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Foreword

This book is the sixth in the series of monographs ‘Modern Probability and
Statistics’ following the books

• V.M. Zolotarev, Modern Theory of Summation of Random Variables;

• V.V. Senatov, Normal Approximation: New Results, Methods and Problems;

• V.M. Zolotarev and V.V. Uchaikin, Chance and Stability. Stable Distributions
and their Applications;

• N.G. Ushakov, Selected Topics in Characteristic Functions.

• V.E. Bening, Asymptotic Theory of Testing Statistical Hypotheses: Efficient
Statistics, Optimality, Power Loss, and Deficiency.

The Russian school of probability theory and mathematical statistics made
a universally recognised contribution to these sciences. Its potentialities are
not only very far from being exhausted, but are still increasing. During last
decade there appeared many remarkable results, methods and theories which
undoubtedly deserve to be presented in monographic literature in order to
make them widely known to specialists in probability theory, mathematical
statistics and their applications.

However, due to recent political changes in Russia followed by some eco-
nomic instability, for the time being, it is rather difficult to organise the pub-
lication of a scientific book in Russia now. Therefore, a considerable stock of
knowledge accumulated during last years yet remains scattered over various
scientific journals. To improve this situation somehow, together with the VSP
publishing house and first of all, its director, Dr. Jan Reijer Groesbeek who
with readiness took up the idea, we present this series of monographs.

The scope of the series can be seen from both the title of the series and the
titles of the published and forthcoming books:

• Yu.S. Khokhlov, Generalizations of Stable Distributions: Structure and Limit
Theorems;

• A.V. Bulinski and M.A. Vronski, Limit Theorems for Associated Random
Variables;
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• V.E. Bening and V.Yu. Korolev, Generalized Poisson Models and their Appli-
cations in Insurance and Finance;

• E.V. Morozov, General Queueing Networks: the Method of Regenerative
Decomposition;

• G.P. Chistyakov, Analytical Methods in the Problem of Stability of Decompo-
sitions of Random Variables;

• A.N. Chuprunov, Random Processes Observed at Random Times;

• D.H. Mushtari, Probabilities and Topologies on Linear Spaces;

• V.G. Ushakov, Priority Queueing Systems;

• V.Yu. Korolev and V.M. Kruglov, Random Sequences with Random Indices;

• Yu.V. Prokhorov and A.P. Ushakova, Reconstruction of Distribution Types;

• L. Szeidl and V.M. Zolotarev, Limit Theorems for Random Polynomials and
Related Topics;

• E.V. Bulinskaya, Stochastic Inventory Systems: Foundations and Recent
Advances;

as well as many others.
To provide high-qualified international examination of the proposed books,

we invited well-known specialists to join the Editorial Board. All of them
kindly agreed, so now the Editorial Board of the series is as follows:

L. Accardi (University Roma Tor Vergata, Rome, Italy)
A. Balkema (University of Amsterdam, the Netherlands)
M. Csörgő (Carleton University, Ottawa, Canada)
W. Hazod (University of Dortmund, Germany)
V. Kalashnikov (Moscow Institute for Systems Research, Russia)
V. Korolev (Moscow State University, Russia)—Editor-in-Chief
V. Kruglov (Moscow State University, Russia)
M. Maejima (Keio University, Yokohama, Japan)
J. D. Mason (University of Utah, Salt Lake City, USA)
E. Omey (EHSAL, Brussels, Belgium)
K. Sato (Nagoya University, Japan)
J. L. Teugels (Katholieke Universiteit Leuven, Belgium)
A. Weron (Wrocław University of Technology, Poland)
M. Yamazato (University of Ryukyu, Japan)
V. Zolotarev (Steklov Institute of Mathematics, Moscow, Russia)—Editor-
in-Chief
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We hope that the books of this series will be interesting and useful to both
specialists in probability theory, mathematical statistics and those profession-
als who apply the methods and results of these sciences to solving practical
problems. Of course, the choice of authors primarily from Russia is due only
to the reasons mentioned above and by no means signifies that we prefer to
keep to some national policy. We invite authors from all countries to contribute
their books to this series.

V. Yu. Korolev,
V. M. Zolotarev,

Editors-in-Chief

Moscow, December 2000.
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Preface

The field of mathematical statistics called robust statistics appeared due to
the pioneer works of J. W. Tukey (1960), P. J. Huber (1964), and F. R. Ham-
pel (1968); it has been intensively developed since the sixties and is rather
definitely formed by present. The term ‘robust’ (strong, sturdy) as applied to
statistical procedures was proposed by G. E. P. Box (1953).

The basic reasons of research in this field are of a general mathematical
character. ‘Optimality’ and ‘stability’ are the mutually complementary char-
acteristics of any mathematical procedure. It is a well-known fact that the
behaviour of many optimal decisions is rather sensible to ‘small deviations’
from prior assumptions. In mathematical statistics, the remarkable example
of such unstable optimal procedure is given by the least squares method: its
performance may become extremely poor under small deviations from normal-
ity.

Roughly speaking, robustness means stability of statistical inference under
the variations of the accepted distribution models.

Nearly at the same time with robust statistics, there appeared anoth-
er direction in statistics called exploratory or probability-free data analysis,
which also partly originated from J. W. Tukey (1962). By definition, data
analysis techniques aim at practical problems of data processing. Although
robust statistics involves mathematically highly refined asymptotic tools, ro-
bust methods exhibit a satisfactory behaviour in small samples being quite
useful in applications.

Our work represents new results related to robustness and data analysis
technologies, having definite accents both on theoretical aspects and practical
needs of data processing: we have written the book to be accessible to users of
statistical methods, as well as for professional statisticians.

In addition, we would like to dwell on the appreciable contribution of Rus-
sian authors to robust statistics and data analysis, though most of their orig-
inal results were published in Russian. Here we acknowledge the following
names: S. A. Aivazyan, V. Ya. Katkovnik, Yu. S. Kharin, V. Ya. Kreinovich,
V. P. Kuznetsov, A. V. Makshanov, L. D. Meshalkin, B. T. Polyak, V. P. Shu-
lenin, A. M. Shurygin, A. B. Tsybakov, Ya. Z. Tsypkin.

Chapter 1 represents a general description of main approaches in robust
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statistics. Chapter 2 gives a new probability-free approach to constructing op-
timisation criteria in data analysis. Chapter 3 contains new results on robust
minimax (in the Huber sense) estimation of location over the distribution class-
es with bounded variances and subranges, as well as for the classes of lattice
distributions. Chapter 4 is confined to robust estimation of scale. Chapter 5
deals with robust regression and autoregression problems. Chapter 6 covers
the particular case of L1-norm estimation. Chapter 7 treats robust estimation
of correlation. Chapter 8 introduces and discusses data analysis technologies,
and Chapter 9 represents applications.

We would like to express our deep appreciation to I. B. Chelpanov, E. P. Guil-
bo, B. T. Polyak, and Ya. Z. Tsypkin who attracted our attention to robust
statistics.

We are grateful to S. A. Aivazyan and L. D. Meshalkin for discussions and
comments of our results at their seminars in the Central Institute of Economics
and Mathematics of Russian Academy of Sciences (Moscow).

We are very grateful to A. V. Kolchin for his great help in the preparation
of this book.

Finally, we highly appreciate V. Yu. Korolev and V. M. Zolotarev for their at-
tention to our work and, in general, to such an important field of mathematical
statistics as robustness.

Georgy L. Shevlyakov

Nikita O. Vilchevski

St. Petersburg, December 2000
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1

Introduction

1.1. General remarks
Our personal experience in data analysis and applied statistics is relative-
ly wide and long. It refers to the problems of data processing in medicine
(cardiology, ophthalmology), economics and finances (financial mathematics),
industry (electromechanics and energetics), defense (detection of air targets).
Besides and due to those problems, we have been working on the methods of
theoretical statistics, mainly in robustness and optimization. Now we briefly
outline our vision of data analysis problems with their ideological environment
and indicate the place of the problems touched in this book. Let us only keep
in mind that any classification is a convention, such are the forthcoming ones.

1.1.1. Data, their forms of representation, characteristics, and
related aims

The forms of data representation. We begin with the customary forms of
data representation:

(i) as a sample {x1, …, xn} of real numbers xi ∈ R being the easiest form to
handle;

(ii) as a sample {x1, …, xn} of real-valued vectors xi ∈ Rm;

(iii) as a realization x(t), t ∈ [0, T] of a real-valued continuous process (func-
tion);

(iv) as a sample of ‘non-numerical nature’ data representing qualitative vari-
ables; and finally,

(v) as semantic type data (statements, texts, pictures, etc.).

1



2 1. Introduction

The first three possibilities widely occur in the physical sciences with the
measurement techniques being well developed, clearly defined and largely
standardized. In the social sciences, the last forms are relatively common.

In our study we deal with the first three forms; the multivariate case, espe-
cially of high dimension (greater than three), has proved to be the most impor-
tant and difficult in our experience of solving real-life data analysis problems.

The types of data statistical characteristics. The experience of treating
various statistical problems shows that nearly all of them are solved with the
use of only a few qualitatively different types of data statistical characteristics
(DSCs). Now we do not discuss how to use them tackling statistical problems:
only note that their solutions result in evaluating some of the DSCs, and
final decision making essentially depends on their values (Aivazyan et al.,
1989; Tukey, 1962). These DSCs may be classified as follows:

• the measures of location (central tendency, mean values);

• the measures of spread (dispersion, scale, scatter);

• the measures of interdependence (association, correlation);

• the DSC of extreme values;

• the DSC of data distributions or the measures of shape.

In this book we work with all of these DSCs.

The main aims of data analysis. These aims may be formulated as follows:

(A1) compact representation of data,

(A2) estimation of model parameters describing mass phenomena,

(A3) prediction.

A human mind cannot efficiently work with large volumes of information,
since there exist natural psychological bounds of perception. Thus it is neces-
sary to provide a compact data output of information: only in this case we may
expect a satisfactory final decision. Note that data processing often begins and
ends with this first item (A1).

The next step (A2) is to suggest an explanatory underlying model for the
observed data and phenomena. It may be a regression model, or a distribution
model, or any other, desirably a simple one: an essentially multiparametric
model is usually a bad model. Parametric models refer to the first to be
considered and examined.
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Finally, all previous aims are only the steps to the last (A3): here we have
to state that this aim remains a main challenge to statistics and to science as
a whole.

In this book we pursue the aims (A1) and (A2).

1.1.2. Evaluation of the DSC: an optimization approach
and related requirements

An optimization approach. In statistics, many problems can be posed in
optimization settings, for example, the problems of point and interval estima-
tion, hypotheses testing, regression, etc. In fact, an optimization approach is
natural and, moreover, convenient as it allows to use the elaborated optimiza-
tion technique.

In this book we use optimization settings of statistical problems whenever
it is possible.

A probability-free approach. The crucial point of an optimization ap-
proach is the choice of an optimization criterion. In mathematical statistics
this choice is completely determined by the choice of the underlying stochastic
model. So, in this case the stochastic model is primary and the optimization
criterion is secondary.

Another situation occurs when a stochastic model cannot be applied to the
data, for example, when only one unique or few data samples can be observed
and thus there are no any grounds to regard the data originating from some
population. In other words, the stability of frequencies (this fundamental
condition of applicability of a statistical approach (Cramér, 1946)) cannot be
verified in this case.

In general, the problems of the medical data processing often refer to the
above case: a patient is mainly interested in the ‘individual diagnosis’ but not
in the ‘average-statistical over ensemble.’

The methods aimed at the data analysis problems under the conditions
of inapplicability of the statistical approach are called probability-free and
they have been intensively developed since the seventies: the fuzzy approach
(Klir and Folger, 1990; Schum, 1994; Zadeh, 1965; Zadeh, 1975); the methods of
exploratory data analysis (Mosteller and Tukey, 1977; Tukey, 1977); the logical-
algebraic and geometrical methods of multivariate classification and cluster-
analysis (Aivazyan et al., 1989; Diday, 1972; Lebart et al., 1984; Papadimitriou
and Steiglitz, 1982); projection pursuit (Huber, 1985); the interval probability
models (Kuznetsov, 1991; Walley, 1990; Weichselberger, 1995).

In this book we propose a probability-free approach to the choice of opti-
mization criteria in data analysis.
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The requirements towards the DSC. As a rule, an optimization criterion
is exogenously postulated in the above case, so it may seem that the problem
of its choice does not arise. Our experience shows that, as a rule, it is rather
senseless to discuss the choice of an optimization criterion with a user, say
the choice between the L1- and L2-norm criteria. But it is quite reasonable to
discuss and specify the requirements towards the solution of the corresponding
optimization problem, in other words, on the concrete type of the DSC. Hence
these requirements may considerably narrow the possible class of criteria and
sometimes completely determine its choice.

Now we dwell on these requirements towards the DSC-algorithms, espe-
cially for the medical data. The first specific peculiarity of these problems is
a weak metrological support of measurement procedures in medicine as com-
pared to the physical sciences. Thus it is important to take into account some
metrological requirements on the DSC-algorithms providing equivarian-
cy of the DSC-algorithms under some kinds of data and measurement scale
transformations. The second specific feature is the presence of outliers or gross
errors in the data. This requires the stability of statistical inference under
the uncontrolled deviations from the assumed models of signals and noises.
We have already mentioned the ‘individual’ character of the medical data. For
example, when filtering electrocardiogram (ECG) noises, the components of
this noise appear to be particularly individual, their characteristics are differ-
ent not only for different patients but for different ECGs of the same patient.
Thus filtering of ECG signals should be performed adaptively to the individual
characteristics of noises in each ECG. In general, the requirement of adapta-
tion of the DSC-algorithms on the individual behavior of the examined object
is quite desirable.

Further we use the requirements of a metrological character, stability, and
adaptation while choosing optimization criteria in data analysis and distribu-
tion classes in robustness studies.

1.1.3. Formalization of uncertainty
The requirement of stability of statistical inferences directly leads to the use
of robust statistical methods. It may be said that, with respect to the form of
information on underlying distributions, robust statistical methods occupy the
intermediate place between classical parametric and nonparametric methods.

In parametric statistics, the shape of an underlying distribution is assumed
known up to the values of unknown parameters. In nonparametric statistics,
we suppose that the underlying distribution belongs to some sufficiently ‘wide’
class of distributions (continuous, symmetric, etc.). In robust statistics, at least
within the Huber minimax approach, we also consider distribution classes but
with more detailed information about the underlying distribution, say, in the
form of some neighborhood of the normal distribution. The latter peculiarity
allows to raise efficiency of robust procedures as compared to nonparametric
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Table 1.1. Forms and levels of uncertainty of information about
distributions and related approaches

Uncertainty and Information: Approaches and Methods
Forms and Levels

Given ƒ(x; θ ), random θ Bayesian Methods

Parametric Approach:
Given ƒ(x; θ ), unknown θ Maximum Likelihood

and Related Methods

ƒ(x; θ ) ∈ F

Class F—a neighborhood Robust Methods
of the normal distribution

ƒ(x; θ ) ∈ F Nonparametric Methods
General classes F

Probability-Free Methods:
Unique Sample Fuzzy, Exploratory,

Frequency Instability Interval Probability,
Logical-Algebraic, Geometrical

methods simultaneously preserving their high stability.
At present, there are two main approaches in robustness:

• the Huber minimax approach—quantitative robustness (Huber, 1964;
Huber, 1981);

• the Hampel approach based on influence functions—qualitative robust-
ness (Hampel, 1968; Hampel et al., 1986).

The topics of robustness are treated in many books beside the above-
mentioned; here we only enlist those comprising extended surveys: (Rey,
1978; Rey, 1983; Tsypkin, 1984; Makshanov et al., 1991; Kharin, 1996a; Shu-
lenin, 1993; Shurygin, 2000).

Table 1.1 classifies the methods of point estimation for the parameter θ
of the underlying distribution density ƒ(x; θ ) in their dependence on the form
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of information about ƒ(x; θ ). Note that the upper and lower levels of this
classifications, namely the Bayesian and probability-free methods, are being
intensively developed at present.

1.2. Huber minimax approach
1.2.1. Some general remarks on robustness
The first robust estimators based on rejection of outliers are dated by the
second half of the eighteenth century, namely they originate from Boscovich
(1757) and Daniel Bernoulli (1777). Several outstanding scientists of the late
nineteenth and early twentieth century (the astronomer Newcomb (1886), the
chemist Mendeleyev (1895), the astrophysicist Eddington (1914), and the geo-
physicist Jeffreys (1932) among them) understood the weakness of the stan-
dard estimators under heavy-tailed error distributions and proposed some
robust alternatives to them (for details, see (Stigler, 1973)). It would not be
out of place to note the paper (Kolmogorov, 1931), in which he compared the
behavior of the sample mean and sample median and recommended to use the
latter under heavy-tailed distributions.

The convincing arguments for robust statistics are given in (Tukey, 1960;
Huber, 1981; Hampel et al., 1986). Here we only recall that the classical
examples of robust and non-robust estimators of location are given by the
sample median and sample mean, respectively.

As it was said above, robust statistics deal with the consequences of pos-
sible deviations from the assumed statistical model and suggests the methods
protecting statistical procedures against such deviations. Thus the statistical
models used in robust statistics are chosen so that to account possible viola-
tions of the assumptions about the underlying distribution. For description of
these violations, the concrete forms of neighborhoods of the underlying model
are formed with the use of an appropriately chosen metric, for example, the
Kolmogorov, Prokhorov, or Lévy (Hampel et al., 1986; Huber, 1981). Hence the
initial model (basic or ideal) is enlarged up to the so-called supermodel that
describes both the ideal model and the deviations from it.

Defining a robust procedure, it is useful to answer three main questions:

• Robustness of what?

• Robustness against what?

• Robustness in what sense?

The first answer defines the type of a statistical procedure (point or interval
estimation, hypotheses testing, etc.); the second specifies the supermodel, and
the third introduces the criterion of quality of a statistical procedure and some
related requirements towards its behavior. The wide spectrum of the problems
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observed in robust statistics can be explained by the fact that there exists a
variety of answers to each of the above questions.

Now we briefly enlist main supermodels in robust statistics (Bickel, 1976;
Hampel et al., 1986; Huber, 1981; Shulenin, 1993). In general, there is a great
variety of supermodels but here we are mostly interested in the supermodels
describing possible changes of the distribution shape. For supermodels, we
may distinguish two types: local and global (Bickel, 1976).

A local type suggests setting an ideal (basic) model, and then the related
supermodel is defined as a neighborhood of this ideal model. A global su-
permodel represents some class F of distributions with given properties that
also comprises an ideal model. For example, Hodges and Lehmann (1963)
consider the supermodel in the form of all absolutely continuous symmetric
distributions. Birnbaum and Laska (1967) propose the supermodel as a finite
collection of distribution functions: F = {F1, F2, …, Fk}. Andrews et al. (1972)
examine estimators in the supermodels containing distributions with heavier
tails than the normal. In particular, they use the Tukey supermodel based on
the quantile function, the inverse to the distribution function. This supermod-
el comprises rather accurate approximations to the normal, Laplace, logistic,
Cauchy, and Student distributions.

Various supermodels are used to study deviations from normality: the
family of power-exponential distributions with the normal, Laplace, and uni-
form distributions as particular cases; the family of the Student t-distributions
with the normal and Cauchy distributions; also the influence of non-normality
can be studied with the use of the measures of asymmetry and kurtosis, the
positive values of the latter indicate gross errors and heavy tails.

For describing gross errors and outliers, the most popular is the Tukey
supermodel (Tukey, 1960)

F =
{

F : F(x) = (1 − ε)Φ(x) + εΦ
(

x − θ
k

)
, 0 ≤ ε ≤ 1, k ≥ 1

}
. (1.2.1)

The generalization of this supermodel

F = {F : F(x) = (1 − ε)F0(x) + εH(x), 0 ≤ ε ≤ 1} , (1.2.2)

where F0 is some given distribution (the ideal model) and H(x) is an arbitrary
continuous distribution, is considered in (Huber, 1964). Supermodel (1.2.2)
has the following natural interpretation: the parameter ε is the probability of
gross errors in the data.

In general, a supermodel can be defined with the use of some suitable
metric d(F0, F) in the space of all distributions: F = {F : d(F0, F) ≤ ε)}. The
Prokhorov metric (Prokhorov, 1956) and its particular case, the Lévy metric,
are rather convenient choices, since the supermodels based on them describe
simultaneously the effects of gross errors, grouping, and rounding-off in the
data (for details, see (Huber, 1981)).



8 1. Introduction

The use of other metrics for constructing supermodels is discussed in (Bick-
el, 1976). The relations between various metrics can be found in (Huber,
1981; Zolotarev, 1997).

Summarizing the above, we may answer the second question: ‘Robustness
against what?’ as follows: ‘Robustness against extension of ideal models to
supermodels.’

Now we are in position partly to answer the third question: ‘Robustness in
what sense?’

1.2.2. M-estimators of location
The first general approach to robust estimation is based on the minimax prin-
ciple (Huber, 1964; Huber, 1972; Huber, 1981). The minimax approach aims
at the least favorable situation for which it suggests the best solution. Thus,
in some sense, this approach provides a guaranteed result, perhaps too pes-
simistic. However, being applied to the problem of estimation of the location
parameter, it yields a robust modification of the principle of maximum likeli-
hood.

Let x1, …, xn be a random sample from a distribution F with density ƒ(x−θ )
in a convex class F , where θ is the location parameter. Assume that F is a
symmetric unimodal distribution, hence θ is the center of symmetry to be
estimated. Then the M-estimator θ̂n of the location parameter is defined as
some solution of the following minimization problem

θ̂n = arg min
θ

n∑

i=1

ρ(xi − θ ), (1.2.3)

where ρ(u) is an even non-negative function called the contrast function (Pfan-
zagl, 1969); ρ(xi − θ ) is the measure of discrepancy between the observation xi
and the estimated center.

Choosing ρ(u) = u2, we have the least squares (LS) method with the sample
mean xn as the estimator; for ρ(u) = |u|, we have the least absolute values
(LAV) method with the sample median med x as the estimator, and, what is
most important, for a given density ƒ, the choice ρ(u) = − log ƒ(u) yields the
maximum likelihood estimator (MLE).

It is convenient to formulate the properties of M-estimators in terms of
the derivative of the contrast function ψ(u) = ρ ′(u) called the score function.
In this case, the M-estimator is defined as a solution of the following implicit
equation

n∑

i=1

ψ(xi − θ̂n) = 0. (1.2.4)

Under rather general regularity conditions imposed on the class Ψ of score
functions ψ and on the related class F of densities ƒ (their various forms
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can be found in (Huber, 1964; Huber, 1967; Deniau et al., 1977a; Deniau et
al., 1977c; Huber, 1981; Hampel et al., 1986)), M-estimators are consistent,
asymptotically normal with the asymptotic variance

Var n1/2θ̂n = V(ψ, ƒ) =
EFψ2

(EFψ ′)2 =
∫

ψ2(x) dF(x)
(∫

ψ ′(x) dF(x)
)2 , (1.2.5)

and satisfy the minimax property

V(ψ∗, ƒ) ≤ V(ψ∗, ƒ∗) = sup
ƒ∈F

inf
ψ∈Ψ

V(ψ, ƒ), (1.2.6)

where the least favorable (informative) density ƒ∗ minimizes the Fisher infor-
mation for location over the class F

ƒ∗ = arg min
ƒ∈F

I(ƒ), I(ƒ) =
∫ [ƒ′(x)

ƒ(x)

]2

ƒ(x) dx, (1.2.7)

whereas the optimal contrast function and score function are given by the
maximum likelihood method for the least favorable density ƒ∗

ρ∗ = − log ƒ∗, ψ∗ = −ƒ∗′/ƒ∗. (1.2.8)

For most of our aims, the following regularity conditions defining the classes
F and Ψ are sufficient (for details, see (Hampel et al., 1986, pp. 125–127)):

(F1) ƒ is twice continuously differentiable and satisfies ƒ(x) > 0 for all x in R.

(F2) the Fisher information for location satisfies 0 < I(ƒ) < ∞.

(Ψ1) ψ is well-defined and continuous on R \ C(ψ), where C(ψ) is finite. At
each point of C(ψ) there exist finite left and right limits of ψ which are
different. Moreover, ψ(−x) = −ψ(x) if (−x, x) ⊂ R \ C(ψ), and ψ(x) ≥ 0
for x ≥ 0 not belonging to C(ψ).

(Ψ2) The set D(ψ) of points at which ψ is continuous but in which ψ ′ is not
defined or not continuous is finite.

(Ψ3)
∫

ψ2 dF < ∞.

(Ψ4) 0 <
∫

ψ ′(x) dF(x) = − ∫ ψ(x)ƒ′(x) dx < ∞.

The key point of this approach is the solution of variational problem (1.2.7):
various classes F (supermodels) with the corresponding least favorable den-
sities ƒ∗ and minimax estimators are given in Section 3.1. Here we only recall
the Huber solution for the supermodel of gross errors

F = {ƒ : ƒ(x) = (1 − ε)ƒ0(x) + εh(x), 0 ≤ ε < 1}, (1.2.9)
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Figure 1.1. Huber ψ-function

where ƒ0 is a given density, h(x) is an arbitrary density satisfying conditions
(F1) and (F2) along with the additional logconvexity condition. Then the
least favorable density ƒ∗ and the optimal score function are of the forms

ƒ∗(x) = ƒH(x) =

{
(1 − ε)ƒ0(x), |x| ≤ ∆,
A exp(−B|x|), |x| > ∆,

(1.2.10)

ψ∗(x) = ψH(x) =

{
−ƒ′0(x)/ƒ0(x), |x| ≤ ∆,
B sgn x, |x| > ∆,

(1.2.11)

where the parameters A, B, and ∆ are determined from the conditions of
normalization, continuity, and differentiability of the solution at x = ∆

∫
ƒ∗(x) dx = 1, ƒ∗(∆ − 0) = ƒ∗(∆ + 0), ƒ∗′(∆ − 0) = ƒ∗′(∆ + 0).

Figure 1.1 illustrates the Huber score function yielding a robustified ver-
sion of the MLE: in the central zone |xi − θ | ≤ ∆, the data are processed by
the ML method, and they are trimmed within distribution tails. In the lim-
iting case of a completely unknown density as ε → 1, the minimax variance
M-estimator of location is the sample median.

Within this approach, robustness is measured in terms of efficiency, namely
by the supremum of asymptotic variance in the supermodel F : supƒ∈F V(ψ, ƒ).
Obviously, the smaller this characteristic, the more robust M-estimator is. Ob-
serve that the asymptotic normality of M-estimators allows to use the asymp-
totic variance as a characteristic for both efficiency and robustness.

Another measure of robustness is given by the supremum of asymptotic
bias supƒ∈F |b(ψ, ƒ)| under asymmetric distributions (Huber, 1981; Rychlik,
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1987; Smolyak and Titarenko, 1980; Zieliński, 1987), where

b(ψ, ƒ) = lim
n→∞

E(θ̂n − θ ) =
EFψ
EFψ ′ =

∫
ψ(x) dF(x)∫
ψ ′(x) dF(x)

.

In particular, for the normal density ƒ0(x) = N (x; θ , σ) and asymmetric con-
taminating density h in the supermodel of gross errors (1.2.9), the minimax
bias estimator determined from the condition ψ∗ = arg inf ψ suph |b(ψ, ƒ)| is
the sample median (Huber, 1981; Smolyak and Titarenko, 1980).

1.2.3. L-estimators of location
The linear combinations of order statistics (L-estimators) are defined as

θ̂n =
n∑

i=1

Cix(i),
n∑

i=1

Ci = 1, (1.2.12)

where x(i) is the ith order statistic. The normalization condition in (1.2.12)
provides equivariancy of L-estimators under translation. The trimmed mean

xtr(k) =
1

n − 2k

n−k∑

i=k+1

x(i) (1.2.13)

and the Winsorized mean

xW(k) =
1
n

[
(k + 1)x(k+1) +

n−k−1∑

i=k+2

x(i) + (k + 1)x(n−k)

]
(1.2.14)

belong to this class. In asymptotics, the fraction α of censored observations is
used: k = [αn].

L-estimators were proposed by in (Daniel, 1920) and since then they have
been forgotten for thirty years, being revived in robustness studies. The de-
scription of L-estimators can be formalized with the use of the weight function.

Let h : [0, 1] → R be a given function satisfying the following conditions:
h(t) = h(1 − t) for all t ∈ [0, 1],

∫ 1
0 h(t) dt = 1, and h is a function of bounded

variation on [0, 1]. The estimator

θ̂n =
1
n

n∑

i=1

h
(

i
n + 1

)
x(i) (1.2.15)

is called the L-estimator with weight function h(t). The above regularity con-
ditions on h along with the conditions (F1) and (F2) on distributions provide
consistency and asymptotic normality of L-estimators (1.2.12) with asymptotic
variance

Var n1/2θ̂n = AL(h, F) =
∫ 1

0
K2(t) dt, (1.2.16)
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where

K(t) =
∫ 1

1/2

h(u)
ƒ(F−1(u))

du,
∫ 1

0
K(t) dt = 0.

1.2.4. R-estimators of location
R-estimators proposed in (Hodges and Lehmann, 1963) are based on rank tests.
There are several methods of their construction. Now we briefly describe one
of those (Azencott, 1977a; Azencott, 1977b; Huber, 1981).

Let y1, …, yn and z1, …, zn be independent samples from the distributions
F(x) and F(x − θ ) respectively. For testing the hypothesis θ = 0 against the
alternative θ > 0, the following statistic is used:

Wn(y1, …, yn, z1, …, zn) =
n∑

i=1

J
(

si

2n + 1

)
,

where si is the rank of yi, i = 1, …, n, in the united sample of size 2n. Let J(t),
0 ≤ t ≤ 1, satisfy the following conditions: J(t) is increasing; J(t) + J(1 − t) = 0
for all t ∈ [0, 1]; J′(t) is defined on (0, 1); the functions J′ and ƒ(F−1) are of
bound variation on [0, 1], and

∫ 1
0 J′(t)ƒ(F−1(t)) dt ≠ 0.

Under these conditions, the test with the critical region Wn > c has certain
optimal in power properties (Hájek and Šidák, 1967). The R-estimator θ̂n
based on this test is defined as a solution of the equation

Wn(x1 − θ̂n, …, xn − θ̂n,−(x1 − θ̂n), …,−(xn − θ̂n)) = 0.

Under the above conditions, θ̂n is consistent and asymptotically normal with
asymptotic variance

Var n1/2θ̂n = AR(J, F) =
∫ 1

0 J2(t) dt
[∫

J′(F(x))ƒ2(x) dx
]2 . (1.2.17)

For any fixed function F(x), it is possible to find the function J(t) minimizing
asymptotic variance AR(J, F). The test based on such function J(t) also has
optimal properties for given F. In particular, the logistic distribution F(x) =
(1 + e−x)−1 leads to the Wilcoxon test. The corresponding estimator of location
is the Hodges–Lehmann median

θ̂n = med
{

x(i) + x(k)

2

}
, 1 ≤ i ≤ k ≤ n. (1.2.18)
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1.2.5. The relations between M-, L- and R-estimators of location
In (Jaeckel, 1971b), the asymptotic equivalence of these estimators was estab-
lished. Let F and ψ be fixed. Set

h(t) =
ψ ′(F−1(t))∫
ψ ′(x)ƒ(x) dx

, t ∈ [0, 1],

J(t) = ψ(F−1(t)), t ∈ [0, 1].

Then V(ψ, ƒ) = AL(h, F) = AR(J, F). However, M-estimators are most conve-
nient for analysis and L-estimators are the simplest for computing.

1.3. Hampel approach
The main advantage of robust methods is their lower sensitivity to possible
variations of data statistical characteristics. Thus it is necessary to have
specific mathematical tools allowing to analyze the sensitivity of estimators
to outliers, rounding-off errors, etc. On the other hand, such tools make it
possible to solve the inverse problem: to design estimators with the required
sensitivity. Now we introduce the above-mentioned apparatus, namely the
sensitivity curves and the influence functions.

1.3.1. The sensitivity curve
Let {Tn} be some sequence of statistics. Let Tn(X) denote the statistic from
{Tn} on the sample X = (x1, …, xn), and let Tn+1(x, X) denote the same statistic
on the sample (x1, …, xn, x). Then the function

SCn(x; Tn, X) = (n + 1)[Tn+1(x, X) − Tn(X)] (1.3.1)

characterizes the sensitivity of Tn to the addition of one observation at x and
is called the sensitivity curve for this statistic (Tukey, 1977). In particular,

SCn(x; x, X) = x − 1
n

n∑

i=1

xi = x − x

for the sample mean x;

SCn(x; med x, X) =





0.5(n + 1)[x(k) − x(k+1)], x ≤ x(k),
0.5(n + 1)[x − x(k+1)], x(k) ≤ x ≤ x(k+2),
0.5(n + 1)[x(k) − x(k+1)], x ≥ x(k+2)

for the sample median med x with n = 2k + 1; for the trimmed mean (1.2.13)
with the two removed extreme order statistics, the main part of the sensitivity
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Figure 1.2. Sensitivity curves of the sample mean, median, and trimmed mean

curve is of the form

SCn(x, xtr(1), X) =





x(1), x ≤ x(1),
x, x(1) ≤ x ≤ x(n),
x(n), x ≥ x(n).

The sensitivity curves for the sample mean, median, and trimmed mean are
given in Fig. 1.2. We can see that the sensitivity curve of the sample mean
is unbounded, hence only one extreme observation can completely destroy the
estimator. In addition, the maximal error of the trimmed mean is of order
(x(n) − x(1))/n.

The derivative characteristics of SCn(x; Tn, F) such as supx |SCn(x; T, X)| or
the difference SCn(x; T, X)−SCn(y; T, X) allow to compare the impact of adding
new observations to the data on estimators. In particular, the sample median is
sensitive to the occurrence of new sample elements in the interval (x(k), x(k+2)).
There exist some other characteristics describing the influence of the data
perturbations on estimators. It is desirable to have such a characteristic that
does not depend on the specific sample X. The most convenient for asymptotic
analysis is the influence function (curve) introduced in (Hampel, 1974).

1.3.2. The influence function and its properties
Let F be a fixed distribution and T(F) be a functional defined on some set F
of distributions satisfying conditions (F1) and (F2), and let the estimator
Tn = T(Fn) of T(F) be that functional of the sample distribution function Fn.
Then the influence function IF(x; T, F) is defined as

IF(x; T, F) = lim
t→0

T((1 − t)F + tδx) − T(F)
t

, (1.3.2)
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Figure 1.3. Influence functions of the sample mean, median, and trimmed mean

where δx is the degenerate distribution at x.
For the sample mean x = T(Fn) =

∫
x dFn(x), the influence function is

IF(x; x, F) = x − T(F) = x −
∫

x dF(x);

for the α-trimmed mean, the functional is

T(F) =
1

1 − 2α

∫ F−1(1−α)

F−1(α)
x dF(x),

and

IF(x; xtr, F) =





F−1(α)/(1 − 2α), x ≤ F−1(α),
x/(1 − 2α), F−1(α) ≤ x ≤ F−1(1 − α),
F−1(1 − α)/(1 − 2α), x ≥ F−1(1 − α);

whereas for the sample median med x, the functional is T(F) = F−1(1/2) and

IF(x; med x, F) =
sgn x
2ƒ(0)

.

Comparing Fig. 1.2 and Fig. 1.3, we see that the forms of influence and
sensitivity curves are similar: as a rule, SCn(x; T, F) → IF(x; T, F) as n → ∞.

Under conditions (F1), (F2), (Ψ1)-(Ψ4), the influence function for the M-
estimator with the score function ψ is of the form (Hampel et al., 1986; Huber,
1981)

IF(x; ψ, F) =
ψ(x)∫

ψ(x) dF(x)
. (1.3.3)
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For M-estimators, the relation between the influence function and the score
function is the simplest. This allows to apply M-estimators to solving some
specific extremal problems of maximization of estimators’ efficiency over their
sensitivity to outliers, the so-called problems of optimal Huberization (Deniau
et al., 1977d; Hampel et al., 1986; Huber, 1972).

The influence function measuring the impact of an infinitesimal contami-
nation at x on the value of an estimator, however, is a delicate and useful tool
having deep intrinsic relations with other important statistical notions (Ham-
pel, 1968; Hampel, 1974; Hampel et al., 1986; Huber, 1981). For example, with
the use of IF(x; T, F), the functional T(F) can be linearized in the neighborhood
of the ideal model F0 as

T(F) = T(F0) +
∫

IF(x; T, F0) d[F(x) − F0(x)] + remainder;

√
n [Tn(Fn) − T(F)] tends to

∫
IF(x; T, F) dFn(x) in probability so that

Tn(Fn) = T(F) +
∫

IF(x; T, F) dFn(x) + remainder.

Further,
√

n(Tn − T(F)) =
1√
n

n∑

i=1

IF(xi; T, F) + remainder.

Since in most cases the remainder is negligible as n → ∞,
√

n Tn is asymptoti-
cally normal with asymptotic variance

V(T, F) =
∫

IF2(x; T, F) dF(x). (1.3.4)

This line of reasoning is accurately verified in (Fernholz, 1983).

1.3.3. The local measures of robustness
From the influence function, the following robustness measures can be defined
(Hampel, 1968; Hampel, 1974):

THE SUPREMUM OF THE ABSOLUTE VALUE

γ∗(T, F) = sup
x
|IF(x; T, F)|, (1.3.5)

called the gross-error sensitivity of T at F. This general characteristic of
sensitivity being an upper bound to the asymptotic bias of the estimator
measures the worst influence of an infinitesimal contamination on the
value of the estimator. The estimators T having finite γ∗(T, F) are called
B-robust (Rousseeuw, 1981), and those for which there exists a positive
minimum of γ∗ are the most B-robust estimators (Hampel et al., 1986).
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THE LOCAL-SHIFT SENSITIVITY

λ∗(T, F) = sup
x≠y

|IF(y; T, F) − IF(x; T, F)|/|y − x|

accounts the effects of rounding-off and grouping of the observations.

THE REJECTION POINT

ρ∗(T, F) = inf {r > 0: IF(x; T, F) = 0 where |x| > r}
defines the observations to be rejected completely.

At present, the influence function is the main heuristic tool for designing
estimators with given robustness properties (Hampel et al., 1986; Huber, 1981;
Rey, 1978). For example, slightly changing the maximum likelihood estimator,
it is possible to improve considerably its sensitivity to gross errors by lessening
γ∗ and its sensitivity to local effects of rounding-off and grouping types by
bounding the slope of IF(x; T, F) (i.e., λ ∗) above. Setting IF(x; T, F) tend to zero
as n → ∞ leads to the stabilization of the asymptotic variance while bounding
the slope above stabilizes the asymptotic bias.

By analogy with the influence function, the change-of-variance function
CVF(x; T, F) is defined as

CVF(x; T, F) = lim
t→0

[V(T, (1 − t)F + tδx) − V(T, F)]/t,

where V(T, F) is the functional of asymptotic variance (Hampel et al., 1986).
Further, the change-of-variance sensitivity is defined as

κ∗(T, F) = sup
x

CVF(x; F, T)/V(T, F),

and the estimator Tn = T(Fn) of the functional T(F) is called V-robust if
κ∗(T, F) < ∞.

1.3.4. Global robustness: the breakdown point
All the above-introduced measures of robustness based on the influence func-
tion and its derivatives are of a local character being evaluated at the model
distribution F. Hence it is desirable to have a measure of the global robustness
of the estimator over the chosen class of distributions, in other words, in the
chosen supermodel F . Since the general definition of a supermodel is based
on the concept of a distance (Kolmogorov, Lévy, Prokhorov) in the space of all
distributions (for details, see (Hampel et al., 1986; Huber, 1981)), the same
concept is involved into the construction for a measure of the global robust-
ness. Let d be such a distance. Then the breakdown point ε∗ of the estimator
Tn = T(Fn) for the functional T(F) at F is defined by

ε∗(T, F) = sup{ε ≤ 1: sup
F : d(F,F0)<ε

|T(F) − T(F0)| < ∞}. (1.3.6)
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The breakdown point characterizes the maximal deviation (in the sense of a
metric chosen) from the ideal model F0 that provides the boundedness of the
estimator bias.

For our further aims, the concept of the gross-error breakdown point suf-
fices:

ε∗(T, F) = sup{ε : sup
F : F=(1−ε)F0+εH

|T(F) − T(F0)| < ∞}. (1.3.7)

This notion defines the largest fraction of gross errors that still keeps the bias
bounded.

EXAMPLE 1.3.1. Such a famous estimator of location as the sample median
possesses many optimal robustness properties which hold simultaneously: the
Huber minimax variance, the Huber minimax bias, B-robust, V-robust, and
globally robust with the maximal value of the breakdown point ε∗ = 1/2.

REMARK 1.3.1. The basic relations between the Hampel and Huber approach-
es, are thoroughly analyzed in (Hampel et al., 1986, pp. 172–178), between
the concepts of continuity and qualitative robustness, in (Hampel, 1971). In
particular, for sufficiently small ε, the Huber minimax solution ψ∗ minimiz-
ing asymptotic variance V(ψ, ƒ) of M-estimators in the gross-error supermodel
turns out to be optimal V-robust minimizing V(ψ, ƒ) under the condition that
κ∗ is an upper bound of the change-of-variance sensitivity. (Rousseeuw, 1981).
The similar assertion holds for the Huber minimax bias solution and the opti-
mal B-robust estimator, namely the sample median.

REMARK 1.3.2. In our further robustness studies, we mainly use the Huber
minimax variance approach in the global type supermodels allowing
to complement the desired stability of estimation with the adaptation of
its efficiency to the underlying model. However, the influence function
tools along with such a global measure of robustness as the gross-error
breakdown point are also involved.
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Optimization criteria in data
analysis: a probability-free

approach

Here we obtain the characteristics of location for the univariate and multivari-
ate data using prior requirements towards the properties of these characteris-
tics under the conditions of uncertainty of optimization criteria. The problem
settings connected with replacing of a data collection by a unique characteristic
quantity are introduced in this chapter. To a certain extent, this characteristic
is equivalent to the initial data and thus it can be interpreted as an estimator
for all of the data.

Henceforth, this characteristic is called the ‘typical’ representative (the
measure of location or mean values in the Cauchy sense) and it is defined as
the solution of the problem of minimization of some measure of total discrep-
ancy between observations and their ‘typical’ representative. It is shown that
such a measure of discrepancy must satisfy certain a priori postulated natural
requirements towards the properties of a ‘typical’ representative. These re-
quirements mainly follow from metrological restrictions. The latter commonly
are the requirements of translation, scale, orthogonal, and affine equivariancy.

In this chapter we show that taking into account such metrological re-
quirements we can narrow the admissible classes of measures of discrepancy
and in some cases to reduce them to parametric dependences. In particu-
lar, the requirement of scale equivariancy results in the Lp-norm estimates
with arbitrary values of p (Bickel and Lehmann, 1975; Gehrig and Hellwig,
1982; Kreinovich, 1986) and the requirement of affine equivariancy leads to
the method of least squares.

19
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2.1. Introductory remarks
2.1.1. Prior requirements towards the DSC of location
The problem of data processing is often reduced to the maximal compression of
the initial information. As a rule, this compression means the replacement of
the initial data x1, …, xn by a ‘typical’ representative m. In this case, a measure
of discrepancy between the ‘typical’ representative and the observation xi is
given by the value of a criterion ρ(xi, m), i.e., the value of the contrast function
ρ(x, m) (see Section 1.2).

Henceforth, we assume that the measure of discrepancy between all the da-
ta x1, …, xn and its typical representative m is

∑
ρ(xi, m) of individual criteria.

Thus we define the value m to be some solution of the following minimization
problem

m∗ = arg min
m

n∑

i=1

ρ(xi, m), (2.1.1)

or, in other words, m is the M-estimator for the data x1, …, xn.

REMARK 2.1.1. Henceforth we put m∗ = m and this convention will not cause
any ambiguity.

If ρ(x, m) satisfies certain regularity conditions (differentiability, convexity,
etc.) then the solution of problem (2.1.1) can be determined from the following
equation

n∑

i=1

ϕ(xi, m) = 0, (2.1.2)

where ϕ(x, m) = ∂ρ(x, m)/∂m is the score function for the contrast function
ρ(x, m).

All the abovesaid can be easily extended to the problems of multivariate
data processing, i.e., to the case where observations are vectors, for example,
when in each experiment there are several qualitatively different character-
istics of the data. Obviously, in this case, a ‘typical’ representative is also a
vector.

Let the results of an experiment be some collection of vectors x1, …, xn and
let a ‘typical’ representative of this collection be a vector m

xi = (x1
i , …, xM

i )T , m = (m1, …, mM).

Now we introduce a measure of discrepancy between the ‘typical’ representa-
tive and the observation xi as follows:

ρ(xi, m) = ρ(x1
i , …, xM

i ; m1, …, mM).
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As above, let a measure of discrepancy between the data x1, …, xn and its
‘typical’ representative m be the sum of individual criteria. In this case, we,
in a natural way, define m as the solution of the minimization problem

m∗ = arg min
m

n∑

i=1

ρ(xi, m). (2.1.3)

As before, set m∗ = m (see Remark 2.1.1). The vector m determined from
(2.1.3) is the M-estimator for the multivariate data x1, …, xn.

In the case where a contrast function ρ(x, m) satisfies certain regulari-
ty conditions, minimization problem (2.1.3) is reduced to the solution of the
following simultaneous equations (the score system)

n∑

i=1

ϕs(xi, m) = 0, s = 1, 2, …, M, (2.1.4)

where ϕs(x, m) = ∂ρ(x, m)/∂ms.
If the contrast function ρ(x, m) is a priori given then the problem of deter-

mination of the ‘typical’ representative is completely defined and its solution
may face only computational difficulties. Nevertheless, some natural questions
may arise:

• How to ground the choice of the contrast function?

• What assumptions are associated with that choice? etc.

It is important indeed to pose these questions, since the value of the ‘typical’
representative essentially depends on the contrast function chosen. Some
answers to these questions are presented in this chapter.

In Chapter 1 we have already observed that there exist such situations
where the use of the probabilistic approach cannot be grounded, for instance,
where it is necessary to deal with results of unique experiments and thus the
hypothesis of stability of frequencies cannot be verified. In these cases, we
must pose some conditions in order to choose the method of data processing.
One part of these conditions is connected with purely mathematical require-
ments such as convexity, differentiability, etc. Other conditions should be
formulated due to those or either requirements towards the properties of the
parameter m sought for. Requirements of metrological character seem to be
the most natural. For example, it is often necessary to provide the adaptation
of the value m to the changes of the starting point and scale of a measuring
device; while processing the geodesic data, the adaptation to the rotations of
coordinate axes is desirable.

In the subsequent sections we show that similar requirements considerably
reduce the variety of possible forms for the contrast function and in some
situations these requirements determine them uniquely or within a parametric
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structure (Vilchevski and Shevlyakov, 1987; Shevlyakov, 1991; Vilchevski and
Shevlyakov, 1995a).

Now we introduce the notion of equivariancy of a ‘typical’ representative
under some transformation f(x).

DEFINITION 2.1.1. Let x1, …, xn and mx = m(x1, …, xn) be some collection of
the initial data and a ‘typical’ representative, respectively. We call the rule of
determination of a ‘typical’ representative equivariant under the transforma-
tion f(x) if a ‘typical’ representative of the transformed data is the transformed
‘typical’ representative of the initial data, i.e., if the following relation holds
for each collection of the data:

m(f(x1), …, f(xn)) = f(m(x1, …, xn)).

Now we describe some general requirements on the contrast function and
the score function. These requirements mainly follow from the intuitively ob-
vious assumptions about the dependence between the ‘typical’ representative
and data.

1. Let x1 = x2 = … = xn = x be n equal observations. Then it is natural
to assume that m = x: the ‘typical’ representative coincides with the observed
value. This is equivalent to the assumption

n min
m

ρ(x, m) = nρ(x, x) = 0. (2.1.5)

2. From (2.1.5) we obtain

ϕ(x, m) =
∂ρ(x, m)

∂m

{
< 0, m < x,
> 0, m > x.

(2.1.6)

If the score function is continuous, then from (2.1.6) we obtain ϕ(x, x) = 0.
3. UNIQUENESS. The requirement of uniqueness of the ‘typical’ representa-

tive can be formally introduced as the requirement of concavity of the contrast
function. In the case of a differentiable score function, this condition can be
written as

∂ 2ρ(x, m)
∂m2 =

∂ϕ(x, m)
∂m

> 0.

4. SYMMETRY. Now assume that the change of the sign of every observation
induces the change of the sign of the ‘typical’ representative

m(−x1, … − xn) = −m(x1, …xn).

REMARK 2.1.2. Note that it is not expedient to assume the hypothesis of sym-
metry for all data collections. For instance, if the distances between some
objects are measured, or the quantitative characteristics of objects, or the
ranks of objects in accordance with a chosen scale, etc., then the requirement
of symmetry is not natural.
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5. Symmetry also yields the oddness of a score function. Indeed, since we
can arbitrarily choose xi, take them symmetric

x1 = · · · = xn/2 = −x, xn/2+1 = · · · = xn/2 = x

(the number of observations is set even, if this number is odd then one obser-
vation is taken equal to zero).

For this variant of the distribution of observations, we have the following
equation for m:

n
2

(ϕ(−x, m) + ϕ(x, m)) = 0.

By symmetry, we have

n
2

(ϕ(x,−m) + ϕ(−x,−m)) = 0.

Obviously, the initial and symmetric collections are equivalent. Hence the
solutions of these two equations should coincide, i.e., m = −m. Thus, for the
symmetric data, we have m = 0 and, therefore, the score function is odd:

ϕ(x, 0) = −ϕ(−x, 0). (2.1.7)

6. TRANSLATION EQUIVARIANCY. For many problems of data processing, it
is desirable to provide the coordination between the changes of a ‘typical’ repre-
sentative and the data under the changes of the starting point of a measuring
device.

Let {xi}, i = 1, …, n, and {yi = xi + λ}, i = 1, …, n be the initial and trans-
formed data with their ‘typical’ representatives mx and my, respectively. Then
the ‘typical’ representative m is said to be translation equivariant if my = mx+λ .

Naturally, the requirement of translation equivariancy impose certain re-
strictions on the structure of the contrast function, namely the contrast func-
tion should be a decreasing function of the absolute value of the difference
between an observation and the ‘typical’ representative, which is stated in the
following theorem.

THEOREM 2.1.1. Let a solution to equation (2.1.2) be translation equivariant
for any λ and {xi}

n∑

i=1

ϕ(xi − λ, m − λ ) = 0, (2.1.8)

where ϕ(x, m) is differentiable with respect to x and m. Then minimization
problem (2.1.1) is equivalent to the minimization problem with the contrast
function ρ(x, m) = A(|x−m|), where A(u) is a decreasing function of u for u > 0
and A(0) = 0.
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REMARK 2.1.3. It is easy to see that with the additional requirement of unique-
ness of the ‘typical’ representative, the assertion of Theorem 2.1.1 can be refor-
mulated as the condition of translation equivariancy for the contrast function
ρ(x, m) = A(|x − m|) so that A(0) = 0, A(u) > 0, A′(0) = 0, and A′′(u) > 0 for
u > 0.

These conditions can be generalized in an obvious way for the case of vector
observations.

Let the data and ‘typical’ representative be

xi = (x1
i , …, xM

i )T , i = 1, …, n; m = (m1, …, mM)T .

Then the analogs of the above conditions are of the form

1. min
m1,…,mM

ρ(x1, …, xM; m1, …, mM) = ρ(x1, …, xM; x1, …, xM) = 0.

2. ϕi(x1, …, xM; m1, …, mM) =
∂ρ(…)

∂mi{
< 0, if mi < xi, mj = xj, j ≠ i,
> 0, if mi > xi, mj = xj, j ≠ i. (2.1.9)

3. From (2.1.9) we have for continuous score functions:

ϕi(x1, …, xM; m1, …, mi−1, xi, mi+1, …, mM)

=
∂ρ(x1, …, xM; m1, …, mi−1, xi, mi+1, …, mM)

∂mi = 0. (2.1.10)

4. ϕi(x1, …, xi−1,−xi, xi+1, …, xM; m1, …, mi−1, 0, mi+1, …, mM)
= −ϕi(x1, …, xi−1, xi, xi+1, …, xM; m1, …, mi−1, 0, mi+1, …, mM). (2.1.11)

5. TRANSLATION EQUIVARIANCY is established by the following result.

THEOREM 2.1.2. Let a solution of score system (2.1.4) satisfy the property of
translation equivariancy

m(x1 + λλλ , …, xn + λλλ ) = λλλ + m(x1, …, xn),

where m, xi, and λλλ are M-dimensional vectors and the contrast function is
twice differentiable.

Then the contrast function is of the form

ρ(x, m) = ρ(x − m) = ρ(|x1 − m1|, …, |xM − mM|).
Furthermore, ρ(u) satisfies the following relations: ρ(0) = 0 and ∂ρ(u)/∂us > 0
for u > 0.

REMARK 2.1.4. To guarantee uniqueness, we may add the requirement of con-
cavity of ρ(u) to the above conditions.
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2.1.2. Proofs
PROOF OF THEOREM 2.1.1. By differentiating (2.1.4) with respect to λ , we ob-
tain

n∑

i=1

(
∂ϕ(xi − λ, m − λ )

∂ (xi − λ )

(
dxi

dλ
− 1

)
+

∂ϕ(xi − λ, m − λ )
∂ (m − λ )

(
dm
dλ

− 1
))

= 0,

and taking into account the independence of xi and m of λ , we have

n∑

i=1

(
∂ϕ(xi − λ, m − λ )

∂ (xi − λ )
+

∂ϕ(xi − λ, m − λ )
∂ (m − λ )

)
= 0. (2.1.12)

Equation (2.1.12) should hold for each {xi}, so we choose the data in such a
way that xi = x, i = 1, …, n. Hence (2.1.12) takes the form

n
(

∂ϕ(u, v)
∂u

+
∂ϕ(u, v)

∂v

)
= 0,

where u = xi−λ and v = m−λ . The solution of this partial differential equation
is given by ϕ(u, v) = F(u− v), where F(u) is an arbitrary function. Taking into
account the condition of oddness for the score function ϕ(−u, 0) = −ϕ(u, 0), we
obtain that F(u) can be written as F(u) = Ψ(|u|) sgn u. As a result, the score
function takes the form

ϕ(u, v) = Ψ(|u − v|) sgn(u − v),

or for the variables x and m,

ϕ(x, m) = Ψ(|x − m|) sgn(x − m). (2.1.13)

The subsequent restrictions on the properties of the function Ψ(u) are
connected with the condition of minimum of the contrast function at x = m.
This condition can be formulated in the form of requirement (2.1.6) and hence
the function Ψ(u) should be negative, or in the form of the condition Ψ′(u) < 0.

By ϕ = ∂ρ(x, m)/∂m, we obtain after integrating from (2.1.13) that

ρ(x, m) =
∫ m

0
Ψ(|x − z|) sgn(x − z) dz + C(x).

