dispersed transfected neurons with
long-lasting expression [63,71]. Viruses are particularly
effective in transducing the large number of neurons 
necessary for biochemical analysis [38]. Finally, transfecting
neurons in vivo has recently become much more successful
using exciting new modifications to electroporation
[65•,70••] and viruses [15•,32,33•,,39•].

Technologies for transfecting postmitotic neurons have
vastly improved in the last five years, providing basic
researchers with many options and allowing experiments
to be performed that were, until recently, technically
impossible. The field of neuronal gene transfer for basic
research applications is currently focused on two major
issues — improving transfection efficiencies and targeting
genes to specific neuronal types. The first goal — to
improve transfection efficiencies — is steadily being
achieved through rapid advances in both viral and non-
viral transfection technologies. Recent reports suggest that
combining viral and non-viral approaches may allow
researchers the best of both worlds [72,73]. The second
goal for the field is to develop ways in which near-endogenous
expression levels and specific transfection of neuronal 
subtypes can be achieved. Currently, most transfected genes
are driven by the ubiquitous and powerful cytomegalovirus
promoter. However, neuronal specificity of transfection
can be increased by using neuron-specific promoters [74],
such as the platelet-derived growth factor β-chain promoter
[12••] or the synapsin 1 promoter [24••,75••], and the timing
of expression can be controlled by using neuron-specific,
inducible promoters [24••]. Thus, recent advances in trans-
fection technologies are making it possible to address the
functions of proteins in neuronal development and adult-
hood in new and exciting ways.
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