The form of C(x) is determined from the condition ρ(x, x) = 0, hence we have

ρ(x, m) =
∫ m

x
Ψ(|x − z|) sgn(x − z) dz.
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Changing the variables u = (x − z)/(x − m), we rewrite the integral as

∫ m

x
Ψ(|x − z|) sgn(x − z) dz = − 1

x − m

∫ 1

0
Ψ(|x − m|u) sgn((x − z)u) dz

= −sgn(x − m)
x − m

∫ 1

0
Ψ(|x − m|u) du

= −
∫ |x−m|

0
Ψ(z) dz.

Therefore,

ρ(x, m) = −
∫ |x−m|

0
Ψ(z) dz, (2.1.14)

where Ψ(z) is an arbitrary negative function, which completes the proof. �

PROOF OF THEOREM 2.1.2. The proof practically coincides with the proof of the
above theorem for the univariate case. In fact, the score system is of the form

n∑

1

∂ρ(xi − λλλ , m − λλλ )
∂ms = 0, s = 1, …, M,

where x and m do not depend on λλλ .
By differentiating the above equation with respect to λ l, we obtain

−
n∑

1

[
∂ 2ρ(xi − λλλ , m − λλλ )

∂ms∂xl +
∂ 2ρ(xi − λλλ , m − λλλ )

∂ms∂ml

]
= 0.

This equation should hold for each xi. Choose xi = x, i = 1, …, n. Denote x − λλλ
as u and m − λλλ as v, hence,

n
[
∂ 2ρ(u, v)/∂ul∂vs + ∂ 2ρ(u, v)/∂vl∂vs

]
= 0.

The solutions of these partial differential equations are

∂ρ(u, v)
∂vl = Φl

s(u
1, …, us−1, us − vs, us+1, …, uM; v1, …, vs−1, vs+1, …, vM),

l = 1, …, M s = 1, …, M.

From these relations we easily obtain

∂ρ(u, v)
∂vl = Φl(|u − v|), l = 1, …, M.
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By symmetry condition (2.1.11),

∂ρ(u, v)
∂vl = Φl(|u − v|) sgn(ul − vl), l = 1, …, M.

Since ∂ 2ρ(u, v)/∂vl∂vs = ∂ 2ρ(u, v)/∂vs∂vl, for y > 0, there exists the potential
function Φ(y) with the partial derivatives equal to Φl(y). Therefore, ρ(x, m) =
Φ(|x − m|). Finally, by Φ(0) = 0 and the condition of minimum at x = m, we
see that ∂Φ(y)/∂yl > 0 for y > 0.

Obviously, uniqueness of the solution of the score system holds in the case
where Φ(y) is concave. This remark completes the proof. �

2.2. Translation and scale equivariant
contrast functions

For the problems of data processing, it is often necessary to provide the auto-
matic adaptation of the DSC-algorithms to the changes of starting points and
scales of measuring devices. A typical example of such problems is given by
the problem of processing of temperature measurements. Temperature is mea-
sured by thermometers with different scales: absolute, Celsius or Fahrenheit.
It is natural to require that the result of processing of temperature measure-
ments, the ‘typical’ temperature, should be determined by the same scale as
the results of initial measurements. Obviously, this condition imposes some
restrictions on the admissible structures of contrast functions.

These restrictions are connected with two typical situations appearing in
multivariate data processing, for example, in processing of temperature mea-
surements taken from different places or at different time, or with measuring
different coordinates (length, width and height) of an object. The following
cases are possible.

1. The measurements in every coordinate are made by measuring devices
of the same type but the type of a device has not been fixed beforehand. For
instance, it is a priori known that temperature is measured in the absolute
scale, or in the Celsius scale, or in the Fahrenheit scale; distances are measured
only in centimeters or in meters, etc. In this case, it is necessary to provide
the adaptation of the results of data processing to equal changes of scale of
measuring devices.

2. The measurements in every coordinate can be made with the use of
different measuring devices, and the type of a measuring device is not known
beforehand. For instance, the measurements in one coordinate are made by a
ruler scaled in centimeters, and in other coordinate in meters, etc., and which
coordinate is measured by which ruler is not known beforehand. In this case,
it is necessary to provide the adaptation of the results of data processing to
independent changes of scale.
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It is obvious that the second variant of data receiving should impose
stronger restrictions on the structure of admissible contrast functions and
the corresponding score systems.

2.2.1. Translation and scale equivariant contrast functions:
the equal changes of scale

Let a ‘typical’ representative of the experimental data possess such a property
that the changes of starting points of measuring scales and simultaneously
equal for all coordinates changes of the graduations of these measuring scales
imply the analogous changes of the value of the ‘typical’ representative. The
structure of the corresponding contrast function is given by the following re-
sult.

THEOREM 2.2.1. Let a solution of the score system satisfy the following condi-
tions:

• the translation equivariancy m(x + λλλ ) = λλλ + m(x);

• the scale equivariancy under simultaneous and equal for all coordinates
changes of scale m(µx) = µm(x), where µ > 0 is a scalar parameter;

• the uniqueness of the solution for all collections of the data x1, …, xn.

If there exist the second derivatives ∂ 2ρ/∂ms∂xl and ∂ 2ρ/∂ms∂ml, s, l =
1, …, M, then the contrast function ρ(x, m) is the sum of homogeneous functions
of |xs −ms|.

More precisely, the contrast function has the following structure. Let the
variables u be separated into disjoint subgroups Ik, r = 1, …, L, and the vectors
u(k) contain only those variables that belong to the subgroup Ik. Then

ρ(u) =
L∑

k=1

Φk(u(k)),

where Φk(u(k)) are homogeneous functions of order αk of the variables belonging
to the subgroup Ik, i.e., this function has the following property

Φk(tv1, tv2, …, tvMk) = tαkΦ(v1, v2, …, vMk ) and us = |xs − ms|.

Moreover,

Φk(0, 0, …, 0) = 0,
∂Φk(v1, v2, …, vM

k )
∂vs > 0, for vs > 0,

s = 1, …Mk, and Φ(v1, v2, …, vMk) are convex functions of their arguments.
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REMARK 2.2.1. A rather wide class of homogeneous functions, which can be
used for description of contrast functions, is defined as follows:

Φ(x, m) =
∑

�
ki=α

Ck1,k2 ,…,kM

M∏

s=1

|xs − ms|ks

for integer α;

Φ(x, m) =
∑

�
ki=L

Ck1,k2 ,…,kM

M∏

s=1

|xs − ms|ks/K

for rational α equal to L/K.
For irrational α, the contrast function Φ(x, m) is defined as the correspond-

ing limit transition in the latter relation.

2.2.2. Translation and scale equivariant contrast functions:
the independent changes of scale

In order to guarantee the translation and scale equivariancy of a ‘typical’ rep-
resentative under arbitrary independent scale changes, the class of admissible
functions of contrast must become more narrow.

THEOREM 2.2.2. Let a solution of a score system satisfy the following conditions:

• the translation equivariancy m(x + λλλ ) = λλλ + m(x);

• the scale equivariancy under independent changes of scale for all coordi-
nates m(M x) = M m(x), where M = {µi} is a diagonal M × M matrix;

• the uniqueness of the solution for all collections of the data x1, …, xn.

If there exist the second derivatives ∂ 2ρ/∂ms∂xl and ∂ 2ρ/∂ms∂ml, s, l =
1, …, M, then the contrast function is of the form

ρ(x, m) =
M∑

s=1

As|xs − ms|γs , (2.2.1)

with γs ≥ 1 and As ≥ 0.

2.2.3. Proofs
PROOF OF THEOREM 2.2.1. From Theorem 2.1.1 it follows that translation
equivariancy means ρ(u, v) = ρ(|u − v|). Choose xi = x, i = 1, …, k, and
xi = y, i = k + 1, k + 2, …, k + l. Hence the problem of determination of the
‘typical’ representative is reduced to

min
m

[kρ(|x − m|) + lρ(|y − m|)].
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Changing the scale of all the variables by the factor µ > 0 and taking into
account the requirement of scale equivariancy, we see that the vector m must
be changed by exactly the same factor. Therefore, we can rewrite the above
minimization problem as

min
m

[kρ(µ|x − m|) + lρ(µ|y − m|)].

Set µ(|x − m|) = u1 and µ(|y − m|) = u2. Then the necessary condition of
minimum is given by

k
∂ρ(u1)

∂us
1

∂us
1

∂ms + l
∂ρ(u2)

∂us
2

∂us
2

∂ms = 0, s = 1, …, M,

or

−k
∂ρ(u1)

∂us
1

= l
∂ρ(u2)

∂us
2

, s = 1, …, M. (2.2.2)

As m is independent of µ, by differentiating the above terms with respect to µ
we obtain

−k
∑

l

∂ 2ρ(u1)
∂ul

1∂us
1

ul
1 = l

∂ 2ρ(u2)
∂ul

2∂us
2

ul
2, s = 1, …, M. (2.2.3)

Dividing (2.2.3) by (2.2.2), we obtain

∑

l

∂ 2ρ(u1)
∂ul

1∂us
1

ul
1

/
∂ρ(u1)

∂us
1

=
∂ 2ρ(u2)
∂ul

2∂us
2

ul
2

/
∂ρ(u2)

∂us
2

= γs, s = 1, …, M,

or

∑

l

∂ 2ρ(u)
∂ul∂us ul = γs

∂ρ(u)
∂us , s = 1, …, M. (2.2.4)

Set

∂ρ(u)
∂us = ϕs, s = 1, …, M. (2.2.5)

Then equations (2.2.4) take the form

∑

l

ul ∂ϕs(u)
∂ul = γsϕs, s = 1, …, M. (2.2.6)

The solution of this partial differential equation is the homogeneous function
of order γs

ϕs = (us)γsAs
(
u/us) , (2.2.7)
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where As(u/us) is an arbitrary function of argument ui/us.
With the use of the equality of the mixed partial derivatives

∂ 2ρ(u)
∂ul∂us =

∂ 2ρ(u)
∂us∂ul , l, s = 1, …, M,

we arrive at
∂ϕs(u)

∂ul =
∂ϕl(u)

∂us

or by (2.2.6),

(us)γs−1 ∂As(u/us)
∂ul

= (ul)γl−1 ∂Al(u/ul)
∂us

, l, s = 1, …, M. (2.2.8)

Two cases are possible when these equations hold:

∂As(u/us)
∂ul

≠ 0, or
∂As(u/us)

∂ul
= 0, l, s = 1, …, M.

Let us separate all variables into subgroups in such a way that, for the
variables belonging to each subgroup, their mixed partial derivatives are non-
zero, and for the variables belonging to different groups, the mixed partial
derivatives are zero. We denote these subgroups as I1, I2, …, IL.

First, consider the particular case where all variables belong to one and
the same group. Hence, as the partial derivatives in (2.2.8) are homogeneous
functions of order zero, the relation γs = γl = γ must hold.

Now we show that the solution of system (2.2.4) with γi = γ is a homoge-
neous function of order γ + 1. Indeed, we integrate the sth equation of system
(2.2.4) from 0 to us with respect to us. Integrating the sth term by parts, we
obtain

M∑

1

ul ∂ρ(u1, …, uM)
∂ul − (γ + 1)ρ(u1, …, uM)

=
∑

l≠s

ul ∂ρ(u1, …, us−1, 0, us+1, …, uM)
∂ul

− (γ + 1)ρ(u1, …, us−1, 0, us+1, …, uM), s = 1, …, M.

As the left-hand sides of these equations are the same and the right-hand sides
do not depend on us, we obtain

∑

l≠s

ul ∂ρ(u1, …, us−1, 0, us+1, …, uM)
∂ul

− (γ + 1)ρ(u1, …, us−1, 0, us+1, …, uM) = d = const
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and
M∑

1

ul ∂ρ(u1, …, uM)
∂ul − (γ + 1)ρ(u1, …, uM) = d.

From the latter equation by ρ(0, 0, …, 0) = 0, we have d = 0 and, hence,

M∑

l=1

ul ∂ρ(u1, …, uM)
∂ul − (γ + 1)ρ(u1, …, uM) = 0.

This partial differential equation defines the contrast function as a homoge-
neous function of order γ + 1.

Thus, if the condition ∂As(u/us)/∂ul ≠ 0 holds for all s and l, then the
contrast function ρ(u1, …, uM) is a homogeneous function of order (γ + 1).

To provide uniqueness, we require the concavity of this function for u > 0.
In the general case, we separate all variables into the subgroups in such

a way that, for the variables belonging to each subgroup, their mixed partial
derivatives are non-zero, and for the variables belonging to different groups,
the mixed partial derivatives are zero. Let these subgroups be I1, I2, …, IL.

From (2.2.8) we obtain

γs = γl = αk, for s, l ∈ Ik.

Therefore, the order of homogeneity of the functions ϕs = ∂ρ(u)/∂us for the
variables belonging to one subgroup is one and the same, and it is equal to αk.

Taking this into account, repeating the above reasoning word for word, we
easily obtain that, in the general case, the contrast function is

ρ(u) =
L∑

k=1

Φk(u(k)),

where Φk(u(k)) are homogeneous functions of order (αk + 1) of the variables
belonging to the subgroup Ik. Here Φk(u(k)) are concave functions for u(k) > 0
and Φk(0) = 0.

Returning to the variables x and m and replacing (αk+1) by αk, we complete
the proof. �

PROOF OF THEOREM 2.2.2. By Theorem 2.1.2, translation equivariancy means
that the contrast function is

ρ(u, v) = ρ(|u − v|).

Using the arbitrariness of the data choice, we take

xi = x, i = 1, …, k, and xi = y, i = k + 1, …, k + l.
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In this case, the problem of determination of the ‘typical’ representative is
reduced to the minimization problem

min
m

[kρ(|x − m|) + lρ(|y − m|)].

Changing the scale of the ith coordinate by the factor µi and using the condition
of scale equivariancy according to which the ith coordinate of the vector m
should be also changed by the factor µi, we can rewrite the above minimization
problem as follows:

min
m

[kρ(|µµµ(x − m)|) + lρ(|µµµ(y − m)|)].

Set |µµµ(x −m)| = u1 and |µµµ(y −m)| = u2. Then the necessary condition of
minimum is given by

k
∂ρ(u1)

∂us
1

∂us
1

∂ms + l
∂ρ(u2)

∂us
2

∂us
2

∂ms = 0, s = 1, …, M,

or

−k
∂ρ(u1)

∂us
1

= l
∂ρ(u2)

∂us
2

, s = 1, …, M. (2.2.9)

Since m is independent of µl, after differentiating (2.2.9) with respect to µl
we arrive at

−k
∂ 2ρ(u1)
∂ul

1∂us
1

ul
1 = l

∂ 2ρ(u2)
∂ul

2∂us
2

ul
2 s, l = 1, …, M. (2.2.10)

Dividing (2.2.10) by the sth equation of (2.2.9), we obtain

∂ 2ρ(u1)
∂ul

1∂us
1

ul
1

/
∂ρ(u1)

∂us
1

=
∂ 2ρ(u2)
∂ul

2∂us
2

ul
2

/
∂ρ(u2)

∂us
2

= γsl, s, l = 1, …, M,

or
∂ 2ρ(u)
∂ul∂us ul = γsl

∂ρ(u)
∂us , s, l = 1, …, M.

Setting

∂ρ(u)
∂us = ϕs, (2.2.11)

we obtain

∂ϕs(u)
∂ul = γslϕs(u) s, l = 1, …, M. (2.2.12)
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The solution of equation (2.2.12) for s = 1, l = 1

∂ϕ1(u)
∂ul = γ1lϕ1(u)

is determined by
ϕ1(u) = C1(u2, …, uM)(u1)γ11 ,

where C1(u2, …, uM) are arbitrary functions.
Substituting this expression into (2.2.12) with l = 1, we obtain

∂C1(u2, …, uM)
∂us

(
u1
)γ11+1

= γs1C1(u2, …, uM)
(

u1
)γ11

, s = 2, …, M.

Further,
∂C1(u2, …, uM)

∂us = 0, γs1 = 0, s = 2, …, M.

Therefore, C1(u2, …, uM) = C1 = const, and thus, ϕ1 = C1
(
u1)γ11 . Integrating

with respect to u1, we arrive at

ρ(u) = A1

(
u1
)γ1

+ ρ(0, u2, …, uM), (2.2.13)

where A1 = C1/(γ11 + 1), γ1 = γ11 + 1. By substituting (2.2.13) into (2.2.12) and
repeating the above procedure, we obtain

ρ(u) =
M∑

s=1

As
(
us)γs + ρ(0, 0, …, 0).

By ρ(0, 0, …, 0) = 0, us = |xs − ms|, and by concavity, we get γs ≥ 1, and the
required assertion

ρ(x, m) =
M∑

s=1

As|xs − ms|γs , γs ≥ 1.

�

2.3. Orthogonally equivariant contrast functions
There are sufficiently many problems of data processing, in particular, with the
geodesic data, when it is necessary to provide the equivariancy of the ‘typical’
representative under rotation of coordinate axes in which the measurements
are made. Indeed, let the location of some object be determined by measuring
its coordinates relative to two orthogonal axes defined by their directions at
given bench-marks. It is natural to require that, with the rotation of axes by
some angle (the choice of other field bench-marks), the coordinates of a ‘typical’
representative in new axes must be rotated by the same angle. Obviously,
such a requirement imposes sufficiently strict restrictions on the structure of
a contrast function. The results below show that
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• if the measurements are made in a plane, then the contrast function
depends only on two measurement characteristics:

– the Euclidean distance between the measured object and the ‘typi-
cal’ representative;

– the angle determining the direction at the ‘typical’ representative
from the measured object;

• if the measured object is of dimension greater than two, then the contrast
function depends only on the Euclidean distance between the measured
object and the ‘typical’ representative.

2.3.1. Translation and orthogonally equivariant
contrast functions: the bivariate data

THEOREM 2.3.1. Let the data Xi = (xi, yi)T, i = 1, …, n, and the solution
(m(x, y), n(x, y))T of the score system satisfy the following conditions:

• the condition of translation equivariancy
(

m(x + λ1, y + λ2)
n(x + λ1, y + λ2)

)
=
(

λ1
λ2

)
+
(

m(x, y)
n(x, y)

)
;

• the condition of equivariancy under rotation of coordinate axes
(

cos φ sin φ
− sin φ cos φ

)(
m(x, y)
n(x, y)

)
=
(

m(x cos φ + y sin φ,−x sin φ + y cos φ )
n(x cos φ + y sin φ,−x sin φ + y cos φ )

)
.

Then the contrast function is of the form

ρ(x, y; m, n) = F(
√

(x − m)2 + (y − n)2) exp
(

α arctan
x − m
y − n

)
,

where F(u) is a twice differentiable function, F(0) = 0, and ∂ 2F(u)/∂u2 > 0.

PROOF. The sufficiency of the assertion is obvious. We prove the necessity. By
Theorem 2.1.1, translation equivariancy means that the contrast function is
ρ(x, y; m, n) = ρ(x − m, y − n). Choosing the data, we take

(xi, yi)T = (x1, y1)T , i = 1, …, k; (xi, yi)T = (x2, y2)T , i = k + 1, …, k + l.

In this case, the problem of determination of the ‘typical’ representative takes
the form of the minimization problem

min
m,n

[kρ(x1 − m, y1 − n) + lρ(x2 − m, y2 − n)].
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After rotating the coordinate axes by the angle φ , the coordinates of the ‘typical’
representative must be rotated by the same angle. Taking this into account,
we rewrite the minimization problem as

min
m,n

[
kρ((x1 − m) cos φ + (y1 − n) sin φ,−(x1 − m) cos φ + (y1 − n) sin φ )

+ lρ((x2 − m) cos φ + (y2 − n) sin φ,−(x2 − m) cos φ + (y2 − n) sin φ )
]

.

For the bivariate case i = 1, 2, set

(xi − m) cos φ + (yi − n) sin φ = ui, −(xi − m) sin φ + (yi −m) cos φ = vi.

Equating the derivatives of the minimized function with respect to m and n to
zero, we obtain

k
∂ρ(u1, v1)

∂u1

∂u1

∂m
+ k

∂ρ(u1, v1)
∂v1

∂v1

∂m
+ l

∂ρ(u2, v2)
∂u2

∂u2

∂m
+ l

∂ρ(u2, v2)
∂v2

∂v2

∂m
= 0,

k
∂ρ(u1, v1)

∂u1

∂u1

∂n
+ k

∂ρ(u1, v1)
∂v1

∂v1

∂n
+ l

∂ρ(u2, v2)
∂u2

∂u2

∂n
+ l

∂ρ(u2, v2)
∂v2

∂v2

∂n
= 0.

or

−k
∂ρ(u1, v1)

∂u1
cos φ + k

∂ρ(u1, v1)
∂v1

sin φ = l
∂ρ(u2, v2)

∂u2
cos φ − l

∂ρ(u2, v2)
∂v2

sin φ,
(2.3.1)

−k
∂ρ(u1, v1)

∂u1
sin φ − k

∂ρ(u1, v1)
∂v1

cos φ = l
∂ρ(u2, v2)

∂u2
sin φ + l

∂ρ(u2, v2)
∂v2

cos φ.
(2.3.2)

As the variables x, y, m, n do not depend on φ , we differentiate this system
of equations in φ

− k
[
A(u1, v1) cos φ − B(u1, v1) sin φ +

∂ρ(u1, v1)
∂u1

sin φ +
∂ρ(u1, v1)

∂v1
cos φ

]

= l
[
A(u2, v2) cos φ − B(u2, v2) sin φ +

∂ρ(u2, v2)
∂u2

sin φ +
∂ρ(u2, v2)

∂v2
cos φ

]
,
(2.3.3)

− k
[
A(u1, v1) sin φ + B(u1, v1) cos φ +

∂ρ(u1, v1)
∂u1

cos φ − ∂ρ(u1, v1)
∂v1

sin φ
]

= l
[
A(u2, v2) sin φ + B(u2, v2) cos φ +

∂ρ(u2, v2)
∂u2

cos φ − ∂ρ(u2, v2)
∂v2

sin φ
]

.
(2.3.4)



2.3. Orthogonal equivariancy 37

Here we have set

A(u, v) =
∂ 2ρ

∂u∂u
(−u sin φ + v cos φ ) +

∂ 2ρ
∂v∂u

(−u cos φ − v sin φ )

≡
∂ 2ρ

∂u∂u
v − ∂ 2ρ

∂v∂u
u, (2.3.5)

B(u, v) =
∂ 2ρ

∂u∂v
(−u sin φ + v cos φ ) +

∂ 2ρ
∂v∂v

(−u cos φ − v sin φ )

≡
∂ 2ρ

∂u∂v
v − ∂ 2ρ

∂v∂v
u. (2.3.6)

Dividing (2.3.3) by (2.3.1), (2.3.4) by (2.3.2), and taking into account that the
right-hand side of this relation is a function of u1, v1 only, and the left-hand
side is a function of u2, v2, we obtain
(

cos φ − sin φ
sin φ cos φ

)(
A
B

)
=
(

sin φ cos φ
cos φ − sin φ

)(
∂ρ/∂u
−∂ρ/∂v

)

+
(

α 0
0 β

)(
cos φ − sin φ
sin φ cos φ

)(
∂ρ/∂u
∂ρ/∂v

)
.

Solving this, for A and B we obtain
(

A
B

)
=
(−∂ρ/∂v

∂ρ/∂u

)
+
(

α cos2 φ + β sin2 φ (−α + β ) sin φ cos φ
(−α + β ) sin φ cos φ α cos2 φ + β sin2 φ

)(
∂ρ/∂u
∂ρ/∂v

)
.

Obviously, the solution of this set does not depend on φ only if α = β , and in
this case, by (2.3.5) and (2.3.6), it takes the form

∂ 2ρ
∂u∂u

v − ∂ 2ρ
∂v∂u

u = −∂ρ
∂v

+ α
∂ρ
∂u

,

∂ 2ρ
∂u∂v

v − ∂ 2ρ
∂v∂v

u =
∂ρ
∂u

+ α
∂ρ
∂v

.

Set ∂ρ/∂u = ϕ1, ∂ρ/∂v = ϕ2. Hence the above system is transformed to

∂ϕ1

∂u
v − ∂ϕ1

∂v
u = −ϕ2 + αϕ1,

∂ϕ2

∂u
v − ∂ϕ2

∂v
u = +ϕ1 + αϕ2.

Using the polar coordinates u = r cos t, v = r sin t, we obtain

∂ϕ1

∂ t
= −ϕ2 + αϕ1,

∂ϕ2

∂ t
= +ϕ1 + αϕ2.
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The solution of these simultaneous differential equations is of the form

ϕ1 ≡
∂ρ
∂u

= C1(r) exp (αt) cos t + C2(r) exp (αt) sin t,

ϕ2 ≡
∂ρ
∂v

= C1(r) exp (αt) sin t − C2(r) exp (αt) cos t.

By the relations

∂ρ
∂r

=
∂ρ
∂u

cos t +
∂ρ
∂v

sin t,

∂ρ
∂ t

= −r
∂ρ
∂u

sin t + r
∂ρ
∂v

cos t,

we arrive at
∂ρ
∂r

= C1(r) exp (αt),
∂ρ
∂ t

= −C2(r) exp (αt).

Solving these simple equations and reverting to the variables u, v along with
the condition ρ(0) = 0, we obtain the required assertion, namely

ρ(u, v) = F(
√

u2 + v2) exp
(

α arctan
u
v

)

or
ρ(x, y; m, n) = F(

√
(x − m)2 + (y − n)2) exp

(
α arctan

x − m
y − n

)
.

�

2.3.2. Translation and orthogonally equivariant
contrast functions: the multivariate data

THEOREM 2.3.2. Let the data x = (x1, …, xM) and and the solution of the score
system m(x) = (m1(x), …, mM(x)) satisfy the following conditions:

• the condition of translation equivariancy m(x + ΛΛΛ) = m(x) + ΛΛΛ, where ΛΛΛ =
(λ1, …, λM);

• the condition of equivariancy under rotation of coordinate axes
m(Tx) = Tm(x), where T is an orthogonal M × M matrix.

Then the contrast function is of the following structure:

ρ(x; m) = Ψ



√∑

s
(xs − ms)2


 ,

where Ψ(u) is a twice differentiable function satisfying

Ψ(0) = 0,
∂Ψ(u)/∂u

u
> 0,

∂ 2Ψ(u)
∂u2 > 0.
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PROOF. The condition of translation equivariancy determines the contrast
function in the form ρ(x, m) = ρ(x − m). Observe that an orthogonal matrix
can be represented as the product of matrices of rotation around coordinate
axes.

Consider the case M = 3. Setting obvious notation, we can write for the
contrast function ρ(x, y, z) ≡ ρ(x1 − m1, x2 − m2, x3 − m3). Make a rotation
around the axis z. By Theorem 2.3.1, the equivariancy under rotation means
that the contrast function is

ρ(x, y, z) = F
(√

x2 + y2, z
)

exp
(

α arctan
y
x

)
,

where F(u, v) and α are an arbitrary function and an arbitrary parameter
satisfying only the requirement of concavity for the contrast function.

Making a rotation around the axis x, we have the contrast function in the
form

ρ(x, y, z) = G
(

x,
√

y2 + z2
)

exp
(

β arctan
z
y

)
.

Obviously, these expressions must coincide. Hence let us consider the func-
tional equation

F
(√

x2 + y2, z
)

exp
(

α arctan
y
x

)
= G

(
x,
√

y2 + z2
)

exp
(

β arctan
z
y

)
.
(2.3.7)

For y = 0, we have (for simplicity of calculations, set x, z ≥ 0)

F(x, z) = G(x, z) exp
(

β
π
2

)
. (2.3.8)

From (2.3.8) it follows that (2.3.7) takes the form

F
(√

x2 + y2, z
)

exp
(

α arctan
y
x

)

= F
(

x,
√

y2 + z2
)

exp
(

β
(

arctan
z
y
− π

2

))
. (2.3.9)

Setting z = 0 in (2.3.9), we obtain

F
(√

x2 + y2, 0
)

exp
(

α arctan
y
x

)
= F(x, y) exp

(
−β

π
2

)

Furthermore,

F
(√

x2 + y2, z
)

= F
(√

x2 + y2 + z2, 0
)

exp

(
α arctan

z√
x2 + y2

+ β
π
2

)
,
(2.3.10)

F
(

x,
√

y2 + z2
)

= F
(√

(x2 + y2 + z2, 0
)

exp

(
α arctan

√
y2 + z2

x
+ β

π
2

)
.
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By substituting the latter relations into (2.3.9), excluding the factor
F(
√

x2 + y2 + z2, 0), and taking the logarithm, we arrive at

α arctan
z√

x2 + y2
+ β

π
2

+ α arctan
y
x

= α arctan

√
y2 + z2

x
+ β arctan

z
y

.

By substituting x = 0 into this relation we have β = 0 and α = 0. Hence
(2.3.10) takes the form

F
(√

x2 + y2, z
)

= F
(√

x2 + y2 + z2, 0
)

≡ Ψ
(√

x2 + y2 + z2
)

.

Therefore,

ρ(x, y, z) = Ψ
(√

x2 + y2 + z2
)

,

i.e., for M = 3, the required assertion is true.
In the general case, the proof can be easily made by induction.
Now we show that if F(u) is concave, twice differentiable, and its minimum

is attained at u = 0, then

G(x) = F
(√

x2
1 + x2

2 + … + x2
m

)

is also concave.
Indeed,

∂ 2G
∂xi

2 = F′′(v)
x2

i

v2 + F′(v)
v2 − x2

i

v3/2 , i = 1, …, M,

∂ 2G
∂xi∂xj

= F′′(v)
xixj

v2 − F′(v)
xixj

v3/2 , i ≠ j.

Here we put v2 =
∑

s x2
s .

Consider the quadratic form

I =
∑

i

∑

j

∂ 2G
∂xi∂xj

yiyj.

By substituting the partial derivatives into the above formula we have

I = F′(v)v−1
∑

i
y2

i + (F′′(v)v−2 − F′(v)v−3)

(
∑

i
xiyi

)2

.

As the minimal eigenvalue of a quadratic form is the solution of the minimiza-
tion problem

λmin = min
y1,…,ym

I over
∑

i
y2

i = 1,
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after obvious calculations we obtain

λmin = min
[
F′′(v),

F′(v)
v

]
.

The condition of concavity of the function G(x) is the condition of positive
definiteness of the matrix of second partial derivatives, i.e., the requirement
λmin ≥ 0. By the latter relation,

F′′(v) > 0;
F′(v)

v
> 0. (2.3.11)

It is easy to see that these conditions define a concave function decreasing for
v < 0 and increasing for v > 0, i.e., attaining the minimal value at v = 0. �

2.4. Monotonically equivariant contrast functions
The strongest requirement on the class of admissible contrast functions is
given by the requirement of equivariancy of the ‘typical’ representative under
an arbitrary monotone transformation of the initial data.

Formally this means that if the ‘typical’ representative m(x1, …, xn) corre-
sponds to the initial data x1, …, xn, then the ‘typical’ representative trans-
formed by a monotone function ƒ(x) corresponds to the transformed data
{yi = ƒ(xi)}, i = 1, …, n:

m(y1, …, yn) = m(ƒ(x1), …, ƒ(xn)) = ƒ(m(x1, …, xn)). (2.4.1)

Here the solution is obvious: any order statistic x(i) i = 1, …, n satisfies con-
dition (2.4.1), in particular, the sample median for odd sample sizes. For the
even sample sizes n = 2k, the equivariant ‘typical’ representative is given by
the kth or (k + 1)th order statistics.

Taking these considerations into account, it is easy to see that the contrast
function providing the equivariancy under arbitrary monotone transforma-
tions is given by the sum of absolute deviations

ρ(x, m) =
M∑

i=1

|xi − mi| (2.4.2)

with the additional condition that, for even n = 2k, the solution of the mini-
mization problem with the contrast function

min
m

n∑

j=1

ρ(xj, m) = min
m

n∑

j=1

M∑

i=1

|xij − mi| (2.4.3)

is the vector m∗ = (x1(s), …, xM(s)), where s = k or k + 1.
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2.5. Minimal sensitivity to small perturbations in
the data

One of the natural requirements on the choice of the ‘typical’ representative is
the requirement of the minimal sensitivity of this parameter to small perturba-
tions in the initial data. Such perturbations may be caused, for instance, either
by rounding off the observations in accordance with the scale of a measuring
device, or by small measurement errors.

Now we characterize the sensitivity of an estimator m = m(x1, …, xn) based
on the data x1, …, xn to the perturbations of these data by the quadratic crite-
rion

I =
n∑

i=1

(
∂mn

∂xi

)2
(2.5.1)

and choose the structure of the contrast function ρ(x, m) and of the correspond-
ing score function φ (x, m) = ∂ρ(x, m)/∂m in such a way that (2.5.1) is minimal.

The solution of this problem is based on the following simple result.

LEMMA 2.5.1. The minimum of the function

I(a1, …, an) =
n∑

i=1

a2
i

/( n∑

i=1

ai

)2

(2.5.2)

is attained at a1 = · · · = an = C = const.

PROOF. Setting yi = ai/
∑n

1 ak, we arrive at the minimization problem

minimize
n∑

i=1

y2
i under the condition

n∑

i=1

yi = 1.

The solution of this simplest problem of conditional minimization is given by
y1 = · · · = yn = 1/n, and this is equivalent to the assertion of the lemma:
a1 = · · · = an = C, where C is an arbitrary constant. �

Now we prove the theorem that determines the form of the contrast func-
tion providing the minimal sensitivity of a ‘typical’ representative of the data
to their small perturbations.

THEOREM 2.5.1. Let the requirement of translation equivariancy of a ‘typical’
representative hold.

Then the minimum of criterion (2.5.1) is attained at the score functions
φ (u) = Cu with the corresponding contrast functions ρ(u) = Cu2, i.e., for the
estimators of the LS method.
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PROOF. From the requirement of equivariancy (Theorem 2.1.1) it follows that
the value of a ‘typical’ representative is determined by

n∑

i=1

ϕ(xi − m) = 0.

Differentiating this equation with respect to xk, k = 1, …, n,, we obtain

−
n∑

i=1

ϕ ′(xi − m)
∂m
∂xk

+ ϕ ′(xk −m) = 0, k = 1, …, n.

Furthermore,
∂m
∂xk

=
ϕ ′(xk − m)∑n
i=1 ϕ(xi − m)

.

Hence the criterion of minimal sensitivity takes the form

I(ϕ) =
∑

i
(ϕ ′(xi − m))2

/(
∑

i
ϕ(xi − m)

)2

.

Applying now the assertion of Lemma 2.5.1 to the problem of minimization
of this criterion, we have φ ′(u) = C and, by the condition φ (0) = 0, we obtain
φ (u) = Cu, which completes the proof. �

Thus, if the influence of measurement errors is characterized by the most
often used quadratic criterion (2.5.1), then this influence is minimal when
using the least squares method for data processing, i.e., the ‘typical’ represen-
tative is the sample mean. This conclusion also holds true for a more general
form of the criterion for estimating the measurement errors.

Now we characterize the influence of errors by the criterion

J = G
(

∂m
∂x1

, …,
∂m
∂xn

)
, (2.5.3)

where G(u1, …, un) is a symmetric function such that that G(0, …, 0) = 0.
Let also the natural requirement of the coordinated augmentation of the

criterion value and the augmentation of the error value hold:

∂G
∂ui

{
> 0, ui > 0,
< 0, ui < 0.

(2.5.4)

In this case, the following is true.
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LEMMA 2.5.2. Let G(u1, …, un) be a symmetric function and

∂ 2G(1/n, …, 1/n)
∂ 2u1

− ∂ 2G(1/n, …, 1/n)
∂u1∂u2

> 0. (2.5.5)

Then the minimum of the function

J(a1, …, an) = G
(

a1∑n
1 ai

, …,
an∑n
1 ai

)
(2.5.6)

is attained at a1 = · · · = an = C = const.

PROOF. Setting yi = ai/
∑n

1 ak, we arrive at the problem of conditional mini-
mization

minimize G(y1, …, yn) under the condition
n∑

i=1

yi = 1.

Excluding the variable yn, we rewrite the latter problem as

minimize G

(
y1, …, yn−1, 1 −

n−1∑

i=1

yi

)
.

Hence the simultaneous equations for determination of the variables sought
for are of the form

∂G(y1, …, yn−1, 1 −∑n−1
1 yi)

∂uk
−∂G(y1, …, yn−1, 1 −∑n−1

1 yi)
∂un

= 0, k = 1, …, n−1.

It is easy to see that from (2.5.4) it follows that these equations have the unique
solution

yk = 1 −
n−1∑

i=1

yi, k = 1, …, n − 1,

and hence we obtain yk = 1/n, k = 1, …, n.
Consider now the conditions of concavity for the function

G

(
y1, …, yn−1, 1 −

n−1∑

i=1

yi

)

at the unique stationary point yk = 1/n, k = 1, …, n − 1.
We regard this condition as the requirement of positive definiteness of the

quadratic form

T(v1, …, vn−1) =
n−1∑

i=1

n−1∑

k=1

∂ 2G(y1, …, yn−1, 1 −∑n−1
i=1 yi)

∂yi∂yk
vivk.
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Evaluating the second derivatives at yk = 1/n, k = 1, …, n − 1 and taking into
account that the function G(u1, …, un) is symmetric, we have

∂ 2G(y1, …, yn−1, 1 −∑n−1
i=1 yi)

∂ 2yi

∣∣∣∣∣
y1=···=yn−1=1/n

= 2

(
∂ 2G(1/n, …, 1/n)

∂ 2u1
− ∂ 2G(1/n, …, 1/n)

∂u1∂u2

)
.

Hence,

∂ 2G(y1, …, yn−1, 1 −∑n−1
i=1 yi)

∂yi∂yk

∣∣∣∣∣
y1=···=yn−1=1/n

=
∂ 2G(1/n, …, 1/n)

∂ 2u1
− ∂ 2G(1/n, …, 1/n)

∂u1∂u2
, i ≠ k.

Further, some tedious manipulation yields the following expression for the
quadratic form:

T(v1, …, vn−1) =

(
∂ 2G(1/n, …, 1/n)

∂ 2u1
− ∂ 2G(1/n, …, 1/n)

∂u1∂u2

)

×




n−1∑

i=1

v2
i +

(n−1∑

i=1

vi

)2


and it is positive definite since

∂ 2G(1/n, …, 1/n)
∂ 2u1

− ∂ 2G(1/n, …, 1/n)
∂u1∂u2

> 0.

Returning to the variables {ai}, i = 1, …, n, we obtain the required result: the
minimal value of function (2.5.6) is attained at a1 = · · · = an = C = const. �

This lemma makes it possible to generalize Theorem 2.5.1.

THEOREM 2.5.2. Let the condition of translation equivariancy of a ‘typical’ rep-
resentative hold.

Then the minimum of criterion (2.5.3) satisfying conditions (2.5.4) and
(2.5.5) is attained at the score functions φ (u) = Cu, which correspond to the
contrast functions ρ(u) = Cu2 of the LS estimators.

We omit the proof of this theorem because it completely coincides with that
of Theorem 2.5.1.
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REMARK 2.5.1. The meaning of this subsection is obvious: any reasonable
criterion of minimization of the influence of small perturbations in the initial
data stipulates the procedure of data processing by the LS method.

Nevertheless, we have to note that in this statement the essential role
is played by the supposition of exactly small perturbations. Breaking this as-
sumption, we must use other methods of data processing, that could, generally,
be determined from the requirements on the sensitivity curves.

2.6. Affine equivariant contrast functions
In the preceding sections, we considered the restrictions on the admissible
structure of the contrast functions connected with the requirement of equivari-
ancy of the ‘typical representative’ under elementary transformations (trans-
lation, scale, orthogonal) of the initial data. Naturally, the requirement of
equivariancy under some superposition of elementary transformations makes
it necessary to choose the contrast functions under the conditions of the joint
structure restrictions specific for separate elementary transformations. There-
fore the results presented in this section are corollaries to the results of the
preceding sections.

The requirement of affine equivariancy of a ‘typical representative’ can be
written in the form

m(Y1, …, YM) = Cm(x1, …, xM), yi = Cxi, i = 1, …, n, (2.6.1)

where C is an arbitrary non-degenerate M × M matrix, m, xi, yi are M-
dimensional vectors, and n is a number of observations.

As the following theorem shows, the requirement of affine equivariancy
(2.6.1) combined with the requirement of translation equivariancy implies the
procedure of data processing by the LS method.

THEOREM 2.6.1. Let the contrast function be concave and the score function be
differentiable. Then the condition of affine equivariancy of a ‘typical’ represen-
tative holds if and only if the contrast function is

ρ(x1, …, xM; m1, …, mM) = A
M∑

s=1

|xs − ms|2, (2.6.2)

where A is an arbitrary positive constant.

PROOF. The sufficiency is obvious. In order to prove the necessity, we observe
that the matrix C of an affine transformation can be represented in the form
C = µµµT, where µµµ is a diagonal matrix with positive elements, and T is an
orthogonal matrix, i.e., the matrix C is the superposition of two transforma-
tions: the rotation by some angle and the coordinate-wise independent scale
transformation.
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From Theorem 2.2.1, Theorem 2.3.1, and Theorem 2.3.2 it follows that
the contrast functions providing the equivariancy under the combination of
the transformations of translation, scale, and rotation must simultaneously
satisfy the conditions

ρ(x1, …, xM; m1, …, mM) =
M∑

s=1

As|xs − ms|γs , γs ≥ 1, As > 0,

and

ρ(x1, …, xM; m1, …, mM) = F

( M∑

s=1

|xs − ms|2
)

.

The direct comparison of the above expressions shows that the only one possible
form of the contrast function is given by the quadratic criterion

ρ(x1, …, xM; m1, …, mM) =
M∑

s=1

|xs − ms|2,

which completes the proof. �

Now we consider a requirement of equivariancy under the superposition of
translation, orthogonality, and a component-wise identical scale transforma-
tions, which is less severe than (2.6.1). The restrictions on the structure of
the contrast function imposed by this requirement are given by the following
theorem.

THEOREM 2.6.2. Let the contrast function be convex and the score function be
differentiable. Then the combined conditions of translation, orthogonal, and
component-wise identical scale equivariancy of a ‘typical’ representative hold if
and only if the contrast function is

ρ(x1, …, xM; m1, …, mM) = Arp, r =

( M∑

i=1

|xi − mi|2
)1/2

. (2.6.3)

PROOF. The sufficiency is obvious. In order to prove the necessity, we observe
that from Theorem 2.2.1 and Theorem 2.3.2 it follows that the function sought
for should satisfy the relation

ρ(x1, …, xM; m1, …, mM) =
L∑

k=1

Φk(|xk − mk|), (2.6.4)

where Φk(uk) are homogeneous functions of order αk of the variables belonging
to the disjoint subsets Ik, k = 1, …, L, and

ρ(x1, …, xM; m1, …, mM) = F

( M∑

s=1

|xs − ms|2
)

. (2.6.5)
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From the latter relation it follows that such a separation of variables does not
exist, and therefore (2.6.4) takes the form

ρ(x1, …, xM; m1, …, mM) = Φ(|x1 − m1|, …, |xM − mM|), (2.6.6)

where Φ(u1, …, uM) is a homogeneous function of order α, i.e., a function sat-
isfying the condition

Φ(u1, …, uM) = uα
1 Φ
(

1,
u2

u1
, …,

uM

u1

)
.

Setting |x1 − m1| = · · · = |xM − mM| = |u| in (2.6.5)–(2.6.7), we obtain

|u|α Φ(1, 1, …, 1) = F(Mu2),

and therefore,
F(v) = A|v|α/2,

which completes the proof. �

In the real-life problems of multivariate data processing, certain metro-
logical requirements can be imposed only on a part of the components of the
initial data vectors. However, there often appear such situations that different
metrological requirements should hold for different groups of components.

For instance, the measurements of some object may be characterized by its
space coordinates, by the velocities of its displacement, by the state of envi-
ronment (temperature, pressure, wind velocity), etc. It may become necessary
to require the equivariancy of the estimators of these characteristics under
an arbitrary affine transformation of space coordinates and velocities, under
changes of scale of measuring devices which register temperature, pressure,
etc.

Thus the statements of the above theorems in the cases where the metro-
logical requirements are imposed on a part of the components of the vector
data are of some interest.

Now we represent the results which give the structure of the contrast func-
tion in the extreme and complementary cases where one part of the components
of the initial data vectors is homogeneous—for them it is natural to apply the
requirements of orthogonal and identical component-wise scale equivariancy,
and for the remaining components, due to their heterogeneity, it is reasonable
to assume the requirement of independent component-wise equivariancy.

THEOREM 2.6.3. The conditions of translation equivariancy for all components
and of component-wise independent scale equivariancy for the components with
indices 1, …, l hold if and only if the contrast function is

ρ(x1, …, xM; m1, …, mM) =
l∑

i=1

Ai|xi − mi|pi + F(|xl+1 − ml+1|, …, |xM − mM|),
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where Ai > 0, pi ≥ 1, and F(u1, …, uM−l) is a concave function.

To prove this, we observe that in this case we obtain the contrast function

ρ(x1, x2, …, xM; m1, m2, …, mM) =

( l∑

i=1

Ai|xi − mi|pi

)

× G(|xl+1 − ml+1|, …, |xM − mM|) + F(|xl+1 − ml+1|, …, |xM − mM|)

and, because the product of functions depending on different arguments is
concave only if one of the functions is concave and another is constant, we
obtain G(|xl+1 − ml+1|, …, |xM − mM|) = const, which completes the proof.

THEOREM 2.6.4. The conditions of translation equivariancy for all components
and of combined orthogonal and component-wise identical scale equivariancy
for the components with indices 1, …, l hold if and only if the contrast function
is

ρ(x1, …, xM; m1, …, mM) =

( l∑

i=1

|xi − mi|2
)p/2

+ F(|xl+1 −ml+1|, …, |xM − mM|),

where F(u1, u2, …, uM−l) is a concave function.

To prove this theorem, it suffices to repeat the proof of Theorem 2.6.2.
Combining Theorems 2.6.3 and 2.6.4, we obtain the following

COROLLARY 2.6.1. In order that the ‘typical’ representative could possess

• translation equivariancy for all components,

• independent scale equivariancy for the components with indices s =
1, …, l,

• orthogonal and identical scale equivariancy for the components with in-
dices s = l + 1, …, M,

it is necessary and sufficient to use the contrast functions

ρ(x1, …, xM; m1, …, mM) =
l∑

i=1

Ai|xi −mi|pi +

( M∑

i=l+1

|xi − mi|2
)p/2

, (2.6.7)

where Ai > 0, pi ≥ 1, p ≥ 1.

REMARK 2.6.1. Using the above approach, it is not difficult to construct as
many combinations of particular requirements of equivariancy for various
collections of the components of the initial data vectors as desired.
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3

Robust minimax estimation of
location

3.1. Introductory remarks
The basic stage of the minimax approach is the determination of a least in-
formative distribution minimizing the Fisher information over a given class
of distributions. In this section we describe the solutions of this variational
problem in some important for theory and applications classes of distribution
densities.

3.1.1. A priori information and the classes of data distributions
The ε-neighborhoods of normal distribution, in particular the model of gross
errors, are not the only models of interest.

First, we may consider the ε-neighborhoods of other distributions, for ex-
ample, the uniform, Laplace, or Cauchy. Certainly, the reasons to introduce
such classes as supermodels are obviously weaker as compared to that based
on normal distribution, but nevertheless, they can be.

Second, in applications rather often there exist a priori information about
the dispersion of a distribution, about its central part and/or its tails, about
the moments and/or subranges of a distribution. The empirical distribution
function and relative estimators of a distribution shape (quantile functions
and their approximations, histograms, kernel estimators) along with their
confidence boundaries give other examples.

It seems reasonable to use such information in the minimax setting by
introducing the corresponding classes F of distribution densities ƒ(x) in order
to increase the efficiency of robust minimax estimation procedures.

In what follows, we mainly deal with symmetric unimodal distribution
densities

ƒ(−x) = ƒ(x) (3.1.1)

51



52 3. Robust minimax estimation of location

satisfying the regularity conditions (F1) and (F2) of Section 1.2. Obvious-
ly, distribution densities also satisfy the non-negativeness and normalization
conditions

ƒ(x) ≥ 0,
∫ ∞

−∞
ƒ(x) dx = 1. (3.1.2)

For the sake of brevity, we will not write out conditions (3.1.1) and (3.1.2) any
time we define a distribution class.

Now we list some typical examples of distribution classes which seem most
natural and convenient for the description of a priori knowledge about data
distributions (Polyak and Tsypkin, 1978; Polyak and Tsypkin, 1980; Tsypkin,
1984).

F 1, THE CLASS OF NONDEGENERATE DISTRIBUTIONS:

F 1 =
{

ƒ : ƒ(0) ≥
1

2a
> 0
}

. (3.1.3)

This class is proposed in (Polyak and Tsypkin, 1978). It is one of the most
wide classes: any distribution density with a nonzero value at the center
of symmetry belongs to it. The parameter a of this class characterizes
the dispersion of the central part of the data distribution, in other words,
a is the upper bound for that dispersion. The condition of belonging to
this class is very close to the complete lack of information about a data
distribution.

F 2, THE CLASS OF DISTRIBUTIONS WITH A BOUNDED VARIANCE:

F 2 =
{

ƒ : σ2(ƒ) =
∫ ∞

−∞
x2ƒ(x) dx ≤ σ2

}
. (3.1.4)

This class is considered in (Kagan et al., 1973). All distributions with
variances bounded above are members of this class. Obviously, the
Cauchy-type distributions do not belong to it.

F 3, THE CLASS OF APPROXIMATELY NORMAL DISTRIBUTIONS or the gross error
model, or the class of ε-contaminated normal distributions, or the Huber
supermodel (Huber, 1964):

F 3 = {ƒ : ƒ(x) = (1 − ε)N (x; 0, σN) + εh(x), 0 ≤ ε < 1} , (3.1.5)

where h(x) is an arbitrary density. The restriction of the mixture form
(3.1.5) can be rewritten in the inequality form

F 3 = {ƒ : ƒ(x) ≥ (1 − ε)N (x; 0, σN), 0 ≤ ε < 1} , (3.1.6)

which is more convenient for solving variational problems.
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F 4, THE CLASS OF FINITE DISTRIBUTIONS:

F 4 =

{
ƒ :
∫ l

−l
ƒ(x) dx = 1

}
. (3.1.7)

The restriction on this class defines the boundaries of the data (i.e., |x| ≤ l
holds with probability one), and there is no more information about the
distribution.

F 5, THE CLASS OF APPROXIMATELY FINITE DISTRIBUTIONS:

F 5 =

{
ƒ :
∫ l

−l
ƒ(x) dx = 1 − β

}
. (3.1.8)

The parameters l and β , 0 ≤ β < 1, are given; the latter characterizes the
degree of closeness of ƒ(x) to a finite distribution density. The restriction
on this class means that the inequality |x| ≤ l holds with probability
1 − β .

Obviously, the class of finite distributions F 4 is a particular case of the
class F 5.

The classes F 4 and F 5 are considered in (Huber, 1981; Sacks and Ylvisak-
er, 1972).

In what follows, we deal with more narrow classes with the additional
restrictions, mainly those which are the intersections of the above:

F 12 = F 1 ∩ F 2, F 23 = F 2 ∩ F 3, F 25 = F 2 ∩ F 5.

3.1.2. Finding the least informative distribution
We now consider the restrictions defining the classes of densities F . From the
above-said it follows that, in general, these restrictions are of the following
forms:

∫ ∞

−∞
sk(x)ƒ(x) dx ≤ αk, k = 1, …, m, (3.1.9)

ƒ(x) ≥ ϕ(x). (3.1.10)

In particular, the normalization condition
∫

ƒ(x) dx = 1 (s(x) = 1) and the
restriction on the variance

∫
x2ƒ(x) dx ≤ σ2 (s(x) = x2) are referred to (3.1.9);

the conditions of non-negativeness ƒ(x) ≥ 0 and of the approximate normality
ƒ(x) ≥ (1 − ε)N (x; 0, σN) are described by (3.1.10), etc.

The variational problem of minimization of the Fisher information under
conditions (3.1.9) and (3.1.10)

minimize I(ƒ) under the condition ƒ ∈ F ,

F =
{

ƒ :
∫ ∞

−∞
sk(x)ƒ(x) dx ≤ αk, k = 1, 2, …, m, ƒ(x) ≥ ϕ(x)

}
(3.1.11)
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is non-standard, and by present, there are no general methods of its solution.
Nevertheless, using heuristic and plausible considerations (in the Polya

sense), it is possible to find a candidate for the optimal solution of (3.1.11),
and then to check its validity. Certainly, such a reasoning must ground on the
classical results of the calculus of variations. In general, it may be described
as follows: first, use the restrictions of form (3.1.9); solve the Euler equation
and determine the family of extremals; second, try to satisfy the restrictions of
form (3.1.10) by gluing the pieces of free extremals with the constraints h(x);
and finally, verify the obtained solution.

Now we describe a procedure of searching for an eventual candidate for the
solution of problem (3.1.11) and final checking proposed in (Tsypkin, 1984).

Consider the classes only with the restrictions of form (3.1.9). In this case,
the Lagrange functional is composed as

L(ƒ, λ1, λ2, …, λm) = I(ƒ) +
m∑

k=1

λk

(∫ ∞

−∞
sk(x)ƒ(x) dx − αk

)
, (3.1.12)

where λ1, λ2, …, λm are the Lagrange multipliers. Taking the variation of this
functional and equating it to zero, we obtain the Euler equation in the form

−2
ƒ′′(x)
ƒ(x)

+
(

ƒ′(x)
ƒ(x)

)2

+
m∑

k=1

λksk(x) = 0. (3.1.13)

Equation (3.1.13), as a rule, cannot be solved in a closed form. Hence one
should use numerical methods. But there is a serious obstacle in satisfying
the restrictions of the form ƒ(x) ≥ ϕ(x).

In what follows, in Section 3.2, we consider some classes F with analytical
solutions for the least informative density.

Another approach is based on direct applying of numerical methods to
variational problem (3.1.11). These are associated with some approximation
to the distribution density ƒ(x) followed by the subsequent solution of the
problem of mathematical programming.

Thus, if to approximate ƒ(x) by a piecewise linear finite function, integrals—
by sums and derivatives—by differences, we arrive at the problem of nonlinear
programming with linear restrictions

minimize
N∑

i=1

(ƒi+1 − ƒi)2

ƒi

N∑

i=1

sk(ih)ƒih ≤ αk, k = 1, 2, …, m, ƒi = ƒ(ih) ≥ ϕ(ih), i = 1, 2, …, N.
(3.1.14)

For this problem of nonlinear programming, there exist quite good methods of
solution.
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Checking optimality by the Cauchy–Bunyakovskii inequality. Now
we assume that there exists an analytical solution for the least informative
distribution density ƒ∗(x). In this case, it is possible to use an approach based
on applying the Cauchy–Bunyakovskii inequality1

(∫ ∞

−∞
ψ(x)φ (x)ƒ(x) dx

)2
≤
∫ ∞

−∞
ψ2(x)ƒ(x) dx ⋅

∫ ∞

−∞
φ2(x)ƒ(x) dx. (3.1.15)

The equality in (3.1.15) is attained with the proportional functions ψ(x) and
φ (x), i.e., under the condition

ψ(x) = −λφ (x), (3.1.16)

where λ is some scalar factor.
Choose now the informant as

ψ(x) =
ƒ′(x)
ƒ(x)

. (3.1.17)

By the definition of the Fisher information for location (see Section 1.2), we
can rewrite inequality (3.1.15) as

I(ƒ) ≥

(∫ ∞
−∞ φ (x)ƒ′(x) dx

)2

∫ ∞
−∞ φ2(x)ƒ(x) dx

. (3.1.18)

The right-hand side of (3.1.18) defines the lower bound for the Fisher informa-
tion equal to

I∗ = min
ƒ∈F

(∫ ∞
−∞ φ (x)ƒ′(x) dx

)2

∫ ∞
−∞ φ2(x)ƒ(x) dx

. (3.1.19)

Therefore,

min
ƒ∈F

I(ƒ) ≥ I∗. (3.1.20)

If for some distribution density ƒ̃ ∈ F the condition analogous to (3.1.18)
holds, i.e.,

ƒ̃′(x)
ƒ̃(x)

= −λφ (x), (3.1.21)

1The algebraic version of this inequality belongs to Cauchy (1821); Bunyakovskii (1856) was
the pioneer to use its integral form; Schwartz published it after 1884.
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then with ƒ(x) = ƒ̃(x) inequality (3.1.18) becomes the equality

I(ƒ̃) =

(∫ ∞
−∞ φ (x)ƒ̃′(x) dx

)2

∫ ∞
−∞ φ2(x)ƒ̃(x) dx

. (3.1.22)

The density ƒ̃(x) (3.1.21) depends on the parameter λ ; hence ƒ̃(x) = ƒ̃(x, λ ). If for
some λ = λ∗ the Fisher information I(ƒ̃) in (3.1.22) equals I∗ and ƒ̃(x, λ∗) ∈ F ,
then it follows from (3.1.20) that ƒ∗(x) = ƒ̃(x, λ∗) is the least informative density
in the class F .

The way of searching for the least informative distribution density ƒ∗(x)
just described remains valid if to rewrite the right-hand side of (3.1.18) in
another form.

If limx→±∞ φ (x)ƒ(x) = 0 then integration by parts gives
∫ ∞

−∞
φ (x)ƒ′(x) dx = −

∫ ∞

−∞
φ ′(x)ƒ(x) dx;

hence it follows from (3.1.18) that

I(ƒ) ≥

(∫ ∞
−∞ φ ′(x)ƒ(x) dx

)2

∫ ∞
−∞ φ2(x)ƒ(x) dx

. (3.1.23)

Sometimes this inequality is more convenient for searching for the least infor-
mative distribution density ƒ∗(x) than (3.1.18).

Condition (3.1.21) is a differential equation. Integrating it, we obtain

ƒ̃(x) = ƒ̃(0) exp
(
−λ

∫ x

0
φ (x) dx

)
, (3.1.24)

where ƒ̃(0) is the value of ƒ̃(x) at x = 0. This value can be determined from the
normalization condition (3.1.2), which takes the following form for symmetric
densities:

2
∫ ∞

0
ƒ̃(x) dx = 1. (3.1.25)

By substituting (3.1.24) into (3.1.25), we obtain

ƒ̃(0) =
[
2
∫ ∞

0
exp

{(
−λ

∫ x

0
φ (x) dx

)
dx
}]−1

, (3.1.26)

and therefore, from (3.1.24) we obtain

ƒ̃(x) =
exp

(
−λ

∫ x
0 φ (x) dx

)
[
2
∫ ∞

0 exp
{(
−λ

∫ x
0 φ (x) dx

)
dx
}] . (3.1.27)
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If the minimum of the functional in the right-hand side of inequality
(3.1.18) or (3.1.23) is attained at the density ƒ∗ ∈ F coinciding with densi-
ty (3.1.27) at some λ , then ƒ∗(x) is the solution of variational problem (3.1.11),
and therefore it is the least informative distribution density in the class F .

Thus, in order to determine the least informative density, one can use the
following procedure:

(1) choose the function φ (x) and determine the minimum I∗ of the right-
hand side of inequality (3.1.18) (or (3.1.23)) over the densities ƒ(x) from
the class F ;

(2) by formula (3.1.27), determine the density ƒ(x) = ƒ̃(x, λ ) depending on an
arbitrary parameter λ and find such λ = λ ∗ that minimizes the right-
hand side of inequality (3.1.18) (or (3.1.23)) over the densities ƒ(x) =
ƒ̃(x, λ ) belonging to the given class F ;

(3) verify the equality I(ƒ̃(x, λ∗)) = I∗.

If this equality holds, then the obtained density ƒ̃(x, λ∗) is the least infor-
mative in the class F .

REMARK 3.1.1. The success of this approach completely depends on the lucky
choice of the function φ (x), i.e., on its adequacy to the given class F . Observe
that the optimal score function ψ∗ = −ƒ∗′/ƒ∗ for M-estimators of location is
proportional to the function φ (x); in other words, one should guess the form of
the optimal score function.

Nevertheless, the above approach can be successfully used both for analyt-
ical and numerical determination of least informative densities.

Checking optimality by variational methods. Huber (1981) proposed a
direct method for final checking the eventual candidate for the least informa-
tive density.

Assume that F is convex, 0 < I(ƒ) < ∞, and the set where the density ƒ∗
is strictly positive is convex. Set also the variation of ƒ∗ in the form of the
mixture of densities

ƒt = (1 − t)ƒ∗ + tƒ1, 0 ≤ t ≤ 1,

where ƒ1 ∈ F . Under these assumptions, Huber (1981, p. 82) shows that ƒ∗
minimizes the Fisher information if and only if the inequality

d
dt

I(ƒt)
∣∣∣∣
t=0

≥ 0 (3.1.28)

holds for any distribution density ƒ1 ∈ F .



58 3. Robust minimax estimation of location

Condition (3.1.28) can be rewritten in the convenient form
∫ ∞

−∞
(2ψ∗′ − ψ∗2)(ƒ1 − ƒ∗) dx ≥ 0, (3.1.29)

where ψ∗(x) = ƒ∗′(x)/ƒ∗(x) is the optimal score function, or also as

−4
∫ ∞

−∞

(
√

ƒ∗)′′√
ƒ∗

(ƒ1 − ƒ∗) dx ≥ 0, (3.1.30)

for any ƒ1 ∈ F .
Comparing these two approaches, we say that the former has a certain

heuristic potential useful for the determination of an optimal solution. The
latter gives a direct and explicit rule for verifying the earlier obtained optimal
solution.

The extremals of the basic variational problem. In order to maintain
any of these approaches, one needs to have an idea about the possible struc-
ture of an optimal solution. Now we consider the family of extremals whose
constituents would have the minimized Fisher information for location with
the only side normalization condition

minimize I(ƒ) =
∫ ∞

−∞

(
ƒ′(x)
ƒ(x)

)2

ƒ(x) dx under the condition
∫ ∞

−∞
ƒ(x) dx = 1.

(3.1.31)

We set
√

ƒ(x) = g(x) ≥ 0 and rewrite minimization problem (3.1.31) as

minimize I(ƒ) = 4
∫ ∞

−∞

(
g′(x)

)2 dx under the condition
∫ ∞

−∞
g2(x) dx = 1.

(3.1.32)

Using the Lagrange multiplier λ together with the normalization condition,
we obtain the differential equation

4g′′(x) + λg(x) = 0. (3.1.33)

The general solutions of (3.1.33) are of the following possible forms depending
on the sign of λ :

• the exponential form

g(x) = C1ekx + C2e−kx; (3.1.34)

• the cosine form

g(x) = C1 sin kx + C2 cos kx; (3.1.35)
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• the linear form

g(x) = C1 + C2x, (3.1.36)

where k =
√

±λ /2.

In what follows, all these forms and their combinations are involved into
the structures of optimal solutions for different classes of distribution densities.

3.1.3. The least informative distribution densities
Now we derive the least informative densities over the classes introduced
in Subsection 3.1.1 using the approach based on the Cauchy–Bunyakovskii
inequality.

The class F 1 of nondegenerate distributions. It is defined by restriction
(3.1.3)

ƒ(0) ≥
1

2a
> 0. (3.1.37)

Choose

φ (x) = sgn x. (3.1.38)

Then from (3.1.27) we obtain

ƒ̃(x) =
λ
2

exp(−λ |x|). (3.1.39)

By substituting φ (x) into (3.1.23) we obtain

I(ƒ) ≥ 4ƒ2(0) ≥
1
a2 (3.1.40)

for any distribution density ƒ(x) ∈ F 1. If λ = 1/a then density (3.1.39) belongs
to the class F 1, and the Fisher information I(ƒ̃) attains its minimum and
becomes equal to 1/a2.

Thus the least informative density in the class F 1 is given by the double-
exponential or Laplace density

ƒ∗1(x) = L (x; 0, a) =
1

2a
exp

(
−|x|

a

)
. (3.1.41)

The optimal score function is ψ∗
1 (x) = |x|; the minimum of Fisher information

is
I(ƒ∗1) = 1/a2;

and the minimax estimator is the sample median.
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Figure 3.1. The least informative density and optimal score function in the
class F 1

The class F 2 of distributions with bounded variance. It is defined by
(3.1.4)

σ2(ƒ) =
∫ ∞

−∞
x2ƒ(x) dx ≤ σ2. (3.1.42)

We set

φ (x) = x. (3.1.43)

Then from (3.1.27) it follows that

ƒ̃(x) =

√
λ√
2π

exp

(
−λx2

2

)
. (3.1.44)

By substituting φ (x) into (3.1.23) we obtain

I(ƒ) ≥
1

σ2(ƒ)
≥

1
σ2

for any distribution density ƒ(x) ∈ F 2. For λ = 1/σ2, the distribution density
(3.1.44) belongs to the class F 2 and has minimal Fisher information equal to
1/σ2.
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Figure 3.2. The least informative density and optimal score function in the
class F 2

Thus the least informative density in the class F 2 is normal

ƒ∗2(x) = N (x; 0, σ) =
1√
2π

exp

(
− x2

2σ2

)
. (3.1.45)

The optimal score function is ψ∗
2 (x) = x; the minimum of Fisher information is

I(ƒ∗2) = 1/σ2;

and the minimax estimator is the sample mean.
Observe that in this case the minimax estimator is extremely non-robust,

since its score and influence functions are unbounded.

The class F 3 of approximately normal distributions. The optimal so-
lution in the similar class of ε-contaminated distributions F = (1− ε)G + εH is
described earlier in Section 1.2. For the sake of its importance, we write out
its particular case where G = Φ is the standard normal distribution. In this
case, the Fisher information is minimized by

ƒ∗3(x) =





1 − ε√
2π

exp

(
−x2

2

)
, |x| ≤ k,

1 − ε√
2π

exp

(
−k|x| +

k2

2

)
, |x| > k,

(3.1.46)

where k and ε are related by

2φ (k)
k

− 2Φ(−k) =
ε

1 − ε
(3.1.47)
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Figure 3.3. The least informative density and optimal score function in the
class F 3

where φ = Φ′ is the standard normal density.
The optimal score function is

ψ∗
3 (x) = max [−k, min (x, k)]. (3.1.48)

The class F 4 of finite distributions. It is defined by restriction (3.1.8)

∫ l

−l
ƒ(x) dx = 1. (3.1.49)

We set

φ (x) = tan
πx
2l

, |x| ≤ l. (3.1.50)

For finite distribution densities with finite Fisher information, the following
boundary conditions must be satisfied:

ƒ(±l) = 0, ƒ′(±(l − 0)) = 0. (3.1.51)

Then inequality (3.1.23) takes the form

I(ƒ) ≥

(∫ l
−l φ (x)ƒ′(x) dx

)2

∫ l
−l φ2(x)ƒ(x) dx

, (3.1.52)
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and, after some transformations,

I(ƒ) ≥

( π
2l

)2
(

1 +
∫ l
−l φ2(x)ƒ(x) dx

)2

∫ l
−l φ2(x)ƒ(x) dx

≥ min
v>0

(
π
2l

)2 (1 + v)2

v
=

π2

l2 , (3.1.53)

where the minimum is attained at v = 1.
The equality in (3.1.52) is attained at the densities ƒ̃(x) satisfying equation

(3.1.21) for the interval |x| < l and boundary conditions (3.1.51), i.e.,

ƒ̃(x) =
cosν πx

2l∫ l
−l cosν πx

2l dx
, (3.1.54)

where ν = 2lλ/π. Hence it follows that the equality I(ƒ) = π2/l2 can hold true
only at densities (3.1.54) satisfying the condition

∫ l

−l
φ2(x)ƒ(x) dx = 1, (3.1.55)

which holds only for ν = 2.
Thus the least informative density in the class F 4 is of the form

ƒ∗4(x) =

{
1
l cos2 πx

2l , |x| ≤ l,
0, |x| > l,

(3.1.56)

The optimal score function is unbounded: ψ∗
4 (x) = tan πx

2l for |x| ≤ l, and the
minimum of Fisher information is I(ƒ∗4) = π2/l2.

REMARK 3.1.2. Optimal solution (3.1.56) was known long ago in the calculus
of variations (see (Gelfand and Fomin, 1963)).

The class F 5 of approximately finite distributions. It is characterized
by the restriction

∫ l

−l
ƒ(x) dx = 1 − β, 0 ≤ β < 1. (3.1.57)

Since the determination of the least informative density for this class is asso-
ciated with cumbersome calculations, we simply formulate the final result.

We set

φ (x) =

{
tan B1x, |x| ≤ l,
tan B1l sgn x, |x| > l.

(3.1.58)
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Figure 3.4. The least informative distribution density and optimal score
function in the class F 4

Then, following the above method, we can write the least informative density
over the class F 5 in the form

ƒ∗5(x) =

{
A1 cos2 B1x, |x| ≤ l,
A2 exp(−B2|x|), |x| > l,

(3.1.59)

where the constants A1, A2, B1, and B2 are determined from the simultaneous
equations characterizing the restrictions of the class F 5, namely the conditions
of normalization and approximate finiteness, and the conditions of smoothness
at x = l:

∫ ∞

−∞
ƒ∗5(x) dx = 1,

∫ l

−l
ƒ∗5(x) dx = 1 − β,

ƒ∗5(l − 0) = ƒ∗5(l + 0), ƒ∗5
′(l − 0) = ƒ∗5

′(l + 0). (3.1.60)

The solution of system (3.1.60) is given by

A1 =
(1 − β )ω

l(ω + sin ω)
, B1 =

ω
2l

A2 =
βλ
2l

eλ B2 =
λ
l

, (3.1.61)

where the parameters ω and β are related by

2 cos2(ω/2)
ω tan(ω/2) + 2 sin2(ω/2)

=
β

1 − β
, 0 < ω < π,
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Figure 3.5. The least informative density and optimal score function in the
class F 5

and λ = ω tan(ω/2).
The optimal score function ψ∗

5 (x) is bounded; it has the same shape as the
φ (x) (3.1.58); and the minimum of Fisher information is

I(ƒ∗5) = (1 − β )
ω − sin ω
ω + sin ω

ω2

l2 + β
λ 2

l2 . (3.1.62)

REMARK 3.1.3. The least informative density ƒ∗5 also minimizes the Fisher
information in the class with the restriction of inequality form

∫ l

−l
ƒ(x) dx ≥ 1 − β, 0 ≤ β < 1. (3.1.63)

REMARK 3.1.4. The least informative density over the class F 1 of nondegen-
erate distributions is the special case of the optimal solution over the class of
approximately finite distributions as

l → 0, 1 − β → 0,
1 − β

2l
→

1
2a

.

3.2. Robust estimation of location in models with
bounded variances

In this section, analytical solutions of the variational problem to minimize the
Fisher information are obtained for some new classes of distributions with the
restrictions on the variance. These solutions are basic for designing minimax
methods and their future study.
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3.2.1. The least informative density in the class F 2
Let us consider the variational problem to minimize the Fisher information

ƒ̄∗2 = arg min
ƒ∈F

∫ ∞

−∞

(
ƒ′(x)
ƒ(x)

)2

ƒ(x) dx (3.2.1)

in the class F 2 of symmetric distribution densities with given variance

ƒ(x) ≥ 0, ƒ(−x) = ƒ(x),
∫ ∞

−∞
ƒ(x) dx = 1,

∫ ∞

−∞
x2ƒ(x)dx = d2. (3.2.2)

It follows from (3.1.45) that the solution of problem (3.2.1) under conditions
(3.2.2) is given by the normal density (Kagan et al., 1973)

ƒ̄∗2(x) = N (x; 0, d) =
1√
2πd

exp

(
− x2

2d2

)
. (3.2.3)

Here we are mainly interested not in the optimal solution (3.2.3) itself but in
the structure of the family of extremals of variational problem (3.2.1).

The following statement gives the form of this family of extremals.

LEMMA 3.2.1. Let h(x) be continuously differentiable on (0, ∞). Then under the
conditions

h(x) ≥ 0,
∫ ∞

0
h(x) dx =

1
2

,
∫ ∞

0
x2h(x) dx =

d2

2
,

the extremals of the variational problem

h∗ = arg min
h

∫ ∞

0

(
h′(x)
h(x)

)2

h(x) dx (3.2.4)

are of the form

h∗(x) =
Γ(−ν)

√
2ν + 1 + 1/S(ν)√
2π d S(ν)

D
2
ν

(
x
d

√
2ν + 1 + 1/S(ν)

)
, (3.2.5)

where

• the parameter ν takes its values in (−∞, 0];
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• Dν (⋅) are the Weber–Hermite functions or the functions of the parabolic
cylinder (Abramowitz and Stegun, 1972);

• S(ν) = [ψ(1/2 − ν/2) − ψ(−ν/2)]/2,

• ψ(x) =
d ln Γ(x)

dx
is the digamma function.

The conditions of symmetry in the setting of problem (3.2.4) are taken into
account by the special form of writing out the restrictions.

Thus, we arrive at the following result (Vilchevski and Shevlyakov, 1984;
Vilchevski and Shevlyakov, 1990b; Vilchevski and Shevlyakov, 1994).

THEOREM 3.2.1. The extremals of variational problem (3.2.1) are of the form

ƒ(x; ν, d) =
Γ(−ν)

√
2ν + 1 + 1/S(ν)√
2πdS(ν)

D
2
ν

( |x|
d

√
2ν + 1 + 1/S(ν)

)
. (3.2.6)

Optimal densities (3.2.6) satisfy the characterization conditions of normal-
ization and on a variance of the class F 12.

This family of the Weber–Hermite distribution densities includes:

• the normal distribution density with ν = 0

ƒ(x; 0, d) =
1√
2πd

exp

(
− x2

2 d2

)
;

• the family of the (k + 1)-modal Hermite distribution densities with ν = k,
k = 0, 1, …,

ƒ(x; k, d) =

√
2k + 1√

2π d k! 2k
H2

k

( |x|
d

√
k + 1/2

)
exp

(
− (2k + 1)x2

2d2

)
,

where Hk(x) = (−1)kex2 dk(e−x2
)

dxk are the Hermite polynomials;

• the Laplace distribution density as ν → −∞

ƒ(x;−∞, d) = L(x; 0,
√

2d) =
1√
2d

exp

(
−|x|

√
2

d

)
;

• the unimodal Weber–Hermite densities with −∞ < ν < 0 that are inter-
mediate between the normal and Laplace densities.
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Table 3.1. Fisher information for the Weber–Hermite distribution densities
with given variance

ν −∞ −2 −1 −0. 5 0 0.5 1 2 3
I(ν, d)d2 2 1. 70 1. 53 1. 28 1 2.01 9 25 49

In this case, the Fisher information is

I(ν, d) =
1
d2

[
(2ν + 1)2 + 4(2ν + 1)S(ν) + 3/S2(ν)

]
. (3.2.7)

REMARK 3.2.1. From Table 3.1 it can be seen that the minimum of Fisher
information is attained at the normal density with ν = 0.

REMARK 3.2.2. The Weber–Hermite densities (3.2.6) have two free parameters
d and ν, thus they can appear in the solutions of the variational problems with
two restrictions (one of them should be imposed on a variance).

In Subsection 3.2.2 we show that the Weber–Hermite densities describe
the extremals of the variational problem of minimizing Fisher information in
the intersection of the distribution classes F 1 and F 2.

3.2.2. The least informative density and the robust minimax
estimator in the class F 12

We consider the structure of the minimax robust estimator of the location
parameter in the class with the restrictions of inequality form on the value of
a distribution density at the center of symmetry and on the value of a variance

F 12 =
{

ƒ : ƒ(0) ≥
1

2a
> 0, σ2(ƒ) =

∫ ∞

−∞
x2ƒ(x) dx ≤ σ2

}
. (3.2.8)

The following assertion is the key for further considerations (Vilchevski and
Shevlyakov, 1984; Vilchevski and Shevlyakov, 1994).

THEOREM 3.2.2. In the class F 12, the least informative density is of the form

ƒ∗
12(x) =





ƒ∗
2(x), σ2/a2 ≤ 2/π,

ƒ(x; ν, σ), 2/π < σ2/a2 ≤ 2,
ƒ∗

1(x), σ2/a2 > 2,
(3.2.9)

where ƒ(x; ν, σ) are Weber–Hermite densities (3.2.6)) with ν ∈ (−∞; 0] deter-
mined from the equation

σ
a

=
√

2ν + 1 + 1/S(ν)Γ2(−ν/2)√
2π 2ν+1 S(ν) Γ(−ν)

. (3.2.10)
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Figure 3.6. The domains of the optimal solution in the class F 12
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Figure 3.7. The dependence of Fisher information on the parameters of the
class F 12

The behavior of solution (3.2.9) and of the functional I(ƒ∗12) depends on the
parameters σ2 and a2, and it is shown in Fig. 3.6 and Fig. 3.7:

• zone I corresponds to the normal density;

• zone II, to the Weber–Hermite densities;

• zone III, to the Laplace density.

The branches of solution (3.2.9) appear due to the degree in which the
constraints are taken into account:

• in zone I, σ2 ≤ 2a2/π, only the restriction on a variance does matter (the
equality σ2(ƒ∗12) = σ2), and the restriction on the value of a density at the
center of symmetry is of the form of the strict inequality (ƒ∗12(0) > 1/2a);

• in zone III, σ2 > 2a2, only the restriction on the density value is essential:
ƒ∗12(0) = 1/2a, σ2(ƒ∗12) < σ2);

• in zone II, both restrictions are of the form of equalities (ƒ∗12(0) = 1/2a,
σ2(ƒ∗12) = σ2).
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-

Figure 3.8. The optimal score function in the class F 12

The optimal minimax algorithm of data processing is defined by the ML
principle (1.2.8)

ψ∗
12(z) =





z/σ2, σ2/a2 ≤ 2/π,
−ƒ′(z; ν, σ)/ƒ(z; ν, σ), 2/π < σ2/a2 ≤ 2,
a−1 sgn z, σ2/a2 > 2.

(3.2.11)

From (3.2.11) and Fig. 3.7 we find that:

• in zone I with relatively small variances, the normal density and the
corresponding least squares method, ρ(z) = z2, are optimal;

• in zone III with relatively large variances, the Laplace density and the
corresponding least absolute values method, ρ(z) = |z|, are optimal;

• in zone II with moderate variances, a compromise between the LS and
LAV algorithms with the score function ψ∗

12(z) is the best: its behavior is
displayed in Fig. 3.8.

From Fig. 3.8 we can see that these algorithms of data processing are
intermediate between the LS method with ψ(z) = z and the LAV method with
ψ(z) = sgn z. The asymptotes of the curves ψ∗ = ψ∗

12(z) go through the origin
of coordinates. The slope of these curves is described by the following: with
ν = −1 we have ψ∗′

12(0) = 0.1 and ψ∗′
12(∞) = 0.44; with ν = −2 we have

ψ∗′
12(0) = 0.04 and ψ∗′

12(∞) = 0.25.
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Figure 3.9. The dependence of the parameter ν on the characteristics of the
class F 12

The proposed algorithm qualitatively differs from the Huber algorithm that
is optimal in the class F 3, though both have the LS and the LAV procedures
as the limiting cases.

The dependence between the values of the parameter ν and the character-
istics σ and a of the class F 12 given by (5.4.10) is shown in Fig. 3.9.

Concluding this section, we note that using the minimax algorithm with
the score function ψ∗

12(z) provides the guaranteed accuracy of an estimator (in
the sense of the supremum of its asymptotic variance) for each distribution in
the class F 12:

Var θ̂n(ψ∗
12, ƒ) ≤ sup

ƒ∈F 12

Var θ̂n(ψ∗
12, ƒ) = Var θ̂n(ψ∗

12, ƒ∗12),

Var θ̂n(ψ∗
12, ƒ∗12) =

1
nI(ƒ∗12)

=





σ2/n, σ2/a2 ≤ 2/π,
1/[nI(ν, σ)], 2/π < σ2/a2 ≤ 2,
a2/n, σ2/a2 > 2, (3.2.12)

where I(ν, σ) is given by (3.2.7).

3.2.3. The least informative density in the class F 23
The family of extremals (3.2.6) is used in the solutions of all problems of mini-
mizing Fisher information in the classes of distributions with the restrictions
on a variance.
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Now we introduce the class of distributions that is the intersection of the
classes F 2 and F 3

F 23 =
{

ƒ : σ2(ƒ) ≤ σ2, ƒ(x) ≥ (1 − ε)N (x; 0, σN)
}

. (3.2.13)

The following result is true (Vilchevski and Shevlyakov, 1984; Vilchevski and
Shevlyakov, 1994).

THEOREM 3.2.3. In the class F 23, the least informative density is of the form

ƒ∗
23(x) =





N (x; 0, σN), σN < σ < σN/(1 − ε),
ƒ∗23(x), σ/(1 − ε) ≤ σ ≤ σ(ƒ∗3),
ƒ∗

3(x), σ > σ(ƒ∗3),
(3.2.14)

where

ƒ∗
23(x) =

{
(1 − ε)N (x; 0, σN), |x| ≤ ∆,
AD

2
ν (B|x|), |x| > ∆,

σ2(ƒ∗3) =
∫ ∞

−∞
x2ƒ∗3(x) dx.

The values of the parameters A, B, ∆, and ν are determined from the simulta-
neous equations

• the condition of normalization
∫ ∞

−∞
ƒ∗3(x) dx = 1;

• the restriction on the variance
∫ ∞

−∞
x2ƒ∗3(x) dx = σ2; (3.2.15)

• the conditions of smoothness of the optimal solution at x = ∆

AD
2
ν (B∆) = (1 − ε)N (∆; 0, σN),

2ABDν (B∆)D ′
ν (B∆) = (1 − ε)N ′(∆; 0, σN).

It seems impossible to obtain a solution of this system in a closed form
because of the complexity of the analytical description of the functions D ν .
Nevertheless, with sufficiently large values of the constraint on the variance

σ2 > σ2(ƒ∗3) =
∫ ∞

−∞
x2ƒ∗3(x) dx,
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optimal solution (3.2.14) coincides with the Laplace density: ƒ∗23(x) = ƒ∗3(x). In
this case, the restriction on the variance holds as strict inequality.

If σ2 ≤ σ2(ƒ∗3), then this restriction becomes quite severe, and the tails of
the least informative distribution (3.2.14) cease to be exponential and, hence,
they are defined by (3.2.15).

Observe also that if the restriction on the density holds as a strict inequality
(with σN < σ < σN/(1 − ε)), then the optimal solution coincides with the
normal density ƒ∗23(x) = N (x; 0, σ), and the restriction on the variance holds
as equality.

3.2.4. The least informative density in the class F 25
Now we consider the structure of the robust minimax estimator in the inter-
section of the classes F 2 and F 5 with the constraints on the variance and on
the mass of the central part of a distribution

F 25 =

{
ƒ : σ2(ƒ) ≤ σ2,

∫ l

−l
ƒ(x) dx ≥ 1 − β

}
. (3.2.16)

A lower bound for the mass of the central zone of a distribution is equivalent
to an upper bound for its dispersion, or more precisely, for the subrange of a
symmetric distribution. In this case, the following result is true (Shevlyakov,
1991; Vilchevski and Shevlyakov, 1994).

THEOREM 3.2.4. In the class of distributions F 25, the least informative density
is of the form

ƒ∗
25(x) =





ƒ∗2(x), σ2 ≤ k1l2,
ƒ∗25(x), k1l2 < σ2 ≤ k2l2,
ƒ∗5(x), σ2 > k2l2,

(3.2.17)

where

• ƒ∗2(x), ƒ∗5(x), and ƒ∗25(x) are the least informative distribution densities in
the classes F 2, F 5, and F 25;

• the switching parameters k1 and k2 depend on the parameters of the class
F 25

σ2(ƒ∗5) =
∫ ∞

−∞
x2ƒ∗5(x) dx = k2l2,

1√
2π
√

k1l

∫ ∞

−∞
exp

(
− x2

2k1l2

)
dx = 1 − β ;
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• the density ƒ∗25(x) is defined via the Weber–Hermite functions

ƒ∗
25(x) =

{
A1[Dν1 (B1x) + Dν1(−B1x)]2, |x| ≤ l,
A2D

2
ν2

(B2|x|), |x| > l;
(3.2.18)

The values of the parameters A1, A2, B1, B2, ν1, and ν2 in (3.2.18) are
determined by the simultaneous equations

• the normalization condition
∫ ∞

−∞
ƒ∗25(x) dx = 1, (3.2.19)

• the characterization restrictions of the class F 25

∫ l

−l
ƒ∗25(x) dx = 1 − β, (3.2.20)

∫ ∞

−∞
x2ƒ∗25(x) dx = σ2; (3.2.21)

• the conditions of smoothness of the optimal solution at x = l

ƒ∗25(l − 0) = ƒ∗25(l + 0), ƒ∗′25(l − 0) = ƒ∗′25(l + 0); (3.2.22)

• the additional condition of optimality connecting the solutions in the
zones |x| ≤ l and |x| > l

∫ l

−l
ƒ∗25(x) dx = d∗1

2 = arg min
d∗1

2≤σ2
I(ƒ). (3.2.23)

As with the solutions of similar problems in Subsections 3.2.2 and 3.2.3,
the three branches of solution (3.2.17) appear according to the degree in which
the restrictions of the class F 25 are taken into account:

• for the first branch ƒ∗2(x), only the restriction on the variance (3.2.16)
does matter taking the form of the equality: σ2(ƒ∗2) = σ2;

• for the third branch, the restriction on the central part of a distribution
(3.2.16) is essential, and the restriction on the variance has the form of
the strict inequality:

∫ l

−l
ƒ∗5(x) dx = 1 − β, σ2(ƒ∗5) < σ2;
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• for the second, both restrictions have the form of equalities.

From (3.2.19)–(3.2.23) we have the following particular cases of solution
(3.2.18):

• for σ2 = k1l2,

ƒ∗25(x) = ƒ∗2(x) =
1√
2πσ

exp

(
− x2

2σ2

)
,

ν1 = ν2 = 0, B1 = B2 = 1/σ;

• for σ2 = k2l2,

ƒ∗25(x) = ƒ∗2(x) =

{
A1 cos2(B1x), |x| ≤ l,
A2 exp(−B2|x|), |x| > l.

The values of the parameters A1, A2, B1, and B2 can be derived from the
simultaneous equations (3.2.19)–(3.2.23) as ν1, ν2 → −∞.

We now turn directly to the restrictions of the class F 25:

• as σ → ∞, the first restriction is inessential, and, in this case, we have
the optimal solution in the class F 5: ƒ∗25 = ƒ∗5;

• as l → 0, 1 − β → 0, and (1 − β )/(2l) → 1/(2a), we have the restriction
of the class F 12 (ƒ(0) ≥ 1/(2a) > 0) and the optimal solution ƒ∗25 = ƒ∗12
respectively.

We now consider the important particular case of the class F 25 where the
restriction on the central part of the distribution has the form of an upper
bound for the value of the interquartile range of the distribution

F−1(3/4) − F−1(1/4) ≤ b. (3.2.24)

Restrictions (3.2.24) and (3.2.16) are equivalent for symmetric distributions
with β = 1/2 and l = b/2. Then from Theorem 3.2.4 we obtain the following.

THEOREM 3.2.5. In the class

F̃ 25 =
{

ƒ : F−1(3/4) − F−1(1/4) ≤ b, σ2(ƒ) ≤ σ2
}

,

the least informative density is

ƒ̃∗
25(x) =





ƒ∗2(x), σ2 ≤ 0.548b2,
ƒ∗25(x), 0.548b2 < σ2 ≤ 0.903b2,
ƒ∗

5(x), σ2 > 0. 903b2,

(3.2.25)

where the parameters of the density ƒ∗25(x) (3.2.18) are determined from equa-
tions (3.2.19)–(3.2.23) with β = 1/2.
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We now observe the minimax algorithms of data processing generated from
the least informative distribution density ƒ̃∗

25(x). The shapes of score functions
ψ̃∗

25(z) for the three branches of solution (3.2.25) are shown in Fig. 3.10.
All qualitative features of the algorithm optimal in the class F 12 are pre-

served here. From (3.2.25) and Fig. 3.10 we obtain

• in the first zone with relatively small variances (σ2 ≤ 0. 548b2), the LS
method is optimal;

• in the third zone with relatively large variances (σ 2 > 0.903b2), the
Huber estimator similar to a trimmed mean (with the rejective threshold
|x| = b/2) is optimal;

• in the middle zone, the algorithms based on the Weber–Hermite func-
tions provide smaller statistical weights of the observed data if their
absolute deviations from the estimated parameter of location exceed b/2.

3.2.5. The Lp-norm estimators of location
In applications, we recommend to use the Lp-norm approximations to the ob-
tained explicit minimax estimators with the score functions ψ∗

12(z) and ψ∗
25(z),

since the latter algorithms are difficult to calculate because of a complicated
analytical structure of the Weber–Hermite functions.

In Chapter 2, we have established the importance of scale equivariancy
for estimators of location. The minimax Huber M-estimators of location in ε-
contaminated models are not scale equivariant. Simultaneous M-estimators of
location and scale and M-estimators of location with a preliminary estimator of
scale provide this property but they do not possess minimax properties (Huber,
1981).

Here we propose another approach to designing minimax scale equivari-
ant estimators of location. It follows from the results of Chapter 2 that the
requirement of scale equivariancy implies the use of the Lp-estimators

θ̂n = arg min
θ

n∑

i=1

|xi − θ |p, p ≥ 1. (3.2.26)

These estimators with 1 < p < 2 were first used in (Forsythe, 1968) for robust
estimation of location.

The corresponding minimax problem can be written as

(p∗, ƒ∗) = inf
p≥1

sup
ƒ∈F

Var θ̂ (p, ƒ), (3.2.27)

where

Var θ̂ (p, ƒ) =
∫ ∞

0 x2p−2ƒ(x) dx

2n
(∫ ∞

0 xp−1ƒ′(x) dx
)2 .
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Figure 3.10. The score functions for the class F̃ 25

The solution of problem (3.2.27) faces some inconvenience because of the nar-
rowness of the parametric class of Lp-estimators, which, in general, does not
include the maximum likelihood estimators. Nevertheless, it follows from the
obtained results that the solution of problem (3.2.27) in the class F 1 of nonde-
generate distributions is given by the L1-norm estimator, and in the class F 2
with a bounded variance it is given by the L2-norm estimator.

The following obvious assertion solves the minimax problem in the class
F 3 of ε-contaminated normal distributions (Shevlyakov, 1991).

THEOREM 3.2.6. Let the conditions of consistency and asymptotic normality
for the Lp-norm estimators hold. Then the minimax estimator is the L1-norm
estimator.

The above conditions are just the general conditions of consistency and
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asymptotic normality for M-estimators formulated in Section 1.2. The straight-
forward checking by calculating the asymptotic variance of the Lp-norm esti-
mators (3.2.26) at the densities with the Cauchy-type behavior of tails shows
that the bounded value of the supremum of the asymptotic variance is provided
only at p = 1.

Consider now the solution of problem (3.2.27) in the class F 12 (3.2.8). It
becomes much simpler if we introduce the parametric subclass of the class F 12

F̃ 12 =
{

ƒ : ƒ(0) ≥
1

2a
> 0, σ2(ƒ) ≤ σ2

}
, (3.2.28)

where ƒ = ƒq(x; β ) is the family of exponential-power densities

ƒq(x; β ) =
q

2βΓ(1/q)
exp

(
−|x|

q

β q

)
. (3.2.29)

In formula (3.2.29), β is the scale parameter, q is the distribution shape
parameter. Family (3.2.29) describes a wide collection of symmetric unimodal
densities: the Laplace density with q = 1, the normal one with q = 2, and the
rectangular one with q → ∞.

As the Lp-estimators are the ML estimators for the location parameter θ of
the density ƒ(x− θ ; β ) with p = q, (the class of estimators entirely corresponds
to the class of distributions), the structure of the solution of problem (3.2.27)
in the class F̃ 12 repeats the structure of the solution to the minimax problem
in the class F 12 (see Subsection 3.2.2).

THEOREM 3.2.7. In the class F̃ 12, the least informative density is of the form

ƒ̃∗12(x) =





N (x; 0, σ), σ2/a2 ≤ 2/π,
ƒq∗ (x; β∗), 2/π < σ2/a2 ≤ 2,
L (x; 0, a), σ2/a2 > 2,

(3.2.30)

where q∗ and β∗ are determined from the equations

q∗2Γ(3/q∗)
Γ3(1/q∗)

=
σ2

a2 , β∗∗ =
aq∗

Γ(1/q∗)
. (3.2.31)

COROLLARY 3.2.1. In the class F̃ 12, the minimax estimator is given by the
Lp-estimators (3.2.26) with p = p∗ defined by

p∗ =





2, σ2/a2 ≤ 2/π,
q∗, 2/π < σ2/a2 ≤ 2,
1, σ2/a2 > 2,

(3.2.32)

where q∗ is determined from the former equation of (3.2.31).
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Table 3.2. The parameters of optimal solutions in the classes F 12 and F̃ 12

σ2/a2 2/π ≈ 0.637 1.04 1.35 1.45 1.76 1.88 1.95 2
ν 0 −0.4 −0.8 −1 −2 −3 −4 −∞
p∗ 2 1.37 1.20 1.15 1.06 1.03 1.01 1

I(ν, σ) σ2 1 1.16 1.38 1.48 1.76 1.88 1.94 2
I(p∗) σ2 1 1.17 1.40 1.49 1.76 1.88 1.94 2

The piece-wise linear approximation to the solution of equation (3.2.31) in
the interval 2/π < σ2/a2 ≤ 2 is described by

p∗ =

{
2.71 − 1.12(σ2/a2), 2/π < σ2/a2 ≤ 1.35,
1.62 − 0.31(σ2/a2), 1.35 < σ2/a2 ≤ 2.

(3.2.33)

Now we find out to which extent the solution in the parametric class of Lp-
estimators is inferior to the solution based on the Weber–Hermite functions
defined by Theorem 3.2.2.

In Table 3.2, the results of numerical computations of Fisher information
in the classes F 12 and F̃ 12 are displayed for different values of σ2/a2. In
addition, the corresponding optimal values of the parameters p∗ and ν defined
by equations (3.2.31) and (5.4.10) are presented.

It is seen from Table 3.2 that the values of the Fisher information in the
classes F 12 and F̃ 12 differ from each other at most for 2%, and so for the
supremum of asymptotic variance.

3.2.6. Asymptotic relative efficiency
In studies on robustness, the Tukey contamination scheme is widely used
(Tukey, 1960)

ƒ(x) = (1 − ε)N (x; 0, σ) + εN (x; 0, kσ), (3.2.34)

where ε and k are the parameters of contamination (usually, it is assumed that
ε < 0.2).

The contamination scheme describes the case where, with large probability
1 − ε, the data occur with variance σ2, and, with small probability ε, the
outliers occur with variance k2σ2 (k � 1). The Huber model of ε-contaminated
distributions (approximately normal) generalizes scheme (3.2.34).

Apparently, the obtained minimax algorithms having as the limiting cases
robust solutions (for example, the LAV method) possess the appropriate robust
properties in their entirety. Fig. 3.11 shows the dependence of the asymptotic
relative efficiency (ARE) of the minimax M-estimator in the class F 12 to the LS
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Figure 3.11. ARE of the minimax M-estimators to the sample mean under the
contamination scheme

estimator (the sample mean) on the contamination parameter k with ε = 0.1.
ARE is obtained from the following formula (we assume that σ = 1)

ARE =
Var x

Var θ̂n(ψ∗
12, ƒ)

=
(1 − ε + εk2)

[∫ ∞
−∞(ψ∗

12(x))′ƒ(x) dx
]2

∫ ∞
−∞(ψ∗

12(x))2ƒ(x) dx
, (3.2.35)

where ƒ(x) is the distribution density (3.2.34).
The integrals in (3.2.35) are evaluated analytically with the use of the

piece-wise linear approximation of the expression for ψ∗
12 (see Fig. 3.8)

ψ∗
12(x) =

{
ψ∗

12(0) sgn x + (ψ∗
12)′(0)x, |x| ≤ ∆,

kx, |x| > ∆,

where

k = lim
x→∞

ψ∗
12(x)
x

, ∆ =
ψ∗

12(0)
k − (ψ∗

12)′(0)
.

The parameter ν of the optimal score function ψ∗
12(x) is evaluated numerically

from equation (5.4.10) which, in this case, can be rewritten as

σ
a

= 2
(

1 − ε√
2π

+
ε√
2πk

)
(1 − ε + εk2)1/2 =

√
2ν + 1 + 1/S(ν)Γ2(−ν/2)√

2π 2ν+1 S(ν) Γ(−ν)
.

From Fig. 3.11 we see that the estimator optimal in the class F 12 is always
(with the only exception of the case k = 1 where the estimators coincide) better
than the sample mean. Here we observe the effect of the non-robustness of the
LS estimators and their high sensitivity to outliers.
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Figure 3.12. ARE of the minimax M-estimators in the classes F 12 and F 3 under
the contamination scheme

We now compare the efficiencies of the qualitatively different robust algo-
rithms, namely Huber’s ψ∗

3 and our ψ∗
12, under the contamination scheme. The

graph of ARE(ψ∗
12, ψ∗

3 ) is displayed in Fig. 3.12, where ARE is determined from
the relation

ARE (ψ∗
12, ψ∗

3 ) =
Var θ̂n(ψ∗

3 , ƒ)
Var θ̂n(ψ∗

12, ƒ)

=

∫ ∞
−∞(ψ∗

3 (x))2ƒ(x) dx
[∫ ∞
−∞(ψ∗

12(x))′ƒ(x) dx
]2

∫ ∞
−∞(ψ∗

12(x))2ƒ(x) dx
[∫ ∞
−∞(ψ∗

3 (x))′ƒ(x) dx
]2 .

From Fig. 3.12 it follows that the estimator with the score function ψ∗
12 is

slightly inferior to the Huber estimator with large values of k but is better in the
nearest neighborhood of the normal distribution. This is natural, since, first,
the Huber estimator is just optimal in the class of ε-contaminated distributions
(approximately normal) that contains model (3.2.34), and, second, the minimax
solution ψ∗

12 gives the sample mean being optimal for the normal density with
k = 1.

The results of the Monte Carlo study of these estimators are represented
in Chapter 8.

3.2.7. Proofs
PROOF OF LEMMA 3.2.1. Set h(x) = g2(x). Then variational problem (3.2.4) can
be rewritten in the form

g∗ = arg min
g

∫ ∞

0
(g′(x))2 dx (3.2.36)
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under the conditions
∫ ∞

0
g2(x) dx = 1/2,

∫ ∞

0
x2g2(x) dx = d2/2.

For problem (3.2.36), the Euler equation is of the form

d2 g
dx2 − 1

4
(λ + µx2)g = 0, (3.2.37)

where λ and µ are the Lagrangian multipliers corresponding to the normal-
ization condition and the restriction on the variance. By setting x = Bz, equa-
tion (3.2.37) takes the standard form of the equation for the functions of the
parabolic cylinder (the Weber–Hermite functions) (Abramowitz and Stegun,
1972; Bateman and Erdélyi, 1953)

d2 g1

dz2 +

(
ν +

1
2
− z2

4

)
g1 = 0, −∞ < ν < ∞, (3.2.38)

where ν + 1/2 = −λB2/4, µB4 = 1, g1(z) = g(Bz).
We now rewrite the restrictions and the functional of problem (3.2.38) using

the substitution x = Bz
∫ ∞

0
g2

1(z) dz =
1

2B
,

∫ ∞

0
z2g2

1(z) dz =
d2

2B3 , (3.2.39)

8
B

∫ ∞

0
(g′(z))2 dz = I.

The linear independent real solutions of equation (3.2.38) are given by
the Weber–Hermite functions D ν (z) and Dν (−z), hence the general solution of
equation (3.2.38) takes the form (Abramowitz and Stegun, 1972)

g1(z) = C1Dν (z) + C2Dν (−z),

and the requirement of boundedness leads to the choice of the branch D ν (z)

g1(z) = CDν (z). (3.2.40)

We now substitute solution (3.2.40) into (3.2.39) and obtain the dependence of
the parameters B and C on d and ν:

∫ ∞

0
C2

D
2
ν (z) dz =

1
2B

,
∫ ∞

0
z2C2

D
2
ν (z) dz =

d2

2B3 . (3.2.41)
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First we use the normalization condition for which we have (Abramowitz and
Stegun, 1972)

∫ ∞

0
D

2
ν (z) dz = π1/22−3/2 ψ(1/2 − ν/2) − ψ(−ν/2)

Γ(−ν)
, (3.2.42)

where ψ(x) = d ln Γ(x)/dx is the digamma function and

C2 =
Γ(−ν)

Bπ1/22−1/2[ψ(1/2 − ν/2) − ψ(−ν/2)]
. (3.2.43)

Representing the expression in the square brackets in the series form, we
obtain

ψ(x) − ψ(y) =
∞∑

k=0

(
1

y + k
− 1

x + k

)
,

ψ(1/2 − ν/2) − ψ(−ν/2) = 2
∞∑

k=0

1
(2k − ν)(2k − ν + 1)

= 2S(ν),

S(ν) =
∞∑

k=0

1
(2k − ν)(2k − ν + 1)

=
1
2

[ψ(1/2 − ν/2) − ψ(−ν/2)].

Taking the above-said into account, we rewrite formula (3.2.43) as

C2 =
Γ(−ν)

B
√

2πS(ν)
. (3.2.44)

In order to evaluate the second integral in (3.2.41), we use the recurrent
relation for the Weber–Hermite functions

Dν+1(z) − zDν (z) + νDν−1(z) = 0, (3.2.45)

which yields

z2
D

2
ν (z) = D

2
ν+1(z) + 2νDν+1(z)D ν (z) + ν2

D
2
ν−1(z). (3.2.46)

Substitute formula (3.2.46) into (3.2.41) and evaluate it using the relation
(Bateman and Erdélyi, 1953)
∫ ∞

0
Dµ (z)Dν (z) dz =

π2µ/2+ν/2+1/2

µ − ν

×
[

1
Γ(1/2− µ/2)Γ(−ν/2)

− 1
Γ(1/2− ν/2)Γ(−µ/2)

]
. (3.2.47)

Using the formulas for the gamma and digamma functions

Γ(2z) = (2π)−1/222z−1/2Γ(z)Γ(z + 1/2),
Γ(z + 1) = zΓ(z), Γ(z)Γ(1 − z) = −zΓ(−z)Γ(z), ψ(z + 1) = ψ(z) + 1/z,
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after rather cumbersome transformations we obtain the relation for the distri-
bution variance

2ν + 1 + 1/S(ν) = d2/B2.

From it and (3.2.44) we express the parameters B and C2 via d and ν:

B = d/
√

2ν + 1 + 1/S(ν), C2 =
Γ(−ν)

√
2ν + 1 + 1/S(ν)

d2−3/2π1/2S(ν)
. (3.2.48)

Substituting them into the expression for the density

h(x) = g2(x) = g2
1(Bx) = C2

D
2
ν (Bx),

we arrive at (3.2.5).
We now derive formula (3.2.7) for the functional of Fisher information at

the extremals h(x).
The latter integral in (3.2.39) is evaluated by differentiating the Weber–

Hermite functions

dm

dzm

[
exp−z2/4Dν (z)

]
= (−1)m exp−z2/4Dν+m(z), m = 1, 2, …,

D
′
ν (z) = zDν (z)/2 −Dν+1(z) (3.2.49)

and using recurrent relations (3.2.45) and (3.2.46). As the result, the functional
of Fisher information takes the form

I =
2
B

∫ ∞

0
C2[D2

ν+1(z) − 2νDν+1(z)Dν (z) + ν2
D

2
ν−1(z)] dz. (3.2.50)

The final expression for I(ν, d) is derived by substituting (3.2.48) into
(3.2.50) with the use of integrals (3.2.42) and (3.2.47)

I(ν, d) = [(2ν + 1)2 + 4(2ν + 1)/S(ν) + 3/S2(ν)]/d2,

which completes the proof of Lemma 3.2.1. �

PROOF OF THEOREM 3.2.1. The validity of theorem immediately follows from
Lemma 3.2.1. �

PROOF OF THEOREM 3.2.2. Here we directly check the optimality of ƒ∗12 with
the use of condition (3.1.28) (see Section 3.1)

[
d
dt

I(ƒt)
]

t=0
≥ 0, (3.2.51)

where ƒt = (1 − t)ƒ∗ + tƒ and ƒ is an arbitrary density such that I(ƒ) < ∞.
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Recall that inequality (3.2.51) can be rewritten as
∫ ∞

−∞
(2ψ∗′ − ψ∗2)(ƒ − ƒ∗) dx ≥ 0, (3.2.52)

where ψ∗(x) = −(ƒ∗(x))′/ƒ∗(x) is the score function.
In view of the structure of the optimal solution, it suffices to consider

ƒ∗12 = ƒν ((x; σ) = C2D2
ν (B|x|), since this family of extremals contains both cases:

the normal density with ν = 0 and the Laplace density as ν → −∞.
Taking these considerations into account, we transform the left-hand side

of inequality (3.2.52) as
∫ ∞

−∞
(2ψ∗′ − ψ∗2)(ƒ − ƒ∗) dx

=
4Dν+1(0)
Dν (0)

B[ƒ(0) − ƒν (0; σ)] + B4[σ2 − σ2(ƒ)], (3.2.53)

where σ2(ƒ) =
∫ ∞
−∞ x2ƒ(x) dx.

We now check the sign of both summands in (3.2.53). For ν ≤ 0, we have
Dν (0) > 0 and B =

√
2ν + 1 + 1/S(ν)/σ > 0, hence the expression in the square

brackets is nonnegative since it is one of the restrictions of the class F 12:

ƒ(0) − ƒν (0; σ) ≥ 0 ⇐⇒ ƒ(0) ≥ ƒν (0; σ) =
1

2a
.

Observe that equation (5.4.10) defining the optimal value of the parameter ν
is the rewritten restriction of the class F 12

ƒ∗12(0) = ƒν (0; σ) =
1

2a
,

that holds as the equality in this case.
Further, the sign of the second summand in the right-hand side of (3.2.53)

is determined by the second restriction of the class F 12: σ2 − σ2(ƒ) ≥ 0. Thus
we arrive at inequality (3.2.52). �

REMARK 3.2.3. It can be also seen that the proofs of optimality of the Laplace
density in the class F 1 and the normal density in the class F 2 follow direct-
ly from (3.2.53) after checking the signs of the first and second summands
respectively.

PROOF OF THEOREM 3.2.3. The proof of Theorem 3.2.3 is analogous to that of
Theorem 3.2.2, and it is performed by verifying inequality (3.2.52).

In this case, the left-hand side of inequality (3.2.52) takes the form
∫ ∞

−∞
(2ψ∗′ − ψ∗2)(ƒ − ƒ∗) dx = A1

∫ ∞

−∞
[ƒ(x) − (1 − ε)N (x; 0, σN)] dx

+ A2[σ2 − σ2(ƒ)], A1, A2 ≥ 0,
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and it is nonnegative due to the restrictions of the class F 23

ƒ(x) ≥ (1 − ε)N (x; 0, σN)

and
σ2(ƒ) ≤ σ2.

�

PROOF OF THEOREM 3.2.4. The proof is in two stages. First we obtain the
structure of the optimal solution. Second, we check inequality (3.2.52) in the
class F 25.

Consider the following variational problems connected with each other in
the domains 0 ≤ x ≤ l and x > l:

I1 =
∫ l

0
g′1

2(x) dx → min,
∫ l

0
g1

2(x) dx = (1 − β )/2,
∫ l

0
x2g1

2(x) dx = d2
1/2,

I2 =
∫ ∞

l
g′1

2(x) dx → min,
∫ ∞

l
g1

2(x) dx = β/2,
∫ ∞

l
x2g1

2(x) dx = (σ2 − d2
1)/2.

(3.2.54)

By Lemma 3.2.1, we see that the general solution of Euler equation (3.2.38)
takes the following forms for each problem:

g1(x) = C11Dν1(B1x) + C21Dν1(−B1x), 0 ≤ x ≤ l,
g2(x) = C12Dν2(B2x) + C22Dν2(−B2x), x > l.

The condition of optimality on the free boundary at x = 0: g′1(0) = 0, and the
boundedness of the solution as x → ∞ imply the relations

C11 = C21 = C1 and C22 = 0.

Thus, for seven unknown parameters C1, C12, B1, B2, ν1, ν2, and d2
1, we

have four equations (3.2.54), two equations of continuity of the least favorable
density and its derivative at x = l:

g1(l − 0) = g1(l + 0), g′1(l − 0) = g′1(l + 0),

and the condition of the optimal choice of the parameter d2
1

d∗1
2 = arg min

0≤d2
1≤σ2

(I1 + I2).

Taking the condition of symmetry into account, we arrive at the expression for
the least favorable density

ƒ∗
25(x) =

{
g2

1(x) = A1[Dν1(B1x) + Dν1(−B1x)]2, |x| ≤ l,
g2

2(x) = A2D
2
ν2

(B2|x|), |x| > l,
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where A1 = C2
1 and A2 = C2

12.
We now verify inequality (3.2.52). In this case, the integrand in (3.2.52) is

of the form

2ψ∗′
25 − ψ∗2

25 =

{
2B2

1(2ν1 + 1) − B4
1x2, |x| ≤ l,

2B2
2(2ν2 + 1) − B4

2x2, |x| > l,

where ψ∗
25 = −ƒ∗25

′/ƒ∗25.
Integrating the above expression and extracting the summands with the

restrictions of the class F 25, we obtain
∫ ∞

−∞
(2ψ∗′ − ψ∗2)(ƒ − ƒ∗) dx = B4

1

(∫ ∞

−∞
x2ƒ∗(x) dx −

∫ ∞

−∞
x2ƒ(x) dx

)

+
[
B2

1(2ν1 + 1) − B2
2(2ν2 + 1)

] (∫ l

−l
ƒ(x) dx −

∫ l

−l
ƒ∗(x) dx

)

+
(

B4
2 − B4

1

)∫

|x|>l
x2[ƒ∗(x) − ƒ(x)] dx. (3.2.55)

Now we establish the sign of each summand in the right-hand side of equality
(3.2.55). The first summand is nonnegative, as it is the restriction on variance
of the class F 25

∫ ∞

−∞
x2ƒ∗ dx =

∫ ∞

−∞
x2ƒ(x) dx = σ2 − σ2(ƒ) ≥ 0.

The second factor in the second summand is also nonnegative, since it is the
restriction of approximate finiteness

∫ l

−l
ƒ dx −

∫ l

−l
ƒ∗ dx =

∫ l

−l
ƒ dx − (1 − β ) ≥ 0. (3.2.56)

Now consider the third summand. Inequality (3.2.56) can be rewritten as
∫

|x|≤l
(ƒ∗ − ƒ) dx ≤ 0.

From the above and
∫ ∞
−∞(ƒ∗ − ƒ) dx = 0 it follows that

∫

|x|>l
(ƒ∗ − ƒ) dx ≥ 0.

By the mean value reasoning, we obtain
∫

|x|>l
x2(ƒ∗ − ƒ) dx = ξ 2

∫

|x|>l
(ƒ∗ − ƒ) dx ≥ 0, l < ξ < ∞.
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Thus, the sign of the last two summands in (3.2.55) is nonnegative if

B2 > |B1| and B2
1(2ν1 + 1) − B2

2(2ν2 + 1) ≤ 0.

We check the latter inequalities with the use of numerical calculations. The
sign of the modulus for the parameter B1 is explained by the fact that with
ν1 < 0 it takes imaginary values. This entirely agrees with with the limiting
case of the optimal solution ƒ∗25 = ƒ∗5, whose cosine branch is given by the sum
of the Weber–Hermite functions of imaginary arguments

cos z ∝ lim
ν2→−∞

[D ν2(iz) + Dν2(−iz)],

as e−z ∝ limν→−∞ Dν (z). In the domain ν1 ≥ −1/2, the parameter B1 takes real
values, in its turn, the values of B2 are only real. �

3.3. Robust estimation of location in models with
bounded subranges

3.3.1. The least informative density in the class F 55
Consider the class of densities with the restriction on their mass in the central
zone or the class of approximately finite densities

F 5 =

{
ƒ :
∫ l

−l
ƒ(x) dx ≥ 1 − β, 0 < β ≤ 1

}
. (3.3.1)

The constraint on the distribution mass can be rewritten as the constraint on
the distribution subrange

F 5 =
{

ƒ : F−1(1 − β/2) − F−1(β/2) ≤ b, 0 < β ≤ 1
}

, (3.3.2)

where b = 2l.
We recall (see Section 3.1) that in this case the least informative density

has the cosine-central part and the exponential tails

ƒ∗(x; A, B, C, D, b) =

{
A cos2(Bx), |x| ≤ b/2,
C exp(−D|x|), |x| > b/2,

(3.3.3)

where the values A = A(β, b), B = B(β, b), C = C(β, b), and D = D(β, b) are
chosen to satisfy the conditions

• the normalization condition
∫ ∞

−∞
ƒ∗(x; A, B, C, D, b) dx = 1;
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• the characterization condition of the class F 5

∫ b/2

−b/2
ƒ∗(x; A, B, C, D, b) dx = 1 − β ;

• the conditions of smoothness at x = b/2

ƒ∗(b/2 − 0; A, B, C, D, b) = ƒ∗(b/2 + 0; A, B, C, D, b),

ƒ∗′(b/2 − 0; A, B, C, D, b) = ƒ∗′(b/2 + 0; A, B, C, D, b).

The exponential tails of the least informative density and the corresponding
form of the robust minimax contrast function ρ∗ = |x| for |x| > b/2 imply that
the observed data with |x| > b/2 are simply ignored (‘rejected’) when we apply
this method. The smaller b, the more data is rejected.

We now consider the class F 55 with the inequality constraints on distri-
bution subranges

F 55 = {ƒ : F−1(1 − β1/2) − F−1(β1/2) ≤ b1, F−1(1 − β2/2) − F−1(β2/2) ≤ b2}
(3.3.4)

with 0 ≤ β2 ≤ β1 ≤ 1, b1 ≤ b2. The following result holds in this case
(Shevlyakov, 1995).

THEOREM 3.3.1. In the class F 55, the least informative density is of the form

ƒ∗
55(x) =





ƒ∗(x; A2, B2, C2, D2, b2), b2/b1 ≤ k1,
ƒ∗(x; A∗, B∗, C∗, D∗, b∗), k1 < b2/b1 ≤ k2,
ƒ∗(x; A1, B1, C1, D1, b1), b2/b1 > k2,

(3.3.5)

where

• the function ƒ∗(x; A, B, C, D, b) is defined by equation (3.3.3);

• the values of the parameters A1, …, D1 are set to A1 = A(β1, b1), B1 =
B(β1, b1), C1 = C(β1, b1), D1 = D(β1, b1);

• the values of the parameters A2, …, D2 are set to A2 = A(β2, b2), B2 =
B(β2, b2), C2 = C(β2, b2), D2 = D(β2, b2);

• the values of the parameters A∗, B∗, C∗, D∗, and b∗, b1 < b∗ < b2, are
determined from the equations including:

– the normalization condition
∫ ∞

−∞
ƒ∗(x; A∗, B∗, C∗, D∗, b∗) dx = 1;
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– the characterization conditions of the class

∫ b1/2

−b1/2
ƒ∗(x; A∗, B∗, C∗, D∗, b∗) dx = 1 − β1,

∫ b2/2

−b2/2
ƒ∗(x; A∗, B∗, C∗, D∗, b∗) dx = 1 − β2;

– the conditions of smoothness at x = b∗

ƒ∗(b∗ − 0; A∗, B∗, C∗, D∗, b∗) = ƒ∗(b∗ + 0; A∗, B∗, C∗, D∗, b∗),

ƒ∗′(b∗ − 0; A∗, B∗, C∗, D∗, b∗) = ƒ∗′(b∗ + 0; A∗, B∗, C∗, D∗, b∗);

• the switching parameters k1 and k2 of solution (3.3.5) are derived from
the equations

∫ b2/2k2

0
ƒ∗(x; A1, B1, C1, D1, b1) dx = (1 − β1)/2,

∫ k1b1/2

0
ƒ∗(x; A2, B2, C2, D2, b2) dx = (1 − β2)/2.

Three branches of solution (3.3.5) are connected with the degree in which
the constraints are taken into account:

• in the first zone (b2/b1 ≤ k1), only the second restriction matters;

• in the third zone (b2/b1 > k2), only the first restriction is substantial;

• in the intermediate zone, both restrictions are used.

From (3.3.5) we can conclude that

• for relatively small distribution dispersion (in the first zone), the ‘mild’
robust algorithm based on ƒ∗(x; A2, B2, C2, D2, b2) is optimal;

• for relatively large distribution dispersion (in the third zone), the hard
robust algorithm (with the hard rejection of sample elements) based on
ƒ∗

1(x; A1, B1, C1, D1, b1) is optimal,

• in the middle zone, a compromise between these algorithms is the best
solution.
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3.3.2. The least informative density in the class F 15
Now we consider the intersection of the classes F 1 and F 5 with the constraints
on the value of a density at the center of symmetry and on the distribution
subrange:

F 15 =
{

ƒ : ƒ(0) ≥
1

2a
, F−1(1 − β/2) − F−1(β/2) ≤ b, 0 < β ≤ 1

}
. (3.3.6)

The following result is true in this case.

THEOREM 3.3.2. In the class F 15, the least informative density is of the form

ƒ∗
15(x) =





ƒ∗(x; A1, B1, C1, D1, b1), b/a ≤ k,
ƒ∗(x; A∗, B∗, C∗, D∗, b∗), k < b/a ≤ 2,
L (x; 0, a), b/a > 2,

(3.3.7)

where

• the function ƒ∗(x; A, B, C, D, b) is defined by equations (3.3.3);

• the values of the parameters A1, …, D1 are set to A1 = A(β, b), B1 =
B(β, b), C1 = C(β, b), D1 = D(β, b);

• the values of the parameters A∗, B∗, C∗, D∗, and b∗, 2a < b∗ < b, are
determined from the equations including

– the normalization condition
∫ ∞

−∞
ƒ∗(x; A∗, B∗, C∗, D∗, b∗) dx = 1;

– the characterization conditions of the class

ƒ∗(x; A∗, B∗, C∗, D∗, b∗) =
1

2a
,

∫ b/2

−b/2
ƒ∗(x; A∗, B∗, C∗, D∗, b∗) dx = 1 − β ;

– the conditions of smoothness at x = b∗

ƒ∗(b∗ − 0; A∗, B∗, C∗, D∗, b∗) = ƒ∗(b∗ + 0; A∗, B∗, C∗, D∗, b∗),

ƒ∗′(b∗ − 0; A∗, B∗, C∗, D∗, b∗) = ƒ∗′(b∗ + 0; A∗, B∗, C∗, D∗, b∗);

• the switching parameter k of solution (3.3.7) is given by
∫ ka

0
ƒ∗(x; A1, B1, C1, D1, b) dx = (1 − β )/2.
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Here the conclusions are similar to those of Theorem 3.3.1, only with the
relatively large distribution dispersion in the tail domain, the robust method
is the L1-norm method, i.e., the sample median for location. The proofs of the
both theorems are carried out by direct checking optimality condition (3.1.28),
which gives the the characterization inequalities of the class of densities.

3.4. Robust estimators of multivariate location
3.4.1. Preliminaries
In this section we consider the problems of robust minimax estimation of a
multivariate location parameter.

In the literature, the estimation of multivariate location is usually ex-
amined in the context of a much more general and difficult problem in ro-
bust statistics: the simultaneous estimation of location and shape of the data
(Campbell, 1980; Campbell, 1982; Davies, 1987; Devlin et al., 1981; Donoho,
1982; Hampel et al., 1986; Huber, 1981; Lopuhaä, 1989; Maronna, 1976; Me-
shalkin, 1971; Rocke and Woodruff, 1993; Rousseeuw, 1984; Rousseeuw and
Leroy, 1987; Shurygin, 1994a).

We recall the precise formulation of this problem.
Let x1, …, xn be a sample from an m-variate elliptical distribution with a

density ƒ of the form

ƒ(x) = (det C)−1/2h
[
(x − t)TC−1(x − t)

]
, (3.4.1)

where t = (t1, …, tm)T is an m-variate location vector, C is an (m×m)-covariance
matrix and h(|x|) is a density in Rm (| ⋅ | stands for the Euclidean norm).

The problem is to estimate the location vector t and covariance matrix C
when h is only approximately known.

Meshalkin estimators. In (Meshalkin, 1971), this problem was first con-
sidered for the important particular case of an m-variate normal distribution.
Meshalkin proposes exponential weighting and proves the consistency of esti-
mators t̂ and Ĉ, which are solutions of simultaneous matrix equations

n∑

i=1

(xi − t̂) exp(−λdi/2) = 0,

n∑

i=1

[
(xi − t̂)(xi − t̂)T + (1 + η)−1Ĉ

]
exp(−λdi/2) = 0,

where d2
i = (xi − t̂)TĈ

−1
(xi − T̂), and λ, η > 0 are some suitable constants. In

the univariate case m = 1, Meshalkin recommends the values λ = η = 1/2.
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M-estimators. In (Maronna, 1976), robust M-estimators were introduced
for multivariate location and covariance, their consistency and asymptotic
normality was proved, and qualitative robustness properties were studied. In
(Huber, 1981), Maronna’s definition was extended by defining M-estimators as
solutions of the simultaneous matrix equations

1
n

n∑

i=1

v1(di)(xi − t̂) = 0, (3.4.2)

1
n

n∑

i=1

[
v2(di)(xi − t̂)(xi − t̂)T − v3(di)Ĉ

]
= 0, (3.4.3)

where v1, v2 and v3 are real-valued functions on [0, ∞).
In particular, in (Huber, 1964) it was suggested to take v3(y) = 1, v1(y) =

ψ1(y)/y and v2(y) = ψ2(y)/y, where ψ1(y) = ψH(y, k) and ψ2(y) = ψH(y, k2). The
function ψH(y) = min{k, max{y,−k}} is the Huber ψ-function.

Obviously, M-estimators generalize the Meshalkin estimators.

REMARK 3.4.1. Equations (3.4.2) and (3.4.3) determine the location estimator
t as the weighted mean

t̂ =
∑n

i=1 v1(di)xi∑n
i=1 v1(di)

(3.4.4)

with weights v1(di) depending on the estimators t̂ and Ĉ sought for. Also, the
estimator Ĉ can be written in a similar way (see (Huber, 1981)). These repre-
sentations are the basis for iterative procedures of calculating simultaneous
estimators of location and covariance (see (Huber, 1981) and Section 8.1.1).

Maximum likelihood estimators. M-estimators (3.4.2) and (3.4.3) em-
brace the maximum likelihood estimators as a particular case (Huber, 1981)

1
n

n∑

i=1

v1(di)(xi − t̂) = 0, (3.4.5)

1
n

n∑

i=1

[
v2(di)(xi − t̂)(xi − t̂)T − Ĉ

]
= 0, (3.4.6)

where

v1(r) = v2(r) = − ƒ′(r)
rƒ(r)

.
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S-estimators. In (Rousseeuw and Yohai, 1984), S-estimators were defined
in the regression context as the solution to the problem of minimization of σ
under the condition

1
n

n∑

i=1

ρ

(
yi − θ Txi

σ

)
= b0 (3.4.7)

over all (θ , σ) ∈ Rm ×(0, ∞), where 0 < b0 < sup ρ. The particular case ρ(y) = y2

in (5.5.3) obviously gives the LS estimators.
In (Lopuhaä, 1989), this definition was extended to S-estimators of multi-

variate location and covariance as the solutions θn = (tn, Cn) to the problem of
minimization of det(C) provided that

1
n

n∑

i=1

ρ
(

[(xi − t)TC−1(xi − T)]1/2
)

= b0. (3.4.8)

It was also shown that S-estimators satisfy conditions (3.4.2) and (3.4.3) for M-
estimators, and obtains that S-estimators have a limiting normal distribution
which is similar to the limiting normal distribution of M-estimators.

Shurygin estimators. In (Shurygin, 1994a; Shurygin, 1995; Shurygin,
2000), the so-called stoikii (sturdy) estimators were designed of multivariate
location and covariance optimizing complex criteria of efficiency and stability.
The derived estimators are similar in their structure to the Meshalkin estima-
tors with the weights depending on the form of an underlying distribution.

3.4.2. Least informative distributions
Here we are mainly interested in robust minimax estimation of multivari-
ate location and therefore in the structure of least informative distributions
determining the structure of robust minimax estimators.

Huber solution in ε-contaminated models. In (Huber, 1981), the least
informative distribution was given over the class of spherically symmetric
ε-contaminated normal distributions in R3. It is of the following form (see
(Huber, 1981, p. 230)):

ƒ∗(r) =

{
a exp(−r2/2), r ≤ r∗,
br−2 exp(−cr), r > r∗,

where

a = (1 − ε)(2π)−3/2,

b = (1 − ε)(2π)−3/2r∗2 exp(r∗2/2 − 2),
c = r∗ − 2/r∗.
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The constants r∗ and ε are related by the condition of normalization for ƒ∗

4π2
∫

ƒ∗(r)r2dr = 1.

Then the minimax estimator for location is given by the maximum likelihood
principle

−ƒ∗′(r)
ƒ∗(r)

=

{
r, r ≤ r∗,
c + 2/r, r > r∗;

(cf. (3.4.5)).

The solution in the class with a bounded covariance matrix. In (Lune-
va, 1983), the problem was considered to minimize the Fisher information
under distributions symmetric about zero with bounded covariance matrices

F =
{

ƒ :
∫
· · ·
∫

xxTƒ(x1, …, xm) dx1 · · · dxm ≤ C
}

,

where C is a given m × m positive definite matrix.
In this case, the least informative distribution is normal

ƒ∗(x) = N m(x; 0, C) (3.4.9)

with the corresponding minimax LS estimator of location in the form of the
sample mean

t̂ =
1
n

n∑

i=1

xi.

Bokk solution in ε-contaminated models. In (Bokk, 1990), the above
Huber solution was extended to the case of arbitrary dimension m. For the
class of spherically symmetric ε-contaminated normal distributions

F = {ƒ : ƒ(r) ≥ (1 − ε) N m(r; σ), 0 ≤ ε < 1} ,
(3.4.10)

N m(r; σ) =
1

(2π)m/2σm exp

(
− r2

2σ2

)
,

the least informative distribution minimizing the Fisher information

I(ƒ) =
∫ ∞

0

(
ƒ′(r)
ƒ(r)

)2

ƒ(r)rm−1dr
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is given by

ƒ∗(r) =





(1 − ε)N m(r; σ), r ≤ r∗,

(1 − ε)
N m(r∗; σ)
K2

ν (λ 1/2r∗)
r∗2ν

r2ν K2
ν (λ 1/2r), r > r∗,

(3.4.11)

where

• Kν is the modified Macdonald function of order ν (Abramowitz and Ste-
gun, 1972);

• ν = m/2 − 1;

• λ satisfies the equation

λ 1/2 Kν+1(λ 1/2r∗)
Kν (λ 1/2r∗)

=
r∗

2σ2 ;

• and r∗ is determined from the normalization condition

2πm/2

Γ(m/2)

∫ ∞

0
rm−1ƒ∗(r) dr = 1.

The minimax estimator for location t is obtained from the maximum like-
lihood equation (3.4.5).

3.4.3. The Lp-norm estimators of multivariate location
In this subsection we apply the results of Chapter 2 on orthogonal and scale
equivariancy of the Lp-norm estimators of multivariate location in order to
obtain relatively simple and efficient estimators. In Subsection 3.2 we use the
Lp-norm estimators with 1 < p < 2 to approximate the precise solutions based
on the Weber–Hermite functions. Now we demonstrate that those results can
be partly generalized in the multivariate case.

The least informative distributions minimizing the Fisher information for
a multivariate location parameter are derived in the parametric classes of
the exponential-power spherically symmetric distributions with the following
characterizing restrictions:

• a bounded variance;

• a bounded value of a distribution density at the center of symmetry;

• the intersection of these restrictions.

For the first two cases, the least informative distributions are normal
and Laplace, respectively. In the latter case, the optimal solution has three
branches:
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• with relatively small variances, it is normal;

• with relatively large variances, it is the Laplace;

• and it is a compromise between them with intermediate variances.

The corresponding robust minimax M-estimators of location are given by
the L2-norm, L1-norm and Lp-norm methods respectively.

Let x1, …, xn be a sample from an m-variate spherically symmetric density

ƒ(x − t) = ƒ(|x − t|), x, t ∈ Rm,

with ƒ belonging to the parametric class of exponential-power distributions

F q =
{

ƒ : ƒq(r; β ) =
qΓ(m/2)

2πm/2β mΓ(m/q)
exp

(
− rq

β q

)}
, (3.4.12)

where

q ≥ 1, r = |x − t| =




m∑

j=1

(xj − tj)2




1/2

,

and β is the scale parameter.
The Lp-norm estimator of a location parameter t = (t1, …, tm) is defined as

t̂Lp = arg min
t

n∑

i=1

rp
i , p ≥ 1, (3.4.13)

ri =




m∑

j=1

(xij − tj)2




1/2

. (3.4.14)

We use the Lp-norm estimators, since they are the maximum likelihood esti-
mators of location for densities (3.4.12) when p = q.

Now we search for the minimax variance Lp-norm estimators of multivari-
ate location in the class F q. From spherical symmetry it follows that the
saddle point (p∗, q∗) of the covariance matrix C(p, q) of the Lp-norm estimator
(3.4.13)

C(p∗, q) ≤ C(p∗, q∗) = C(q∗, q∗) = I−1(q∗),

where I is the Fisher information matrix, is determined from the solution of
the variational problem

ƒ∗(r) = arg min
ƒ∈F

∫ ∞

0

[
ƒ′(r)
ƒ(r)

]2

ƒ(r)rm−1 dr. (3.4.15)

Hence, for the class F q, we have the simplest problem of the parameter
minimization

(q∗, β∗) = arg min
q,β

q2Γ
(

m−2
q + 2

)

β 2Γ(m/q)
. (3.4.16)
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Least informative distribution in the class F q. Using additional restric-
tions on densities (3.4.12), we obtain the multivariate analogs of the univariate
least informative densities described in Subsection 3.2 (Shevlyakov, 1991)

PROPOSITION 3.4.1. In the class of nondegenerate densities

F 1q =
{

ƒq : ƒq(0; β ) ≥
1

2am > 0
}

, (3.4.17)

the least informative density is the multivariate analog of the Laplace density

ƒ∗1(r) = L m(r; β∗) =
1

2am exp
(
− r

β∗

)
, (3.4.18)

where
β∗ =

a
2(m−1)/mπ (m−1)/(2m)Γ1/m((m + 1)/2)

.

In this case, the minimization problem (3.4.16) is immediately solved by
excluding the parameter β from the equation ƒq(0; β ) = 1/(2xm) with x ≤ a
followed by substituting it into the expression for Fisher information. Thus
we have q∗ = 1, and the following minimization with respect to x yields x∗ = a.

PROPOSITION 3.4.2. In the class with bounded component variances

F 2q =
{

ƒq : σ2
k (ƒq) =

∫
· · ·
∫

x2
kƒq(r) dx1 · · · dxm ≤ σ2, k = 1, …, m

}
,
(3.4.19)

the least informative density is normal

ƒ∗2(r) = N m(r; σ) =
1

(2π)m/2σm exp

(
− r2

2σ2

)
. (3.4.20)

This assertion immediately follows from the above-mentioned general re-
sult in (Luneva, 1983): the multivariate normal density N m(x;θθθ, C) is the
least informative in the class of multivariate distributions with a bounded
covariance matrix: C(ƒ) ≤ C.

THEOREM 3.4.1. In the intersection of the classes F 1q and F 2q

F 12q =
{

ƒq : ƒq(0; β ) ≥
1

2am > 0, σ2
k (ƒq) ≤ σ2, k = 1, …, m

}
, (3.4.21)

the least informative density is of the form

ƒq∗(r) =





N m(r; σ), σ2/a2 ≤ b1(m),
ƒα (r; β∗), b1(m) < σ2/a2 ≤ b2(m),
L m(r; β∗), σ2/a2 > b2(m),

(3.4.22)
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where

b1(m) =
22/m

2π
, b2(m) =

m + 1
(4π)(m−1)/m Γ2/m((m + 1)/2)

,

and the parameters α and β ∗ are determined from the equations

σ
a

=
α1/mΓ1/m(m/2)Γ1/2((m + 2)/α)

(πm)1/2Γ1/2(m/α)
,

β∗ = m1/2σΓ1/2(m/α)Γ1/2
(

m + 2
α

)
.

Three branches of solution (3.4.22) appear due to the degree in which the
restrictions are taken into account:

• in the first domain σ2/a2 ≤ b1(m), it is just the restriction on a variance
that matters: σ2

k (ƒ̃2) = σ2, k = 1, …, m; the restriction on the value of a
density at the center of symmetry has the form of the strict inequality:
ƒ2(0) > 1/(2am);

• in the third domain σ2/a2 > b2(m), the restriction on the value of a
density is substantial: ƒ1(0) = 1/(2am), σ2

k (ƒ1) < σ2, k = 1, …, m;

• in the middle domain both restrictions hold as the equalities: ƒα (0) =
1/(2am), σ2

k (ƒα ) = σ2, k = 1, …, m,, thus they determine the unknown
parameters α and β .

Theorem 3.4.1 is an analog of Theorem 3.2.1 in the case of the multivariate
exponential-power distributions (3.4.12).

COROLLARY 3.4.1. The minimax variance estimator of location is the multi-
variate Lp-norm estimator with p = q∗: thus, in the first domain with relatively
small variances, the L2-norm method is optimal; in the third domain with rel-
atively large variances, the L1-norm method is optimal; in the middle domain,
the Lp-norm estimators with 1 < p < 2 are the best.

REMARK 3.4.2. It can be seen from Theorem 3.4.1 that the optimal value of q∗

is determined independently of β ∗ due to the scale equivariancy of Lp-norm
estimators.

The switching bounds for the minimax algorithm from the L1-norm esti-
mator to the Lp-norm with 1 < p < 2 and to the L2-norm estimator are given
by the functions b1(m) and b2(m). The values of these bounds are given in
Table 3.3.

It can be seen from Table 3.3 that, first, the asymptotic values of the bounds
are being attained rather rapidly as m → ∞, and, second, with m increasing,
these values become smaller, in asymptotics approximately three times less



100 3. Robust minimax estimation of location

Table 3.3. The switching bounds of the Lp-norm estimators

m 1 2 3 4 5 ∞
b1(m) 2/π 1/π 1/(21/3π) 1/(21/2π) 1/(22/3π) 1/(2π)
b2(m) 2 3/π (2/π)2/3 5/(61/2π) 3/(2π4/5) e/(2π)

than with m = 1. This notice is confirmed by the behavior of the robust mini-
max variance multivariate Lp-norm estimators under ε-contaminated normal
distributions

ƒ(r) = (1 − ε)N m(r; 1) + εN m(r; k), 0 ≤ ε < 1,
(3.4.23)

N m(r; k) =
1

(2π)m/2km exp

(
− r2

2k2

)
, k > 1.

The asymptotic relative efficiency of the L1 and L2-norm estimators under
distributions (3.4.23) is given by

ARE(L1, L2) = b(m)(1 − ε + εk2)(1 − ε + ε/k)−2,

where

b(m) =
(m − 1)2Γ2((m − 1)/2)

2mΓ2(m/2)
, m ≥ 2.

The behavior of ARE is presented in Figure 3.13. Here we display some
values of b(m), for example, b(1) = 2/π, b(2) = π/4, b(3) = 8/(3π), and b(∞) = 1.
We can see that under the normal distribution, the superiority of the L2-
estimator vanishes fast as m → ∞. In other words, all estimators become
catastrophically bad with high dimension (see also (Maronna, 1976; Huber,
1981; Shurygin, 2000).

3.4.4. Some remarks on the general nonparametric case
We now consider the character of minimax solutions in the general case of
spherically symmetric distributions.

For the variational problem (3.4.15), the Euler equation takes the form
(Huber, 1981)

u′′ + [(m − 1)/r]u′ − λu = 0, (3.4.24)

where u(r) =
√

ƒ(r), λ is the Lagrange multiplier corresponding to the normal-
ization condition.
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Figure 3.13. The behavior of ARE(L1, L2) under ε-contaminated normal
distributions

Setting w(r) = rνu(r), ν = m/2 − 1, and z =
√
|λ |r, we obtain the equation

for the Bessel functions

z2w′′(z) + zw′(z) − (z2 sgn λ + ν2)w(z) = 0.

Its solutions can be written as

w(z) =

{
Jν (z) or Nν (z), λ < 0,
Iν (z) or Kν (z), λ ≥ 0,

(3.4.25)

where Jν (z) and Nν (z) are the Bessel and Neyman functions of order ν, Iν (z)
and Kν (z) are the modified Bessel and Macdonald functions (Abramowitz and
Stegun, 1972).

Using solutions (3.4.25), we can describe the multivariate analogs of the
univariate least informative densities.

The first is the Bokk generalization of Huber least informative density
under ε-contaminated distributions (see Subsection 3.4.1).

The second generalizes the cosine-type density minimizing Fisher informa-
tion over the class of finite distributions, and this result also belongs to (Bokk,
1990).

Consider the class of finite spherically symmetric densities in Rm

F m =

{
ƒ :

2πm/2

Γ(m/2)

∫ R

0
rm−1ƒ(r) dr = 1, ƒ(R) = ƒ′(R) = 0

}
.

The least informative density is of the form

ƒ∗(r) = const ⋅ r−2ν J2
ν (r0), 0 ≤ r0 ≤ R,

where r0 is the first root of the equation Jν (r) = 0.
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REMARK 3.4.3. Finally note that it is possible to write out the structure of the
least informative density over the class of approximately finite multivariate
distributions: it will consist of two parts, the central described by the Bessel
functions, and the tail part described by the Macdonald functions.

3.5. Least informative lattice distributions
This section is concerned with the stability properties of the least informative
distributions minimizing the Fisher information in a given class of distribu-
tions.

Generally, the solutions of variational problems essentially depend on the
regularity conditions of the functional class. The stability of these optimal
solutions with respect to the violations of regularity conditions is studied un-
der lattice distributions. The discrete analogs of the Fisher information are
obtained in these cases. They have the form of the Hellinger metrics while
estimating a real continuous location parameter and the form of the χ2 met-
rics while estimating an integer discrete location parameter. The analytical
expressions for the corresponding least informative discrete distributions are
derived in some classes of lattice distributions by means of generating func-
tions and the Bellman recursive functional equations of dynamic program-
ming. These classes include the class of nondegenerate distributions with a
restriction on the value of the density at the center of symmetry, the class of
finite distributions, and the class of contaminated distributions. The obtained
least informative lattice distributions preserve the form of their prototypes in
the continuous case. These results show the stability of robust minimax struc-
tures under different types of transitions from the continuous distribution to
the discrete one (Shevlyakov, 1991; Vilchevski and Shevlyakov, 1997).

3.5.1. Preliminaries
As shown before, the form of the solution obtained by the minimax approach
substantially depends on the characteristics of the distribution class. As a
rule, the classes of continuous and symmetric distributions are considered.
In many real-life problems of data processing, the results of measurements
include groups of equal values. Furthermore, the results of measurements
usually come rounded in accordance with the scale of the measurement device
playing the role of a discretizer. Thus, in these cases, the use of continuous
distribution models does not seem adequate to the original problem of data
processing, and it is quite important for applications to design robust methods
for discrete distribution models corresponding to the real nature of data.

Here we describe the analogs of Fisher information for the discrete distri-
bution classes while considering

• the direct discretization procedure of the Fisher information functional
in the problem of estimation of a continuous location parameter; and
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• the discrete analog of the Rao–Cramér inequality in the problem of esti-
mation of a discrete location parameter.

In the latter case, the obtained form of the Rao–Cramér inequality is sim-
ilar to the Chapman–Robbins inequality (Chapman and Robbins, 1951).

The derived terms corresponding to the Fisher information functional are
quite different in the above cases, but the solutions of the variational problems
of minimization of these functionals (the least informative distributions) are
the same.

Moreover, they demonstrate a remarkable correspondence with their con-
tinuous analogs. Thus we can conclude that the structure of robust minimax
procedures is rather stable to deviations from the assumptions of regularity of
the distribution classes.

3.5.2. Discrete analogs of the Fisher information
Consider the class of lattice distributions

ƒl(x) =
∑

i
piδ (x − i∆),

∑

i
pi = 1, (3.5.1)

where δ (⋅) is the Dirac delta-function, ∆ is the step of discretization.
We consider two different cases

• the location parameter is continuous with θ ∈ R;

• the location parameter is discrete with θ ∈ Z.

In the first case, the following result is true.

THEOREM 3.5.1. In the class of lattice distributions with continuous parameter
θ (3.5.1), the variational problem of minimization of the Fisher information for
the location parameter is equivalent to the optimization problem

∑(√
pi+1 −

√
pi

)2 → min. (3.5.2)

In the second case with discrete location parameter θ , the following analog
of the Rao–Cramér inequality holds.

THEOREM 3.5.2. Let x1, …, xn be independent identically distributed random
variables with distribution density ƒ(x − θ ) (3.5.1), and pi > 0, i ∈ Z,
x1, …, xn, θ ∈ Z. Let θ̂n = θ̂n(x1, …, xn) be a discrete unbiased estimator of
the discrete location parameter

θ̂n ∈ Z, Eθ̂n = θ .
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Then the variance of this estimator satisfies the inequality

Var θ̂n ≥

[(
∑

i∈Z

(pi−1 − pi)2

pi
+ 1

)n

− 1

]−1

. (3.5.3)

REMARK 3.5.1. The key feature of the obtained result is that in the discrete
case the lower boundary of the estimator’s variance decreases exponentially as
n → ∞ providing the corresponding efficiency of estimation to be much greater
than in the continuous case.

COROLLARY 3.5.1. In the class of lattice distributions (3.5.1) with a discrete
parameter θ , the problem of minimization of Fisher information is equivalent
to the optimization problem

∑

i∈Z

p2
i−1

pi
→ min. (3.5.4)

3.5.3. Least informative lattice distributions
Now we consider the discrete analogs of the least informative distributions
for the classes of continuous distributions F 1, F 3, and F 4 considered in
Section 3.1.

Let P1 be the class of lattice symmetric nondegenerate distributions

P1 =
{

pi, i ∈ Z : pi > 0, p0 ≥ γ0 > 0, p−i = pi,
∑

pi = 1
}

.

THEOREM 3.5.3. In the class P1 of lattice distributions, the solution of opti-
mization problem (3.5.2) is of the form

p∗−i = p∗i = α iγ0, α =
1 − γ0

1 + γ0
, i = 0, 1, …, . (3.5.5)

THEOREM 3.5.4. In the class P1 of lattice distributions, the solution of opti-
mization problem (3.5.4) is the same as in Theorem 3.5.3.

REMARK 3.5.2. The least informative lattice distribution ƒ∗l1 (3.5.1) with the
geometric progression of p∗i is the discrete analog of the least informative
Laplace density ƒ∗1 for the distribution class F 1 of nondegenerate distributions.

Consider the discrete analog of the class F 3 of ε-contaminated distribu-
tions with the restrictions on the values of pi in the central zone:

P3 =
{

pi, i ∈ Z : pi > 0, p−i = pi ≥ γi > 0, i = 0, 1, …, k;
∑

pi = 1
}

.
(3.5.6)
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THEOREM 3.5.5. In the class P3 of lattice distributions with the additional
restrictions on γi

γ1/2
i − γ1/2

i−1 ≤
(1 − α1/2)2

2α1/2

i−1∑

j=0

γ1/2
j ,

the solution of variational problem (3.5.2) is of the form

p∗−i = p∗i =

{
γi, i = 0, 1, …, s∗, s∗ ≤ k,
α i−s∗γs∗ , i > s∗,

(3.5.7)

where

α =
1 − γ0 − 2

∑s∗
i=0 γi

1 − γ0 − 2
∑s∗

i=0 γi + 2γs∗
;

the sewing number s∗ is determined by the maximum value of s satisfying

2(γs−1γs)1/2 +

(
1 − γ0 − 2

s−1∑

i=0

γi

)1/2

×



(

1 − γ0 − 2
s∑

i=0

γi

)1/2

−
(

1 − γ0 − 2
s−2∑

i=0

γi

)1/2
 > 0.

The connection of this result with the Huber least informative density ƒ∗3
(see Section 3.1) is obvious.

Finally, consider the discrete analog of the class of finite distributions F 4:

P4 =
{

pi, i ∈ Z : p−i = pi > 0 for i = 0, 1, …, n; pi = 0 for i > n;
∑

pi = 1
}

.

THEOREM 3.5.6. In the class P4 of lattice distributions, the solution of opti-
mization problem (3.5.2) is of the form

p∗−i = p∗i =
1

n + 1
cos2

(
iπ

2(n + 1)

)
, i = 0, …, n. (3.5.8)

The results of Theorems 3.5.3–3.5.6 show the stability of robust minimax
solutions under the violations of regularity conditions caused by different types
of transitions from the continuous to the discrete case.

3.5.4. Proofs
PROOF OF THEOREM 3.5.1. For the variational problem of minimization of the
Fisher information, the condition of non-negativeness for the density ƒ ≥ 0 is
satisfied with the following change of variables ƒ = g2:

I(g) =
∫ ∞

−∞
(g′(x))2dx → min

g
,

∫ ∞

−∞
g2(x)dx = 1. (3.5.9)
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Consider the δh-sequence approximation to expression (3.5.1) with ∆ = 1

ƒh(x) = g2
h(x), gh(x) =

∑

i

p1/2
i

2πh2 exp

{
− (x − i)2

4h2

}
.

In this case, functional (3.5.9) and the normalization condition are written as

Ih =
1
h2 −

1
4h4

∑

i

∑

j

√
pi
√

pj(i − j)2 exp

{
− (i − j)2

8h2

}
,

∑

i

∑

j

√
pi
√

pj exp

{
− (i − j)2

8h2

}
= 1.

The main part of the functional Ih is −∑√
pi
√

pi+1 as h → 0. Recalling the
normalization condition for pi, we arrive at the assertion of Theorem 3.5.1.
�

PROOF OF THEOREM 3.5.2. Consider the likelihood

L(x1, …, xn|θ ) = px1−θ · · · pxn−θ .

In this case, the normalization and unbiasedness conditions are
∑

x1,…,xn∈Z
L(x1, …, xn  θ ) = 1, (3.5.10)

∑

x1,…,xn∈Z
θ̂n(x1, …, xn)L(x1, …, xn  θ ) = θ . (3.5.11)

Considering the unbiasedness condition for the parameter value θ + 1
∑

x1,…,xn∈Z
θ̂n(x1, …, xn)L(x1, …, xn|θ + 1) = θ + 1

and subtracting (3.5.11) from it, we obtain

∑

x1,…,xn∈Z
θ̂n(x1, …, xn)

[
L(x1, …, xn|θ + 1) − L(x1, …, xn|θ )

]
= 1. (3.5.12)

Set θ̂n(x1, …, xn) = θ̂n and L(x1, …, xn|θ ) = L(θ ). Then by the normalization
condition (3.5.10), from (3.5.12) we obtain

∑

x1,…,xn∈Z
(θ̂n − θ )

[
L(θ + 1) − L(θ )

L(θ )

]
L(θ ) = 1. (3.5.13)
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Finally, the Cauchy–Bunyakovskii inequality and (3.5.13) yield

∑

x1,…,xn∈Z
(θ̂n − θ )2L(θ )

∑

x1,…,xn∈Z

[
L(θ + 1) − L(θ )

L(θ )

]2

L(θ ) ≥ 1

and the Rao–Cramér type inequality in the form

Var θ̂n ≥


 ∑

x1,…,xn∈Z

[
L(θ + 1) − L(θ )

L(θ )

]2

L(θ )



−1

. (3.5.14)

Theorem 3.5.2 immediately follows from (3.5.14). �

PROOF OF THEOREM 3.5.3. Set λi =
√

pi, i ∈ Z. Let the parameter λ0 =
√

p0 ≥√
γ0 > 0 be free; it will be optimized at the final stage.

Variational problem (3.5.2) can be reformulated as
∑

i∈Z
λiλi+1 → max

Λ
, (3.5.15)

where Λ = {λi, i ∈ Z}. In this case, the Lagrange functional is of the form

2

(
√

p0λ1 +
∞∑

i=1

λiλi+1

)
− µ

(
p0 + 2

∞∑

i=1

λ 2
i − 1

)
→ max

µ,Λ
, (3.5.16)

where µ is the Lagrangian multiplier corresponding to the normalization con-
dition.

The extremum conditions for problem (3.5.16) are given by the simultane-
ous equations

√
p0 − 2µλ1 + λ2 = 0,
λ1 − 2µλ2 + λ3 = 0,

· · ·
λk−1 − 2µλk + λk+1 = 0,

· · · (3.5.17)

To solve (3.5.17), we make use of the generating function in the form

F(x) =
∞∑

i=0

λi+1xi, |x| < 1. (3.5.18)

We obtain the obvious expression for (3.5.18) by multiplying equations (3.5.17)
by xi, i = 0, 1, …, and summing them, which yields

F(x) =
λ1 −

√
p0x

x2 − 2µx + 1
. (3.5.19)
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Set λ1 = t
√

p0 in (3.5.19), hence

F(x) =
t − x

x2 − 2µx + 1
√

p0. (3.5.20)

The denominator of (3.5.20) can be written as

x2 − 2µx + 1 = (x − x0)(x − 1/x0), x0 = µ −
√

µ2 − 1,

with x0 = t. Therefore (3.5.20) takes the form

F(x) =
t

1 − tx
√

p0 = t
√

p0

∞∑

i=0

tixi. (3.5.21)

Comparing series (3.5.18) and (3.5.21), we obtain

λi = ti√p0, i ∈ N.

The value of t is determined from the normalization condition

p0 + 2p0

∞∑

i=1

t2i = 1

yielding

t =
1 − p0

1 + p0
.

Functional (3.5.15) depends of the free parameter p0 as follows:

2

(
√

p0λ1 +
∞∑

i=1

λiλi+1

)
=
√

1 − p2
0.

By virtue of the condition p0 ≥ γ0 > 0, we obtain the optimal solution

p∗0 = arg max
p0≥γ0>0

√
1 − p2

0 = γ0.

It remains to set α = t2(p∗0) = (1 − γ0)/(1 + γ0). �

REMARK 3.5.3. If the parameter λ0 is not free, then the following equation
must be added to (3.5.17):

−µλ0 + λ1 = 0.

In our case, it holds as the strict inequality: −µ
√

γ0 + λ1 < 0.
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PROOF OF THEOREM 3.5.4. In the symmetric case p−i = pi with the free pa-
rameter p0 ≥ γ0 > 0, optimization problem (3.5.4) can be represented as

I = min
p1 ,…

[ ∞∑

i=0

(
p2

i

pi+1
+

p2
i+1
pi

)
− 1

]

under the condition
∞∑

i=1

pi =
1 − p0

2
.





(3.5.22)

Consider the following auxiliary optimization problem:

minimize
∞∑

i=0

(
p2

i

pi+1
+

p2
i+1
pi

)
under the condition

∞∑

i=1

pi = b.

Set the optimal value of the functional as

Φ(p0, b) = min
p1,…

[
p2

0
p1

+
p2

1
p0

+
∞∑

i=1

(
p2

i

pi+1
+

p2
i+1
pi

)
,

∞∑

i=1

pi = b, pi ≥ 0

]

or

min
0≤p1≤b

[
p2

0
p1

+
p2

1
p0

+ min
p2,…

[
p2

1
p2

+
p2

2
p1

+
∞∑

i=2

(
p2

i

pi+1
+

p2
i+1
pi

)
,

∞∑

i=2

pi = b − p1, pi ≥ 0

]]

= min
0≤p1≤b

[
p2

0
p1

+
p2

1
p0

+ Φ(p1, b − p1)

]
.

Consider the function

ψ(y) = min
z1,…

[
y2

z1
+

z2
1
y

+
∞∑

i=1

(
z2

i

zi+1
+

z2
i+1
zi

)
,

∞∑

i=1

zi = 1, zi ≥ 0

]
.

Then the relation

Φ(p0, b) = bψ
(

p0

b

)

holds. Therefore, we arrive at the recursive Bellman equations

Φ(p0, b) = min
0≤p1≤b

[
p2

0
p1

+
p2

1
p0

+ Φ(p1, b − p1)

]

or

bψ
(

p0

b

)
= b min

0≤z≤1

[
p2

0
b2

1
z

+
z2

p0/b
+ (1 − z)ψ

(
z

1 − z

)]
.
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The Bellman function ψ(y) satisfies the functional equation

ψ(y) = min
0≤z≤1

[
y2

z
+

z2

y
+ (1 − z)ψ

(
z

1 − z

)]
. (3.5.23)

It can be directly checked that the solution of (3.5.23) is

ψ(y) =
1

1 + y
+ (1 + y)2. (3.5.24)

Thus,

min
0≤z≤1

[
y2

z
+

z2

y
+ (1 − z)

[
(1 − z) +

1
(1 − z)2

]]

= min
0≤z≤1

[
y2

z
+

z2

y
+ (1 − z)2 +

1
(1 − z)

]
.

Differentiating, we obtain

−y2

z2 + 2
z
y
− 2(1 − z) +

1
(1 − z)2 = (z − y(1 − z))

[
2
y

+
z + y(1 − z)
(1 − z)2z2

]
= 0.

The derivative equals zero with z = y/(1 + y), which implies (3.5.24).
It follows from (3.5.22) that the Fisher information is of the form

I =
1 − p0

2
ψ
(

2
p0

1 − p0

)
− 1 =

4p2
0

1 − p2
0

and

min
p0≥γ0>0

I =
4γ2

0

1 − γ2
0

with
pi =

(
1 − γ0

1 + γ0

)i
γ0,

which completes the proof. �

PROOF OF THEOREM 3.5.5. The proof is based on

• the solution of the infinite system of equations similar to (3.5.17) with
the first equation

λs∗+1 − 2µλs∗+2 + λs∗+3 = 0;

• the maximization of functional (3.5.15) with checking the restrictions

pi ≥ γi > 0, i = 0, 1, …, k,
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• and the inequalities of gradient type

λk − 2µλk+1 + λk+2 < 0, 0 ≤ k ≤ s∗.

�

PROOF OF THEOREM 3.5.6. In this case, the Lagrange functional is of the form

2
n−1∑

i=0

λiλi+1 − µ

(
λ 2

0 + 2
n∑

i=1

λ 2
i − 1

)
→ max

µ,λ0,…,λn
, (3.5.25)

where µ is the Lagrangian multiplier corresponding to the normalization con-
dition. The extremum conditions for problem (3.5.25) are given by

−µλ0 + λ1 = 0,
λ0 − 2µλ1 + λ2 = 0,

· · ·
λn−2 − 2µλn−1 + λn = 0,

λn−1 − 2µλn = 0. (3.5.26)

Simultaneous equations (3.5.26) yield the recursive equations for the Cheby-
shev polynomials of the first kind Ti. Thus,

λ1 = µλ0, λ2 = (2µ2 − 1)λ0, …,
λi = Ti(µ)λ0, i = 0, 1, …, n.

It remains to recall the normalization condition. �
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Robust estimation of scale

In this chapter the problem of robust estimation of scale is mainly treated as
the problem subordinate to robust estimation of location. Special attention is
paid to the optimization approach to constructing the measures of spread in
the data analysis setting and to the Huber minimax variance estimator of the
scale parameter under ε-contaminated normal distributions, since the latter
estimator is applied to the problem of robust estimation of the correlation
coefficient.

4.1. Introductory remarks
4.1.1. Preliminaries
Following (Huber, 1981), we define the scale estimator as a positive statistic
Sn that is equivariant under scale transformations

Sn(λx1, …, λxn) = λSn(x1, …, xn) λ > 0. (4.1.1)

Moreover, its invariance under changes of sign and shifts is also desirable:

Sn(−x1, …,−xn) = Sn(x1, …, xn), (4.1.2)
Sn(x1 + µ, …, xn + µ) = Sn(x1, …, xn). (4.1.3)

In actual practice, scale problems, as a rule, do not occur independently of
location (or regression) problems, in which the scale usually is a nuisance pa-
rameter. Such problems of scale estimation are thoroughly studied in (Huber,
1981) with the use of M-, L- and R-estimators. In what follows, we describe
the main representatives of these classes.

However, we distinguish the data analysis probability-free setting for con-
structing the measures of the data spread from the statistical setting where
the scale parameter of the underlying distribution is estimated.

With an optimization approach in data analysis, the role of scale is sec-
ondary: the scale estimator is subordinated to the location estimator.

113
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4.1.2. Scale estimation in data analysis via
the optimization approach to location

Consider the optimization approach to constructing the estimator θ̂n of location
(central tendency) for the one-dimensional data x1, …, xn

θ̂n = arg min
θ

J(θ ), (4.1.4)

where J(θ ) is the goal function.
In data analysis, the scale estimator Sn (the measure of spread of the data

about the location estimator) can be naturally defined as an appropriately
transformed value of the optimization criterion J(θ ) at the optimal point θ̂n
(Orlov, 1976)

Sn ∼ J(θ̂n). (4.1.5)

In the case of M-estimators of location where J(θ ) = n−1∑n
1 ρ(xi − θ ),

Sn =∝ ρ−1

(
1
n

n∑

i=1

ρ(xi − θ̂n)

)
,

with

θ̂n = arg min
θ

n∑

i=1

ρ(xi − θ ).

In particular,

• the standard deviation

Sn = s =

√√√√1
n

n∑

i=1

(xi − x)2

for the LS or L2-norm method with ρ(u) = u2 and θ̂LS = x;

• the mean absolute deviation

Sn = d =
1
n

n∑

i=1

|xi − med x|

for the L1-norm method with ρ(u) = |u| and θ̂L1 = med x;

• and, more generally, the pth-power deviations (Gentleman, 1965)

Sn = SLp = cn

( n∑

i=1

|xi − θ̂Lp |p
)1/p

,
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for the Lp-norm method with ρ(u) = |u|p,

θ̂Lp = arg min
θ

n∑

i=1

|xi − θ |p, p ≥ 1,

where cn is a normalization constant chosen, say, from the condition of
asymptotic unbiasedness under the standard normal EΦSn = σ;

• half of the sample range Sn = R/2 = (x(n)−x(1))/2 for the L∞ or Chebyshev
metric with ρ(u) = max |u| and θ̂L∞ = (x(1) + x(n))/2.

The following estimator is also of interest: the least median squares (LMS)
deviation

Sn = SLMS = med |x − θ̂LMS|
for the LMS method with J(θ ) = med(xi − θ )2 and θ̂LMS given by

θ̂LMS = arg min
θ

med(xi − θ )2.

Apparently, the estimator SLMS is close to the median absolute deviation
MAD x = med |x − med x|.

REMARK 4.1.1. Summarizing the above, we say that any location and, more
generally, regression estimator obtained with the optimization approach gen-
erates the corresponding scale estimator. Thus, for the collection of location
estimators of Chapter 2 and Chapter 3, we have the appropriate collection of
scale estimators.

REMARK 4.1.2. The above-formulated optimization approach to designing scale
estimators is close to the scale estimators obtained from S-estimators for lo-
cation (Hampel et al., 1986, p. 115), where the S-estimator of location defined
by

θ̂n = arg min
θ

s(x1 − θ , …, xn − θ )

simultaneously yields the scale estimator Sn = s(x1 − θ̂n, …, xn − θ̂n).

4.2. Measures of scale defined by functionals
In this section we consider the case where the measure of spread for a random
variable ξ with distribution function F is defined by means of some functional
S(F).

Let ξ be a random variable with some symmetric and absolutely continuous
distribution function F. Denote the center of symmetry as θ and define the
measure of spread of ξ about θ in the terms of the distance of ξ from θ , namely
|ξ − θ |.
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The requirements of scale equivariancy and monotonicity of stochastic or-
dering imposed on the functional S(F) to be a measure of spread are formu-
lated in (Bickel and Lehmann, 1973): S(Faξ+b) = |a|S(Fξ ) for all a and b, with
S(Fξ ) ≤ S(Fη ) if Fξ <st Fη , where Fξ and Fη are the distribution functions of
|ξ − θξ | and |η − θη | respectively.

One may consider the following groups of functionals.

• The first group includes the functionals constructed with the use of the
deviation of each element of a population from some typical (central)
element θ . Usually the expectation θ (F) = µ(F) =

∫
x dF(x), or the

median θ (F) = Med(F) = F−1(1/2) are used. Denote the distribution
functions of |ξ − θ (F)| and |ξ1 − ξ2| as F1 and F2, where the random
variables ξ1 and ξ2 are independent with common distribution F.

Now define the class of scale functionals as

S(F) =
{∫ 1

0
[F−1

1 (t)]p dK(t)
}1/p

, (4.2.1)

where K(t) is some distribution function on [0, 1] and p > 0. For example,
if θ (F) = µ(F) and K(t) = t, 0 < t < 1, in (4.2.1), then this formula yields
the mean absolute deviation with p = 1 and the standard deviation with
p = 2. Furthermore, if K(t) = t/(1 − α), 0 ≤ t ≤ 1 − α, 0 ≤ α ≤ 1/2, then
we arrive at the α-trimmed variants of the above-mentioned measures.
The other part of this group is defined by the functional F−1

1 (1/2), and,
in particular, it yields the median absolute deviation functional with
θ (F) = Med(F).

• The second group comprises the functionals constructed with the use of
the deviations between all the elements of a population, and it is of the
form

S(F) =
{∫ 1

0
[F−1

2 (t)]p dK(t)
}1/p

. (4.2.2)

For instance, if p = 1 and K(t) = t, 0 ≤ t ≤ 1, then we arrive at the Gini
mean difference from (4.2.2). For p = 2 we obtain the standard deviation
multiplied by

√
2. The median absolute deviation functional can also be

described by (4.2.2) if we set S(F) = F−1
2 (1/2).

• The third group consists of the functionals defined by the distances be-
tween the characteristic points of F, for example, between the quantiles
of given levels

S(F) =
{∫ 1

0
|F−1(1 − α) − F−1(α)|p dK(t)

}1/p

. (4.2.3)
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In particular, the inter-α-quantile ranges are related to this group:

S(F) = F−1(1 − α) − F−1(α), 0 < α < 1/2.

A general scheme of the construction of scale functionals can be described
as follows:

(i) the initial random variable ξ is transformed into |ξ − θ (F)|p, |ξ1 − ξ2|p,
etc.;

(ii) then those transformed random variables are processed by the opera-
tions of averaging, or of ‘median’, or of ‘Hodges–Lehmann’, etc.

In other words, the scale functional is defined via some location functional
for the transformed variables. In this case, the variety of scale measures is
determined by both the varieties of transformations and of location measures,
and the rich experience obtained with location studies can be applied to the
case of scale estimation.

Thus some new variants of scale measures can be proposed (Shulenin,
1993), for example, applying the ‘median’ operation to |ξ1 − ξ2| leads to the
median of absolute differences

S(F) = Med(F2) Sn = med{|xi − xj|, 1 ≤ i < j ≤ n}; (4.2.4)

the ‘operation of Hodges–Lehmann’ yields such scale estimators as

Sn = med{(|xi − med x| + |xj −med x|)/2, 1 ≤ i < j ≤ n},

or
Sn = med{(|xi − xj| + |xk − xl|)/2, 1 ≤ i, j, k, l ≤ n},

along with their trimmed variants.
The choice of a concrete functional among the above can be made on the

basis of the comparison of their estimation accuracy in the chosen distribution
model.

4.3. M-, L-, and R-estimators of scale
4.3.1. M-estimators of the scale parameter
Now we consider the problem of estimating the scale parameter σ for the
family of densities

ƒ(x; σ) =
1
σ

ƒ
(

x
σ

)
, σ > 0. (4.3.1)
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Any M-estimator of σ is defined as the solution of the equation
n∑

i=1

χ
(

xi

Sn

)
= 0, (4.3.2)

where χ is the score function, usually even: χ(−x) = χ(x).
The estimator Sn corresponds to the functional S(F) defined by

∫
χ
(

x
S(F)

)
dF(x) = 0.

The influence function is of the following form (Huber, 1981, p. 109)

IF(x; F, S) =
χ(x/S(F))S(F)∫

(x/S(F))χ ′(x/S(F)) dF(x)
. (4.3.3)

The breakdown point for ε-contamination is given by ε∗ = −χ(0)/‖χ‖ ≤ 1/2,
where ‖χ‖ = χ(∞) − χ(0) (Huber, 1981, p. 110).

The following particular cases are of interest:

• the standard deviation s = (n−1∑ x2
i )1/2 with χ(x) = x2 − 1;

• the mean absolute deviation d = n−1∑ |xi| with χ(x) = |x| − 1;

• the pth-power deviation SLp = (n−1∑ |xi|p)1/p with χ(x) = |x|p − 1;

• the median absolute deviation MAD = med |xi| with χ(x) = sgn(|x| − 1).

Figures 4.1–4.3 illustrate the above cases.

REMARK 4.3.1. All the above estimators are the absolute deviations from zero,
since the location is assumed given in this setting.

Like for location, M-estimators (4.3.2) yield the maximum likelihood esti-
mators of the scale parameter σ for the family of densities σ−1ƒ(x/σ) with

χ(x) = −x
ƒ′(x)
ƒ(x)

− 1. (4.3.4)

The sufficient conditions of regularity providing the Fisher consistency
and asymptotic normality of Sn are imposed on the densities ƒ and the score
functions χ (Hampel et al., 1986, pp. 125, 139):

(F1) ƒ is twice continuously differentiable and satisfies ƒ(x) > 0 ∀x ∈ R.

(F2) The Fisher information for scale

I(ƒ; σ) =
1

σ2

∫ [
−x

ƒ′(x)
ƒ(x)

− 1
]2

ƒ(x) dx (4.3.5)

satisfies 0 < I(ƒ; σ) < ∞.
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Figure 4.1. The score function for the standard deviation
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Figure 4.2. The score function for the mean absolute deviation
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Figure 4.3. The score function for the median absolute deviation
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(χ1) χ is well-defined and continuous on R \ C(χ), where C(χ) is finite. At
each point of C(χ) there exist finite left and right limits of χ, which are
different. Moreover, χ(−x) = χ(x) if (−x, x) ⊂ R \ C(χ), and there exists
d > 0 such that χ(x) ≤ 0 on (0, d) and χ(x) ≥ 0 on (d, ∞).

(χ2) The set D(χ) of points at which χ is continuous but at which χ ′ is not
defined or not continuous is finite.

(χ3)
∫

χ dF = 0 and
∫

χ2 dF < ∞.

(χ4) 0 <
∫

xχ ′(x) dF(x) < ∞.

Under conditions (F1), (F2), (χ1)–(χ4),
√

n(Sn−σ) is asymptotically normal
with asymptotic variance (Hampel et al., 1986)

V(ƒ, χ) =
∫

χ2(x) dF(x)
(∫

xχ ′(x) dF(x)
)2 . (4.3.6)

Let us briefly discuss these conditions.

• The condition
∫

χ dF = 0 provides the Fisher consistency.

• Using the notation

A(χ) =
∫

χ2(x) dF(x), B(χ) =
∫

xχ ′(x) dF(x),

we have for the influence function (4.3.3)

IF(x; F, S) =
χ(x)
B(χ)

.

4.3.2. L-estimators of the scale parameter
As in the case of location, computationally more simple L-estimators based on
order statistics can be proposed for estimation of scale.

Given a sample x1, …, xn from a symmetric and absolutely continuous dis-
tribution F, we define the two-sided α- as

Ŝ1(α) =





1
n − 2[αn]

n−[αn]∑

i=[αn]

x2
(i)





1/2

, 0 ≤ α <
1
2

, (4.3.7)

where x(i) stands for the ith order statistic. The associated functional is of the
form

S1(F, α) =

{
1

1 − 2α

∫ F−1(1−α)

F−1(α)
x2 dF(x)

}1/2

, 0 ≤ α <
1
2

.
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For α = 0, formula (4.3.7) yields the

Ŝ1(0) = s =

{
1
n

n∑

i=1

x2
i

}1/2

.

The two-sided α-trimmed mean absolute deviation is defined by

Ŝ2(α) =
1

n − 2[αn]

n−[αn]∑

i=[αn]

|x(i)|, 0 ≤ α <
1
2

(4.3.8)

with the functional of the form

S2(F, α) =
1

1 − 2α

∫ F−1(1−α)

F−1(α)
|x|dF(x), 0 ≤ α <

1
2

.

For α = 0, formula (4.3.8) yields the

Ŝ2(0) = d =
1
n

n∑

i=1

|xi|.

The limiting cases α → 1/2 give the median absolute deviation med |x| for both
estimators.

The expressions for the influence functions of L-estimators can be found in
(Huber, 1981, pp. 111–113).

4.3.3. R-estimators of the scale parameter
The relative scale between two samples can be estimated by rank tests for
scale. Following (Huber, 1981), we describe such an approach to constructing
scale estimators.

Given the samples (x1, …, xm) and (y1, …, yn) from populations with the
distribution functions F and G, let Ri be the rank of xi in the sample of size
N = m + n. Then the test statistic

∑m
1 a(Ri) with ai = a(i) is defined by

ai = N
∫ i/N

(i−1)/N
J(t) dt

for some score-generating function J satisfying

J(1 − t) = J(t),
∫

J(t) dt = 0.

The functional S = S(F, G) estimating relative scale between F and G is
given by ∫

J
(

m
N

F(x) +
n
N

G
(

x
S

))
dF(x) = 0.
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Such a measure of relative scale satisfies S(FaX , FX ) = a, where FaX stands for
the distribution of the random variable aX.

The efficient score-generating function J(t) is given by

J(t) = −F−1(t)
ƒ′[F−1(t)]
ƒ[F−1(t)]

− 1,

(cf. (4.3.4)).

EXAMPLE 4.3.1. For the standard normal F = Φ, the choice

J(t) = [Φ−1(t)]2 − 1

leads to the efficient R-estimator (Huber, 1981).

4.4. Huber minimax estimator of scale
In this section we give well-known formulas for the Huber minimax solution
under ε-contaminated normal distributions (Huber, 1964; Huber, 1981), be-
cause this solution is essential for constructing the minimax estimator of the
correlation coefficient in Chapter 7.

As the problem of estimating the scale parameter for the random variable
ξ can be reduced to that of estimating the location parameter τ = log σ for
the random variable η = log |ξ |, where σ is a scale parameter for ξ , the
minimax solution for scale can be obtained by rewriting the minimax solution
for location. This approach is realized in (Huber, 1964; Huber, 1981). Here we
follow a straightforward way of minimizing the Fisher information for scale.

4.4.1. The least informative distribution
For the family of densities

p(x; σ) =
1
σ

ƒ
(

x
σ

)
,

the Fisher information for scale is

I(ƒ; σ) =
∫ [∂ log p(x; σ)

∂σ

]2

p(x; σ) dx

=
∫ [

−ƒ′(x/σ)
ƒ(x/σ)

x
σ2 −

1
σ

]2 1
σ

ƒ
(

x
σ

)
dx,

=
1

σ2

∫ [
−ƒ′(x)

ƒ(x)
x − 1

]2

ƒ(x) dx. (4.4.1)

Without loss of generality we can assume that the true scale is σ = 1.
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Consider the variational problem of minimizing the Fisher information
(4.4.1)

ƒ∗ = arg min
ƒ∈F ε

I(ƒ; 1) (4.4.2)

in the class of ε-contaminated normal densities

F ε = {ƒ : ƒ(x) ≥ (1 − ε) φ (x), 0 ≤ ε < 1}, (4.4.3)

where φ (x) is the standard normal density.
First, we show that the problem of minimization of (4.4.1) is equivalent to

that of minimization of the functional

J(ƒ) =
∫

x2
[
−ƒ′(x)

ƒ(x)

]2

ƒ(x) dx.

Obviously, from (4.4.1) it follows that

I(ƒ; 1) = J(ƒ) + 2
∫

xƒ′(x) dx + 1.

Assume that limx→∞ = 0. Then, integrating
∫

xƒ′(x) dx by parts, we obtain

I(ƒ; 1) = J(ƒ) − 1. (4.4.4)

Then, by the standard substitution ƒ(x) = g2(x) and the symmetry condition,
the variational problem of minimizing the Fisher information for scale with
the side normalization condition takes the form

minimize
∫ ∞

0
x2g′(x)2 dx

under the condition ∫ ∞

0
g2(x) dx =

1
2

.

The Lagrange functional for this problem is

L(g, λ ) =
∫ ∞

0
x2g′(x)2 dx + λ

(∫ ∞

0
g2(x) dx − 1/2

)
,

and the Euler equation can be represented as

x2g′′(x) + 2x g′(x) − λg(x) = 0.

Its suitable solutions are of the t-distribution type forms

g(x) = C1xk1 + D2xk2 , k1,2 = (−1 ±
√

1 + 4λ ). (4.4.5)
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Hence the optimal solution ƒ∗ of (4.4.2) is constructed by smooth ‘glueing’ the
‘free’ extremals (4.4.5) with the constraint on the density ƒ(x) = (1 − ε)φ (x) as
follows:

ƒ∗(x) =





A0|x|p0 , |x| < x0,
(1 − ε)φ (x), x0 ≤ |x| ≤ x1,
A1|x|p1 , |x| > x1.

(4.4.6)

The parameters of ‘glueing’ A0, A1, x0, x1, p1 and p2 in (4.4.6) are determined
from the equations equations which comprise the conditions of normalization,
continuity and differentiability of the solution at x = x0 and x = x1 (see the
conditions of regularity (F1) and (F2) in Subsection 4.3.1), and the relation
between the exponents p0 and p1:

∫ ∞

−∞
ƒ∗(x) dx = 1,

ƒ∗(xi − 0) = ƒ∗(xi + 0), ƒ∗′(xi − 0) = ƒ∗′(xi + 0), i = 0, 1; (4.4.7)
p0 + p1 = −2.

By substituting the solution of system (4.4.7) into (4.4.6), we obtain the
least informative density (Huber, 1981, p. 120)

ƒ∗(x) =





(1 − ε) φ (x0)
(

x0

|x|

)(x2
0)

, |x| < x0,

(1 − ε)φ (x), x0 ≤ |x| ≤ x1,

(1 − ε) φ (x1)
(

x1

|x|

)(x2
1)

, |x| > x1,

(4.4.8)

where the parameters x0 and x1 satisfy the equations

x2
0 = (1 − k)+, x2

1 = 1 + k,

2
∫ x1

x0

φ (x) dx +
2x0φ (x0) + 2x1φ (x1)

x2
1 − 1

=
1

1 − ε
. (4.4.9)

In the case of sufficiently small ε (ε < 0.205, x0 = 0, x1 >
√

2), the least
informative density ƒ∗ corresponds to a distribution that is normal in the
central zone and is like a t-distribution with k = x2

1 − 1 ≥ 1 degrees of freedom
in the tails. For ε > 0.205 and x0 > 0, an additional t-distribution part of ƒ∗
appears about x = 0: actually, this effects in trimming some smallest data
values along with greatest ones.
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4.4.2. Efficient M- and L-estimators
For the least informative density (4.4.8), the efficient M-estimator of scale is
defined by the score function

χ∗(x) = −x
ƒ∗′(x)
ƒ∗(x)

− 1 =





x2
0 − 1, |x| < x0,

x2 − 1, x0 ≤ |x| ≤ x1,
x2

1 − 1, |x| > x1,
(4.4.10)

Now we are able to check the optimality of the obtained solution for ƒ∗. As
shown in Section 3.1 (see also (Huber, 1981, p. 82)), ƒ∗ minimizes the Fisher
information over the class F if and only if

[
d
dt

I(ƒt)
]

t=0
≥ 0, (4.4.11)

where ƒt = (1 − t)ƒ∗ + tƒ and ƒ is a density providing 0 < I(ƒ) < ∞. Inequality
(4.4.11) can be rewritten as

∫
[2x χ∗′(x) − χ∗2(t)][ƒ(x) − ƒ∗(x)] dx ≥ 0, (4.4.12)

where χ∗(x) is given by (4.4.10).
Substituting (4.4.10) into (4.4.12), we obtain

ƒ(x) − (1 − ε)φ (x) ≥ 0.

Thus (4.4.12) is equivalent to the restriction of the class of ε-contaminated
normal densities, which confirms the validity of the expression for ƒ∗.

The efficient L-estimator is the trimmed standard deviation

Sn =





1
n − [α1n] − [α2n]

n−[α2n]∑

i=[α1n]+1

x2
i





1/2

, (4.4.13)

where
α1 = F∗(x0) − 1/2, α2 = 1 − F∗(x1).

Fig. 4.4 and 4.5 illustrate the possible forms of the score function.
The limiting case ε → 1 gives the median absolute deviation: the limiting

M- and L-estimators of τ coincide with the median of {log |xi|}, hence the
corresponding estimator is the median of {|xi|}.

The above M- and L-estimators are biased at the standard normal distribu-
tion Φ. To make them asymptotically unbiased in this case, one should divide
them by an appropriate constant. The values of these constants are given in
(Huber, 1981, pp. 125–126).
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Figure 4.4. The score function for the one-sided trimmed standard deviation

1

1-1

-1

0 X

Figure 4.5. The score function for the two-sided trimmed standard deviation

4.4.3. Remark on minimax aspects
It follows from the general results of Section 1.2 on minimax estimation of
the location parameter that the above M-estimator of scale is minimax with
regard to the asymptotic variance

V(ƒ, χ∗) ≤ V(ƒ∗, χ∗) =
1

I(ƒ∗; 1)

under ε-contaminated normal distributions satisfying S(F) = 1 or, in other
words, the Fisher consistency condition

∫
χ(x) dF(x) = 0. (4.4.14)

It is possible to ignore this rather restrictive condition for sufficiently small
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ε (ε < 0.04 and x1 > 1.88) using a kind of standardized variance instead of the
asymptotic variance V(ƒ, χ) (for details, see (Huber, 1981, pp. 122–126)).

4.5. Final remarks
In this section we briefly discuss some scale estimators mainly belonging to
two groups, which generate scale estimators subordinated to location ones.
The first group contains the maximum likelihood scale estimators for given
densities, in particular, from the parametric family of exponential-power dis-
tributions. The estimators of the second group are obtained by reducing the
problem of scale estimation to the problem of estimating the location param-
eter, for example, the well-known median absolute deviation appears to be a
minimax variance estimator in the class of distribution densities analogous to
the class of nondegenerate distributions.

4.5.1. Estimating the scale parameter of exponential-power
densities

As before, we assume that the location parameter is known: θ = 0. Consider
the family of exponential-power densities

ƒq(x; σ) =
q

2σΓ(1/q)
exp

(
−|x|

q

σq

)
, q ≥ 1.

Then the maximum likelihood estimator of the scale parameter σ is

Sn =
(

q
n

)1/q
( n∑

i=1

|xi|q
)1/q

.

The minimum of the Fisher information I(q; σ) = q/σ2 is attained at q∗ = 1,
i.e., the least informative density is the Laplace and the corresponding scale
estimator is the mean absolute deviation d = n−1∑

i |xi|.
In the multivariate case of spherically symmetric exponential-power den-

sities

ƒq(r; σ) =
qΓ(m/2)

2πm/2σmΓ(m/q)
exp

(
− rq

σq

)
, q ≥ 1, r =




m∑

j=1

u2
j




1/2

,

for σ̂ we obtain, in addition,

Sn =
(

q
mn

)1/q
( n∑

i=1

rq
i

)1/q

.
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Similarly, the Fisher information is I(q; m, σ) = (mq)/σ2, and its minimum is
also attained at q = 1. Thus the corresponding estimator of σ is given by the
multivariate analog of the mean absolute deviation

Sn = dn =
1

mn

n∑

i=1

ri, ri =




m∑

j=1

x2
ij




1/2

.

4.5.2. Scale analogs to minimax variance location estimators
Following (Huber, 1981), we rewrite the least informative density for location
into the corresponding least informative density for scale using the change of
variables η = log |ξ | and τ = log σ. Denote the distribution function of η by
G(y − τ). Then

G(y) = F(ey) − F(−ey), g(y) = 2eyƒ(ey).

Without loss of generality we assume that σ = 1 and τ = 0. Now we consider
the Laplace density g∗(y) = L(y; 0, a) minimizing the Fisher information for
location over the class of nondegenerate distributions with the restriction g(0) ≥
1/(2a) > 0. Hence the corresponding restriction on the density ƒ is of the form
ƒ(1) ≥ 1/(4a) > 0, and the least informative density minimizing the Fisher
information for scale is

ƒ∗(x) =





1
4a|x|1−1/a , |x| ≤ 1,

1
4a|x|1+1/a , |x| > 1.

Therefore the score function is

χ∗(x) = −x
ƒ∗′(x)
ƒ∗(x)

− 1 =

{
−1/a, |x| ≤ 1,

1/a, |x| > 1

with the Fisher information

I(ƒ∗) =
∫ ∞

−∞

(
−x

ƒ∗′(x)
ƒ∗(x)

− 1

)2

ƒ∗(x) dx =
1
a2 .

The above score function χ∗(x) corresponds to the median absolute deviation
Sn = med |x|. Thus this estimator minimizes the asymptotic variance over the
class of distributions with the restriction on the value of the density at x = 1.
Certainly, such a restriction does not seem very natural, because it means a
bounded above dispersion in the distribution zones about the points x = ±1.

It is possible to present some other examples of applying the above ap-
proach to the least informative distributions, in particular, to the cosine-
exponential distribution optimal over the class with a bounded distribution
subrange, but their substantial interpretation is rather embarrassing.
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4.5.3. Two examples of scale estimators possessing both high
global robustness and efficiency in the normal case

The median absolute deviation is the ‘most robust estimator of scale’ (Huber,
1981, p. 122), but it has a very low efficiency 4/π2 ≈ 0.367 under the nor-
mal distribution. Thus the problem of designing robust estimators with high
breakdown points (close to 50%) and efficiency about 0.9–0.95 remains open
yet.

Here we represent two close to each other estimators which partly satisfy
the above conditions.

The first is called the median of absolute differences

Sn = med |xi − xj|, 1 ≤ i < j ≤ n

with the efficiency 0.864 in the normal case (Shulenin, 1993).
The second, the Qn-estimator (Rousseeuw and Croux, 1993), is defined by

the 0.25-quantile of absolute differences

Sn = Qn = ƒn ⋅ 2.2219 {|xi − xj| : i < j}(k) ,

where k =
(h

2

)
and h = [n/2] + 1. The constant ƒn is a small sample factor.

Under the normal distribution, the efficiency of Qn is 0.82.
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5

Robust regression and
autoregression

In this chapter we extend the results of Chapter 3 to the problems of robust
linear regression.

Most attention is paid to minimax variance estimation in autoregression
and regression–autoregression models which the solutions of Chapter 3 based
on the Weber–Hermite functions are applied to.

5.1. Introductory remarks
In statistics as a whole, regression problems are related to most important
for theory and applications. Besides robustness, they cause a lot of specific
questions (Hampel et al., 1986; Huber, 1981); we recall only three of them:

• the choice of a model (linear or nonlinear, parametric, nonparametric or
semiparametric) and its order;

• the choice of a criterion of goodness-of-fit;

• and the choice of a computational algorithm.

Fig. 5.1 contains the data and its fits illustrating the abovesaid. At least
three choices of the model (two straight lines and the parabola) are obviously
possible with the data presented, and it is quite difficult to make the final
decision without additional information.

Here we consider the classical linear regression model in matrix notation

x = ΦΦΦθθθ + e, (5.1.1)

or in scalar notation

xi =
m∑

j=1

φijθj + ei, i = 1, …, n, (5.1.2)

131



132 5. Robust regression and autoregression

Figure 5.1. The possible fits to the data

where

• x = (x1, …, xn)T is the vector of observations or response variables;

• θθθ = (θ1, …, θm)T is the vector of unknown parameters to be estimated;

• ΦΦΦ = (φij)n,m is the given design matrix, and the variables φi1, …, φim are
called the explanatory variables or carriers;

• e = (e1, …, en)T is the vector of independent random errors with common
symmetric density ƒ belonging to a certain class F .

Furthermore, applying the regression estimator to the data




φ11 φ12 · · · φ1m x1
φ21 φ22 · · · φ2m x2
. . . . . . . . . . . . . . . . . . . . . . . . .
φn1 φn2 · · · φnm xn




yields θ̂θθ = (θ̂1, …, θ̂m)T , where the estimators θ̂j are called the regression coef-
ficients. Substituting these estimators for θj into (5.1.2), we obtain

x̂i =
m∑

j=1

φijθ̂j,
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where x̂i is called the predicted or estimated value of xi. The difference between
the actually observed and estimated values

ri = xi − x̂i

is called the residual ri.
The classical approach originates from Gauss and Legendre (see (Stigler,

1981) for historical remarks), and it suggests minimizing the sum of squares
of residuals

minimize
n∑

i=1

r2
i , (5.1.3)

or, which is equivalent, solving m simultaneous equations obtained by differ-
entiation of (5.1.3),

n∑

i=1

riφij = 0, j = 1, …, m.

In matrix notation, it is of the form

ΦΦΦTΦΦΦθθθ = ΦΦΦTx.

If ΦΦΦ has the full rank m and the independent errors ei have zero means Eei = 0
with common variance Ee2

i = σ2 < ∞, then the solution can be written as

θ̂θθ = (ΦΦΦTΦΦΦ)−1ΦΦΦTx (5.1.4)

with the covariance matrix of estimators in the form

V =
σ2

n − m
(ΦΦΦTΦΦΦ)−1. (5.1.5)

This least squares estimator (5.1.4) has many remarkable properties (see,
e.g. (Kendall and Stuart, 1963; Rao, 1965)). The main of them are: first,
the LS estimator is optimal in the class of all linear unbiased estimators
(Gauss–Markov theorem), and second, under normal error distributions, the
LS estimator is optimal in the class of all unbiased estimators.

The optimality in Gauss–Markov theorem can be understood with regard
to any of the following four criteria:

• The variance of an arbitrary linear combination
∑m

j=1 λjθ̂j is minimum in
the class of all linear unbiased estimators of

∑m
j=1 λjθj, in particular, the

variance of each component θj is minimum.

• det V(θθθ ) is minimum (the determinant of a covariance matrix is called
the generalized variance).
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• V(θθθ ) is minimum, that is, the difference between the covariance matrices
of any estimator of a given class and the LS estimator is a positive definite
matrix.

• tr V(θθθ ) is minimum.

Recall that the LS estimator is extremely unstable under outliers and gross
errors in the data, in other words, it is completely non-robust.

5.2. The minimax variance regression
Robust versions of the LS procedure are given by M-estimators that provide a
straightforward generalization for the linear regression problem (5.1.1). In this
case, the estimator θ̂θθ is obtained by minimizing the goodness-of-fit criterion

minimize
n∑

i=1

ρ(ri), (5.2.1)

or, to ensure scale invariance for θ̂θθ ,

minimize
n∑

i=1

ρ
(

ri

Sn

)
, (5.2.2)

where Sn is some robust estimator for the scale of residuals.
For the differentiable and convex contrast functions ρ, the above relations

can be replaced by the simultaneous equations

n∑

i=1

ψ(ri)φij = 0, j = 1, …, m, (5.2.3)

or

n∑

i=1

ψ
(

ri

Sn

)
φij = 0, j = 1, …, m, (5.2.4)

where ψ = ρ ′ is the score function.
In (Huber, 1973), it was suggested to estimate σ by solving (5.2.4) simulta-

neously with the equation

n∑

i=1

ψ2
(

ri

Sn

)
= (n − m)A. (5.2.5)

The constant A is chosen so that Sn converges to σ when the ei have the normal
distribution with mean zero and variance σ2.
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↖outlier

Figure 5.2. Robustness of the L1-regression with respect to an outlier in the
x-direction

↙outlier

Figure 5.3. Non-robustness of the L1-regression with respect to an outlier in
the t-direction

If the possibility of contamination or gross errors in the φij is ignored and
only contamination of xi is allowed, then the regression M-estimators are ro-
bust, as long as ψ is bounded. However, allowing for the realistic possibility of
gross errors in the φij may yield an unsatisfactory situation even for monotone
and bounded ψ: outliers in independent variables (leverage points) can have
a considerable influence on estimators (Rousseeuw and Leroy, 1987). Fig. 5.2
and 5.3 illustrate this effect.

One of the most robust estimators, the L1-estimator minimizing the sum
of the absolute values of residuals

∑
i |ri| (see Chapter 6 for general properties
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of L1-approximations), protects the estimator of a straight line against gross
errors in the x-direction, and it completely fails with leverage points caused by
gross errors in the independent variable t.

To deal with this difficulty, in (Hampel, 1974; Mallows, 1975) the gener-
alized M-estimators (GM-estimators) were suggested, which are defined as a
solution of

n∑

i=1

w(φφφ i)φφφ iψ
(

ri

Sn

)
= 0, (5.2.6)

where w(u1, …, um) is a continuous scalar weight function chosen so that
w(φφφ i)φφφ i is bounded. The scale estimator Sn would be obtained by simulta-
neously solving (5.2.6) along with (5.2.5).

As above in the case of estimating the location parameter, under certain
regularity conditions (Huber, 1981, p. 165), M-estimators (5.2.4) are consistent
and asymptotically normal. The main of those conditions are:

(R1) ΦΦΦ has full rank m, and the diagonal elements of the hat matrix

H = ΦΦΦ(ΦΦΦTΦΦΦ)−1ΦΦΦT

are uniformly small: maxi hi = h � 1.

(R2) The contrast function ρ is convex, non-monotone, and it has bounded
derivatives of sufficiently high order. In particular, ψ(x) = ρ ′(x) should
be continuous and bounded.

(R3) The errors ei are independent and identically distributed such that

Eψ(ei) = 0.

The consistency and asymptotic normality of M-estimators hold under
more general regularity conditions (Jurečkovà, 1977; Onishchenko and Tsy-
bakov, 1987; Zolotukhin, 1988).

Furthermore, the asymptotic covariance matrix of M-estimators is of the
form

V(ƒ, ψ) =
Eψ2

(
Eψ ′)2 (ΦΦΦTΦΦΦ)−1. (5.2.7)

Thus, the elements of the covariance matrix (5.2.7) are proportional to the
scalar factor

v(ƒ, ψ) =
∫

ψ2(x)ƒ(x) dx
(∫

ψ ′(x)ƒ(x) dx
)2 ,

which is the asymptotic variance Var θn(ψ, ƒ) of M-estimators of location being
the functional of the pair (ψ, ƒ) (see Section 1.2).
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The matrix factor depends only on the positive definite matrix ΦΦΦTΦΦΦ. There-
fore the minimax properties of M-estimators of location are directly extended
to the linear regression model (5.1.2) (Huber, 1972)

V(ψ∗, ƒ) ≤ V(ψ∗, ƒ∗),

ƒ∗ = arg min
ƒ∈F

I(ƒ), ψ∗ = −ƒ∗′/ƒ∗, (5.2.8)

where I(ƒ) is the Fisher information for location, and the inequality A ≥ B is
understood in the sense of non-negative definiteness of the matrix (A − B).

Finally we observe that all the results on the minimax variance estimators
of location obtained in Chapter 3 can be applied here with obvious modifica-
tions.

5.3. Robust autoregression
5.3.1. Preliminaries
Autoregressive models are widely used in theory and applications for descrip-
tion of time series (Anderson, 1971; Kendall and Stuart, 1968). This is due to
the two of their specific features. First, the autoregressive model represents a
stochastic equation in differences, and so it can be used for description of the
output of dynamic systems (Astrom and Eykhoff, 1971; Eykhoff, 1974; Ljung,
1987; Ljung, 1995; Tsypkin, 1984; Walter and Pronzato, 1997). Second, the
process of autoregression is one of the simplest models for stochastic processes,
and in a certain sense (by the criterion of maximum entropy), it is the best
approximation to an arbitrary stationary stochastic process (Kleiner et al.,
1979; Martin, 1981).

In this section we consider some extensions of M-estimators to the prob-
lem of robust estimation of autoregressive parameters and formulate minimax
variance robust algorithms of estimation over some classes of error distribu-
tions.

We now pose the estimation problem with the autoregressive model.

DEFINITION 5.3.1. A sequence x1, …, xn, …, is said to be a linear autoregressive
model if

xn =
m∑

j=1

βjxn−j + ξn, n = j + 1, j + 2, …, (5.3.1)

where

• xn are the observations;

• βββ = (β1, …, βm) is the vector of autoregressive parameters;
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• ξn are independent identically distributed random variables referred to
as the innovations.

Then the problem is formulated as follows: given a sample x1, …, xn, esti-
mate the parameter vector βββ ∈ Rm.

The classical approach suggests normality of the innovations ξi. As robust
statistics mainly aims at the struggle against outliers in the data, we con-
sider the following two basic and simple outlier generating mechanisms for
autoregression (Fox, 1972):

• the innovations outliers (IO) model

xn =
m∑

j=1

βjxn−j + ξn, (5.3.2)

where the distribution Fξ of the innovations ξi is heavy-tailed;

• the additive outliers (AO) model is of the form

yn = xn + ηn, (5.3.3)

where xn is the Gaussian autoregression and ηn are independent and
identically distributed with common distribution

Fη = (1 − ε)δ0 + εH;

δ0 is the degenerate distribution having its whole mass at zero, and H is
a heavy-tailed symmetric distribution.

If ε is small, then the xn are observed perfectly most of the time with
probability P(ηn = 0) = 1 − ε.

Though the AO-model seems more realistic than the IO-model, here we
are mainly interested in the IO-model of outliers, because the methods of
protection from additive outliers are as a whole the same as in regression
problems.

In general, time series models generate a wider variety of cases where
outliers may occur than, for example, regression models.

Consider the class of M-estimators of autoregressive parameters

β̂ββ n = arg min
βββ

n∑

i=m+1

ρ


xi −

m∑

j=1

βjxi−j


 , (5.3.4)

where ρ(u) is a given contrast function. For instance, setting ρ(u) = u2, we
have the LS estimators; with ρ(u) = − log ƒξ (u), we have the ML estimators.
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Introducing the score function ψ(u) = ρ ′(u), we write out the simultaneous
equations giving the M-estimators sought for in the implicit form

n∑

i=m+1

ψ


xi −

m∑

j=1

β̂jxi−j


 xi−j = 0, j = 1, …, m.

Just these estimators are the goal of our further analysis.

5.3.2. The properties of M-estimators for autoregression
Like M-estimators of regression parameters, under certain regularity condi-
tions, M-estimators of autoregressive parameters are consistent and asymp-
totically normal (Martin, 1979; Martin, 1981; Polyak and Tsypkin, 1983).

Assume the following.

(AR1) Autoregression is stable, i.e., all roots of the characteristic equation

qm =
m∑

j=1

βjqm−j

lie outside the interval [−1, 1].

(AR2) The errors are independent with common density ƒ symmetric about
zero and bounded variance

Eξ 2
n = σ2 < ∞.

(AR3) The contrast function ρ(u) is nonnegative, symmetric, convex, and twice
differentiable.

Under assumptions (AR1), (AR2), (AR3), and some additional regularity
conditions, the estimator (5.3.4) is consistent (Polyak and Tsypkin, 1983): β̂ββ n
tends to βββ in probability, and it is asymptotically normal

√
n(βββ n − βββ ) ∼ N (0, V),

where the covariance matrix V = V(ƒ, ψ) is of the form

V(ƒ, ψ) = v(ƒ, ψ)R−1, v(ƒ, ψ) =
∫

ψ2ƒ dx

σ2
(∫

ψ ′ƒ dx
)2 ,

R =




ρ0 ρ1 … ρm−1
ρ1 ρ2 … ρm−2

. . . . . . . . . . . . . . . . . . . . . . . . .
ρm−1 ρm−2 … ρ0


 . (5.3.5)



140 5. Robust regression and autoregression

Here R is the matrix of autocorrelations ρi = µi/σ2, where

µi = lim
n→∞

Exn−ixn

are the autocovariances of some autoregressive process.
It is essential that the covariance matrix V(ƒ, ψ) depends on the shape of ƒ

and ψ only through the scalar factor v(ƒ, ψ) equal to the asymptotic variance
of M-estimators of location divided by the variance of errors.

The matrix R does not depend on the shape of the density, and it is defined
only by the coefficients βββ .

If we assume that the distribution density ƒ is not completely known but
belongs to a given class F , then M-estimators of autoregressive parameters
possess the minimax property (Martin, 1979)

V(ψ∗, ƒ) ≤ V(ψ∗, ƒ∗)

ƒ∗ = arg min
ƒ∈F

σ2(ƒ)I(ƒ), ψ∗ = −ƒ∗′/ƒ∗. (5.3.6)

It follows from (5.3.6) that the minimax variance estimator is the maximum
likelihood one with the score function ψ∗ = −ƒ∗′/ƒ∗ for the least favorable den-
sity ƒ∗ minimizing the functional J(ƒ) = σ2(ƒ)I(ƒ), which is the product of the
distribution variance and the Fisher information. Hence, in the case of autore-
gression, the results are qualitatively different from the case of regression.

5.3.3. The minimax variance estimators of autoregressive
parameters under distributions with bounded variance

Here an exact result concerning minimax properties of the LS estimators of
autoregressive parameters is formulated, and as its corollary, exact solutions of
the variational problem (5.3.6) are given for the classes of distribution densities
F 12, F 23 and F 25.

The following important result on the least favorable distribution is true
for autoregression (Whittle, 1962).

THEOREM 5.3.1. If the class F contains the normal density ƒ(x) = N (x; 0, σN),
then the latter is a solution of the variational problem (5.3.6):

ƒ∗(x) = N (x; 0, σN).

COROLLARY 5.3.1. The minimax estimator of autoregressive parameters is giv-
en by the LS method.

Comparing this solution with the solutions for location and regression,
where it holds only for the class F 2 (in particular cases, for the classes F 12,
F 23 and F 25), here the LS method is optimal for the classes F 1, F 2, F 3, and
F 5, and also for the combinations of these classes F 12, F 23, and F 25.
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For the sake of completeness, we now formulate these results for the classes
F 12, F 23, and F 25.

THEOREM 5.3.2. In the classes

F 12 = {ƒ : ƒ(0) ≥ 1/(2a) > 0, σ2(ƒ) ≤ σ2},

F 23 = {ƒ : ƒ(x) ≥ (1 − ε)N (x; 0, σN), σ2(ƒ) ≤ σ2},

F 25 = {ƒ : F−1(3/4) − F−1(1/4) ≤ b, σ2(ƒ) ≤ σ2},

the solution of variational problem (5.3.6) is the normal density

ƒ∗(x) = N (x; 0, σN),

where σN takes any value satisfying the constraints of the classes, and in each
case J(ƒ∗) = 1.

In spite of the fact that the optimal solutions over the classes F 12 and
F 25 may differ from each other by the standard deviation σN , the minimax
variance estimators do not depend on those due to scale equivariancy. The
estimators are given by (5.1.4)

β̂ββ n = (ΦΦΦTΦΦΦ)−1ΦΦΦx, (5.3.7)

where x = (xm+1, xm+2, …, xn)T, ΦΦΦ = (xi−j) is an (n − m) × m matrix. The
covariance matrix of estimator (5.3.7) is of the form

V = V(ƒ∗, ψ∗) = R−1,

providing the guaranteed accuracy of estimation

V(ψ∗, ƒ) ≤ R−1

for all ƒ ∈ F .
We have established that the normal density is the least favorable over a

sufficiently wide class, and so the LS method yields the optimal estimator. The
other results occur if to narrow a class of distribution densities we introduce
an additional lower bound on the variance of innovations σ2(ƒ) ≥ σ2 (Polyak
and Tsypkin, 1983; Tsypkin, 1984).

For the problem of autoregression, such a restriction has a plain motivation.
In the case of regression, the growth of errors deteriorates the conditions of
estimation. On the contrary, for autoregression, the innovations ei generate
the process itself, and the growth of their power improves estimation.

Considering the classes of distribution densities with the additional lower
bound on variance σ2(ƒ) ≥ σ2, we observe that for sufficiently small σ2, the
effect of narrowing the class has no impact, and the optimal density remains
normal. Nevertheless, with large σ2, the solutions become different.

The following is true (Shevlyakov, 1991).
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THEOREM 5.3.3. In the class F 1 with additional restrictions σ2(ƒ) ≥ σ2 and
σ2 ≤ 2a2,

F̃ 1 =
{

ƒ : ƒ(0) ≥
1

2a
> 0, σ2(ƒ) ≥ σ2, σ2 ≤ 2a2

}
, (5.3.8)

the least favorable density is of the form

ƒ̃∗
1(x) =





N (x; 0, σ), σ2/a2 ≤ 2/π,
ƒ(x; ν, σ), 2/π < σ2/a2 ≤ 2,
L(x; 0, a), σ2/a2 = 2,

(5.3.9)

where ƒ(x; ν, σ) are the Weber–Hermite distribution densities of the form

ƒ(x; ν, σ) =
Γ(−ν)

√
2ν + 1 + 1/S(ν)√
2π σ S(ν)

D
2
ν

( |x|
σ

√
2ν + 1 + 1/S(ν)

)
(5.3.10)

with ν ∈ (−∞, 0] determined from the equation (see Section 3.2)

σ
a

=
√

2ν + 1 + 1/S(ν)Γ2(−ν/2)√
2π 2ν+1 S(ν) Γ(−ν)

. (5.3.11)

This result does not cover the case where σ2 > 2a2. It is possible to
describe the structure of the optimal solution in this domain: it consists of the
extremals based on the Weber–Hermite functions. The unknown parameters
of the solution can be determined from simultaneous equations including the
restrictions of the class and transversality conditions. Nevertheless, here
it is reasonable to seek for an approximate solution in the form of a linear
combination of the limiting densities (Tsypkin, 1984)

ƒ̃∗1(x) = (1 − α)L(x; 0, a1) + αN(x; µ, σN),

where the parameters α, a1, µ, and σN are determined from the restrictions of
the class

ƒ̃∗1(0) =
1

2a1
, σ2(ƒ̃∗1) ≥ σ2 > 2a2,

and the optimality condition ƒ̃∗1 = arg min J(ƒ).
The minimax estimator corresponding to the least favorable density of

Theorem 5.3.2 coincides with that in the class F 12 for the location parameter
and regression whose score functions ψ∗ = −ƒ∗′/ƒ∗ are intermediate between
the linear (the LS method) and the sign (the LAV method) (see Fig. 3.8).

The minimax properties of the obtained estimator provide the guaranteed
accuracy of estimation in the sense of the boundedness of the covariance matrix
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for all densities from the class F̃ 1

V(ƒ, ψ̃∗
1) ≤ V(ƒ̃∗1, ψ̃∗

1) = v(ƒ̃∗1, ψ̃∗
1 )R−1,

v(ƒ̃∗1, ψ̃∗
1 ) =





1, σ2/a2 ≤ 2/π,
1/(σ2I(ƒ̃∗1)), 2/π < σ2/a2 ≤ 2,
2, σ2/a2 = 2,

where I(ƒ̃∗1) is given by (3.2.7).
Here robustness is evidently confirmed due to the invariance of v(ƒ̃∗1, ψ̃∗

1 ) to
distribution variance.

5.3.4. Proofs
PROOF OF THEOREM 5.3.1. Observe that the least favorable density should ob-
viously have finite variance σ2(ƒ∗) < ∞. We prove the assertion of this theorem
using the Cauchy–Bunyakovskii inequality

(∫ ∞

−∞
xƒ′(x) dx

)2
=
(∫ ∞

−∞
x

ƒ′(x)
ƒ(x)

ƒ(x) dx
)2

(5.3.12)

≤
∫ ∞

−∞
x2ƒ(x) dx ⋅

∫ ∞

−∞

[
ƒ′(x)
ƒ(x)

]2

ƒ(x) dx = σ2(ƒ)I(ƒ).

Indeed, integrating the left-hand side of (5.3.13) by parts, we obtain
∫ ∞

−∞
xƒ′(x) dx = xƒ(x)|∞−∞ −

∫ ∞

−∞
ƒ(x) dx = −1, (5.3.13)

because by virtue of boundedness of the variance, limx→±∞ xƒ(x) = 0. Thus it
follows from (5.3.12) and (5.3.13) that

I(ƒ)σ2(ƒ) ≥ 1, (5.3.14)

and as inequality (5.3.14) becomes the equality at the normal density

I(N (x; 0, σN)) =
1

σ2
N

,

we arrive at the required assertion

ƒ∗(x) = N (x; 0, σN) (5.3.15)

for arbitrary σN unless ƒ∗ ∈ F . �
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PROOF OF COROLLARY 5.3.1. The minimax estimator of autoregressive param-
eters is defined by the linear score function

ψ∗(z) = z/σ2
N ,

and by the LS method respectively. �

PROOF OF THEOREM 5.3.2. The validity of the theorem immediately follows
from Theorem 5.3.1. �

PROOF OF THEOREM 5.3.3. In this case we use the scheme of the proof of The-
orem 3.2.2.

Convexity of the Fisher information I(ƒ) implies convexity of the functional
J(ƒ) = σ2(ƒ)I(ƒ) in problem (5.3.6). Hence the density ƒ∗ ∈ F̃ 1 minimizes J(ƒ)
if and only if

d
dt

J(ƒt)
∣∣∣∣
t=0

≥ 0, (5.3.16)

where ƒt = (1 − t)ƒ∗ + tƒ, ƒ ∈ F̃ 1 and J(ƒ) < ∞.
Now we verify inequality (5.3.16) for solution (5.3.9). Rewrite the left-hand

side of (5.3.16) as

d
dt

J(ƒt)
∣∣∣∣
t=0

=
d
dt

{
[(1 − t)σ2(ƒ∗) + tσ2(ƒ)]I(ƒt)

}∣∣∣∣
t=0

(5.3.17)

=
d
dt

I(ƒt)
∣∣∣∣
t=0

σ2(ƒ∗) + I(ƒ∗)[σ2(ƒ) − σ2(ƒ∗)] ≥ 0.

As in the proof of Theorem 3.2.2, it is suffices to check inequality (5.3.17)
for the middle branch of solution (5.3.9), since the first and third branches are
its limiting cases:

N (x; 0, σ ) = ƒ(x; 0, σ)

and
L(x; 0, a) = lim

ν→−∞
ƒ(x; ν, σ).

In Section 3.2 the following expression was obtained for the derivative of
the Fisher information:

d
dt

I(ƒt)
∣∣∣∣
t=0

= 4B
Dν+1(0)
Dν (0)

B[ƒ(0) − ƒ∗(0)] − B4[σ2(ƒ) − σ2(ƒ∗)], (5.3.18)

where

B =
1
σ

√
2ν + 1 +

1
S(ν)

. (5.3.19)
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Furthermore, the restrictions of the class F̃ 1 hold as equalities

σ2(ƒ∗) = σ2, ƒ∗(0) =
1

2a
. (5.3.20)

Substituting (5.3.18) and (5.3.20) for dI(ƒt)/dt, σ2(ƒ∗), and ƒ∗(0) into the left-
hand side of inequality (5.3.17), we obtain

d
dt

J(ƒt) =
{

4B
Dν+1(0)
Dν (0)

[
ƒ(0) − 1

2a

]
− B4[σ2(ƒ) − σ2]

}
σ2 + I(ƒ∗)[σ2(ƒ) − σ2]

= 4Bσ2 Dν+1(0)
Dν (0)

B
[

ƒ(0) − 1
2a

]
+ [I(ƒ∗) − B4σ2][σ2(ƒ) − σ2].

By virtue of the restrictions of the class F̃ 1, the terms ƒ(0) − 1/(2a) and
σ2(ƒ)− σ2 are nonnegative. Furthermore, D ν+1(0)/Dν (0) > 0 (see Section 3.2).
Therefore, inequality (5.3.17) holds if I(ƒ∗) − B4σ2 > 0.

Now we establish the latter. By Lemma 3.2.1, the Fisher information is of
the following form at the densities ƒ(x; ν, σ):

I(ƒ∗) = I(ƒ(x; ν, σ)) =
1

σ2

[
(2ν + 1)2 + 4(2ν + 1)S(ν) +

3
S2(ν)

]
. (5.3.21)

By (5.3.19) and (5.3.21),

I(ƒ∗) − B4σ2 =
1

σ2

[
(2ν + 1)2 + 4(2ν + 1)S(ν) +

3
S2(ν)

]
− 1

σ2

[
2ν + 1 +

1
S(ν)

]2

=
2

S(ν)σ2

[
2ν + 1 +

1
S(ν)

]
=

2
S(ν)B2 > 0.

The positiveness of S(ν) follows from its definition (see Subsection 3.2.7), which
completes the proof. �

5.4. Robust identification in dynamic models
In this section we demonstrate how to apply the Weber–Hermite densities
obtained in Section 3.2 to the problems of identification in dynamic models of
control theory.

Identification of parameters of a dynamic object is one of the main stages of
a control process, and this topic represents a rich field for the use of statistical
methods (Eykhoff, 1974; Kashyap and Rao, 1976; Lee, 1964; Ljung, 1987;
Ljung, 1995; Sage and Melsa, 1971; Walter and Pronzato, 1997).

We now briefly describe a general approach to identification of dynamic
objects (Tsypkin, 1984). Let the control object be given by the linear difference
equation

x(n) = −
m∑

j=1

ajx(n − j) +
m∑

j=0

bju(n− j) + ξ (n) +
m∑

j=1

djξ (n − m), n = 0, 1, 2, …,
(5.4.1)
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where

• x(n) are the outputs of the object;

• u(n) are the control values;

• ξ (n) are the stationary uncorrelated errors with symmetric distribution
density ƒ.

This equation is rather general: the particular cases of model (5.4.1) are
given by the processes of regression, autoregression, moving average, and
ARMA. For instance,

• the regression or R-objects

x(n) =
m∑

j=0

bju(n − j) + ξ (n), (5.4.2)

for aj = dj = 0, j = 1, 2, …, m;

• the autoregression or AR-objects

x(n) +
m∑

j=1

ajx(n − j) = ξ (n), (5.4.3)

for b0 = 0, bj = dj = 0, j = 1, 2, …, m;

• the moving average

x(n) =
m∑

j=0

djξ (n − j),

for b0 = 0, bj = aj = 0, j = 1, 2, …, m;

• the ARMA-processes

x(n) +
m∑

j=1

ajx(n − j) =
m∑

j=0

djξ (n− m),

for bj = 0, j = 0, 1, …, m.

The objects described by the general equation (5.4.1) are called the regres-
sion–autoregression (RAR)-objects.

There exist various approaches to identification of the parameter vector

θθθ = (a1, a2, …, am, b0, b1, …, bm, d1, d2, …, dm)

(see, e.g. (Eykhoff, 1974; Ljung, 1987; Ljung, 1995; Walter and Pronzato, 1997)).
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OBSERVATIONS

ALGORITHM

MODEL

OBJECT

u(n)

x(n)

r(e)
e(n)

x(n)

ˆ

ˆ

ˆ(n)X

q

Figure 5.4. The block-scheme of identification

Here we consider that based on the use of the predicting or tuning model,
in other words, the moving estimator of the output x(n) of the form (Tsypkin,
1984)

x̂(n) = −
m∑

j=1

âjx(n − j) +
m∑

j=0

b̂ju(n − j) +
m∑

j=1

d̂j[x(n − m) − x̂(n − m)].

The discrepancies e(n) = x(n) − x̂(n) measured between the object model
and the predicting model determine the procedure of identification based on
minimization of the average losses

θ̂θθ (n) = arg min
θθθ

1
n

n∑

i=1

ρ[x(i) − x̂(i)],

where ρ is the loss function or the contrast function.
This approach to identification is illustrated in Fig. 5.4.
The asymptotic covariance matrix

V = nVn = nE(θ̂θθ − θθθ )(θ̂θθ − θθθ )T
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is a measure of efficiency of the form

V(ƒ, ψ) =
∫

ψ2ƒ dx
(∫

ψ ′ƒ dx
)2 A−1(θθθ , σ2(ƒ)), (5.4.4)

where ψ = ρ ′ is the score function, A(θθθ , σ2(ƒ)) is the normalized information
matrix depending on the structure of the object being identified, as well as on
the distribution variance σ2(ƒ) (Tsypkin, 1984):

A(θθθ , σ2(ƒ)) = A1(θθθ ) + σ2(ƒ)A2(θθθ ).

Here A1(θθθ ) and A2(θθθ ) are non-negative definite symmetric matrices.
If the error distribution density ƒ belongs to some class F , then the optimal

choice of both the loss function ρ and the estimator is given by the formulas
(Tsypkin, 1984)

ρ∗(x) = − log ƒ∗(x),

ƒ∗ = arg min
ƒ∈F

[µ + ησ2(ƒ)]I(ƒ), (5.4.5)

where µ = tr A1(θθθ ), η = tr A2(θθθ ) are the traces of the corresponding matrices
both being nonnegative: µ ≥ 0 and η ≥ 0.

The particular cases of problem (5.4.5) are:

• identification of regression objects when η = 0 and a1 = a2 = · · · = am = 0
in (5.4.1);

• identification of autoregressive objects when µ = 0 and b0 = b1 = · · · =
bm = 0 in (5.4.1).

In the general case of identification, such a choice of ρ provides the following
minimax variance and guaranteed accuracy estimation properties:

tr V(ψ∗, ƒ) ≤ tr V(ψ∗, ƒ∗). (5.4.6)

In the particular cases of regression and autoregression, the scalar mini-
max principle is replaced by the matrix minimax principle

V(ψ∗, ƒ) ≤ V(ψ∗, ƒ∗). (5.4.7)

In general, it seems impossible to obtain solutions of variational problem
(5.4.5) in an analytic form if both µ and η are nonzero. In (Tsypkin, 1984),
numerical and also analytic methods were used to describe the approximate
form of optimal solutions, and the least favorable densities are intermediate
between the normal and Laplace densities, namely their linear combination
(see Subsection 5.3.3).
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However, just this variational problem of minimizing the informational
functional [µ + ησ2(ƒ)] I(ƒ) gives an opportunity to apply the Weber–Hermite
distribution densities obtained in Section 3.2.

Consider the following particular case of the RAR-model (5.4.1) directly
combining the R- and AR-models of Sections 5.1 and 5.2

xn =
m∑

j=1

βjxn−j +
p∑

k=1

θkφnk + ξn, n = j + 1, j + 2, …, (5.4.8)

where the parameter vector c = (β1, β2, …, βm, θ1, θ2, …, θp) is determined by
the optimal M-estimators of the form

ĉn = arg min
c

n∑

i=j+1

ρ∗

xi −

m∑

j=1

βjxi−j −
p∑

k=1

θkφik


 ,

ρ∗(x) = − log ƒ∗(x), ƒ∗ = arg min
ƒ∈F

[µ + ησ2(ƒ)] I(ƒ). (5.4.9)

Solving the latter variational problem in some class F , we use the exact
analytic expression for the Fisher information in the class F 2 with a given
variance (Lemma 3.2.1), namely using the decomposition of the optimization
problem

min
ƒ∈F

[µ + ησ2(ƒ)] I(ƒ) = min
d

{
(µ + ηd2) min

ƒ∈F∩F 2

I(ƒ)

}
, F 2 = {ƒ : σ2(ƒ) = d2}.

Obviously, while solving the inner optimization problem in the class F ∩F 2
with fixed variance, there necessarily occur the structures based on the Weber–
Hermite functions. In particular, in the class of nondegenerate densities
F 1={ƒ : ƒ(0) ≥ 1/(2a) > 0} with the additional restrictions 2a2/π ≤ d2 ≤ 2a2,
the solution of the inner problem is given by Theorem 3.2.1, namely, optimal
solution (3.2.6) with σ substituted for d

ƒ∗ = arg min
ƒ∈F∩F 2

I(ƒ) = ƒ(x; ν, d).

Then the optimum of the Fisher information is given by I(ƒ∗) = I(ν, d)
(3.2.7), and finally the optimal solution is obtained by minimizing (µ +
ηd2) I(ν, d) in the scalar parameter d provided that

ν = ν(d). (5.4.10)

Thus variational problem (5.4.9) is reduced to the problem of parame-
ter optimization. In this case, the optimal solution belongs to the family of
the Weber–Hermite densities ƒ(x; ν, d), as before for the classes F 12 (Theo-
rem 3.2.1) and F̃ 25 (Theorem 3.2.4). A fundamental difficulty occurs while
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realizing this procedure: the optimal solution depends on the parameters µ
and ν, which in turn depend on the unknown parameter vector c of the RAR-
model (5.4.8). It is obvious how to overcome this obstacle using an iterative
procedure, but these questions lie beyond the limits of this work.

5.5. Final remarks
5.5.1. Minimax variance robust regression
Minimax variance robust estimators of a location parameter are the basis
for designing various extensions to more complicated problems of estimation
including:

• parametric and nonparametric regression;

• autoregression and the mixed models of regression–autoregression, auto-
regression–moving average;

• univariate and multivariate recurrent ‘online’ estimation procedures;

• smoothing the data.

A great body of researches is devoted to the use and development of the
minimax approach in the above-mentioned areas. Not pretending to be com-
plete, here we only enlist (Huber, 1973; Huber, 1981; Martin, 1980; Martin,
1981; Martin and Yohai, 1984; Polyak and Tsypkin, 1978; Polyak and Tsypkin,
1980; Polyak and Tsypkin, 1983; Rousseeuw and Yohai, 1984; Cypkin, 1976;
Tsypkin, 1984; Shurygin, 1994a; Shurygin, 1996; Shurygin, 2000) on robust re-
gression and mixed models; (Katkovnik, 1979; Katkovnik, 1985; Nemirovskii,
1981; Nemirovskii, 1985; Nemirovskii et al., 1983; Tsybakov, 1982; Tsybakov,
1983) on robust nonparametric regression; (Polyak and Tsypkin, 1980; Tsyp-
kin, 1984; Tsypkin and Poznyak, 1981) on robust recurrent algorithms; (Tukey,
1977; Tukey, 1979; Huber, 1979) on robust smoothing.

The minimax variance estimators of location designed for the classes of
error distributions in Chapter 3 (with bounded variances and subranges) also,
with fair ease, can be reformulated for the above regression problems. The
characteristic property of most of these estimators is that their structure is
defined by the interrelation between distribution dispersions at the central and
tail domains: with relatively light tails there occur the LS and close methods;
with relatively heavy tails, various robust versions (in particular, the L1-norm
estimator) appear, and there always exists an intermediate zone of compromise
between them.

The adaptive variants of such regression algorithms with ‘online’ estima-
tion of characteristics of a distribution class (through estimating of residuals)
are studied in Chapter 8.

The entire Chapter 6 is devoted to the important case of the L1-norm
estimation.
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5.5.2. The LMS, LTS, and other regressions
Various robust estimators have been proposed to provide high global ro-
bustness of estimation, among them the median of pairwise slopes (Theil,
1950; Adichie, 1967; Sen, 1968); the resistant line (Tukey, 1977; Velleman and
Hoaglin, 1981); L-estimators (Bickel, 1973; Koenker and Bassett, 1978); R-
estimators (Jurečkovà, 1971; Jaeckel, 1972). None of these estimators achieve
the breakdown point of 30%, and some of them are defined only for simple
regression when m = 2.

To achieve the maximum value 50% of the breakdown point, in (Siegel,
1982) the coordinate-wise repeated median estimator was constructed, whose
computation requires all subsets of m observations from the data and, there-
fore, may take a lot of time.

The LMS regression. In (Rousseeuw, 1984), both the equivariant and high-
breakdown methods were introduced, and as the goal function the median of
residuals is chosen instead of their sum:

minimize med r2
i , (5.5.1)

and call it the least median of squares (LMS) estimator.
It turns out that this estimator is very robust with respect to outliers in

the x-direction as well as to outliers in the carriers φφφ . It can be shown that
the LMS estimator possesses the highest possible value of the breakdown
point, namely 50%, and it is equivariant under linear transformations of the
explanatory variable, since (7.1.11) depends only on residuals. Unfortunately,
the LMS estimator is of low asymptotic efficiency with convergence rate n−1/3

(for details see (Rousseeuw and Leroy, 1987)).

The LTS regression. To improve the latter property of the LMS estimator,
in (Rousseeuw, 1984) the least trimmed squares (LTS) estimator was proposed
defined as the solution of the problem

minimize
k∑

i=1

r2
(i), (5.5.2)

where r2
(i) are the ordered squared residuals.

Formula (5.5.2) yields the LS method when k = n, and provides the best
robustness properties when k is approximately n/2.

The S-regression. The S-regression (Rousseeuw and Yohai, 1984) belongs
to the class of high-breakdown affine equivariant estimators minimizing some
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robust measure of the dispersion of the residuals

minimize S(r1(θθθ ), r2(θθθ ), …, rn(θθθ )), (5.5.3)

where S(r1(θθθ ), r2(θθθ ), …, rn(θθθ )) is defined as the solution of

1
n

n∑

i=1

ρ
(

ri

S

)
= K. (5.5.4)

The constant K is usually chosen equal to EΦρ, where Φ is the standard normal.
S-estimators are asymptotically equivalent to M-estimators, and they also

have convergence rate n−1/2.

The WLS regression. All above estimators are computed not so fast as com-
pared to the LS estimators. In order to use the computational and statistical
advantages of the well-organized procedures of the LS method, it is reasonable
to apply the weighted least squares (WLS) estimators based on the detection
of outliers and defined as the solution of the problem

minimize
n∑

i=1

wir2
i . (5.5.5)

One may define the weights wi as

wi =

{
1, |ri/Sn| ≤ 3,
0, |ri/Sn| > 3,

where Sn is some robust estimator for scale of residuals, for example, based on
the preliminary LMS regression

Sn = C
√

med r2
i

with the constant C providing consistency at normal error distributions:
EΦSn = σ.

Certainly, the rejection bound 3 is arbitrary but quite reasonable because
of the so-called 3σ-rule.

The WLS estimator still possesses the high-breakdown property, but it is
more accustomed to the conventional statistical tools aimed at working with
normality assumptions and/or least squares.



6

Robustness of L1-norm estimators

This chapter is about the general and fundamental property of invariance
(stability) of best L1-approximations to rare impulsive noises, which in turn
implies robustness of the LAV estimators of regression parameters.

Robustness properties of L1-norm estimators (in particular, their break-
down points) are studied in the linear case of approximation by algebraic and
trigonometric polynomials, and in the nonlinear case of approximation by ex-
ponentials.

6.1. Introductory remarks
In robust statistics, L1-norm methods play an important role for a number of
related reasons. The sample median is the simplest example of the L1-norm
or least absolute values estimators defined by the property that they minimize
the L1-norm of the deviations from the fit

med x = arg min
θ

∑
|xi − θ |. (6.1.1)

First, the sample median is a limiting case of a family of minimax variance M-
estimators, minimizing the maximum asymptotic variance in ε-contamination
models when the parameter of contamination ε tends to its boundary value 1
(Huber, 1964).

Second, it is the minimax variance estimator under distributions with
relatively large variances (Vilchevski and Shevlyakov, 1994).

Third, it minimizes the maximum asymptotic bias under asymmetric con-
tamination (Huber, 1981; Smolyak and Titarenko, 1980).

Finally, it is the simplest estimator having the highest value of the break-
down point, namely 1/2 (Hampel et al., 1986). These properties are nat-
urally generalized for L1-regression problems (Huber, 1981; Hampel et al.,
1986; Shevlyakov, 1996).

153
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Vice versa, the topics of L1-approximations have been intensively and in-
dependently studied in the approximation theory (Akhiezer, 1958; Rice, 1964).

In this chapter we study relations between the robustness of L1-norm
estimators and fundamental properties of best L1-approximations.

6.1.1. The general properties of L1-approximations
In this section we represent some basic results on approximation in the L1-
norm.

L1-approximation problem. Throughout this chapter we use several stan-
dard notations. The function which is to be approximated is denoted by x(t).
The collection of parameters of an approximating function is denoted by A and
the parameters by a1, …, am; thus A = (a1, …, am).

The space in which the parameters lie is the ordinary Euclidean space Em
of dimension m.

The distance of the approximation F(A, t) from x(t) in the L1-norm is mea-
sured by

L1(x, A) =
∫

T

|x(t) − F(A, t)|dt. (6.1.2)

We are now able to formally state the approximation problem in the L1-norm.

APPROXIMATION PROBLEM IN THE L1-NORM. Let x(t) be a given real-valued con-
tinuous function defined on a set T , and let F(A, t) be a real-valued approxi-
mating function depending continuously on t ∈ T and on m parameters A.

Determine the parameters A∗ ∈ Em such that

L1(x, A∗) ≤ L1(x, A)

for all A ∈ Em.

A solution to this problem is said to be the best approximation in the L1-
norm.

In this chapter the set T is usually standardized to be the interval [0, 1].
The results thus obtained are readily extended to any closed interval of the
real line.

Given a function x(t) to approximate, there are four steps in the solution of
this problem:

• Existence of a solution.

• Uniqueness of a solution.

• Characteristic and other special properties of a solution.
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Figure 6.1. Non-uniqueness of L1-approximations

• Computation of a solution.

Now we briefly describe all these phases.

Existence of best L1-approximations. Existence of a solution is estab-
lished using standard compactness arguments (see general results on the exis-
tence of best approximations in the Lp-norms (1 ≤ p ≤ ∞) (Akhiezer, 1958; Rice,
1964)).

Uniqueness of best L1-approximations. In general, the uniqueness of a
solution in the L1-norm is not guaranteed, because the L1-norm is not strictly
convex. For instance, let x(t) = 1, F(A, t) = L(A, t) = a1t. In this case, any
approximating linear function L(A∗, t) = a∗1t for which |a∗1| ≤ 1 is the best
L1-approximation to x(t) (see Fig. 6.1).

Now we consider the linear approximating polynomials

L(A, t) =
m∑

j=1

ajφj(t).

If the set {φj(t)} is a Chebyshev set, then the best L1-approximation is unique
(Akhiezer, 1958; Rice, 1964).

We recall that the set {φj(t)}m
1 is a Chebyshev set on [0, 1] if:

(1) {φj(t)} are continuous and linear independent on [0, 1];

(2) each nontrivial polynomial has on [0, 1] no more than m zeros.

For example, the set {1, t, t2, …, tm−1} is Chebyshev, but {t, t2, …, tm} is not.
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Characterization of L1-approximations. In order to characterize the best
L1-approximations, we should define

L1(x, A) =
∫ 1

0
|x(t) − L(A, t)|dt,

Z(A) = {t  L(A, t) − x(t) = 0},

sgn t =

{
+1, t > 0,
−1, t < 0,

and sgn 0 = 0.
Now we are able to formulate the characterization lemma for the best

L1-approximations.

LEMMA 6.1.1 (Rice, 1964). The relation

L1(x, A∗) ≤ L1(x, A∗ + sA) (6.1.3)

holds for all s if and only if

∣∣∣∣
∫ 1

0
L(A, t) sgn[x(t) − L(A∗, t)] dt

∣∣∣∣ ≤
∫

Z(A∗)
|L(A, t)|dt. (6.1.4)

Furthermore, if the strict inequality occurs in (6.1.4), then the strict inequality
occurs in (6.1.3) for all nonzero s.

Lemma 6.1.1 is true as soon as one assumes that x(t) and the φi(t) are
merely integrable.

There is the following important corollary to this theorem.

COROLLARY 6.1.1. If L(A∗, t) is the best L1-approximation to a continuous func-
tion x(t), and if µ(Z) = 0, then for all A from (6.1.4) it follows that

∫ 1

0
L(A, t) sgn[x(t) − L(A∗, t)] dt = 0. (6.1.5)

In the case of approximation by algebraic polynomials L(A, t), it follows
from (6.1.5) that the optimal coefficients A∗ = (a∗1, …, a∗m) satisfy the simulta-
neous equations

∫ 1

0
t j−1 sgn


x(t) −

m∑

j=1

a∗j t j−1


 dt = 0, j = 1, …, m. (6.1.6)
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Computation of best L1-approximations through interpolation. Here
we consider only the important particular case where a simple explicit solution
is possible (Rice, 1964, p. 105).

Immediately from (6.1.5) it follows that
∫ 1

0
φj(t) sgn[x(t) − L(A∗, t)] dt = 0, j = 1, 2, …, m. (6.1.7)

Assume that there is a set of points 0 = t0 < t1 < · · · < tm < tm+1 = 1, and a
sign function

s(t) =

{
+1, tj < t < tj+1, j is even,
−1, tj < t < tj+1, j is odd,

(6.1.8)

such that
∫ 1

0
φj(t)s(t) dt = 0, j = 1, 2, …, m. (6.1.9)

Then any polynomial L(A∗, t) defined by the relation

sgn[x(t) − L(A∗, t)] = s(t) (6.1.10)

is the best L1-approximation. In this case, L(A∗, t) can be determined from the
solution of the simultaneous equations

L(A∗, tj) = x(tj), j = 1, 2, …, m, (6.1.11)

given the function x(t) − L(A∗, t) changes its sign only at those m points {tj}.
Thus the L1-approximation problem is replaced by an interpolation prob-

lem, the interpolation taking place at points {tj} which are independent of x(t).
This characteristic feature of best L1-approximations leads to a simple

and practical solution of a large number of L1-approximation problems, and
in our study, it is used further in order to establish the invariance of L1-
approximations to rare impulsive noises, and therefore their robustness to
gross errors.

The following theorem states the exact result.

THEOREM 6.1.1 (Rice, 1964). Assume that there exists a sign function s(t) as in
(6.1.8) for which (6.1.9) is valid. Let L(A∗, t) interpolate x(t) at {tj}. If x(t) is
such that x(t) − L(A∗, t) changes its sign at these tj and at no other points, then
L(A∗, t) is the best L1-approximation to x(t).

In the case of approximation by algebraic polynomials, the points {tj} can
be determined for the best L1-approximation to tm. The function

tm −
m∑

j=1

ajt j−1
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Figure 6.2. L(A∗, t) = a∗1 + a∗2t is the best L1-approximation to x(t), y(t), and z(t)

has no more than m changes of sign, and by the definition of a Chebyshev
system of functions, we have that if

∫ 1

0
φj(t)s(t) dt = 0, j = 1, 2, …, m,

then s(t) must have at least m changes of sign. Therefore, the best L1-
approximation to tm is determined from the solution of the interpolation prob-
lem (6.1.11).

The corresponding points of interpolation are given by the following result.

LEMMA 6.1.2 (Bernstein, 1926). In the case of interpolation by algebraic poly-
nomials

L(A, t) =
m∑

i=1

ajt j−1,

the points of interpolation tj are of the form

tj = sin2 jπ
2(m + 1)

, j = 1, 2, …, m. (6.1.12)

Finally, we observe that if

sgn[y(t) − L(A∗, t)] = ± sgn[x(t) − L(A∗, t)],

then the best L1-approximation L(A∗, t) is the same to both functions x(t) and
y(t). This is illustrated by Fig. 6.2: the straight line L(A∗), t is the best L1-
approximation to x(t), y(t), and z(t).
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6.1.2. The examples of L1-approximations
Further we show that high robustness of the sample median and L1-norm
estimators of regression parameters is determined by the specific property of
best L1-approximations expressed by their invariance to rare impulses of a
high level (Shevlyakov, 1976; Guilbo, 1979; Shevlyakov, 1996).

Consider some simple examples illustrating the property of robustness of
the best L1-approximations.

L1-approximation by a constant. Let the function

x(t) = θ + e(t)

be defined on the interval [0, 1], where θ is some constant to be estimated
and e(t) is a rectangular impulse of magnitude h and duration T+. Set the
problem of estimation of a constant parameter θ as the problem of approxima-
tion to x(t) by a constant value, comparing the solutions of the following two
approximation problems:

• in the L1-norm

a∗1 = arg min
a

∫ 1

0
|x(t) − a|dt = arg min

a
L1(x, a), (6.1.13)

• in the L2-norm

a∗2 = arg min
a

∫ 1

0
[x(t) − a]2 dt = arg min

a
L2(x, a), (6.1.14)

It is easy to show that the solution of problem (6.1.13) is of the form

a∗1 = θ̂1 =





θ , T+ < 1/2,
θ + h/2, T+ = 1/2,
θ + h, T+ > 1/2,

(6.1.15)

and for problem (6.1.14),

a∗2 = θ̂2 = θ + hT+, (6.1.16)

both solutions being independent of the location of the impulse e(t) on [0, 1].
These solutions essentially differ from each other:

• solution (6.1.15) is discontinuous having a threshold character and de-
pending on the duration of an impulse; on the contrary, solution (6.1.16)
is continuous;
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• under certain conditions (when the duration is less than half of interval),
the solution (6.1.15) of the L1-approximation problem does not depend
on the magnitude of an impulsive noise, and it is exactly equal to the
estimated parameter;

• the mean square solution (6.1.16) does always depend both on the magni-
tude and duration of an impulse, the estimator error being proportional
to its magnitude.

Now consider a simple stochastic model of the impulsive noise and compare
the efficiency of the L1-norm and L2-norm estimators.

Let e(t) be a sequence of positive impulses of magnitude h on the interval
[0, T], the duration of a single impulse and the pause being exponentially
distributed with the parameters λ and µ, respectively. In this case the noise
is a Markov process with two states: 0 and h. In this simple model, it is easy
to find the errors of the L1- and L2-estimators:

e1 =





0, T+ < T/2,
h/2, T+ = T/2,
h, T+ > T/2,

(6.1.17)

e2 = hT+/T. (6.1.18)

For sufficiently large T, T+ is approximately normal with (Gnedenko et al.,
1969)

ET+ =
T1

T1 + T2
T, Var T+ =

2T2
1T2

2
(T1 + T2)3 T, (6.1.19)

where T1 = 1/λ , T2 = 1/µ. The relations for the mean squared errors are of the
form

Ee2
1 = h2P{T+ > T/2}, Ee2

2 =
h2

T2 E (T+2). (6.1.20)

Setting N = T/
√

T1T2, k = T2/T1, for (6.1.20) we obtain

Ee2
1 = h2{1 − Φ[(k − 1)(k + 1)12N1/2/k3/4]},

Ee2
2 = h2

[
1

(k + 1)2 +
2k3/2

N(k + 1)3

]
,

Φ(x) =
1√
2π

∫ x

−∞
e−t2/2 dt.

Table 6.1 presents the values of relative mean squared errors for various
k with N = 10.

It follows from Table 6.1 that L1-estimators dominate over L2-estimators
in the case of sufficiently rare noises.
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Table 6.1. The relative mean squared errors for L1- and L2-approximations

k 1 1.5 2 2.5 ∞
Ee2

1 /Ee2
2 1.98 0.18 5.3 × 10−4 ≈ 10−6 0

L1-approximation by a sine function. Consider another simple example
where an approximated function is the sine function θ (t) = θ sin t, and the
noise is the impulse of magnitude h and duration T+ symmetric about the
center of the interval [0, π]. We estimate θ (t) by minimizing the L1-functional

a∗ = arg min
a

∫ π

0
|x(t) − a sin t|dt = arg min

a
L1(x, a), (6.1.21)

where x(t) = θ sin t + e(t)θ > 0,

e(t) =

{
h > 0, t ∈ [π/2 − T+/2, π/2 + T+/2],
0, otherwise.

Obviously, it suffices to consider the value of the L1-functional in the inter-
val a ∈ [θ , θ + h]:

L1(x, a) = 2(a − θ )(1 − 2 sin (T+/2)) + hT+. (6.1.22)

From (6.1.22) it follows that for T+ < π/3 the minimum is attained at a∗ = θ
irrespective of h.

Thus the error of the L1-estimator does not depend on the magnitude of
the impulsive noise, provided its duration is short enough.

L1-approximation by a third-degree polynomial. Here we follow the
example of (Barrodale, 1968). Compare the L1- and L2-approximations by the
third-degree polynomial L(A, t) = a3t3 + a2t2 + a1t + a0. The approximated
function x(t) is defined on the discrete set T = {ti = 0, 1, …, 9} as x(ti) = xi = ei,
i.e., we approximate the noise, or in other words, the estimated polynomial is
zero (in his original work, Barrodale used L(A, t) = t3 − 10t2 + 21t). The values
ei are set in such a way that ei = 0 at some points, and they are gross errors at
other points.

We set ê1i = x(ti) − L(A∗, ti), ê2i = x(ti) − L(B∗, ti), i = 0, 1, …, 9, where
L(A∗, t) is the best L1-approximation, and L(B∗, t) is the best L2-approximation.

The quality of approximation is determined by the closeness of the rows
for ei and êi.

The computation results presented in Table 6.2 clearly illustrate the sta-
bility of L1-approximations in the case of the rare noise. The items (a), (b), (c),
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Table 6.2. L1- and L2-approximations to the rare noise by a third-degree poly-
nomial

ti 0 1 2 3 4 5 6 7 8 9
ei 0 0 20 0 0 0 0 0 0 0

(a) ê1 0.0 0.0 20.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ê2 −0.4 −5.0 13.5 −5.9 −3.9 −1.3 1.0 2.2 1.6 −1.8
ei 0 0 0 0 30 15 0 0 0 0

(b) ê1 0.0 0.0 0.0 0.0 30.0 15.0 0.0 0.0 0.0 0.0
ê2 4.2 −2.4 −6.8 −9.4 19.7 5.3 −7.8 −4.9 −1.2 3.2
ei 0 15 0 0 0 20 0 0 20 0

(c) ê1 0.0 15.0 0.0 0.0 0.0 20.0 0.0 0.0 20.0 0.0
ê2 −5.5 12.1 −2.8 −4.3 −6.6 11.3 −9.9 10.8 −5.9 0.8
ei 0 15 20 20 0 0 0 0 0 0

(d) ê1 0.0 0.7 0.0 0.7 −14.3 −7.1 0.0 5.0 5.7 0.0
ê2 −3.0 2.1 3.9 5.4 −10.0 −4.1 1.3 4.4 3.4 −3.5
ei 0 0 0 0 −30 0 0 −30 0 0

(e) ê1 0.0 0.0 0.0 0.0 −30.0 0.0 0.0 −30.0 0.0 0.0
ê2 −0.7 0.1 2.5 5.8 −20.9 11.9 13.0 −18.2 7.4 −0.9
ei 0 10 0 −10 0 10 0 10 0 0

(f) ê1 0.0 10.0 0.0 −10.0 0.0 10.0 0.0 10.0 0.0 0.0
ê2 −4.6 9.5 0.9 −9.5 −1.0 7.0 −4.5 5.1 −3.5 0.6
ei −20 0 20 0 0 0 0 0 0 0

(g) ê1 0.0 9.9 3.5 0.0 −1.2 −1.0 0.0 1.0 1.2 0.0
ê2 −3.5 6.3 0.4 −2.1 −2.3 −1.0 0.7 1.8 1.4 −1.6

(d), (e) and (f) obviously confirm this. The case (e) is of a particular interest:
four observations are wrong, nevertheless, the L1-approximation is absolutely
precise. Here we may underline the property of L1-approximations to reject
the rare noise and to show its true location on the interval of processing. It
follows from this table that the L2-norm estimators also can approximately do
this, but much less efficiently. In the case (f), the L2-approximation has proved
to be better than the L1-norm estimator: L1-approximations are highly sen-
sitive to the values of noise near the boundaries of the interval of processing.
Further in Section 6.3, we will explain this effect.

The above examples show that all L1-approximations yield the estimators
with zero errors independent on the magnitude of gross rare noises — this
is just the manifestation of robustness of best L1-approximations. This effect
observed at the L1-norm solutions is not occasional but it is caused by general
properties of robustness of best L1-approximations.
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6.2. Stability of L1-approximations
6.2.1. Stability: linear continuous case
Consider the best L1-approximation to a continuous function x(t) defined on
[0, 1] by the linear polynomials

L(A∗, t) = arg min
L(A,t)

∫ 1

0
|x(t) − L(A, t)|dt, (6.2.1)

L(A, t) =
m∑

j=1

ajφj(t), A = (a1, a2, …, am),

where {φj(t)}m
1 is a Chebyshev set of functions on [0, 1].

Under these assumptions, the best L1-approximations exist and are unique
(see Subsection 6.1.1).

In order to study the stability of L1-approximations, we consider the func-
tions

x(t) = θ (t) + e(t), (6.2.2)

where θ (t) =
∑

θjφj(t) is the estimated component and e(t) is a continuous
impulsive noise function assuming positive, negative, and zero values on the
sets

E+ = {t : e(t) > 0}, E− = {t : e(t) < 0}, E0 = {t : e(t) = 0}.

The stability of L1-approximations is expressed by the property of their in-
variance to the rare impulsive noise and is given by the following (Shevlyakov,
1976; Shevlyakov, 1996).

THEOREM 6.2.1. The best L1-approximation L(A∗, t) to x(t) (6.2.2) is exactly
equal to θ (t)

L(A∗, t) = θ (t), aj = θj, j = 1, …, m,

if and only if the inequality
∣∣∣∣
∫

E+
L(A, t) dt −

∫

E−
L(A, t) dt

∣∣∣∣ ≤
∫

E0
|L(A, t)|dt (6.2.3)

holds.

Inequality (6.2.3) imposes certain restrictions on the sets E+ and E−.

EXAMPLE 6.2.1. For the approximation by a constant L(A, t) = a1, m = 1,
φ1 = 1, formula (6.2.3) yields |T+ − T−| ≤ 1 − T+ − T− and therefore,

T− ≤ 1/2, T+ ≤ 1/2, (6.2.4)
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Table 6.3. The bound for the duration T+

m 1 2 3 4 5 6
0.5 0.25 0.146 0.095 0.067 0.051

where T+ = µ(E+), T− = µ(E−), and µ is the ordinary Lebesgue measure on
the real line.

The boundary value 1/2 is the value of the breakdown point for the sample
median.

In the case of approximation by algebraic polynomials

L(A, t) =
m∑

j=1

ajt j−1

under the one-sided impulsive noise (µ(E−) = 0), the following is true.

THEOREM 6.2.2. Inequality (6.2.3) holds if and only if

T+ ≤ sin2 π
2(m + 1)

. (6.2.5)

The right-hand side of (6.2.5) gives the upper bound for the duration of a
single impulsive noise. Table 6.3 gives these values depending on the degree
of an approximating polynomial.

EXAMPLE 6.2.2. If m = 1, then T+ ≤ 1/2 (see Example 6.2.1). In the important
case of the approximation by the straight line (m = 2), inequality (6.2.5) and
Table 6.3 yield T+ ≤ 1/4.

6.2.2. Stability: nonlinear continuous case
Consider the best L1-approximation to a continuous function x(t) defined on
[0, 1] by approximating functions F(A, t) that are non-linear with regard to the
estimated parameters Aθ

F(A∗, t) = arg min
F(A,t)

∫ 1

0
|x(t) − F(A, t)|dt, (6.2.6)

x(t) = F(Aθ , t) + e(t).

Assume that the impulsive noise is of the same form as in the linear case. Then
the stability property of the best L1-approximations (6.2.6) looks as follows
(Shevlyakov, 1982b; Shevlyakov, 1991).



6.2. Stability of L1-approximations 165

THEOREM 6.2.3. If the L1-approximation F(A∗, t) (6.2.6) equals F(Aθ , t) (A∗ =
Aθ ), then the inequality
∣∣∣∣
∫

E+
(A, grad F(Aθ , t)) dt−

∫

E−
(A, grad F(Aθ , t)) dt

∣∣∣∣

≤
∫

E0
|(A, grad F(Aθ , t))|dt (6.2.7)

holds for all A, where Aθ is the vector of the estimated parameters,

grad F(A, t) =
(

∂F(A, t)
∂a1

, …,
∂F(A, t)

∂am

)T
,

(A, grad F) is the scalar product.

The basic distinction of the non-linear case from the linear is that the
restrictions on the sets E+ and E− depend on the true value of the estimated
parameters Aθ .

COROLLARY 6.2.1. Let

F(A, t) =
∑

cj exp(−λjt), A = (c1, …, ck, λ1, …, λk),

m = 2k, cj ≥ 0, λj ≥ 0, j = 1, …, k,

be the approximation by exponentials. Assume that e(t) is a one-sided single
impulse function defined on

E+ = (δ , τ), 0 ≤ δ < τ ≤ 1.

Then inequality (6.2.7) implies the simultaneous inequalities

2[exp(−λ θ
i δ ) − exp(−λ θ

i τ)] ≤ 1 − exp(−λ θ
i ), i = 1, …, k. (6.2.8)

EXAMPLE 6.2.3. In the case δ = 0, the solution of system (6.2.8) is of the form

τ ≤ min
i

[
− 1

λ θ
i

ln
1 + exp(−λ θ

i )
2

]
,

and the boundary is determined by the exponential with the maximum value
of λ θ

i .
In the case τ = 1, vice versa, the determining exponential has the minimum

value of λ θ
i :

δ ≥ max
i

[
− 1

λ θ
i

ln
1 + exp(−λ θ

i )
2

]
.
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6.2.3. Proofs
PROOF OF THEOREM 6.2.1. The proof is based on the characterization lem-
ma 6.1.1 for the best L1-approximations (see Subsection 6.1.1).

Theorem 6.2.1 is a direct corollary to Lemma 6.1.1: by substituting
L(A∗, t) = θ (t) into (6.1.4) we arrive the required result. �

PROOF OF THEOREM 6.2.2. This proof is based on Theorem 6.1.1 and Lem-
ma 6.2.1. In problem (6.2.1), assume that

x(t) = x1(t) = θ (t) + αtm, α > 0,

where θ (t) is the algebraic polynomial

L(Θ, t) =
m∑

j=1

θjt j−1.

The approximated function x1(t) is an algebraic polynomial of order m. Then
the number of zeros of the function x1(t)−L(A, t) does not exceed m, hence the
best L1-algebraic polynomial L(A∗, t) is determined from (6.1.11) with interpo-
lation points (6.1.12)

m∑

j=1

(a∗j − θj)t j−1
i = αtm

i , i = 1, 2, …, m. (6.2.9)

The determinant of (6.2.9) is the Vandermonde determinant, and therefore
the solution of (6.2.9) is unique. The best polynomial L(A∗, t) determined from
(6.2.9) is also best for the functions

x(t) = x1(t) + e(t), (6.2.10)

where e(t) is the continuous impulsive noise function from (6.2.2) with

E+ =
m/2⋃

i=0

(δ2i, τ2i), E0 = [0, 1] \ E+, (6.2.11)

for even m;

E+ =
(m−1)/2⋃

i=0

(δ2i+1, τ2i+1), E0 = [0, 1] \ E+, (6.2.12)

for odd m;

tk ≤ δk < τk ≤ tk+1, t0 = 0, tm+1 = 1, k = 0, 1, …, m.
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Figure 6.3. Invariance of L1-approximations to impulsive noise functions

We immediately obtain this result from (6.1.6), because

sgn[x(t) − L(A∗, t)] = sgn[x1(t) − L(A∗, t)].

In other words, the best L1-algebraic polynomial L(A∗, t) is invariant to the
impulsive noise functions (6.2.11) and (6.2.12). Obviously, this assertion is also
valid for negative impulsive noise functions. The case of the L1-approximations
by a linear polynomial L(A, t) = a1 + a2t is illustrated by Fig. 6.3 (see also
Fig. 6.2).

Setting α tending to zero in (6.2.9), we obtain a∗j = θj, j = 1, …, m. Thus the
solution of approximation problem (6.2.1) is equal exactly to the approximat-
ed function θ (t) independently of the impulsive noise values e(t) (6.2.11) and
(6.2.12).

The obtained stability property of L1-approximations holds only under
rather strict conditions on the location of impulsive noise (6.2.11) and (6.2.12)
on [0, 1]. The admissible duration of impulses is bounded above by the dis-
tances between the interpolation points (6.1.12)

tj+1 − tj, j = 0, 1, …, m; t0 = 0, tm+1 = 1.

It follows from (6.1.12) that the maximum distances are at the center and the
minimum distances are at the boundaries of [0, 1].

Now we demonstrate that the stability property of L1-approximations by
algebraic polynomials is provided for a single impulsive noise with duration
bounded by the minimum distance between interpolation points

t1 − t0 = tm+1 − tm = sin2 π
2(m + 1)

.

Consider a single impulse e(t), E+ = (δ , τ), 0 ≤ δ < τ ≤ 1, with duration
T+ = τ − δ satisfying inequality (6.2.3). By Theorem 6.2.1, it suffices to show
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that the inequality
∣∣∣∣
∫ τ

δ
L(A, t) dt

∣∣∣∣ ≤
∫ δ

0
|L(A, t)|dt +

∫ 1

τ
|L(A, )|dt (6.2.13)

holds for all A.
By the stability property with impulses (6.2.11) and (6.2.12), we find that

∣∣∣∣
∫ 1

δm

L(A, t) dt
∣∣∣∣ ≤
∫ δm

0
|L(A, t)|dt, δm ≥ tm, (6.2.14)

and
∣∣∣∣
∫ τ0

0
L(A, t) dt

∣∣∣∣ ≤
∫ 1

τ0

|L(A, t)|dt, τ0 ≤ t1, (6.2.15)

hold for all A.
Consider an arbitrary interval (δ , τ) with duration satisfying inequality

(6.2.5). Choose the point t∗ ∈ (δ , τ) from the condition

t∗ − δ
τ − t∗

=
δ

1 − τ
.

In this case, the values (t∗ − δ )/t∗ and (τ − t∗)/(1 − t∗) also satisfy inequality
(6.2.5). Then for the intervals [0, t∗) and (t∗, 1], the inequalities similar to
(6.2.14) and (6.2.15)

∣∣∣∣∣

∫ t∗

δ
L(A, t) dt

∣∣∣∣∣ ≤
∫ δ

0
|L(A, t)|dt,

∣∣∣∣
∫ τ

t∗
L(A, t) dt

∣∣∣∣ ≤
∫ 1

τ
|L(A, t)|dt

hold for any A. Summing them, we arrive at (6.2.13), which completes the
proof of Theorem 6.2.2. �

PROOF OF THEOREM 6.2.3. This proof is based on the result (Rice, 1965) similar
to Lemma 6.1.1.

LEMMA 6.2.1. A necessary condition for F(A∗, t) to be the best approximation to
x(t) is that
∣∣∣∣
∫ 1

0
(A, grad F(A∗, t)) sgn[x(t) − F(A∗, t)] dt

∣∣∣∣

≤
∫

Z(A∗)
|(A, grad F(A∗, t))|dt (6.2.16)

for all A, where
Z(A) = {t | F(A, t) − x(t) = 0}.
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Theorem 6.2.3 now immediately follows from Lemma 6.2.1: it suffices to
substitute F(A∗, t) = F(Aθ , t) into (6.2.16). �

PROOF OF COROLLARY 6.2.1. In this case, inequality (6.2.7) is of the form
∣∣∣∣∣∣

∫ τ

δ

k∑

j=1

(cj − λjcθ
j t) exp(−λ θ t) dt

∣∣∣∣∣∣

≤
∫ δ

0

∣∣∣∣∣∣

k∑

j=1

(cj − λjcθ
j t)

∣∣∣∣∣∣
exp(−λ θ

j t) dt +
∫ 1

τ
|cj − λjcθ

j t| exp(−λ θ
j t) dt (6.2.17)

for all cj, λj ≥ 0, j = 1, 2, …, k.
We set cθ

j = 0, j = 1, 2, …, k in (6.2.17). Then, by integrating (6.2.17), we
obtain

k∑

j=1

(cj/λ θ
j )[2(exp(−λ θ

j δ ) − exp(−λ θ
j τ)) − (1 − exp(−λ θ

j ))] ≤ 0

for all cj, λj ≥ 0, j = 1, 2, …, k, which yields (6.2.8). �

6.3. Robustness of the L1-regression
In this section, we consider the stability (invariance) property of L1-approxi-
mations to rare gross errors on finite point sets: most of the results derived
above in continuous models are still valid in the discrete case.

6.3.1. The L1-approximation on a finite point set
Let a function x(t) be defined on a finite point set T = {t1, t2, …, tn}. Then the
best L1-approximation L(A∗, t) to x(t) satisfies the condition

∑

t∈T

|x(t) − L(A∗, t)| ≤
∑

t∈T

|x(t) − L(A, t)| (6.3.1)

for all A, where L(A, t) =
∑m

j=1 ajφj(t).
The existence of the solution of problem (6.3.1) holds here as a particular

case of the general result on the existence of L1-approximations (see (Akhiezer,
1958)).

The uniqueness of the solution is not guaranteed even for Chebyshev sets
{φj(t)}. For instance, let x(t) and T be defined by the points

{(0, 1), (1,−1), (2,−1), (3, 1)},

and L(A, t) = a1 +a2t. Fig. 6.4 illustrates this situation. Any straight line going
through the sides AB and CD is the best L1-approximation.
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Figure 6.4. The non-uniqueness of the L1-approximation by a straight line on
a finite point set

On finite point sets, the following result is important: if {φj(t)} is a Cheby-
shev set then the best L1-approximation L(A∗, t) to x(t) interpolates x(t) in at
least m points of T (Rice, 1964).

The characterization condition for the best L1-approximations is given
by the following analog of Lemma 6.1.1.

LEMMA 6.3.1. The necessary and sufficient condition for L(A∗, t) to be the best
approximation to x(t) on T is that

∣∣∣∣∣
∑

t∈T

L(A, t)) sgn[x(t) − L(A∗, t)]

∣∣∣∣∣ ≤
∑

Z(A∗)

|L(A, t)| (6.3.2)

for all A, where
Z(A) = {t  t ∈ T , x(t) − L(A, t) = 0}.

If (6.3.2) holds with strict inequality for all A, then L(A∗, t) is the unique best
L1-approximation to x(t) on T .

6.3.2. Stability: linear discrete case
The least absolute values or L1-norm estimators for linear regression model
parameters

xi = θ (ti) + ei, θ (ti) =
m∑

j=1

θjφij,

xi = x(ti), φij = φj(ti), i = 1, …, n,
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derived by the discretization of problem (6.2.1) are of the form

A∗ = arg min
A

n∑

i=1

∣∣∣∣∣∣
xi −

m∑

j=1

ajφij

∣∣∣∣∣∣
, θ̂ (ti) = L(A∗, ti), i = 1, 2, …, n, (6.3.3)

where ei are arbitrary variables assuming positive, negative, and zero values,
respectively, on the sets:

I+ = {i : ei > 0}, I− = {i : ei < 0}, I0 = {i : ei = 0}.

We arrive at the discrete analog of Theorem 6.2.1.

THEOREM 6.3.1. The L1-norm estimator L(A∗, t) (6.3.3) for linear regression is
equal exactly to the true value θ (t)

L(A∗, t) = θ (t) aj = θj, j = 1, …, m, t = ti, i = 1, 2, …, n,

if and only if
∣∣∣∣∣∣

∑

i∈I+

L(A, ti) −
∑

i∈I−
L(A, ti)

∣∣∣∣∣∣
≤
∑

i∈I0

|L(A, ti)| (6.3.4)

holds for all A.

In the discrete case, it is not easy to derive constructive restrictions on
the sets I+ and I− (on the admissible number of gross errors) as before in
the continuous case. In the problem of estimation of the location parameter
(m = 1) using the notations for the numbers of positive and negative errors n+

and n−, respectively, from (6.3.4) we obtain

|a1n+ − a1n−| ≤ |a1|(n − n+ − n−);

hence it follows that

n+ ≤ [n/2], n− ≤ [n/2], (6.3.5)

where [⋅] is the integer part of a number.
Condition (6.3.5) is a well-known property of the sample median.
In the general case, we propose the following approximate method to ver-

ify the condition of robustness (inequality (6.3.4)), which is reduced to the
standard procedure of checking the positive definiteness of the corresponding
quadratic form. By using the Cauchy inequality

( n∑

i=1

ui

)2

≤ n
n∑

i=1

u2
i ,
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we transform inequality (6.3.4) as





∣∣∣∣∣∣

∑

i∈I+

L(A, ti) −
∑

i∈I−
L(A, ti)

∣∣∣∣∣∣





2

≤




∑

i∈I0

|L(A, ti)|





2

≤ n0

n∑

i∈I0

{L(A, ti)}2, (6.3.6)

where n0 = µ(I0) is the number of observations with zero errors.
Inequality (6.3.6) is weaker than condition (6.3.5), and it yields the upper

bound for the numbers n+ and n− of admissible positive and negative gross
errors. In the particular case of estimation of the location parameter (L(A, t) =
a1), the use of (6.3.6) yields exact bounds of form (6.3.5).

Numerical calculations show that restriction (6.3.6) is realistic enough for
higher dimensions of the approximating polynomial. For instance, in the case
of approximation by a straight line (L(A, t) = a1 + a2t) the restriction on the
number of one-sided (positive) errors is of the form n+ < 0.26n, which is close to
the exact result n+ ≤ [0.25n]. In the general case of approximation by algebraic
polynomials with one-sided errors, it follows from (6.3.7) that the restriction
can be written in the form

n+ ≤
[
n sin2 π

2(m + 1)

]
. (6.3.7)

Now we are ready to explain the results of Section 6.1 on approximation
by a polynomial of degree three (see Table 6.2). From (6.3.7) and Table 6.3, we
obtain n+ ≤ [0.095n] for m = 4, and n+ = 0 for n = 10, i.e., a single outlier located
on the boundary of the interval of processing destroys the L1-approximation.

6.3.3. L1-regression breakdown points
We recall that the notion of the breakdown point is due to (Hampel, 1968) as
the measure of the global robustness of an estimator in the model of gross
errors (the contamination scheme), and in this case it gives the maximum
contamination fraction ε∗ possessed by an estimator remaining within the
boundaries of the parametric space (see Section 1.3).

We define the breakdown points ε∗ and ε∗n of L1-approximations with regard
to impulsive noise functions e(t) in the continuous case and to gross errors in
the discrete case, respectively, as follows.

DEFINITION 6.3.1. ε∗ = sup{µ(E+), µ(E−) : ‖A∗‖ < ∞}.

DEFINITION 6.3.2. ε∗
n = 1

n sup{n+, n− : ‖A∗‖ < ∞}, where n+ and n− are the
numbers of positive and negative values of ei.
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The following result gives the breakdown points of L1-approximations with
respect to gross errors in response variables (Shevlyakov, 1992).

THEOREM 6.3.2. In the continuous case, the breakdown point ε∗ is of the form

ε∗ = sup
{

µ(E+), µ(E−) :
∣∣∣∣
∫

E+
L(A, t) dt−

∫

E−
L(A, t) dt

∣∣∣∣ ≤
∫

E0
|L(A, t)|dt∀A

}
;

(6.3.8)

in the discrete case the breakdown point is

ε∗n =
1
n

max



n+, n− :

∣∣∣∣∣∣

∑

i∈I+

L(A, ti) −
∑

i∈I−
L(A, ti)

∣∣∣∣∣∣
≤
∑

i∈I0

|L(A, ti)|, ∀A



 .

(6.3.9)

REMARK 6.3.1. In the case of approximation by algebraic polynomials, the
upper bound for the breakdown point is

ε∗ ≤ sin2 π
2(m + 1)

.

For instance, ε∗ = 1/2 for m = 1 and ε∗ = 1/4 for m = 2 (the breakdown point of
the L1-regression by a straight line).

6.3.4. Proofs
PROOF OF THEOREM 6.3.1. The proof is based on the characterization lem-
ma 6.3.1 for discrete L1-approximations. It suffices to substitute L(A∗, t) = θ (t)
into (6.3.2). �

PROOF OF THEOREM 6.3.2. We derive relation (6.3.8) from Theorem 6.2.1 and
Definition 6.3.1, and relation (6.3.9), from Theorem 6.3.1 and Definition 6.3.2
respectively. �

6.4. Final remarks
On robustness of the shape of an approximating function. The stabil-
ity (invariance) conditions for best L1-approximations in the form of inequali-
ties (6.2.3), (6.2.7), and (6.3.4) derived with regard to arbitrary impulsive noise
functions impose certain restrictions on the duration of impulses. These de-
pend not only on the structure of the sets E+, E−, and E0 in the continuous
case, or of the sets I+, I−, and I0 in the discrete case, but also on the chosen
system of polynomials L(A, t).

In the case of approximation by algebraic polynomials, the upper bound
for the duration of a single impulse is given by inequality (6.2.5), and it is de-
termined by the minimal distance between the points of Bernstein alternance
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(Bernstein, 1926)

ti =
1
2
− 1

2
cos

iπ
m + 1

, i = 0, 1, …, m + 1.

These minimum interdistance points (see Subsection 6.2.3)

t1 − t0 = tm+1 − tm = sin2 π
2(m + 1)

are located at the boundaries of the interval [0, 1]; in other words, this is the
least favorable location of the noise. Therefore, the best algebraic polynomi-
als are highly sensitive to the values of an approximated function near the
boundaries of an approximation interval (Akhiezer, 1958).

Consider the right-hand part of inequality (6.2.5). With the increas-
ing degree m of the approximating polynomial, the upper bound decreases
as O(1/m2): the invariance property of L1-approximations is manifested the
more stronger, the lower is the degree of the approximating polynomial.

Consider the L1-approximation to some continuous function e(t) defined on
the interval [0, π] by the trigonometric sums

L(A, t) =
m∑

j=1

aj sin jt.

Recalling the elementary trigonometric identity

m∑

j=1

aj sin jt = sin t
m∑

j=1

bj(cos t) j−1,

we can pose the problem of L1-approximation as follows:

min
b1,…,bm

∫ π

0

∣∣∣∣∣∣
ẽ(t) −

m∑

j=1

bj(cos t) j−1

∣∣∣∣∣∣
sin t dt = min

b1 ,…,bm

∫ 1

−1

∣∣∣∣∣∣
ẽ(y) −

m∑

j=1

bjy j−1

∣∣∣∣∣∣
dy,

where y = cos t, ẽ(t) = e(t)/ sin t.
Obviously, here the problem is reduced to the problem of approximation by

algebraic polynomials. Now from this point of view we consider the example
of the approximation to a single impulse by the sine function presented in
Subsection 6.1.2. For this problem, the maximum weight is assigned to the
values of the approximated function at the center of the interval [0, π], namely,
in the interval t ∈ (π/3, 2π/3), the least favorable location of the impulse. The
corresponding interval y ∈ (−1/2, 1/2) yields the limiting location provided the
invariance property of approximation by a constant (m = 1).
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Thus it is always possible to check the invariance property using the trans-
formation y = cos t, which makes the original points of Bernstein alternance
equidistant:

1
π

arccos(1 − 2ti) =
i

m + 1
, i = 0, 1, …, m + 1.

So we have another order of decrease of the upper bound of the duration of
impulsive noises, namely O(1/m). Hence one may speak of the comparative
stability or robustness of different systems of functions.

More on robustness of L1-approximations by trigonometric sums.
Now we present some results on the invariance property of L1-approximations
by trigonometric sums. Consider the impulsive noise function e(t) defined on
the interval 0, kπ, where k is an integer. Denote ei(t) the value of the noise on
the interval [(i − 1)π, iπ], i = 1, 2, …, k:

ei(t) =

{
hi(t) ≥ 0, t ∈ E+

i ,
0, otherwise.

Then

min
a1 ,…,am

∫ kπ

0

∣∣∣∣∣∣
e(t) −

m∑

j=1

aj sin jt

∣∣∣∣∣∣
dt = min

a1,…,am





k∑

i=1

∫ iπ

(i−1)

∣∣∣∣∣∣
e(t)−

m∑

j=1

aj sin jt

∣∣∣∣∣∣
dt





= min
b1,…,bm





k∑

i=1

∫ 1

−1

∣∣∣∣∣∣
ẽi(y) −

m∑

j=1

bjy j−1

∣∣∣∣∣∣
dy,





where y = cos t,

ẽi(t) =

{
|ei(t)/ sin t| for even i,
−|ei(t)/ sin t| for odd i.

Here we have the following analog of Lemma 6.1.1 for the problem of ap-
proximation to a group of functions ẽi(t) by algebraic polynomials (Shevlyakov,
1976).

LEMMA 6.4.1. A necessary and sufficient condition for the inequality

k∑

i=1

L1(ẽi, B∗) ≤
k∑

i=1

L1(ẽi, B∗ + sB) (6.4.1)

to hold for all s is
∣∣∣∣∣

k∑

i=1

∫ 1

−1
L(B, y) sgn[ẽi(t) − L(B∗, y)] dy

∣∣∣∣∣ ≤
k∑

i=1

∫

Zi(A∗)
|L(B, y)|dy. (6.4.2)
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Furthermore, if the strict inequality occurs in (6.4.2), then the strict inequality
occurs in (6.4.1) for all nonzero s.

Here

L1(ẽi, B) =
∫ 1

−1
|̃ei(y) − L(B, y)|dy,

Zi = Zi(B) = {y | L(B, y) − ẽi(y) = 0}.

The proof completely repeats that of Lemma 6.1.1 (see the latter in (Rice,
1964)).

The analog of Theorem 6.2.1 gives the invariance condition for best L1-
approximations L(B∗, y) = 0

∣∣∣∣∣

k∑

i=1

(−1)i−1
∫

E+
i

L(B, y) dy

∣∣∣∣∣ ≤
k∑

i=1

∫

E0
i

|L(B, y)|dy. (6.4.3)

for all B.
Moreover, we must guarantee the uniqueness of the best L1-approximations

to a family of functions.

THEOREM 6.4.1. If (6.4.2) holds with strict inequality for all B, then L(B∗, y) is
a unique best L1-approximation to the family of functions {ẽi}.

To establish the uniqueness, assume that this family has two best approx-
imations L(B1, y) and L(B2, y), and set B = B1 − B2. Then if

∣∣∣∣∣

k∑

i=1

∫ 1

−1
L(B, y) sgn[ẽi(t) − L(B2, y)] dy

∣∣∣∣∣ <
k∑

i=1

∫

Zi(B2)
|L(B, y)|dy,

it follows from Lemma 6.4.1 with s = 1 that

k∑

i=1

L1(ẽi, B2) <
k∑

i=1

L1(ẽi, B2 + sB) =
k∑

i=1

L1(ẽi, B1),

which contradicts the assumption that both L(B1, y) and L(B2, y) are the best
L1-approximations.

Now we consider invariance condition (6.4.3) for k = 2, m = 1 (the approxi-
mation by a sine function on [0. 2π])

|bµ(E+
1) − bµ(E+

2)| ≤ |b|[2 − µ(E+
1) + |b|[2 − µ(E+

2)]. (6.4.4)

Setting µ(E+
1) = µ1 and µ(E+

2) = µ2, we rewrite (6.4.4) as

|µ1 − µ2| ≤ 4 − µ1 − µ2, 0 ≤ µi ≤ 2, i = 1, 2.
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Figure 6.5. Approximation to the one-sided noise by a sine

Figure 6.6. Approximation to a two-sided noise by a sine

Then µ1 < 2 for µ2 < µ1, and vice versa, µ2 < 2 for µ1 < µ2. Thus, invariance
condition (6.4.3) holds for any one-sided impulsive noise. This becomes obvious
if we consider the initial problem of approximation by a sine function. Fig. 6.5
illustrates this.

Another situation occurs when the noise has opposite signs on [0, π] and
[π, 2π], for example, e1(t) > 0 and e2(t) < 0 as in Fig. 6.6.

In this case, condition (6.4.3) takes the form

|µ1 + µ2| ≤ 4 − µ1 − µ2, 0 ≤ µi ≤ 2,
µ1 + µ2 ≤ 2. (6.4.5)

Here invariance is observed only if (6.4.5) is valid.
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On robustness of L1-approximations to mixtures of noises. The invari-
ance property of L1-approximations holds for the particular case of impulsive
noises. What happens if the noise consists of two components: the first defined
on the whole interval [0, T] being of low or moderate levels, and the second in
the form of rare impulses of high level? The natural answer is that the error of
L1-approximation will be low or moderate, determined by the first component.

Now we consider the following example. Let the noise be the additive
mixture of two continuous functions defined on [0, T]: e(t) = e1(t)+e2(t). Assume
that the latter component is of an impulse character with

e2(t) � |e1(t)|, t ∈ [0, T].

We have to show that if the condition T+ < T/2 holds (T+ is the total duration
of e2(t)), then the error of L1-approximation to a constant is determined by the
characteristics of the first component, i.e.,

|̂e(t)| ≤ max
t

|e1(t)|.

From (6.1.6) it follows that
∫ T

0
sgn[e1(t) + e2(t) − ê] dt = 0,

or
∫

E0
sgn[e1(t) − ê] dt +

∫

E+
sgn[e1(t) + e2(t) − ê] dt = 0, (6.4.6)

where E+ = {t  e2(t) > 0}, E0 = [0, T] \ E+.
Assume that ê > max |e1(t)|. Then (6.4.6) takes the form

−µ(E0) +
∫

E+
sgn[e1(t) + e2(t) − ê] dt = 0. (6.4.7)

Given µ(E0) = T − T+, T+ < T/2 and
∫

E+
sgn[e1(t) + e2(t) − ê] dt ≤ T+,

it follows from (6.4.7) that

−T + T+ +
∫

E+
sgn[e1(t) + e2(t) − ê] dt ≤ −T + T+ + T+ < 0,

which contradicts (6.4.6). Therefore, ê < max |e1(t)|.
The same reasoning can be used while considering the general case of

L1-approximations by polynomials.
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On robustness of L1-regression and breakdown points. In general, the
results of Section 6.3 on L1-approximation in the discrete case follow from the
results of Section 6.2 for the continuous case.

The breakdown points 6.3.1 and 6.3.2 defined with respect to impulsive
noise functions are similar to those defined with respect to gross errors. For
example, in the case of the sample median ε∗ = 1/2, and the same result we
obtain from Remark 6.3.1 for m = 1; in the regression problem of approxima-
tion by a straight line (m = 2) the breakdown point ε∗ = 1/4 (Hampel et al.,
1986), the same value is also given by the upper boundary for the breakdown
points in Remark 6.3.1. Experimental study shows that this upper bound is
really attainable .

On the computation of L1-approximations. These questions are dis-
cussed in Chapter 8.
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7

Robust estimation of correlation

Various groups of robust estimators of the correlation coefficient are studied
in the case of contaminated bivariate normal distribution. Conventional and
new robust estimators are considered in finite samples by Monte Carlo and in
asymptotics by the influence functions technique.

Comparing the behavior of these estimators, we reveal the best in each
group and show that some of them possess optimal robustness properties. In
particular, an asymptotically minimax variance robust estimator of the correla-
tion coefficient is designed for ε-contaminated bivariate normal distributions.
For the estimator suggested, consistency and asymptotic normality is proved,
and an explicit expression for its asymptotic variance is given. The limiting
cases of this minimax variance estimator are the classical sample correlation
coefficient with ε = 0 and the median correlation coefficient as ε → 1.

We also show that two-stage algorithms based on preliminary rejection of
outliers with subsequent application of the sample correlation coefficient to
the rest of the data have quite high robustness.

The most advantageous approaches are applied to robust estimation of the
correlation matrix, and a two-stage algorithm with rejection of outliers in each
two-dimensional cut of a multivariate space manifests its high robustness.

7.1. Introductory remarks
Less attention is devoted in the literature to robust estimators of association
and correlation as compared to robust estimators of location and scale. On the
other hand, it is necessary to study these problems due to their widespread
occurrence (estimation of correlation and covariance matrices in regression
and multivariate analysis, estimation of correlation functions of stochastic
processes, etc.), and also due to great instability of classical methods of es-
timation with outliers in the data (Devlin et al., 1975; Gnanadesikan and
Kettenring, 1972; Huber, 1981; Pasman and Shevlyakov, 1987; Rocke and
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Woodruff, 1996; Rousseeuw and Leroy, 1987; Shevlyakov, 1997a; Shevlyakov
and Khvatova, 1998b).

7.1.1. Non-robustness of the sample correlation coefficient
The simplest problem of correlation analysis is to estimate the correlation
coefficient ρ in the case of observed values (x1, y1), …, (xn, yn) of a bivariate ran-
dom variable (X, Y). Its classical estimator is given by the sample correlation
coefficient

r =
∑n

i=1(xi − x̄)(yi − ȳ)
(∑n

i=1(xi − x̄)2∑n
i=1(yi − ȳ)2

)1/2 , (7.1.1)

where x̄ = n−1∑ xi, and ȳ = n−1∑ yi are the sample means.
On the one hand, the sample correlation coefficient is a statistical counter-

part of the correlation coefficient of a distribution

ρ =
Cov(X, Y)

(Var X Var Y)1/2 , (7.1.2)

where Var X, Var Y, and Cov(X, Y) are the variances and the covariance of the
random variables X and Y. On the other hand, it is an efficient maximum
likelihood estimator of the correlation coefficient ρ for the bivariate normal
distribution

N (x, y; µ1, µ2, σ1, σ2, ρ) =
1

2πσ1σ2
√

1 − ρ2
exp

{
− 1

2(1 − ρ2)

×

[
(x − µ1)2

σ2
1

− 2ρ
(x − µ1)(y − µ2)

σ1σ2
+

(y − µ2)2

σ2
2

]}
, (7.1.3)

where µ1 = EX, µ2 = EY, σ2
1 = Var X, σ2

2 = Var Y.
In the contamination model described by a mixture of normal densities

(0 ≤ ε < 0.5)

ƒ(x, y) = (1 − ε)N (x, y; µ1, µ2, σ1, σ2, ρ) + εN (x, y; µ ′1, µ ′2, σ ′1, σ ′2, ρ ′),(7.1.4)

the sample correlation coefficient is strongly biased with regard to the estimat-
ed parameter ρ, i.e., for any positive ε > 0 there exists k = σ ′

1/σ1 = σ ′2/σ2 � 1
such that Er ≈ ρ ′.

The presence of even one or two outliers in the data can completely destroy
the sample correlation coefficient up to the change of its sign, as can be seen
from Fig. 7.1.

Thus, we can see that the sample correlation coefficient is extremely sen-
sitive to presence of outliers in the data, and hence it is necessary to use its
robust counterparts.
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y

X

r>0

r<0

Figure 7.1. Point cloud and outliers with their impact on the sample correlation
coefficient

Most of the robust estimators of the correlation coefficient described in the
literature (Gnanadesikan and Kettenring, 1972; Devlin et al., 1975; Huber,
1981; Pasman and Shevlyakov, 1987; Shevlyakov, 1997a) can be obtained from
the following heuristic considerations:

• robust estimation of correlation via direct robust counterparts of the
sample correlation coefficient;

• robust estimation of correlation via nonparametric measures;

• robust estimation of correlation via robust regression;

• robust estimation of correlation via robust estimation of the variances of
the linear transformed data;

• robust estimation of correlation via two-stage robust estimators with pre-
liminary rejection of outliers from the data and subsequent application
of a classical estimator (for example, the sample correlation coefficient)
to the rest of the observations.

Now we list these groups of estimators.

7.1.2. Robust correlation via direct robust counterparts of the
sample correlation coefficient

A natural approach to robustifying the sample correlation coefficient is to
replace the linear procedures of averaging by the corresponding nonlinear
robust counterparts (Gnanadesikan and Kettenring, 1972; Devlin et al., 1975;
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Huber, 1981)

rα (ψ) =
Σα ψ(xi − x̂)ψ(yi − ŷ)

(
Σαψ2(xi − x̂)Σαψ2(yi − ŷ)

)1/2 , (7.1.5)

where

• x̂ and ŷ are some robust estimators of location, for example, the sample
medians med x and med y;

• ψ = ψ(z) is a monotone function, for instance, the Huber ψ-function;

• Σα is a robust analog of a sum.

The latter transformation is based on trimming the outer terms of the
variational series with subsequent summation of the remaining terms:

Σα zi = nTα (z) = n(n − 2r)
n−r∑

i=r+1

zi, r = [αn],

where [⋅] stands for the integer part. For α = 0, the operations of ordinary and
of robust summation coincide: Σ0 = Σ.

It is easy to see that estimator (7.1.5) has the following properties:

• it is invariant under translation and scale transformations of the obser-
vations xi and yi: xi → a1xi + b1, yi → a2yi + b2;

• the normalization condition |rα | ≤ 1 holds only for α = 0;

• in the case of linearly dependent observations, |rα | = 1.

Observe that in the experimental study of estimator (7.1.5), the condition
of normalization was never violated under the mixture of normal distribution
densities.

Further in Section 7.3, we use the following versions of estimator (7.1.5):

rα =
Σα (xi − med x)(yi − med y)

(
Σα (xi −med x)2Σα (yi − med y)2

)1/2 ,

where α = 0. 1, 0. 2, and

r0(ψH) =
ΣψH(xi − med x)ψH(yi − med y)

(
Σψ2

H(xi − med x)Σψ2
H(yi − med y)

)1/2 ,

where
ψH(z) = max(−c, min(z, c)), c = 5 MAD z.
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7.1.3. Robust estimation of correlation via nonparametric
measures

An estimation procedure can be endowed with robustness properties with the
use of nonparametric rank statistics. The best known of them are the quadrant
(sign) correlation coefficient (Blomqvist, 1950)

rQ =
1
n

∑
sgn(xi − med x) sgn(yi −med y), (7.1.6)

that is the sample correlation coefficient between the signs of deviations from
medians, and the rank correlation coefficient of Spearman (Spearman, 1904)

rS =
∑

[R(xi) − R(x)][R(yi) − R(y)]
(∑

[R(xi − R(x)]2 ∑[R(yi) − R(y)]2
)1/2 , (7.1.7)

that is the sample correlation coefficient between the observation ranks R(xi)
and R(yi). For computing, it is more convenient to use the transformed version
of (7.1.7) (Kendall and Stuart, 1963)

rS = 1 − S(d2)
6(n3 − n)

, S(d2) =
∑

[R(xi) − R(yi)]2.

Observe that formula (7.1.5) yields some of the above estimators:

• the sample correlation coefficient with α = 0, x̂ = x̄, ŷ = ȳ, ψ(z) = z;

• the quadrant correlation coefficient (7.1.6) with α = 0, x̂ = med x, ŷ =
med y, ψ(z) = sgn z;

• the Spearman correlation coefficient (7.1.7) with α = 0, x̂ = R(x), ŷ = R(y),
ψ(z) = R(z).

For α = 0. 5, x̂ = med x, ŷ = med y, ψ(z) = z, formula (7.1.5) yields the
median estimator

r0.5 =
med(xi − med x)(yi − med y)

(
med(xi − med x)2 med(yi − med y)2

)1/2 .

7.1.4. Robust correlation via robust regression
The problem to estimate the correlation coefficient is directly related to the
linear regression problem of fitting the straight line of the conditional expec-
tation

E(X  Y = y) = µ1 + β1(y − µ2),

E(Y  X = x) = µ2 + β2(x − µ1).
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For the normal distribution,

β1 = ρ
σ1

σ2
, β2 = ρ

σ2

σ1
. (7.1.8)

If the coefficients β1 and β2 are estimated by the LS method

β̂1 = arg min
α1,β1

∑
(xi − α1 − β1yi)2,

β̂2 = arg min
α2,β2

∑
(yi − α2 − β2xi)2,

then the sample correlation coefficient can be expressed in terms of the esti-
mators β̂1 and β̂2 as

r2 = β̂1β̂2. (7.1.9)

Using formula (7.1.9), we suggest the robust estimator for a correlation coeffi-
cient

ρ̂ =
√

β̂1β̂2, (7.1.10)

where β̂1 and β̂2 are some robust estimators of the slope, for example, the LAV
estimators or the L1-norm estimators of regression coefficients

β̂1 = arg min
α1,β1

∑
|xi − α1 − β1yi|,

β̂2 = arg min
α2,β2

∑
|yi − α2 − β2xi|.

In this case, we denote estimator (7.1.10) as rLAV. It is easy to show that, in
contrast to the LS formulas which yield the parameters of the straight line of
the conditional mean, the LAV estimators yield the parameters of the straight
line of the conditional median of the normal distribution

med{X  Y = y} = med X + β1(y − med Y),

med{Y  X = x} = med Y + β2(x − med X).

Another possibility is given by the least median squares regression

β̂1 = arg min
α1,β1

med(xi − α1 − β1yi)2,

β̂2 = arg min
α2,β2

med(yi − α2 − β2xi)2. (7.1.11)

The corresponding estimator is referred to as rLMS.
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Using formula (7.1.8), we arrive at the robust estimators

rm1 = β̂m1
σ̂1

σ̂2
(7.1.12)

and

rm2 = β̂m2
σ̂1

σ̂2
, (7.1.13)

where
β̂m1 = med

{
y −med y
x −med x

}

and

β̂m2 = med

{
yi − yj

xi − xj

}
i ≠ j,

σ̂1 and σ̂2 are some robust estimators of scale, for example, the median absolute
deviation MAD.

The structure of these estimators can be explained as follows: the distri-
bution density of the ratio of centered normal random variables is given by the
Cauchy formula

ƒ(z) =

√
1 − ρ2

π

[
σ1

σ2

(
z − σ2

σ1
ρ
)2

+
σ2

σ1
(1 − ρ2)

]−1

,

hence formulas (7.1.12) and (7.1.13) yield consistent estimators of the distri-
bution center ρσ2/σ1. With regard to variance, they are close to the optimal
maximum likelihood estimator.

7.1.5. Robust correlation via robust variances
We can write the obvious relation for any bivariate random variables (X, Y)

Var(X + Y) − Var(X − Y)
Var(X + Y) + Var(X − Y)

=
2 Cov(X, Y)

Var(X) + Var(Y)
;

hence we obtain the correlation coefficient ρ provided Var X = Var Y.
It is convenient to use the standard variables X̃ and Ỹ such that Var X̃ = 1

and Var Ỹ = 1; thus

ρ =
Var(X̃ + Ỹ) − Var(X̃ − Ỹ)

Var(X̃ + Ỹ) + Var(X̃ − Ỹ)
. (7.1.14)

By introducing the robust scale functional

S(X) = S(FX ) : S(aX + b) = |a|S(X),
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we can write the robust analog of variance in the form S2(⋅), and the robust
analog of (7.1.14) in the form

ρ∗(X, Y) =
S2(X̃ + Ỹ) − S2(X̃ − Ỹ)

S2(X̃ + Ỹ) + S2(X̃ − Ỹ)
, (7.1.15)

where X̃ and Ỹ are normalized in the same scale, X̃ = X/S(X) and Ỹ = Y/S(Y)
(Gnanadesikan and Kettenring, 1972; Huber, 1981).

The robust ‘correlation coefficient’ ρ∗(X, Y) defined by (7.1.15) satisfies the
principal requirements on the correlation coefficient

• |ρ∗(X, Y)| ≤ 1;

• if the random variables X and Y are linearly dependent, then
|ρ∗(X, Y)| = 1;

• in the case of independent random variables X and Y, we generally have
ρ∗(X, Y) ≠ 0.

However, for the mean and median absolute deviations functionals, the
latter property holds for the distributions FX and FY that are symmetric about
the center.

Replacing the functionals by their robust estimators in (7.1.15), we arrive
at robust estimators of the correlation coefficient in the form

ρ̂∗(X, Y) =
Ŝ2 (X̃ + Ỹ) − Ŝ2 (X̃ − Ỹ)

Ŝ2 (X̃ + Ỹ) + Ŝ2 (X̃ − Ỹ)
. (7.1.16)

For the median absolute deviation functional, expression (7.1.16) takes the
form of the median correlation coefficient (Pasman and Shevlyakov, 1987)

rmed 1 =
MAD2(X̃ + Ỹ) − MAD2(X̃ − Ỹ)

MAD2(X̃ + Ỹ) + MAD2(X̃ − Ỹ)
, (7.1.17)

where
X̃ = X/ MAD X, Ỹ = Y/ MAD Y.

We have another asymptotically equivalent version of the median correlation
coefficient (Shevlyakov, 1988; Shevlyakov and Jae Won Lee, 1997)

rmed 2 =
med2 |u| − med2 |v|
med2 |u| + med2 |v| , (7.1.18)

where u and v are called the robust principal coordinates

u =
x − med x

MAD x
+

y − med y
MAD y

, v =
x − med x

MAD x
− y − med y

MAD y
. (7.1.19)

Furthermore,



7.2. Analysis: Monte Carlo experiment 189

• for the mean absolute deviation functional,

rL1 =
(∑ |ui|

)2 −
(∑ |vi|

)2

(∑ |ui|
)2 +

(∑ |vi|
)2 , (7.1.20)

• for the standard deviation functional,

rL2 =
∑

u2
i −

∑
v2

i∑
u2

i +
∑

v2
i

, (7.1.21)

• for the trimmed standard deviation functional,

rtr(n1, n2) =

∑n−n2
i=n1+1 u2

i −
∑n−n2

i=n1+1 v2
i∑n−n2

i=n1+1 u2
i +
∑n−n2

i=n1+1 v2
i

. (7.1.22)

The particular cases of the latter formula appear in (Gnanadesikan and
Kettenring, 1972; Devlin et al., 1975) with n1 = n2 = [αn] and α = 0.1, …, 0.2.

Observe that the general construction (7.1.22) yields rL2 with n1 = 0 and
n2 = 0, and, in the case of odd sample sizes, the median correlation coefficient
with n1 = n2 = [0.5(n − 1)]. In addition, formula (7.1.21) yields the sample
correlation coefficient if we use classical estimators in its inner structure: the
sample means for location and the standard deviations for scale in (7.1.19).

7.1.6. Robust correlation via rejection of outliers
The preliminary rejection of outliers from the data with the consequent appli-
cation of a classical estimator (for example, the sample correlation coefficient)
to the rest of the observations defines the other group of estimators. Their
variety mainly depends on the variety of the rules for rejection of outliers. In
details, we consider this approach in Section 7.5.

7.1.7. Robust correlation via robust covariances
This approach is based on the preliminary robust estimation of the covari-
ance matrix (Huber, 1981). Here the opposite way is used: evaluating robust
covariances via the preliminary robust estimation of scale and correlation.

7.2. Analysis: Monte Carlo experiment
In this section we study the above-introduced groups of robust estimators of
a correlation coefficient in normal and contaminated samples. As a result, we
demonstrate the most perspective robust estimators within each group.
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Table 7.1. n = 20: expectations and variances of estimators for normal
distribution

r rQ rS rm1 rm2 rL1 rmed rLMS
ρ = 0.0 0.00 −0.01 −0.01 0.00 0.00 0.00 0.00 0.03

0.05 0.05 0.05 0.09 0.07 0.05 0.10 0.27
ρ = 0.5 0.49 0.32 0.46 0.45 0.51 0.45 0.42 0.49

0.03 0.05 0.03 0.11 0.06 0.03 0.08 0.21
ρ = 0.9 0.90 0.69 0.87 0.88 0.91 0.86 0.83 0.90

0.00 0.03 0.01 0.05 0.05 0.01 0.02 0.04

The behavior of the estimators has been examined under the ε-contami-
nated bivariate normal distributions

ƒ(x, y) = (1 − ε)N (x, y; 0, 0, 1, 1, ρ) + εN (x, y; 0, 0, k, k, ρ ′), 0 ≤ ε < 1,
(7.2.1)

in samples n = 20, 30, 60 using Monte Carlo techniques. As a rule, the number
of trials is set to 1000, and in particular cases, it is increased up to 10000 for
the sake of accuracy.

Nearly all estimators described in Section 7.1, namely r, rQ, rS, r0.1, r0.2,
r0.5, rψH , rm1, rm2, rLAV, rLMS, rL1 , rL2 , rmed 1, rmed 2, and some others, have
been tested in our study. Here we present only a part of our results concerned
with the best and typical representatives of the above-introduced classes of
estimators. More information about this topic can be found in (Gnanadesikan
and Kettenring, 1972; Devlin et al., 1975; Pasman and Shevlyakov, 1987).

7.2.1. Monte Carlo results for normal data
First we give some results for the bivariate normal density N (0, 0, 1, 1, ρ) with
small, medium, and large values of the correlation coefficient.

From Tables 7.1–7.3 we can see that

• in the normal case, as expected, the best is the sample correlation coef-
ficient r both by its bias and variance;

• the classical nonparametric estimators such as the quadrant correlation
coefficient rQ and the rank correlation rS have comparatively moderate
variances, but their biases increase together with the estimated value of
ρ, especially for rQ;

• the regression estimators rm1, rm2 and the estimators based on robust
variances rL1 and rmed behave similarly well except rLMS that is some-
what worse by its variance.
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Table 7.2. n = 30: expectations and variances of estimators for normal
distribution

r rQ rS rm1 rm2 rL1 rmed rLMS
ρ = 0.0 0.00 −0.05 −0.03 −0.01 0.00 0.00 −0.01 0.00

0.03 0.03 0.03 0.07 0.04 0.07 0.08 0.16
ρ = 0.5 0.49 0.32 0.47 0.46 0.50 0.47 0.45 0.48

0.02 0.03 0.02 0.07 0.04 0.02 0.05 0.13
ρ = 0.9 0.90 0.70 0.87 0.88 0.90 0.87 0.85 0.90

0.00 0.02 0.00 0.03 0.03 0.00 0.01 0.06

Table 7.3. n = 60: expectations and variances of estimators for normal
distribution

r rQ rS rm1 rm2 rL1 rmed rLMS
ρ = 0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.09

0.02 0.02 0.02 0.04 0.02 0.02 0.04 0.09
ρ = 0.5 0.49 0.33 0.48 0.48 0.50 0.48 0.47 0.50

0.01 0.02 0.01 0.03 0.02 0.01 0.03 0.07
ρ = 0.9 0.90 0.71 0.89 0.90 0.90 0.89 0.88 0.90

0.00 0.01 0.00 0.01 0.01 0.00 0.00 0.03

REMARK 7.2.1. The median correlation coefficients rmed 1 and rmed 2 are similar
in their structure and behavior, so we use the notation rmed for both of them.

7.2.2. Monte Carlo results under contamination
Here we give some results in small samples under heavy contamination for
ε = 0.1, k = 10 and ρ ′ = −0.9 in formula (7.2.1).

Finally, in Figure 7.2 and Figure 7.3, we present the scatters of estimators
in bias-standard error axes for the normal and contaminated normal small
samples.

From the results listed in Tables 7.4–7.6 and in Figures 7.2–7.3, it follows
that

• the sample correlation coefficient is catastrophically bad under contam-
ination;

• the classical nonparametric estimators rQ and rS behave moderately ill
together with the regression estimators rm1 and rm2;

• the best estimators are the regression estimator rLMS and the median
correlation coefficient rmed.
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Table 7.4. n = 20: expectations and variances of estimators under heavy
contamination with (ε = 0. 1, k = 10, and ρ ′ = −0.9

r rQ rS rm1 rm2 rL1 rmed rLMS
ρ = 0.0 −0.74 −0.11 −0.24 −0.19 −0.45 −0.16 0.00 −0.02

0.14 0.05 0.06 0.15 0.34 0.02 0.10 0.26
ρ = 0.5 −0.66 0.21 0.17 0.30 0.22 0.02 0.41 0.48

0.34 0.01 0.06 0.13 0.13 0.07 0.08 0.09
ρ = 0.9 −0.55 0.48 0.37 0.71 0.65 0.70 0.81 0.90

0.37 0.04 0.09 0.06 0.13 0.09 0.02 0.04

Table 7.5. n = 30: expectations and variances of estimators under heavy
contamination ε = 0.1, k = 10, and ρ ′ = −0.9

r rQ rS rm1 rm2 rL1 rmed rLMS
ρ = 0.0 −0.86 −0.10 −0.28 −0.21 −0.49 −0.19 −0.01 −0.02

0.29 0.04 0.03 0.10 0.03 0.05 0.08 0.17
ρ = 0.5 −0.81 0.18 0.07 0.26 0.09 −0.09 0.44 0.48

0.14 0.04 0.05 0.09 0.12 0.03 0.05 0.12
ρ = 0.9 −0.84 0.50 0.37 0.74 0.68 0.07 0.83 0.89

0.08 0.03 0.06 0.04 0.05 0.05 0.01 0.05

Table 7.6. n = 60: expectations and variances of estimators under heavy
contamination with ε = 0.1, k = 10, and ρ ′ = −0.9

r rQ rS rm1 rm2 rL1 rmed rLMS
ρ = 0.0 −0.86 −0.10 −0.28 −0.21 −0.49 −0.19 −0.01 −0.02

0.29 0.04 0.03 0.10 0.03 0.05 0.08 0.17
ρ = 0.5 −0.81 0.18 0.07 0.26 0.09 −0.09 0.44 0.48

0.14 0.04 0.05 0.09 0.12 0.03 0.05 0.12
ρ = 0.9 −0.84 0.50 0.37 0.74 0.68 0.07 0.83 0.89

0.08 0.03 0.06 0.04 0.05 0.05 0.01 0.05
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Figure 7.2. n = 20: biases and standard errors of estimators for normal
distribution with ρ = 0. 5
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Figure 7.3. n = 20: biases and standard errors of estimators under heavy
contamination with ρ = 0. 5, ε = 0. 1, ρ ′ = −0. 9 and k = 10,
(n = 20)
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7.3. Analysis: asymptotic characteristics
7.3.1. Means and variances of estimators
The means and asymptotic variances of the examined estimators are obtained
in the contamination (gross error) model (7.2.1). These characteristics are eval-
uated mostly using the techniques based on the influence functions IF(x, y; ρ̂)
(Hampel et al., 1986)

Eρ̂ ≈ ρ +
∫

IF(x, y; ρ̂) ƒ(x, y) dx dy,

Var ρ̂ = n−1
∫

IF2(x, y; ρ̂) ƒ(x, y) dx dy,

where the density ƒ(x, y) is given by formula (7.1.4).
These results are given below. Due to their cumbersome nature, we omit

the exact expressions for some estimators. The numerical results of calcula-
tions based on our formulas are listed in Table 7.7 and Table 7.8.

Direct robust analogs of the sample correlation coefficient, the means,
asymptotic variances, and influence functions are of the form

• for the sample correlation coefficient of the bivariate normal distribution
(Kendall and Stuart, 1962),

Er = ρ

[
1 − (1 − ρ2)

2n
+ O

(
1
n2

)]
, Var r =

(1 − ρ2)2

n
;

under contamination,

IF(x, y; r) = − Er
2(1 − ε + εk2)

(x2 + y2) +
xy

1 − ε + εk2 , (7.3.1)

where

Er =
(1 − ε)ρ + εk2ρ ′

1 − ε + εk2 ;

• for the quadrant correlation coefficient,

ErQ =
2(1 − ε)

π
arcsin ρ +

2ε
π

arcsin ρ ′, Var rQ =
1 − E2rQ

n
,

IF(x, y; rQ) = sgn(x − med X) sgn(y − med Y) − ρQ,

where ρQ is the functional corresponding to the quadrant correlation
coefficient

ρQ =
∫

sgn (x − med X) sgn (y − med Y) dF(x, y);
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• for the Spearman rank correlation coefficient,

ErS =
6(1 − ε)

π
arcsin

(
ρ
2

)
+

6ε
π

arcsin
(

ρ ′

2

)
;

• for the median algorithm r0.5,

Er0.5 ≈ ρ − 1. 3 ε C(ρ)
√

1 + ρ2, 0 ≤ C(ρ) ≤ 1,

Var r0.5 ≈ 2/n, |ρ| � 1, Var r0.5 ≈ 1/n |ρ| ≈ 1.

For the regression group of estimators, we represent the results for the one
of the best estimators from this group, namely that based on the median of
slopes rm1 (7.1.12)

Erm1 = ρ + ε arctan[(ρ ′ − ρ)
√

1 − ρ2/
√

1 − ρ ′2] + o(ε),

Var rm1 =
π2(1 − ρ2)

4n



1 + 2ε

√
1 − ρ2


 1√

1 − ρ2
−

√
1 − ρ ′2

(ρ − ρ ′)2 + (1 − ρ ′2)





 .

Another good estimator of this group, the rLMS based on the LMS regres-
sion, has the order of convergence n−1/3 (Rousseeuw and Leroy, 1987).

As for the group based on robust variances, we are particularly interested
in the median correlation coefficient, which proved its high robustness in the
Monte Carlo study

Ermed = ρ + 1. 17ε(1 − ρ2) sgn (ρ ′ − ρ) + o(ε).

The following results are concerned with the quantitative and qualitative
robustness of this estimator also are of some interest.

THEOREM 7.3.1. Under the bivariate normal distribution, the median corre-
lation coefficient is a consistent and asymptotically normal estimator of the
correlation coefficient ρ with the following asymptotic variance

Var rmed =
(1 − ρ2)2

8nφ2(ζ3/4)ζ 2
3/4

,

where ζ3/4 = Φ−1(3/4) and Φ(z) is the standard normal distribution function

Φ(z) =
1√
2π

∫ z

−∞
e−t2/2 dt, φ (z) = Φ′(z).

In the normal case, the asymptotic relative efficiency of the median corre-
lation coefficient rmed to the sample correlation coefficient r is 0.367.
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Table 7.7. ε = 0, ρ = 0.9

r rQ rS rLAV rm1 rL1 rL2 rmed
Eρ̂ 0.90 0.93 0.90 0.90 0.90 0.90 0.90 0.90

n Var(ρ̂) 0.04 0.13 0.05 0.09 0.07 0.06 0.04 0.10

Table 7.8. ε = 0.1, ρ = 0.9, ρ ′ = −0.9, k = 10.

r rQ rS rLAV rm1 rL1 rL2 rmed
Eρ̂ −0.75 0.57 0.71 0.74 0.84 0.79 0.72 0.88

n Var(ρ̂) 1.00 0.46 0.32 0.65 0.50 0.50 0.45 0.13

THEOREM 7.3.2. The median correlation coefficient has the maximal break-
down point ε∗ = 1/2, and its influence function is of the form

IF(x, y; rmed) =
1 − ρ2

4ζ 2
3/4φ (ζ3/4)

[sgn(|x + y| − ζ3/4) − sgn(|x − y| − ζ3/4)].

From Table 7.7 and Table 7.8 we can see that the results of the asymptotic
analysis confirm the preliminary conclusions of the Monte Carlo study:

• for the normal distribution, the best are the sample correlation coefficient
r and the estimator rL2 , the latter being asymptotically equivalent to r
in this case;

• for the normal distribution, the biases of estimators can be neglected,
but not their variances;

• under contamination, the sample correlation coefficient is extremely poor
both in bias and in variance, but robust estimators of location make rL2

a little more robust;

• under heavy contamination, the best is obviously the median correlation
coefficient;

• under heavy contamination, the bias of an estimator seems to be a more
informative characteristic than its variance.

7.3.2. Proofs
PROOF OF THEOREM 7.3.1. Consider the asymptotic behavior of the median
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correlation coefficient

rmed =
med2 |u| − med2 |v|
med2 |u| + med2 |v| , (7.3.2)

where u = x/
√

2 + y/
√

2, v = x/
√

2 − y/
√

2 are the standardized variables.
For the sake of brevity, we use the following notations: m1 = med |u| and

m2 = med |v| for medians, M1 and M2 for their asymptotic values. Observe
that m1 and m2 converge in probability to M1 and M2 respectively.

First we demonstrate the consistency of the median correlation coefficient
or, in other words, check that its asymptotic value coincides with the correlation
coefficient ρ:

ρ =
M2

1 − M2
2

M2
1 + M2

2
. (7.3.3)

For the distribution densities of the variables

|U| = |X/
√

2 + Y/
√

2|, |V| = |X/
√

2 − Y/
√

2|
the following is true:

ƒ|U|(z) =





2√
2π
√

1+ρ
exp

(
− z2

2(1+ρ)

)
, z ≥ 0,

0, z < 0;

ƒ|V|(z) =





2√
2π
√

1−ρ
exp

(
− z2

4(1−ρ)

)
, z ≥ 0,

0, z < 0.

The medians of these distributions are derived from the equations
∫ M1

0
ƒ|U|(z) dz =

1
2

,
∫ M2

0
ƒ|V|(z) dz =

1
2

,

and the explicit expressions of them are

M1 =
√

(1 + ρ) Φ−1(3/4), M2 =
√

(1 − ρ) Φ−1(3/4), (7.3.4)

where Φ(z) is the standard normal distribution function.
Relation (7.3.3) and the consistency of the median correlation coefficient

(7.3.2) immediately follow from (7.3.4).
Now we obtain the expression for the asymptotic variance of the median

correlation coefficient. The difference between the estimator and its asymp-
totic value can be written as

rmed − ρ =
med2 |u| − med2 |v|
med2 |u| + med2 |v| −

M2
1 −M2

2

M2
1 + M2

2

=
2

M2
1 + M2

2

M2
2m2

1 − M2
1m2

2

m2
1 + m2

2
, (7.3.5)
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whereas the numerator of the latter fraction tends to zero as n → ∞, therefore
m1

P
→ M1 and m2

P
→ M2 like it should be due to the consistency just proved.

In view of the asymptotic normality of the sample medians,

m1 = M1 + ξ1 + o(1/
√

n), m2 = M2 + ξ2 + o(1/
√

n),

where

ξ1 ∼ N

(
0,

1
2ƒ1(M1)

√
n

)
, ξ2 ∼ N

(
0,

1
2ƒ2(M2)

√
n

)
,

ƒ1(z) =
2√

2π
√

(1 + ρ)
exp

(
− z2

2(1 + ρ)

)
,

ƒ2(z) =
2√

2π
√

(1 − ρ)
exp

(
− z2

2(1 − ρ)

)
;

M1 and M2 are given by (7.3.4).
Then it is easy to show that the asymptotic bias (7.3.5) can be rewritten as

rmed − ρ =
4M1M2

(M2
1 + M2

2)2 (M2ξ1 − M1ξ2) + o(1/
√

n). (7.3.6)

Therefore, by virtue of the independence of ξ1 and ξ2, we arrive at the asymp-
totic variance of the median correlation coefficient

Var rmed =
16M2

1M2
2

(M2
1 + M2

2)4 (M2
2σ2

1 + M2
1σ2

2 ), (7.3.7)

where

σ2
1 =

1
4ƒ2

1(M1)n
, σ2

2 =
1

4ƒ2
2(M2)n

.

By substituting (7.3.4) into (7.3.7), we obtain the asymptotic variance as in
Theorem 7.3.1, which completes the proof. �

REMARK 7.3.1. As concerns the asymptotic normality, the latter follows either
directly from representation (7.3.6), or by reasoning due to (Huber, 1964, p. 78,
Lemma 5): the numerator of the second fraction in (7.3.5) is asymptotically
normal, the denominator tends in probability to the positive constant M2

1 +M2
2,

hence, n1/2ρn is asymptotically normal (Cramér, 1946, 20.6).

PROOF OF THEOREM 7.3.2. The median correlation coefficient rmed is construct-
ed of the median absolute deviations MAD u and MAD v whose breakdown
point is 1/2, hence ε∗(rmed) = 1/2.
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Differentiating the functional for the median correlation coefficient, we
obtain

IF(x, y; rmed) =
d
ds

ρmed
(
(1 − s)F + s∆xy

)∣∣∣∣
s=0

=
d
ds

(
MAD2 |u| − MAD2 |v|
MAD2 |u| + MAD2 |v|

)∣∣∣∣∣
s=0

=
d
ds

(
M2

1 − M2
2

M2
1 + M2

2

)∣∣∣∣∣
s=0

=
4M1M2

(M2
1 + M2

2)2 (M2M′
1 − M1M′

2)

∣∣∣∣∣
s=0

=
4M1M2

(M2
1 + M2

2)2 (M2IF(x, y; MAD u) − M1IF(x, y; MAD v)),

where ∆x0y0 is a bivariate analog of the Heaviside function

∆x0y0 =

{
1, x ≥ x0, y ≥ y0,
0, otherwise.

Since the influence function of the median absolute deviation is of the form
(Hampel et al., 1986)

IF(x, y; MAD z) =
1

4ζ3/4φ (ζ3/4)
sgn(|z| − ζ3/4),

we conclude that Theorem 7.3.2 is true. �

7.4. Synthesis: minimax variance correlation
In this section we use the Huber minimax approach to design a robust esti-
mator of the correlation coefficient for ε-contaminated bivariate normal dis-
tributions. The Huber results on robust M-estimators of location and scale in
ε-contamination models are extended to the problems of robust estimation of
ρ. Consistency and asymptotic normality of the robust estimator obtained are
proved, and an explicit expression for its asymptotic variance is obtained.

The problem of robust estimation of correlation is reduced to the problem
of robust estimation of scale, therefore the structure of the minimax estimator
of ρ is determined by the structure of the minimax estimator of scale in ε-
contamination models that is similar to the trimmed standard deviation. The
level of trimming depends on the value of the contamination parameter ε.
The limiting cases of the obtained robust estimator are the sample correlation
coefficient and the median correlation coefficient with ε = 0 and as ε → 1
respectively.

7.4.1. Bivariate distributions allowing for
principal factorization

Let the parameters of location and scale of the random variables X and Y be
µ1 = µ2 = 0, σ1 = σ2 = 1. We introduce the class of bivariate distribution
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densities corresponding to the class of estimators based on robust variances
(see Subsection 7.1.5)

ƒ(x, y; ρ) =
1

βu(ρ)
g
(

u
βu(ρ)

)
1

βv(ρ)
g
(

v
βv(ρ)

)
, (7.4.1)

where u and v are the principal variables

u = (x + y)/
√

2, v = (x − y)/
√

2;

g(x) is a symmetric density g(−x) = g(x) belonging to a certain class G .
If the variance of the density g exists (σ2

g =
∫

x2g(x) dx < ∞) then the
straightforward calculation yields

Var X = Var Y = (β 2
u + β 2

v )σ2
g /2, Cov(X, Y) = (β 2

u − β 2
v )σ2

g /2,

and hence the correlation coefficient of the class (7.4.1) depends on the scale
parameters βu and βv as follows:

ρ =
β 2

u − β 2
v

β 2
u + β 2

v
. (7.4.2)

Now we assume that the variances of the random variables X and Y do not
depend on the unknown correlation coefficient ρ:

Var X = Var Y = const (ρ).

Setting for convenience σg = 1, for βu and βv we obtain

βu = σ
√

1 + ρ, βv = σ
√

1 − ρ,

and for densities (7.4.1),

ƒ(x, y; ρ) =
1

σ
√

1 + ρ
g
(

u
σ
√

1 + ρ

)
1

σ
√

1 − ρ
g
(

v
σ
√

1 − ρ

)
. (7.4.3)

Observe that class (7.4.1) and its subclass (7.4.3) contain the standard
bivariate normal distribution density

ƒ(x, y) = N (x, y|0, 0, 1, 1, ρ)

with

βu(ρ) =
√

1 + ρ, βv(ρ) =
√

1 − ρ, g(x) = φ (x) = (2π)−1/2 exp(−x2/2).

REMARK 7.4.1. Using other forms of univariate distribution densities, say the
Laplace or even the heavy-tailed Cauchy (with the apparent modification of
the definition for ρ), we can construct bivariate analogs for the corresponding
univariate distributions.
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In what follows, we deal with subclass (7.4.3).

REMARK 7.4.2. Class (7.4.1) represents a rather rich family of bivariate distri-
butions, and hence it surely can be used in multivariate analysis for purposes
independent of robustness. In this context, it is introduced as a construction
corresponding entirely to the class of estimators based on robust variances
(Subsection 7.1.4): it can be shown that the ML estimator of ρ in the class
(7.4.1) is just the estimator of class (7.1.16).

Now we formulate the basic idea of introducing class (7.4.1): for any ran-
dom pair (X, Y), the transformation U = X + Y, V = X − Y yields uncorrelated
random principal variables (U, V) (independent for the densities (7.4.1)), and
estimation of their scale solves the problem of estimation of the correlation
between (X, Y).

For distribution densities (7.4.3), the Fisher information is of the form

I(ƒ) = EF

(
∂ ln ƒ

∂ρ

)2
=

1 + ρ2

2(1 − ρ2)2 I(g), (7.4.4)

where I(g) is the Fisher information for scale

I(g) =
∫ ∞

−∞

[
−x

g′(x)
g(x)

− 1
]2

g(x) dx.

7.4.2. Estimation procedure
Given a sample (x1, y1), (x2, y2), …, (xn, yn), we propose the following estimation
procedure:

• transform the initial data as

ui = (xi + yi)/
√

2, vi = (xi − yi)/
√

2, i = 1, …, n;

• evaluate the M-estimators of scale β̂u and β̂v as the solutions of the
equations

∑
χ

(
ui

β̂u

)
= 0,

∑
χ

(
vi

β̂v

)
= 0, (7.4.5)

where χ(⋅) is the score function;

• substitute these M-estimators of scale into formula (7.4.2) and evaluate
the estimator of ρ in the form

ρ̂n =
β̂ 2

u − β̂ 2
v

β̂ 2
u + β̂ 2

v
. (7.4.6)

The optimal choice of the score function in (7.4.5) will be made later by
applying the minimax approach.
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7.4.3. Consistency and asymptotic normality
The asymptotic properties of the proposed estimator (7.4.6) are completely
determined by the asymptotic properties of M-estimators of scale (7.4.5). Suf-
ficient conditions of regularity providing the desired properties are imposed
on the densities g and score functions χ. Assume that they satisfy conditions
(F1)–(F2) and (χ1)–(χ4) (Section 4.3). Then the following is true.

THEOREM 7.4.1. Under the above conditions of regularity, the estimator ρ̂n is
consistent and asymptotically normal with variance

Var ρ̂n =
2(1 − ρ2)2

n
V(χ, g), (7.4.7)

where

V(χ, g) =
∫

χ2(x)g(x) dx
(∫

xχ ′(x)g(x) dx
)2 .

is the asymptotic variance of M-estimators for scale.

PROOF. The consistency of (7.4.6) follows immediately from the consistency of
M-estimators for scale: as β̂u and β̂u tend in probability to βu = σ

√
1 + ρ and

βv = σ
√

1 − ρ, ρ̂n tends in probability to ρ.
The asymptotic normality follows from the reasoning due to (Huber, 1964,

p. 78, Lemma 5): the numerator of the fraction in (7.4.6) is asymptotically
normal, the denominator tends in probability to the positive constant c =
β 2

u + β 2
v , hence n1/2ρn is asymptotically normal (Cramér, 1946, 20.6).

The exact structure of asymptotic variance is obtained by direct routine
calculation using the asymptotic formula for the variance of the ratio of the
random variables ξ and η (Kendall and Stuart, 1962)

Var
ξ
η

=
(

E ξ
E η

)2 (Var ξ
E2ξ

+
Var η
E2η

− 2 Cov(ξ , η)
E ξ E η

)
+ o
(

1
n

)
, (7.4.8)

where ξ = β̂ 2
u − β̂ 2

v and η = β̂ 2
u + β̂ 2

v .
In view of independence of β̂u and β̂v,

Eξ = β 2
u − β 2

v + σ2
u − σ2

v , Eη = β 2
u + β 2

v + σ2
u + σ2

v ,

Var ξ = Var η = 4(β 2
u σ2

u + β 2
v σ2

v ) + o(1/n),

Cov(ξ , η) = 4(β 2
u σ2

u − β 2
v σ2

v ) + o(1/n),

where

β 2
u = σ2(1 + ρ), β 2

v = σ2(1 − ρ),

σ2
u =β 2

u V(χ, g)/n, σ2
v = β 2

v V(χ, g)/n.
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By substituting these into (7.4.8) we arrive at (7.4.7), which completes the
proof. �

EXAMPLE 7.4.1. From (7.4.7) we have the expression for the asymptotic vari-
ance of the sample correlation coefficient under the bivariate normal distribu-
tion with χ(x) = x2 − 1 and g(x) = φ (x): Var r = (1 − ρ2)2/n.

EXAMPLE 7.4.2. The choice χ(x) = sgn(|x|−1) and g(x) = φ (x) yields the asymp-
totic variance of the median correlation coefficient obtained in Section 7.3
(Theorem 7.3.1) by other approach.

Formula (7.4.7) for the asymptotic variance has two factors: the first de-
pends only on ρ, the second V(χ, g) is the asymptotic variance of M-estimators
for scale. Thus we can immediately apply the known minimax variance esti-
mators of scale in the gross error model for minimax variance estimation of a
correlation coefficient.

7.4.4. Minimax variance estimators
In (Huber, 1981) it was shown that, under rather general conditions of regu-
larity, the M-estimators β̂n are consistent, asymptotically normal, and possess
the minimax property with regard to the asymptotic variance Var β̂n = V(χ, g):

V(χ∗, g) ≤ V(χ∗, g∗). (7.4.9)

Here g∗ is the least informative (favorable) density minimizing the Fisher
information I(g) for scale in a certain class G :

g∗ = arg min
g∈G

I(g), I(g) =
∫ [

−x
g′(x)
g(x)

− 1
]2

g(x) dx, (7.4.10)

and the score function χ∗(x) is given by the ML method.
For the class of ε-contaminated normal distributions

G = {g : g(x) ≥ (1 − ε)φ (x), 0 ≤ ε < 1} (7.4.11)

the minimax variance M-estimator of scale is defined by the score function
(Huber, 1964; Huber, 1981)

χ(x) =





x2
0 − 1, |x| < x0,

x2 − 1, x0 ≤ |x| ≤ x1,
x2

1 − 1, |x| > x1,
(7.4.12)

with x0 = x0(ε) and x1 = x1(ε). The exact relations for these parameters
are given in Section 4.3, and their values are tabulated (Huber, 1981). This
M-estimator is asymptotically equivalent to the trimmed standard deviation
(Huber, 1981, p. 122).

The following result is immediately obtained from the above.
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THEOREM 7.4.2. In the class (7.4.1) of γ-contaminated bivariate normal distri-
butions

ƒ(x, y) ≥ (1 − γ) N (x, y  0, 0, 1, 1, ρ), 0 ≤ γ < 1, (7.4.13)

the minimax robust estimator of ρ is given by the trimmed correlation coefficient
(7.1.22)

rtr(n1, n2) =
∑n−n2

i=n1+1 u2
(i) −

∑n−n2
i=n1+1 v2

(i)∑n−n2
i=n1+1 u2

(i) +
∑n−n2

i=n1+1 v2
(i)

, (7.4.14)

where the numbers n1 and n2 of the trimmed smallest and greatest order
statistics u(i) and v(i) depend on the value of the contamination parameter
ε = 1 − √

1 − γ: n1 = n1(ε) and n2 = n2(ε). The exact character of this depen-
dence is given in (Huber, 1981, 5.6).

PROOF. It suffices to check that densities (7.4.13) belong to class (7.4.1).
From (7.4.11), we obtain

1
σ
√

1 + ρ
g
(

u
σ
√

1 + ρ

)
≥ (1 − ε)

1
σ
√

1 + ρ
φ
(

u
σ
√

1 + ρ

)
,

1
σ
√

1 − ρ
g
(

v
σ
√

1 − ρ

)
≥ (1 − ε)

1
σ
√

1 − ρ
φ
(

v
σ
√

1 − ρ

)
.

By multiplying them, we obtain the restriction of the class of γ-contaminated
bivariate normal distributions (7.4.13), where γ = 2ε−ε2, which completes the
proof. �

In the limiting case as γ → 1, we observe that n1 and n2 tend to [n/2],
the estimators of scale β̂u and β̂v tend to the medians of absolute deviations
med |u| and med |v|, respectively, and hence ρ̂ tends to the median correlation
coefficient

rmed =
med2 |u| − med2 |v|
med2 |u| + med2 |v| . (7.4.15)

If γ = 0, then this estimator is asymptotically equivalent to the sample
correlation coefficient r.

REMARK 7.4.3. In applications, one should use robust estimators for unknown
location and scale, namely the sample median and the median of absolute
deviations, or the robust principal variables (ui, vi)n

1

u =
x − med x√

2 MAD x
+

y − med y√
2 MAD y

, v =
x − med x√

2 MAD x
− y − med y√

2 MAD y
.
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REMARK 7.4.4. The asymptotic confidence intervals for ρ̂ can be constructed
by using the Fisher transformation (Kendall and Stuart, 1962)

z =
1
2

ln
1 + ρ̂
1 − ρ̂

.

In this case, the variance of z does not depend on ρ:

Var z =
2V(χ, g)

n− 3
,

and this fact is due to the structure of the multiplier (1 − ρ2)2 in V(χ, g).

REMARK 7.4.5. The minimax approach can be also applied to the parametric
class of exponential-power densities

g(x) =
q

2Γ(1/q)
exp(−|x|q), q ≥ 1.

It follows from the results of Section 4.5 that the Laplace density minimizes
the Fisher information for scale in this class, hence the minimax estimators
for scale in the principal axes are given by the mean absolute deviations

β̂u = n−1
∑

|ui|, β̂v = n−1
∑

|vi|.

Therefore the minimax variance estimator of the correlation coefficient in this
class is

rL1 =
(∑ |ui|

)2 −
(∑ |vi|

)2

(∑ |ui|
)2 −

(∑ |vi|
)2 .

In the literature, there is only one result on the minimax approach to robust
estimation of ρ (Huber, 1981, p. 205): the quadrant correlation coefficient is
asymptotically minimax with respect to bias over the mixture F = (1−ε)G+εH
(G and H being symmetric distributions in R2). Although its bias is minimax,
the quadrant correlation coefficient rQ demonstrates moderate robustness in
the Monte Carlo experiment. This can be explained by the properties of the
chosen class of direct robust counterparts of the sample correlation coefficient
(rψ -estimators) for which the optimality of rQ is established. It is more conve-
nient to detect and eliminate the influence of outliers not in the initial axes x
and y but in the principal axes u and v. Fig. 7.4 illustrates this effect: the out-
liers (marked by stars) in the principal axes should not necessarily be such in
the initial axes, in other words, in these systems of coordinates, the extremes
should not coincide.

The trimmed correlation coefficient (7.1.22) proved its high robustness in
former experimental studies (Gnanadesikan and Kettenring, 1972; Devlin et
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Figure 7.4. On outliers in the initial and principal axes

al., 1975), and its optimality for ε-contaminated models explains those results.
There remains a general question for such models: how to choose the value of
the contamination parameter ε? The practical recommendation is the follow-
ing: if we assume that the value of γ does not exceed 0.2, and this choice is
made with safety (in fact, in (Hampel, 1973; Huber, 1973) ε ≈ 0.1 was suggested
for robust location), then the corresponding value of ε for robust scale is ap-
proximately 0.1, and therefore the optimal estimator is the one-sided trimmed
correlation coefficient (7.4.14) with n1 = 0 and n2 ≈ [0.1 n].

REMARK 7.4.6. As concerns the quadrant correlation coefficient, it can serve
as a moderate robust alternative to the sample correlation coefficient because
of its minimaxity with regard to bias (Huber, 1981), its binomial sample dis-
tribution (Blomqvist, 1950), and its simple structure.

Summarizing the obtained results on the median correlation coefficient,
namely that it possesses both the optimal qualitative (breakdown point
ε∗ = 1/2) and quantitative (minimax) robustness properties, we may regard the
median correlation coefficient as the correlation analog of the sample median
and the median of absolute deviations—the well-known robust estimators of
location and scale having both quantitative minimax and highest qualitative
robustness properties. Further in Section 8.4, we use these highly robust esti-
mators along with their location and scale analogs for constructing a bivariate
boxplot.
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7.5. Two-stage estimators: rejection of outliers plus
classics

Preliminary rejection of outliers from the data and subsequent application of
a classical estimator (for example, the sample correlation coefficient) to the
rest of the observations represents the next group of estimators. Their variety
mainly depends on the rules for rejection of outliers.

7.5.1. Preliminaries on the rejection of outliers
In our setting, the problem of outlier rejection is subordinate to the problem of
robust estimation of a correlation coefficient, though, certainly, that problem
is of its own importance.

The concrete aims of detection of outlying observations from the bulk of
the data may be very different. Here we consider the main two of them.

The first is in exposing the significant observations, which admit a specific
interpretation. These observations may be quite ‘good’ showing new possi-
bilities for unexpected improvements and discoveries of new effects. Darwin
noticed that outliers indicate the vector of development.

The second important aim consists of eliminating gross errors away from
the data for providing stability and efficiency of statistical inference.

In this study, we keep in view and try to pursue both aims, but the second
is common within the robustness context.

First we recall how the problem of detection and/or rejection of outliers is
solved in the univariate case.

Rejection of outliers in the univariate case. In this case, statistical
methods mainly aim at the exposure of a single outlier in the data when the
minimal or maximal order statistic is regarded as a candidate for an outlier
(Dixon, 1950; Dixon, 1960; Grubbs, 1950). In classical statistics, this prob-
lem is usually set as a problem of testing hypotheses about an underlying
distribution, say in the model of scale contamination

H0 : F(x) = Φ(x),
H1 : F(x) = (1 − ε)Φ(x) + εΦ(x/k),

where k > 1.
The structure of a standard test for rejection of an extremal order statistic

is as follows:

• form the difference between a candidate for an outlier and a chosen
estimator of location (central tendency), for example, x(n) − x̄ or x̄ − x(1);
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• standardize this difference by a chosen estimator of scale, say, by the
standard deviation

B =
x(n) − x̄

s
, or B =

x̄ − x(1)

s
;

• compare the test statistic Bn with a certain bound: if

B =
x(n) − x̄

s
< λα (7.5.1)

then the null hypothesis is accepted, and vice versa.

The threshold value λα is obtained from the chosen significance level

P(B < λα ) = 1 − α,

where the common choice is α = 0.01, 0.05, 0.1.
Much is made for the development of this classical approach to rejection of

outliers, various tests were proposed with the related tables of percentiles, but
all of them have at least one shortcoming. Indeed, no more than one outlier
can be detected with the use of such an approach: after rejection, the sample
distribution is changed within the corresponding bounds.

More essential is another shortcoming of the classical approach: the clas-
sical estimators of location and scale usually used in their structures are sen-
sitive to outliers, and this considerably reduces the power of tests. However,
this situation can be improved by the use of robust statistics.

Here we give our old result on this subject (Shevlyakov, 1976; Guilbo and
Shevlyakov, 1977).

For rejection of extremal order statistics, the following robust version of
the test statistic Bn (7.5.1) is suggested:

Bm =
x(n) −med x

x(j) − x(k)
or Bm =

med x − x(1)

x(j) − x(k)
, (7.5.2)

where the sample mean is replaced by the sample median, and the standard
deviation, by the sample interquartile width of the form x(j) − x(k), where
k = [n/4] + 1 and j = n − k + 1.

Table 7.9 displays the 90% and 95% percentiles (α = 0.1 and 0.05) for the
test statistic Bm (7.5.2) under the normal null hypothesis for n = 5, 7, 11, 15, 19.
These points are obtained by Monte Carlo modeling.

For the problem of rejection of a single outlier, the power of test is con-
venient to define as the ratio r of the number of contaminated samples with
rejected outliers to the total number of contaminated samples. The following
alternatives are considered:
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Table 7.9. The percentiles of the test statistic Bm under the normal distribution

n 5 7 11 15 19
α = 0. 05 2. 00 2. 10 2. 24 2. 30 2. 34
α = 0. 1 1. 56 1. 67 1. 91 1. 97 2. 04
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Figure 7.5. The power of the B and Bm tests under scale contamination

• the alternative of shift contamination

F(x) = (1 − ε)N (0, 1) + ε N (µ, 1);

• and the alternative of scale contamination

F(x) = (1 − ε)N (0, 1) + ε N (0, k).

The power for the test statistics Bm and B has been examined by Monte
Carlo techniques in samples n = 5, 7, 11, 15 for the both types of contamina-
tion. Fig. 7.5 shows the power of these tests under the scale contamination
with ε = 0. 2 and α = 0. 1. Similar dependencies also hold for the shift contam-
ination.

The superiority of the robust test is obvious, and it is the larger contami-
nation parameters ε, k, µ, and sample size n are, the higher this superiority
is.

Certainly, it is possible to improve this statistic by replacing the interquar-
tile width, say, by the median absolute deviation or another statistic, but other
approaches have revealed their advantages for solution of these problems.

First of all, each robust procedure of estimation inherently possesses its
own rule for rejection of outliers (Hampel et al., 1986; Huber, 1981), and it may
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seem that then there is no need for any independent procedure for rejection, at
least if to aim at estimation, and therefore no need for two-stage procedures.
However, a rejection rule may be quite informal, for example, based on a priori
knowledge about the nature of outliers, and, in this case, its use can improve
the efficiency of estimation. Later, we will give some examples where two-stage
procedures provide a reasonable level of efficiency as compared with optimal
direct robust procedures.

Second, the above classical procedures of rejection of outliers have been
moved aside by new technologies of data analysis created mainly by Tukey
and other statisticians who used robust statistics (Mosteller and Tukey, 1977;
Tukey, 1977). One of those technologies is the boxplot (its detailed construction
is given in Section 8.4). In particular, it allows to regard the observation xi as
a candidate for an outlier if its distance from the sample median exceeds five
times the median absolute deviation, i.e.,

|xi − med x| > 5 MAD x.

This condition is nothing but a refined version of the ‘3σ-rule,’ and this sug-
gestion has proved its practical efficiency.

This approach based on data analysis technologies (much more refined
than in the univariate case) can be also used in multivariate statistics.

Rejection of outliers in the multivariate case. Rejection of multiple out-
liers is much more complicated than in the univariate case for a number of
related reasons:

• first, multivariate outliers can distort not only location and scale, but
also the orientation and shape of the point-cloud in the space;

• second, it is difficult to figure out which type the outlier belongs to;

• third, these types are numerous (Rocke and Woodruff, 1996).

Thus, it might prove to be impossible to develop just one procedure which
would be a reliable guard against outliers. There must be a variety of proce-
dures for different types of outliers.

There are various rejection methods with the multivariate data. They are
based on using discriminant, component, factor analysis, canonical correlation
analysis, projection pursuit, etc. (Atkinson, 1985; Atkinson, 1994; Atkinson
and Mulira, 1993; Atkinson and Riani, 2000; Barnett and Lewis, 1978; Davies
and Gather, 1993; Hadi, 1992; Hawkins, 1980; Hawkins, 1993a; Rocke and
Woodruff, 1996; Rousseeuw and Leroy, 1987; Rousseeuw and van Zomeren,
1990).

Now we describe the main approaches in this area.
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In the multivariate space, the classical procedure of rejection is based on
the use of the Mahalanobis distances d2

i between the points xi in Rm and the
sample mean x = n−1∑xi for the data x1, …, xn:

d2
i = (xi − x)TS−1(xi − x), i = 1, 2, …, n, (7.5.3)

where xi = (xi1, …, xim)T and S is the sample covariance matrix

S =
1
n

n∑

i=1

(xi − x)(xi − x)T .

The evaluated distances are ranked

d2
(1) ≤ d2

(2) ≤ · · · ≤ d2
(n),

and, obviously, those observations with greater Mahalanobis distances are the
candidates for outliers. Like in the univariate case, one can construct the
rejection test

d2
(n) < λα ,

where the bound λα is determined from the condition

P(d2
(n) < λα ) = 1 − α.

Recall that the distribution of the Mahalanobis statistic is χ2.
In this case, the use of the classical sample mean and covariance matrix

destroys the rejection procedure, if there are gross errors in the data because
of the great sensitivity of these classical estimators to outliers.

This effect masking outliers is illustrated in Fig. 7.6 where the bulk of
the data has a clearly expressed elliptical shape, but its classical estimator is
strongly distorted and close to the circular due to the influence of four outliers
marked by crosses and stars. This circular shape evidently masks two outliers
(crosses) of four.

Thus the problem of rejecting outliers in the multivariate space obviously
requires robust estimation of multivariate location and shape. The latter
problem is one of the most difficult problems in robust statistics (Campbell,
1980; Campbell, 1982; Davies, 1987; Devlin et al., 1981; Donoho, 1982; Hampel
et al., 1986; Huber, 1981; Lopuhaä, 1989; Maronna, 1976; Meshalkin, 1971;
Rocke and Woodruff, 1993; Rousseeuw, 1985; Rousseeuw and Leroy, 1987;
Shurygin, 1995; Shurygin, 2000; Stahel, 1981; Tyler, 1983; Tyler, 1991).

The multivariate location and shape problem is more difficult than, say, the
problems of one-dimensional location and regression with error-free carriers.
It is established that most known methods fail if the fraction of outliers is larger
than 1/(m + 1), where m is the dimension of the data (Donoho, 1982; Maronna,
1976; Stahel, 1981). This means that in high dimension, a very small fraction
of outliers can completely destroy an estimation procedure.
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Figure 7.6. The masking effect of a classical estimator under contamination

It is very desirable to obtain location and shape estimators that are affine
equivariant. A shape estimator Ĉn is said to be affine equivariant if and only
if for any vector b ∈ Rm and any nonsingular m × m matrix A

Ĉn(Ax + b) = AĈn(x)AT .

These requirements mean that measurement scales will change the estimators
appropriately under translation and rotation.

REMARK 7.5.1. The Mahalanobis distance and its robust modifications being
affine equivariant are widely used for constructing affine equivariant methods
and algorithms of estimation of multivariate location and shape.

Now we just list the main approaches for finding robust estimators of
multivariate location and shape, and thus for detection of outliers.

Rousseeuw proposes the minimum volume ellipsoid and minimum covari-
ance determinant combinatorial estimators (Hampel et al., 1986; Rousseeuw
and Leroy, 1987), which are realized with the use of random search (Rousseeuw
and Leroy, 1987), steepest descent (Hawkins, 1993a; Hawkins, 1993b), and
heuristic optimization technique (Rocke and Woodruff, 1994).

Maximum likelihood and M-estimators (Campbell, 1980; Campbell, 1982;
Huber, 1981; Lopuhaä, 1992; Maronna, 1976; Meshalkin, 1971; Shurygin,
1994a; Shurygin, 1995; Tyler, 1983; Tyler, 1991), S-estimators (Davies, 1987;
Hampel et al., 1986; Lopuhaä, 1989; Rousseeuw and Leroy, 1987) are itera-
tively computed from a good starting point (Rocke and Woodruff, 1993).

In (Gnanadesikan and Kettenring, 1972), the multivariate trimming it-
erative algorithm was suggested for elliptical rejection of outliers based on
robustified versions of the Mahalanobis distance.
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In (Maronna, 1976), iteratively computed weights were used depending on
the Mahalanobis distances of observations from the robust location estimator
for smooth eliminating of outliers.

Working independently, in (Atkinson, 1994; Hadi, 1992) they proposed the
forward search (FORWARD) algorithm, which starts with a small randomly
selected subset of observations intended to be outlier-free.

In (Rocke and Woodruff, 1996), the nature of multivariate outliers was
analyzed; they found that outliers with the same shape as the main data are
the hardest to find, and that the more compact the outliers, the harder they
are to find. The proposed hybrid algorithm (Rocke and Woodruff, 1996) that
uses search techniques from both (Hawkins, 1993a) and (Atkinson and Muli-
ra, 1993), as well as from their own previous research (Rocke and Woodruff,
1993; Rocke and Woodruff, 1994), proves to be one of the best methods for
multivariate outlier detection.

7.5.2. Algorithms for rejection of outliers in bivariate case
In the context of our study, we regard the problem of rejection of outliers to be
subordinate to the problem of robust estimation of the correlation coefficient,
so we are mainly interested in sufficiently simple and efficient procedures
of rejection in the bivariate case, where, in general, there always exists a
possibility of visual verification of the results. Moreover, this possibility might
be used in the case with m > 2, since one can never rely entirely on formal
methods in the multivariate space. We also suppose the elliptical shapes of
the bulk of the data and outliers of the gross error nature.

All proposals can be separated into two groups: the algorithms for rejection
when the expected fraction of outliers is assumed known, and when it is un-
known. Obviously, the additional information about outliers makes rejection
easier.

Rejection in the principal axes with the rectangular rule (RCT). Giv-
en a sample (x1, y1), …, (xn, yn), use the standardized variables

x̃i =
xi − med x

MAD x
, ỹi =

yi − med y
MAD y

, i = 1, …, n. (7.5.4)

Then transform (7.5.4) to the principal coordinates u and v

ui =
x̃√
2

+
ỹ√
2

, vi =
x̃√
2

+
ỹ√
2

, i = 1, …, n, (7.5.5)

and trim all points (ui, vi) for which

|ui| > 5 MAD u or |vi| > 5 MAD v. (7.5.6)
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Rejection in the principal axes with the ellipse rule (ELL). Assume
that the main data is normal or approximately normal, and the fraction of
outliers in the data is known. Then the contours of the bivariate distribution
density have the elliptical form, and we can use this for identifying outliers.

The steps of the ELL algorithm are as follows:

(i) trim the points (ui, vi) with the ellipse
(

ui − med u
k MAD u

)2
+
(

vi − med u
k MAD v

)2
= 1,

where k is determined iteratively so that the given fraction of the data
should lie inside the ellipse (‘good’ data);

(ii) begin with the initial estimators of location m∗ = (x, y) and shape S∗ for
the ‘good’ data; calculate the Mahalanobis distances d2

i for all of the data
i = 1, …, n;

(iii) find the sample median d2
med;

(iv) trim all the points with d2
i > d2

med, i.e., [n/2] − 1 points;

(v) evaluate the sample covariance matrix Smed for the remained data;

(vi) re-calculate all the Mahalanobis distances with Smed;

(vii) finally, trim the given fraction of points with the largest Mahalanobis
distances.

Adaptive rejection with the maximal increment of the Mahalanobis
distances (AD). In this case, we assume the fraction of outliers unknown.
This algorithm may be referred as to the FORWARD algorithm. First, the
outlier-free half of the data is determined, and then it is supplemented with
the points from the other half until the maximal increment of the Mahalanobis
distances is attained.

The steps of the AD algorithm are as follows:

(i) trim the points (ui, vi) lying outside of the ellipse
(

ui − med u
5 MAD u

)2
+
(

vi − med u
5 MAD v

)2
= 1;

(ii) repeat steps (ii)–(vi) of the ELL algorithm;

(iii) find l∗ such that

l∗ = arg max
l≤n

{d2
(l) : d2

(l) < med d2 + 5 MAD d2};
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(iv) calculate the successive increments of the Mahalanobis distances start-
ing from d2

(k∗):

d2
(k∗+1) − d2

(k∗), d2
(k∗+2) − d2

(k∗+1), …, d2
(l∗) − d2

(l∗−1),

where k∗ = [n/2] + 1;

(v) find the maximum of these increments, and let it be attained at d2
(s∗+1) −

d2
(s∗), where k∗ ≤ s∗ ≤ l∗;

(vi) trim (n − s∗) points with the largest Mahalanobis distances.

The idea of this adaptive procedure seems natural: the rejection bound
is constructed with the robustified Mahalanobis distances, and it is identified
with the maximal jump of these distances among the plausible candidates for
outliers.

7.5.3. Modeling two-stage robust estimators
In this subsection we represent the results of Monte Carlo studies of the above-
introduced two-stage robust estimators in normal and contaminated samples.

The principle of a two-stage estimator of the correlation coefficient is the
following: first, using some rule of rejection, trim the outliers, and, second,
apply the classical sample correlation coefficient to the rest of the data.

Now we list all two-stage estimators, which were examined in our study:

rRCT based on rejection with the rectangle rule;

rELL based on rejection with the ellipse rule;

rAD based on adaptive rejection;

rMVT based on rejection with the method of the ellipsoidal multivariate trim-
ming (Gnanadesikan and Kettenring, 1972; Devlin et al., 1975).

These estimators have been examined under the ε-contaminated bivariate
normal distribution in samples n = 20, 30, 60. We give some results for the bi-
variate normal density N (0, 0, 1, 1, ρ) and ε-contaminated density with small,
medium, and large values of the correlation coefficient.

From Tables 7.10 and 7.11 it follows that the best two-stage estimators
rMVT and rAD are close in their performance to the best direct robust estimators
rMAD and rmed (see Tables 7.1–7.3). Similar results have been obtained in
samples n = 30 and n = 60.
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Table 7.10. n = 20: expectations and variances of estimators for normal
distribution

rRCT rELL rMVT rAD
ρ = 0.0 0.00 0.00 0.00 0.00

0.08 0.05 0.11 0.09
ρ = 0.5 0.23 0.38 0.46 0.44

0.07 0.05 0.07 0.07
ρ = 0.9 0.52 0.85 0.87 0.86

0.08 0.01 0.01 0.01

Table 7.11. n = 20: expectations and variances of estimators under ε-
contaminated normal distributions with ε = 0.1, ρ ′ = −0.9,
k = 10

rRCT rELL rMVT rAD
ρ = 0.0 −0.22 −0.01 −0.08 −0.02

0.21 0.06 0.10 0.09
ρ = 0.5 0.11 0.38 0.41 0.43

0.42 0.06 0.08 0.07
ρ = 0.9 0.70 0.83 0.84 0.87

0.26 0.02 0.04 0.01

7.5.4. Some notes on robust estimation of correlation matrices
The estimation of correlation and covariance matrices, and also of their eigen-
values and eigenvectors, is one of the most important phases in the solution of
various problems in multivariate statistical analysis. However, classical statis-
tical estimators of correlation matrices and their characteristics, for instance,
the sample correlation matrix, are very sensitive and unstable in presence of
outliers in the data (Devlin et al., 1981; Huber, 1981; Rousseeuw and Leroy,
1987).

The direct way to construct a robust estimator of the correlation matrix is to
use good robust estimators of the matrix elements, especially those described
in Section 7.4, for example, the median correlation coefficient rmed. However,
this approach does not guarantee that a positive definite matrix is obtained.
Special tricks ensuring this are required (Devlin et al., 1981; Huber, 1981).

Another, affine equivariant, approach is based on estimation of the matrix
as a whole, where the property of positive definiteness is satisfied primarily
(Huber, 1981; Rousseeuw and Leroy, 1987). Within this approach, it is possible
to select the group of perspective methods providing preliminary rejection of
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outliers with subsequent use of the classical sample correlation matrix.
In this subsection, we directly extend the bivariate rejection procedures

RCT and ELL to the multivariate case successively applying them in each two-
dimensional cut of the multivariate space. The adaptive procedure of rejection
does not differ much from its bivariate analog; only at the first step, crude
rejection is performed using the ELL rule with k = 5 (see Subsection 7.5.2), and
as before, the adaptive phase of the procedure is determined by the maximal
jump of the robustified Mahalanobis distances.

Let x1, …, xn be a sample of the m-dimensional data

xi = (xi1, …, xim)T , i = 1, …, n.

The above-mentioned bivariate rejection procedures are performed in each
two-dimensional cut:

(x1k, x1l), (x2k, x2l), …, (xnk, xnl)), k, l = 1, 2, …, m; k < l.

The following estimators of a correlation matrix are studied:

R the sample correlation matrix;

RMVT the estimator based on the ellipsoidal multivariate trimming (Devlin et
al., 1981);

RAD the two-stage estimator with preliminary rejection of outliers by the
adaptive algorithm and subsequent applying the sample correlation ma-
trix to the rest of the data;

Rmed the estimator based on the element-wise median correlation coefficients.

These estimators are examined in samples n = 30 and n = 50 (the number
of trials is 200) under the contamination model with various forms of mixture
of normal distributions, symmetric and asymmetric, for instance, under the
spherically symmetric contamination

SCN(0, P) = (1 − ε)NOR(0, P) + εNOR(0, k2E), (7.5.7)

where 0 ≤ ε < 0. 5, k > 1, E is a unity matrix, and the estimated 6×6 correlation
matrix P is of the form

P =
(

P1 0
0 P2

)
,

where

P1 =




1 0.95 0.3
1 0. 1

1


 , P2 =




1 −0.499 −0.499
1 −0.499

1


 .
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Table 7.12. n = 50; expectations of eigenvalues: upper with normal;
middle with spherical contamination (ε = 0.1, k = 3); lower
with asymmetric contamination (ε = 0.1)

λ 2.029 1.499 1.499 0.943 0.028 0.002
2.23 1.62 1.30 0.82 0.03 0.002

R 1.99 1.48 1.13 0.80 0.43 0.17
2.22 1.61 1.30 0.82 0.03 0.02
2.29 1.63 1.26 0.79 0.03 0.002

RMVT 2.29 1.64 1.27 0.79 0.05 0.04
2.28 1.63 1.25 0.80 0.03 0.01
2.26 1.63 1.27 0.80 0.03 0.001

RAD 2.32 1.62 1.25 0.78 0.03 0.001
2.26 1.62 1.27 0.80 0.03 0.01
2.33 1.64 1.22 0.77 0.05 −0.01

Rmed 1.96 1.66 1.39 0.84 0.10 0.03
2.32 1.64 1.21 0.77 0.12 −0.05

Its eigenvalues

λ1 = 2.029, λ2 = λ3 = 1.499, λ4 = 0.943, λ5 = 0.028, λ6 = 0.002

are the main targets for estimation. The particular structure of the estimated
matrix P has some attractive features: a moderate dimension, a rather wide
range of correlation coefficients and eigenvalues, for instance, it is nearly
degenerate, and, finally, it is still simple (Devlin et al., 1981).

Also, the asymmetric contamination model is used:

ACN(0, P) = (1 − ε)NOR(0, P) + εNOR(m, P), (7.5.8)

where m = 0.536 a6 and a6 = (1/
√

3)(0 0 0 1 1 1)T is the eigenvector corre-
sponding to the minimum (nearly zero) eigenvalue. The factor 0.536 is about
12 standard deviations along the direction a6, so the contamination is confined
to the last principal component of P. Such contamination is designed to mask
the near singularity in P (Devlin et al., 1981).

In these contamination models, the results of modeling for the above col-
lection of estimators are given in Table 7.12.

The obtained results partly repeat those of the thorough study (Devlin et
al., 1981) of the latter and related problems (robust estimation of the elements
of the correlation matrix, its eigenvalues and eigenvectors) with a rich collec-
tion of methods under variety of models. In particular, the MVT estimator
proved to be one of the best among the examined estimators. In our study, it is
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found out that the proposed two-stage estimator RAD and the RMVT are rather
close in their quality.

We confirm that the sample correlation matrix R is a very poor estimator
under contamination. The spherical contamination of the data causes the
‘regularization’ effect on the estimated matrix P and, certainly, distorts its
nearly degenerate true structure. The use of R cannot reveal this effect. The
direct element-wise estimator Rmed is hardly better since it produces negative
eigenvalues with estimated positive definite matrices. Thus, both of these
estimators are unacceptable.

The MVT and two-stage algorithm RAD with preliminary rejection of out-
liers are the best among the considered but the biases of the estimators of
eigenvalues are too large.

However, we observe that, at present, there are no reliable good robust
estimators of the correlation matrix yet, and the problem of their design is still
open.
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8

Computation and data analysis
technologies

In this chapter we describe computational algorithms for robust procedures
of estimation of the data characteristics of means (central tendency), spread,
association, extreme values, and distributions, which have been derived in
preceding sections. The minimax estimators for location (univariate and mul-
tivariate) and regression are, naturally, included in the family of adaptive (in
the Hogg sense) estimators which thereby become well-grounded.

Moreover, we propose some new data analysis algorithms independent of
the previous contents but important for applications, in particular, for esti-
mating data distribution and quantile functions.

Much attention is paid to the finite sample behavior of estimators, which
is examined by Monte Carlo.

8.1. Introductory remarks on computation
8.1.1. Computation of M-estimators by the Newton method
Here we briefly describe the main computational methods for the M-estimators
defined by the solution of the minimization problem

θ̂n = arg min
θ

n∑

i=1

ρ(xi − θ ), (8.1.1)

or by the solution of the gradient equation

n∑

i=1

ψ(xi − θ̂n) = 0. (8.1.2)

In the first case, direct methods of optimization may be applied, for ex-
ample, the steepest descent procedure (Huber, 1964), and in the second case,

221
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the Newton iteration scheme with the sample median as the initial estimator
(Huber, 1964; Dutter, 1977; Arthanari and Dodge, 1981; Huber, 1981).

In order to provide scale equivariancy for the Huber M-estimators, one
should solve the equation

n∑

i=1

ψ

(
xi − θ̂n

Sn

)
= 0, (8.1.3)

where Sn is some robust estimator of scale, for example, the median absolute
deviation.

Newton method. It is based on the Lagrange expansion of the left-hand side
of (8.1.2) in a neighborhood of the initial estimator θ̂ (0)

n

n∑

i=1

ψ

(
xi − θ̂n

Sn

)
=

n∑

i=1

ψ

(
xi − θ̂ (0)

n

Sn

)
− (θ̂n − θ̂ (0)

n )

×
1

Sn

n∑

i=1

ψ ′
(

xi − θ̂ (0)
n − ξ (θ̂n − θ̂ (0)

n )
Sn

)
, 0 < ξ < 1. (8.1.4)

Setting ξ = 0 in (8.1.4), we obtain the iterative procedure

θ̂ (k+1)
n = θ̂ (k)

n + Sn

n∑

i=1

ψ

(
xi − θ̂ (k)

n

Sn

)

n∑

i=1

ψ ′
(

xi − θ̂ (k)
n

Sn

) , (8.1.5)

where θ̂ (0)
n = med x and Sn = med |x − med x|. Here σ is supposed to be a

nuisance parameter.
Often the one-step version of the Newton method is preferable as a simple

and rather efficient variant. The denominator of (8.1.5) can be replaced by
a constant value: for 0 ≤ ψ ′ ≤ 1, any constant denominator greater than
1/2 provides convergence of iteration process (Huber, 1981). The following
algorithm is an example of such a procedure:

θ̂ (k+1)
n = θ̂ (k)

n +
Sn

n

n∑

i=1

ψ

(
xi − θ̂ (k)

n

Sn

)
.

Given a piece-wise linear score function ψ, iterations (8.1.5) tend to the true
solution of equation (8.1.3) in a finite number of steps.
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In the case where the scale parameter σ is of independent interest, the
simultaneous equations for M-estimators of location and scale can be used:

n∑

i=1

ψ

(
xi − θ̂n

Sn

)
= 0,

n∑

i=1

χ

(
xi − θ̂n

Sn

)
= 0. (8.1.6)

Numerical solution of (8.1.6) is associated with greater difficulties than
that of (8.1.3) with preliminary estimation of scale. In general, these estima-
tors do not possess minimax properties.

In this research, difficulties of simultaneous estimation of location and
scale are overcome with the use of scale equivariant Lp-estimators, and in
what follows we will describe numerical methods for their evaluation.

The above methods for computation of univariate estimators of location
and scale can be naturally extended to the problems of calculation of re-
gression parameters and multivariate location (Huber, 1981; Hampel et al.,
1986; Rousseeuw and Leroy, 1987).

Taking into account the character of minimax solutions obtained earlier,
we now consider the method of re-weighted least squares (RWLS) (Holland and
Welsch, 1977; Arthanari and Dodge, 1981; Mudrov and Kushko, 1983; Green,
1984), which allows to find the solution of an optimization problem using well
elaborated methods of least squares.

8.1.2. Method of re-weighted least squares
In (Weiszfeld, 1937), the re-weighted least squares were first suggested for
minimization of the sum of distances (for details, see (Green, 1984)).

We represent this method as applied to computing Lp-estimators of the
location parameter

θ̂n = arg min
θ

n∑

i=1

|xi − θ |p, p ≥ 1. (8.1.7)

The goal function is transformed as

Jp(θ ) =
n∑

i=1

(xi − θ )2

|xi − θ |2−p =
n∑

i=1

wi(xi − θ )2, (8.1.8)

where

wi = wi(θ ) =
1

|xi − θ |2−p . (8.1.9)
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Figure 8.1. Approximation to Jp(θ ) by Jw(θ )

Formula (8.1.8) is the basis for the RWLS iteration scheme

θ̂ (k+1)
n = arg min

θ

n∑

i=1

wi(θ̂ (k)
n )(xi − θ )2, (8.1.10)

where the LS estimator is chosen as the initial point: θ̂ (0)
n = θ̂LS.

An explicit expression for the estimator of the location parameter is of the
form

θ̂ (k+1)
n =

∑
w(k)

i xi∑
w(k)

i
.

The sequence θ̂ (0)
n , θ̂ (1)

n , …, θ̂ (k)
n , converges to the solution of problem (8.1.3)

if 1 ≤ p ≤ 2. This assertion is illustrated by Fig. 8.1: the graph of Jw(θ ) =∑
wi(xi − θ )2 is inscribed in the graph of Jp(θ ) for p ≤ 2, and hence any θ

reducing the value of Jw(θ ) thus reduces the value of Jp(θ ).

REMARK 8.1.1. The RWLS procedure can be directly rewritten for estimation
of multivariate location and regression.

While realizing this method, it may occur that the denominator of (8.1.9)
becomes zero for some i. To overcome this difficulty, we introduce the following
goal function, instead of Jp(θ ):

J̃(θ ) =
n∑

i=1

ρ(xi − θ ), (8.1.11)

where

ρ(u) =

{
|u|p, |u| ≥ α,
α
2 + u2

2α , |u| < α.
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For sufficiently small α, the minimum of J̃(θ ) can be made arbitrarily close to
the minimum of Jp(θ ).

Summarizing the above, we can say that the RWLS method makes evalua-
tion of the LAV, LS, and intermediate between them Lp-estimators (1 < p < 2)
particular cases of a general computational scheme.

8.1.3. Computation of L1-estimators
Besides the RWLS method, L1-estimators can be evaluated by the methods
of linear programming (Barrodale and Roberts, 1978; Armstrong et al., 1979;
Abdelmalek, 1980; Arthanari and Dodge, 1981; Gentle et al., 1988; Fedorov,
1994).

Now we consider one of the most common schemes of reducing the L1-
norm minimization problem to a linear programming one (Dodge, 1987; Gentle,
1977; Gentle et al., 1988).

The minimization problem in the L1-norm

minimize
n∑

i=1

∣∣∣∣∣∣
xi −

m∑

j=1

θjφij

∣∣∣∣∣∣
(8.1.12)

is equivalent to the problem of linear programming

minimize
n∑

i=1

(ui + vi) (8.1.13)

under the condition

xi −
m∑

j=1

θjφij = ui − vi, i = 1, 2, …, n;

θj = θ (1)
j − θ (2)

j , j = 1, 2, …, m; (8.1.14)

ui ≥ 0, vi ≥ 0, i = 1, 2, …, n;

θ (1)
j ≥ 0, θ (2)

j ≥ 0, j = 1, 2, …, m.

As in any particular application of linear programming technique, it is
always possible to simplify the general simplex-method procedure using pecu-
liarities of problem (8.1.13) and (8.1.14) (see the above references).

8.2. Adaptive robust procedures
8.2.1. Preliminaries
Now we consider adaptive estimators which need simultaneous estimation of
the data distribution function F(x) or its characteristics (see also the surveys
(Hogg, 1974; Ershov, 1979)).
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Adaptive estimation of location and scale. In (Stone, 1975), adaptive
estimators were suggested for the location parameter based on the method of
maximum likelihood. Given a sample x1, x2, …, xn, a nonparametric estimator
ƒ̂(x) of the distribution density ƒ(x) is constructed and then this estimator
is used in the ML equation, which is solved by the Newton method. The
asymptotic normality and efficiency of this procedure is proved for a wide
class of distributions F(x). The Monte Carlo results of its comparison with the
sample mean, sample median, and 0.25-trimmed mean are given for sample
sizes n = 40 and the number of trials M = 3000. The weak point of the
proposed procedure is its computational complexity, which is not compensated
by its greater efficiency as compared with more simple estimators, for example,
with the 0.25-trimmed mean.

Adaptive asymptotically efficient L- and R-estimators of location and scale
are studied in (Bhattacharya, 1967; Beran, 1974; Sacks, 1975; van Eeden,
1970; Weiss and Wolfowitz, 1970; Wolfowitz, 1974).

Observe that estimation of a distribution function or its functions is a com-
plicated problem, so the related algorithms are cumbersome in computation.
Besides, the obtained estimators, as a rule, converge slowly. Thus it is natural
to construct more crude but more simple and fast estimation procedures.

In (Jaeckel, 1971b), an adaptive procedure was introduced to find the pa-
rameter α in α-trimmed means and L-estimators with the best weight function
over a finite collection of distributions.

In (Hogg, 1974), the following approach was applied to designing simple
adaptive robust estimators. Let a distribution F(x) belong to some finite collec-
tion of distributions F1, …, Fk, and let θ̂j be, in some sense, a ‘good’ estimator of
the location parameter for the distribution Fj, j = 1, …, k. Consider the linear
combination of such estimators

θ̂ =
k∑

j=1

ajθ̂j,
k∑

j=1

aj = 1, aj ≥ 0.

Hogg suggested to determine the shape of the underlying distribution F(x)
by the sample x1, x2, …, xn using some simple statistics, and then to assign a
greater weight aj to a more plausible distribution among Fj, j = 1, …, k.

As an example of the above described estimator, Hogg proposes the esti-
mation procedure θ̂n where the choice of a particular estimator in it depends
on the comparative weight of distribution tails determined by the value of the
sample kurtosis en, e = E(X − EX)4/E2(X − EX)2 − 3:

θ̂n =





x0.25, en < 2,
x̄, 2 ≤ en < 4,
x̄0.25, 4 ≤ en ≤ 5.5,
med x, en > 5.5,
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where x0.25 stands for the mean of 25% of the minimum and 25% of the max-
imum sample order statistics, and x̄α is the trimmed mean (see Section 1.2).
The properties of this adaptive estimator are studied by Monte Carlo, and
these studies show its rather high efficiency over a wide class of distributions
including the uniform and Cauchy.

Hogg and other authors (Hogg, 1972; Hogg, 1974; Randles and Hogg,
1973; Randles et al., 1973) introduce more simple and convenient than kur-
tosis estimators for distribution tails, in particular, the measures based on
distribution subranges, as [F−1(0.975) − F−1(0.025)]/[F−1(0.75) − F−1(0.25)]
(Crow and Siddiqui, 1967).

Estimators designed on the basis of similar statistics are simple and simul-
taneously can possess good characteristics over a wide class of distributions,
in other words, they follow the ‘spirit’ of data analysis.

Adaptive estimation of regression. Under the conditions of the lack of
information about the data distribution, in (Hogg, 1974) the following approach
was proposed:

• Determine a preliminary robust estimator θ̂θθ of the vector θθθ of regression
parameters.

• Evaluate the residuals and determine the type of distribution tails for
these residuals.

• Construct the final estimator using the information about distribution
tails.

In what follows, we use some elements of the above approach for construc-
tion of adaptive robust estimators of location and regression based on the
precise minimax solutions obtained in Chapter 3 and 5.

8.2.2. Adaptive robust estimation of the location parameter
Considering the problems of designing robust minimax estimators in Sec-
tion 3.2, we have assumed that a priori information about the parameters
of distribution classes is available. However, in practice of estimation these
parameters are usually unknown and can be determined while processing the
data.

To improve efficiency of estimation procedures, it seems useful to develop
estimators that can adapt themselves to the changes in the data as the new
data are being involved into processing. For small samples such an approach
is heuristic and the simplest for the examination by Monte Carlo technique.

In the class F̃ 12, the minimax robust estimator is based on the scale
equivariant Lp-norm estimators (3.2.32) (see Subsection 3.2.5), where, instead
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of a priori limiting characteristics of the class σ̄2 and a2, we use their estimators
̂̄σ2

and â2.
For estimating σ̄2 we can use, for example, the upper confidence limit for

the estimator of variance, and for 1/(2a) the lower confidence limit for the
nonparametric estimator of a distribution density at the center of symmetry:

ƒ̂(Med) ≤ ƒ̂(Med).

Taking into account the form of the middle branch of the minimax estimator
(3.2.32) (1 < p < 2), where both restrictions hold as equalities, we choose the
estimators of variance and density as those of characteristics of the class F̃ 12.
For variance, this is the customary sample variance centered by the sample
median instead of the sample mean

̂̄σ2
=

1
n

n∑

i=1

(xi − med x)2. (8.2.1)

To avoid difficulties of nonparametric estimation of the distribution density,
we estimate the density at its center of symmetry using the following obvious
considerations.

Since the ith order statistic x(i) is a consistent estimator of the distribution
quantile of level i/(n + 1), we have the following approximate relations for the
central order statistics x(k) and x(k+1) (n = 2k or n = 2k + 1):

F(x(k)) ≅
k

n + 1
, F(x(k+1)) ≅

k + 1
n + 1

,

and

F(x(k+1)) − F(x(k)) =
1

n + 1
. (8.2.2)

Furthermore,

F(x(k+1)) − F(x(k)) = ƒ(ξ )(x(k+1) − x(k)), x(k) < ξ < x(k+1). (8.2.3)

Then from (8.2.2) and (8.2.3) it follows that

ƒ̂(Med) =
1

(n + 1)(x(k+1) − x(k))
,

â =
1

2ƒ̂(Med)
=

(n + 1)(x(k+1) − x(k))
2

. (8.2.4)

The behavior of the adaptive Lp-estimator θ̂A is studied in samples n =
20 (10) 100 and 100 (100) 1000 by Monte Carlo technique.
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Figure 8.2. Relative efficiency under symmetric gross errors for ε = 0. 2; n = 20

The robustness properties of θ̂A are examined in the model of gross errors
with symmetric contamination

ƒ(x) = (1 − ε)N (x; 0, 1) + εN (x; 0, k), 0 ≤ ε < 1, k > 1, (8.2.5)

and with asymmetric contamination

ƒ(x) = (1 − ε)N (x; 0, 1) + εN (x; µ, 1). (8.2.6)

The adaptive properties of this algorithm are studied for the mixture of the
normal and Laplace distributions

ƒ(x) = (1 − ε)N (x; 0, 1) + εL(x; 0, 1/
√

2), 0 ≤ ε < 1. (8.2.7)

The parameters of model (8.2.7) are chosen to provide the constancy of
expectation and variance: this allows us to examine the dependence of esti-
mation efficiency on the distribution shape while the parameter ε varies from
zero to one.

All the Lp-estimators are evaluated by the RWLS method with the initial
LS estimator. The results of modeling are given in Figures 8.2–8.6.

From Figures 8.2–8.4 it follows that the adaptive estimator θ̂A of the loca-
tion parameter possesses high robustness properties: it practically coincides
with the sample median for the high level of contamination (k exceeds 4–5) and
considerably dominates over the sample mean in efficiency in this case. For
smaller values of k, the adaptive estimator is more efficient than the sample
median.

For small values of k, this algorithm is either a little inferior to the sample
mean in efficiency (especially in small samples), or practically coincides with it.
Starting from the values k > 3 and ε equal to 0.1–0.2, the adaptive estimator
is superior to the sample mean in efficiency.
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Figure 8.3. Relative efficiency under symmetric gross errors for ε = 0. 2; n =
1000

Figure 8.4. Expectations under asymmetric gross errors for ε = 0. 2; n = 20

There are some peculiarities of the dependence of the adaptive estimator
on the sample size n, this deserves a separate attention.

Since the estimators ̂̄σ2
and â of the parameters of the class F̃ 12 are

consistent, the adaptive estimator θ̂A tends in probability to the solution of the
minimax problem in this class as n → ∞. This is also confirmed by modeling:
for n > 200 the behavior of θ̂A practically coincides with asymptotics (see
Fig. 8.5).

The adaptive properties of this algorithm begin to reveal themselves from
n > 100 (see Fig. 8.6) when the estimator θ̂A becomes ‘tuned up’ to the distri-
bution shape: under the normal and Laplace distributions, it demonstrates
nearly complete similarity in efficiency with the sample mean and sample me-
dian and preserves rather high efficiency in the intermediate zone between
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Figure 8.5. Dependence of the relative efficiency on the sample size n under
the normal distribution

Figure 8.6. Relative efficiency under the mixture of the normal and Laplace
distributions

them.
For small samples, the robustness properties dominate over the adaptive

(see Fig. 8.2 and 8.4): this effect can be explained by the bias of the sample
distribution of the switching statistic ̂̄σ2

/â2 with small n: its values determine
the choice of the appropriate branch of the algorithm.

For normal samples n = 20, the distribution function of the statistic ̂̄σ2/â2 is
shown in Fig. 8.7; hence it follows that the sample mean occurs approximately
for the 10% of cases (P(̂̄σ2

/â2 < 2/π) ≅ 0.1), the sample median, for the 20% of
cases (P(̂̄σ2/â2 > 2) ≅ 0.2), and the Lp-estimators, 1 < p < 2, for the rest 70% of
cases.

For samples of size n = 100, we have the opposite situation (see Fig. 8.8):
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Figure 8.7. The distribution function of the statistic ̂̄σ2/â2 in the normal case
(n = 20)

0
1 2

0,5

1,0

F(x)

x

Figure 8.8. The distribution function of the statistic ̂̄σ2
/â2 in the normal case

(n = 20)

approximately for 45% of cases, the sample mean branch of the adaptive esti-
mator is realized, whereas the sample median occurs only for 5%.

Fig. 8.9 presents the dependence of the average value of the parameter p
on the sample size n observed in our experiment (see Fig. 8.4). Its form also
confirms the above mentioned peculiarity of the adaptive estimator: in small
samples, it is close to the sample median, in large samples, it adaptively follows
the true distribution law.

While processing small samples, we observe the high level of a priori un-
certainty: with sufficiently high confidence, the data distribution law can be
anyone from a reasonably chosen class of distributions. For instance, using
classical goodness-of-fit tests, it is practically impossible to verify the true dis-
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Figure 8.9. Dependence of the average value of the parameter p in the Lp-
estimators on the sample size n in the normal case

tribution law in small samples, say to distinguish the normal distribution from
the Laplace, or, what is much more unpleasant from the point of view of a user
of statistics, to distinguish the Cauchy distribution from a normal with large
variance.

We have examined the dynamics of applicability of the χ2- and Kolmogorov
tests to the problem of discrimination between the normal and Laplace distri-
butions with equal expectations and variances. Fig. 8.10 shows dependence of
the power of the χ2-test on the sample size for this problem. It follows from
this graph that, in small samples (n < 60) approximately in half of cases, the
null hypothesis on the goodness-of-fit of the normal and Laplace distributions
is accepted. Furthermore, with n increasing, the power decreases and from
n greater than 200–300 the null hypothesis is surely rejected. The similar
dependences have been modeled for the Kolmogorov test and for the normal
and Cauchy distributions.

REMARK 8.2.1. The above results give an additional argument for the use of
robust statistics, in particular for small samples.

Finally we consider the influence of asymmetric contamination (8.2.6) on
the bias of the adaptive estimators. It can be seen from Fig. 8.4 that this es-
timator behaves differently under symmetric and asymmetric contamination.
The bias of the θ̂A is considerably smaller than that of the sample mean, it is
a little more than the bias of the sample median under moderate values of the
contamination parameter µ, and it has almost the same bias as the sample
median under large values of µ. In this case, the adaptive estimator has a
bounded bias as the bias of the sample median.
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Figure 8.10. The power of the χ2-test in the problem of discrimination between
the normal and Laplace distributions

8.2.3. Adaptive robust estimation of the multivariate location
parameter

Now we extend the above adaptive approach to the problem of minimax ro-
bust estimation of multivariate location in the class of spherically symmetric
exponential-power distributions described in Section 3.4.4.

Consider the following adaptive algorithm called the ARML-estimator:

• Choose the initial L1-norm estimator for θθθ

θ̂θθL1 = arg min
θθθ

n∑

i=1

ri, p ≥ 1, ri =




m∑

j=1

(xij − θj)2




1/2

.

• Evaluate the residuals

êi = xi − θ̂θθ L1 , i = 1, …, n.

• Evaluate the estimators of the characteristics σ2 and a of the class F 12q

σ̂
2

=
1

nm

n∑

i=1

r̂2
i , ri = |ei|, i = 1, …, n; â =

π1/2(n + 1)1/mr̂(1)

Γ1/m(m/2)
,

where r(1) is the minimum order statistic of the sample r1, …, rn.

• Use the minimax Lp-norm estimator with p = q∗ of Section 3.2 with the

estimators â and σ̂
2

as the characteristics of the class F 12q.
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Table 8.1. Relative efficiency of the ARML, L2 and L1-norm estimators under
contamination: ε = 0. 1, n = 20 (left), n = 100 (right)

k 1 2 3 4 5 k 1 2 3 4 5
θ̂θθ A 0.80 0.84 0.89 0.92 0.95 θ̂θθA 0.96 0.94 0.90 0.90 0.93
L2 1.00 0.92 0.67 0.40 0.30 L2 1.00 0.94 0.70 0.42 0.31
L1 0.70 0.76 0.83 0.88 0.93 L1 0.73 0.78 0.86 0.89 0.93

We find â from the relations

P(r ≤ R) = F(R) =
2πm/2

Γ(m/2)

∫ R

0
ƒ(t)tm−1 dt,

F̂(r(1)) ≅
2πm/2

Γ(m/2)
rm

(1) ƒ̂(0), F̂(r(1)) ≅
1

n + 1
, ƒ̂(0) =

1
2âm .

The behavior of the ARML-algorithm θ̂θθA is studied by Monte Carlo in
samples n = 20 and n = 100 under the ε-contaminated spherically symmetric
bivariate normal distributions

ƒ(x, y) = (1 − ε)N (x, y; 0, 0, 1, 1, 0) + εN (x, y; 0, 0, k, k, 0).

The number of trials is 1000. The L1, L2, and the ML estimators are also
evaluated by the RWLS method using the initial LS estimator. The relative
efficiency of estimators is defined as the ratio of the absolute values of the
determinants of their sample covariance matrices.

The results of modeling are given in Table 8.1.
In general, the conclusion in the multivariate case coincides with that for

the univariate case: the ARML-estimator has proved to be better than the
L1 and L2-norm estimators both in small and large samples, especially under
heavy contamination, and in small samples the ARML-estimator is close to
the L1-norm estimator.

8.2.4. Adaptive robust estimation of regression parameters
Consider now the realization of the adaptive approach to the problem of robust
estimation of regression parameters (see Section 5.1 and Subsection 8.2.2)
called the ARLI regression (Vilchevski and Shevlyakov, 1990a):

• Choose the initial L1-estimator for θθθ

θ̂θθ L1 = arg min
θθθ

n∑

i=1

|xi −
m∑

j=1

θjφij|.
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Figure 8.11. Relative efficiency of estimators for quadratic regression under
symmetric gross errors: ε = 0. 2 (n = 20)

• Evaluate the errors estimators

êi = xi −
m∑

j=1

θ̂j L1 φij i = 1, …, n.

• Evaluate the estimators of the characteristics of the class F 12

σ̂
2

=
1

n − m

n∑

i=1

ê2
i , â = (n + 1)[ê(k+1) − ê(k)], n = 2k, n = 2k + 1.

• Use the robust minimax M-estimator (3.2.11) with the score function
ψ∗

12.

Here we directly apply the approach of Subsection 8.2.2 to the estimators
of residuals. In this case the conclusions are qualitatively the same as above
for location.

Fig. 8.11 illustrates the abovesaid for estimation of quadratic regression de-
pendence under heavy contamination. The relative efficiency of the regression
estimator is defined as RE(θ̂θθ ) = det V(θ̂θθML)/ det V(θ̂θθ ).

8.3. Smoothing quantile functions by the Bernstein
polynomials

The aim of this section is to demonstrate how smoothed variants of a sample
quantile function can be used for the adaptive estimation of the underlying
distribution and its characteristics. The idea of using precisely the quan-
tile function, the inverse to the distribution function, is clearly formulated in
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(Parzen, 1979b). The application of the Bernstein polynomials to this problem
is proposed in (Vilchevski and Shevlyakov, 1985b).

8.3.1. Preliminaries
We begin with some definitions. Let X be a random variable with the distri-
bution function F(x) = P(X ≤ x). The quantile function of X is

Q(t) = F−1(t) = inf {x  F(x) ≥ t}, 0 < t < 1. (8.3.1)

Given a sample x1, x2, …, xn from F, a natural estimator of the quantile
function is the sample quantile function

Q̃n(t) = F̃−1
n (t) = inf {x  F̃n(x) ≥ t}, 0 < t < 1, (8.3.2)

where

F̃n(x) =
1
n

n∑

i=1

I(xi ≤ x)

is the sample distribution function.
The sample quantile function can be computed explicitly in terms of the

order statistics x(1) < x(2) < … < x(n)

Q̃n(t) = x(i),
i − 1

n
< t <

i
n

.

Several smooth quantile function estimators have been proposed, the
Parzen difference kernel estimators (Parzen, 1979a)

Q̃K
n (t) =

∫ 1

0

1
hn

k
(

u − t
hn

)
Q̃n(u) du

among them, where k(⋅) is a symmetric distribution density and hn is the
bandwidth parameter. These estimators are investigated in (Falk, 1985; Yang,
1985; Sheather and Marron, 1990).

In (Vilchevski and Shevlyakov, 1985b), the Bernstein polynomial estimator
for the quantile function was introduced:

Q̂B
n (t) =

n∑

i=1

[(
n− 1

i

)
ti−1(1 − t)n−i

]
x(i), 0 ≤ t ≤ 1. (8.3.3)

Now we dwell on the general properties of the Bernstein polynomials.
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8.3.2. General properties of the Bernstein polynomials
The Bernstein polynomials (Bernstein, 1911; Lorentz, 1986) are widely used
in the theoretical studies on convergence processes of approximations to func-
tions continuous on [0, 1]. The reason is that, first, these polynomials have a
rather simple structure, and, second, they provide uniform convergence in the
Chebyshev norm

‖ƒ‖ = max
t∈[0,1]

|ƒ(t)|.

DEFINITION 8.3.1. The Bernstein polynomial being an uniform approximation
to a continuous function ƒ(t) on a closed interval [0, 1] (the Weierstrass approx-
imation theorem), is defined by

Bn(ƒ, t) =
n∑

i=0

ƒ
(

i
n

)(
n
i

)
ti(1 − t)n−i. (8.3.4)

The Bernstein polynomials possess the following basic properties:

(BP1) if a function ƒ(t) has k continuous derivatives, then B(k)
n (ƒ, t) → ƒ(k)(t)

uniformly on [0, 1];

(BP2) if a bounded function ƒ(t) has a jump discontinuity at t = c, then

Bn(ƒ, c) →
ƒ(c−) + ƒ(c+)

2
;

(BP3) for a twice continuously differentiable function ƒ(t), the asymptotic rep-
resentation

Bn(ƒ, t) = ƒ(t) +
ƒ′′(t)t(1 − t)

2n
+ o
(

1
n

)
(8.3.5)

holds true;

(BP4) if ƒ(t) is a monotonic function on [0, 1], then Bn(ƒ, t) is also monotonic on
[0, 1].

REMARK 8.3.1. The Bernstein polynomial has an obvious probabilistic inter-
pretation. Assume that t is the probability of success in a single trial of a
random event. Hence, if the ‘payoff ’ for exactly i successes is expressed as the
value of ƒ at i/n, then Bn(ƒ, t) gives the expected payoff from the n independent
trials.

The above-mentioned properties make it possible to use the Bernstein poly-
nomials for estimation of distribution laws and their characteristics (Vilchevs-
ki and Shevlyakov, 1985b; Brewer, 1986; Perez and Palacin, 1987; Sheather
and Marron, 1990; Kaigh and Cheng, 1991; Cheng, 1995).
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Now we generalize the above classical result on the asymptotic represen-
tation for the Bernstein polynomials. First we obtain the uniform convergence
of approximations by the Bernstein polynomials to analytical functions.

THEOREM 8.3.1. Let a function ƒ(t) defined on [0, 1] have a convergent Taylor
expansion at any point on this interval:

ƒ(u) =
∞∑

i=0

ƒ(i)(t)
i!

(u − t)i, u, t ∈ [0, 1].

Then for any ε > 0, there exists n∗ such that for all n ≥ n∗ the inequality

max
t∈[0,1]

|ƒ(t) − Bn(ƒ, t)| ≤ ε

is satisfied. Moreover, if max0≤t≤1 |ƒ(4)(t)| ≤ C, then a more accurate inequality
∣∣∣∣ƒ(t) +

t(1 − t)
2n

ƒ′′(t) +
t(1 − t)(1 − 2t)

6n2 ƒ′′′(t) − Bn(ƒ, t)
∣∣∣∣

≤
t2(1 − t)23(n − 2) + t(1 − t)

4!n3 C (8.3.6)

holds true.

PROOF. We represent ƒ(k/n) as the Taylor series with the Lagrange remainder

ƒ
(

k
n

)
= ƒ(t) + ƒ′(t)

(
k
n
− t
)

+
ƒ′′(t)

2!

(
k
n
− t
)2

+
ƒ′′′(t)

3!

(
k
n
− t
)3

+
ƒ′′′′(θk)

4!

(
k
n
− t
)4

, (8.3.7)

where 0 < θk < 1. From (8.3.7) it follows that the Bernstein polynomial is of
the form

Bn(ƒ, t) = ƒ(t)
n∑

i=0

(
n
i

)
ti(1 − t)n−i

+ ƒ′(t)
n∑

i=0

(
k
n
− t
)(

n
i

)
ti(1 − t)n−i

+
ƒ′′(t)

2!

n∑

i=0

(
k
n
− t
)2
(

n
i

)
ti(1 − t)n−i

+
ƒ′′′(t)

3!

n∑

i=0

(
k
n
− t
)3
(

n
i

)
ti(1 − t)n−i

+
n∑

i=0

ƒ′′′′(θk)
4!

(
k
n
− t
)4
(

n
i

)
ti(1 − t)n−i.
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Since the fourth derivative is bounded, from the latter relation it follows that
∣∣∣∣∣Bn(ƒ, t) − ƒ(t)

n∑

i=0

(
n
i

)
ti(1 − t)n−i − ƒ′(t)

n∑

i=0

(
k
n
− t
)(

n
i

)
ti(1 − t)n−i

− ƒ′′(t)
2!

n∑

i=0

(
k
n
− t
)2
(

n
i

)
ti(1 − t)n−i − ƒ′′′(t)

3!

n∑

i=0

(
k
n
− t
)3
(

n
i

)
ti(1 − t)n−i

∣∣∣∣∣

≤ C
n∑

i=0

(
k
n
− t
)4
(

n
i

)
ti(1 − t)n−i. (8.3.8)

Using rather cumbersome but obvious transformations, we obtain

n∑

i=0

(
n
i

)
ti(1 − t)n−i = 1,

n∑

i=0

(
k
n
− t
)(

n
i

)
ti(1 − t)n−i = 0,

n∑

i=0

(
k
n
− t
)2
(

n
i

)
ti(1 − t)n−i =

t(1 − t)
n

,

n∑

i=0

(
k
n
− t
)3
(

n
i

)
ti(1 − t)n−i =

t(1 − t)(1 − 2t)
n2 ,

n∑

i=0

(
k
n
− t
)4
(

n
i

)
ti(1 − t)n−i =

3(n − 2)t2(1 − t)2 + t(1 − t)
n3 .

(8.3.9)

It remains to substitute (8.3.9) into (8.3.8). �

REMARK 8.3.2. The classical asymptotic representation for the Bernstein poly-
nomials, namely (BP3), follows immediately from (8.3.6).

The proof of (BP1) can be obtained by a slight modification of the proof of
Theorem 8.3.1.

For (BP4),

B′
n(ƒ, t) =

n∑

i=0

ƒ
(

i
n

)(
n
i

)(
iti−1(1 − t)n−i − (n − i)ti(1 − t)n−i−1

)

= n
n−1∑

i=0

(
ƒ
(

i + 1
n

)
− ƒ

(
i
n

))(
n − 1

i

)
ti(1 − t)n−i−1.

Therefore, if ƒ
(

i+1
n

)
− ƒ

( i
n

)
retains its sign, so does B′

n(ƒ, t).
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8.3.3. The Bernstein polynomials for order statistics
Consider a sample x1, x2, …, xn from the distribution F(x) defined on the inter-
val [a, b] and the corresponding set of order statistics x(1), x(2), …, x(n). Introduce
the polynomial of the Bernstein type

B
[a,b]
n (t) = a(1 − t)n+1 +

n∑

i=1

x(i)

(
n + 1

i

)
ti(1 − t)n+1−i + btn+1. (8.3.10)

Let Q(t) be the quantile function (8.3.1), the inverse to F(x). Set

qn+1(t) =





a, 0 ≤ t < 1
n+1 ,

x(i), i
n+1 ≤ t < i+1

n+1 , 1 ≤ i ≤ n,
b, t ≥ 1.

Hence

B
[a,b]
n (t) = Bn+1(qn+1, t).

Obviously, the introduced function qn+1(t) is the inverse to the sample
distribution function, and qn+1(t) → Q(t) as n → ∞, that is, for finite n, qn+1(t)
is an estimator for the quantile function Q(t).

It is known that the expectation of the sample distribution function coin-
cides with its true value. Approximating the inverse to the sample distribution
function, we may foresee the analogous assertion.

Now we introduce a more general construction than (8.3.10). We should
distinguish the situations with finite and infinite bounds for [a, b]. Taking this
remark into account, we define the Bernstein-type polynomials

B
[a,b]
n (Φ, t) = Φ(a)(1− t)n+1 +

n∑

i=1

Φ(x(i))

(
n + 1

i

)
ti(1 − t)n+1−i + Φ(b)tn+1,

(8.3.11)

B
[a,∞]
n (Φ, t) = Φ(a)(1− t)n +

n∑

i=1

Φ(x(i))

(
n
i

)
ti(1 − t)n−i, (8.3.12)

B
[−∞,b]
n (Φ, t) =

n−1∑

i=0

Φ(x(i+1))

(
n
i

)
ti(1 − t)n−i + Φ(b)tn, (8.3.13)

B
[−∞,∞]
n (Φ, t) =

n−1∑

i=0

Φ(x(i+1))

(
n − 1

i

)
ti(1 − t)n−1−i. (8.3.14)

Consider now the asymptotic behavior of the expectations for these poly-
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nomials. The expectation EF{B[a,b]
n (Φ, t)} ≡ I(Φ, Q, t) can be written as

I(Φ, Q, t) = Φ(a)(1 − t)n+1 + Φ(b)tn+1 +
n∑

i=1

EF{Φ(x(i))}
(

n + 1
i

)
ti(1 − t)n+1−i

= Φ(a)(1− t)n+1 + Φ(b)tn+1

+
n∑

i=1

(
n + 1

i

)
ti(1 − t)n+1−i

∫ b

a
nΦ(x)

(
n − 1
i − 1

)
(F(x))i−1(1 − F(x))n−i dF

= Φ(a)(1− t)n+1 + Φ(b)tn+1

+ n
n∑

i=1

(
n + 1

i

)
ti(1 − t)n+1−i

∫ 1

0
Φ(Q(u))

(
n − 1
i − 1

)
ui−1(1 − u)n−i du.

The behavior of EF{B[a,b]
n (Φ, t)} as n → ∞ is as follows.

THEOREM 8.3.2. Let Ψ(u) ≡ Φ(Q(u)) be an analytical function on [0, 1]. Then
the expectation of the Bernstein-type polynomial (8.3.11) is

I[a,b](Φ, Q, t) = EF{B[a,b]
n (Φ, t)} = Φ(Q(t)) +

t(1 − t)
n + 2

Φ′′(Q(t)) + o
(

1
n

)
.

PROOF. We write out the Taylor series for Ψ ≡ Φ(Q(u)) at u = i
n+1 . In this case,

I(Φ, Q, t) is of the form

I[a,b](Φ, Q, t) = Φ(a)(1 − t)n+1 + Φ(b)tn+1 + n
∞∑

s=0

n∑

i=1

(
n + 1

i

)
ti(1 − t)n+1−i

×
1
s!

Ψ(s)
(

i
n + 1

) ∫ 1

0

(
u − i

n + 1

)s
(

n − 1
i − 1

)
ui−1(1 − u)n−i du; (8.3.15)

furthermore, we introduce

A0 = Φ(a)(1 − t)n+1 + Φ(b)tn+1

+ n
n∑

i=1

(
n + 1

i

)
ti(1 − t)n+1−iΨ

(
i

n + 1

)∫ 1

0

(
n − 1
i − 1

)
ui−1(1 − u)n−i du,

A1 = n
n∑

i=1

(
n + 1

i

)
ti(1 − t)n+1−iΨ′

(
i

n + 1

)

×
∫ 1

0

(
u − i

n + 1

)(
n − 1
i − 1

)
ui−1(1 − u)n−i du,
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A2 = n
n∑

i=1

(
n + 1

i

)
ti(1 − t)n+1−i 1

2
Ψ′′
(

i
n + 1

)

×
∫ 1

0

(
u − i

n + 1

)2
(

n − 1
i − 1

)
ui−1(1 − u)n−i du,

A3 = n
∞∑

s=3

n∑

i=1

(
n + 1

i

)
ti(1 − t)n+1−i 1

s!
Ψ(s)

(
i

n + 1

)

×
∫ 1

0

(
u − i

n + 1

)s
(

n− 1
i − 1

)
ui−1(1 − u)n−i du.

In order to evaluate A0, A1, A2, and A3, we proceed as follows:

• We make use of the formulas Φ(a) = Φ(Q(0)), Φ(b) = Φ(Q(1)), where
a = Q(0), b = Q(1).

• The integrals in the formulas for A0, A1, A2, and A3 are expressed in
terms of the B-function

∫ 1

0
ukui−1(1 − u)n−i du =

(k + i − 1)!(n − i)!
(n + k)!

.

• By the Laplace method, we arrive at the asymptotic relation
∫ 1

0

(
u − i

n + 1

)s
(

n − 1
i − 1

)
ui−1(1 − u)n−i du =

1
ns+1 + o

(
1

ns+1

)
.

Taking the above relations into account, we obtain

A0 = Φ(a)(1 − t)n+1 + Φ(b)tn+1 +
n∑

i=1

(
n + 1

i

)
ti(1 − t)n+1−iΨ

(
i

n + 1

)

=
n+1∑

i=0

(
n + 1

i

)
ti(1 − t)n+1−iΦ

(
Q
(

i
n + 1

))
= Bn+1(Φ(Q), t),

A1 = 0,

A2 =
nt(1 − t)

2(n + 1)(n + 2)

n−1∑

0

Φ′′
(

Q
(

i + 1
n + 1

))(
n − 1

i

)
ti(1 − t)n−1−i;

furthermore, in view of the expansion

Φ′′
(

Q
(

i + 1
n + 1

))
= Φ′′

(
Q
(

i − 1
n − 1

− 2i − 1
n2 − 1

))

= Φ′′
(

Q
(

i − 1
n − 1

))
+ o
(

1
n

)
,
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we arrive at

A2 =
nt(1 − t)

2(n + 1)(n + 2)

n−1∑

0

Φ′′
(

Q
(

i − 1
n− 1

))(
n − 1

i

)
ti(1 − t)n−1−i + o

(
1
n

)

=
nt(1 − t)

2(n + 1)(n + 2)
Bn−1

(
Φ′′
(

Q
(

i − 1
n − 1

))
, t
)

+ o
(

1
n

)
,

A3 = o
(

1
n

)
.

By substituting the relations for A0, A1, and A2 into (8.3.14) and taking into
account the asymptotic representation (BP3) for the Bernstein polynomials,
we obtain

EF{Bn+1(Φ, t)} = Φ(Q(t)) +
t(1 − t)
2(n + 1)

Φ′′(Q(t)) +
nt(1− t)

2(n + 1)(n + 2)
Φ′′(Q(t)) + o

(
1
n

)

= Φ(Q(t)) +
t(1 − t)
(n + 2)

Φ′′(Q(t)) + o
(

1
n

)
,

which completes the proof. �

EXAMPLE 8.3.1. We set

Φ(u) = u, F(x) =





0, x < a,
x−a
b−a , a ≤ x < b,
1, x ≥ b.

Then the direct evaluation of (8.3.11)) yields

EF{Bn+1(u, t)} = a + (b − a)t,

which is the exact expression for the inverse function to the uniform distri-
bution on [a, b]. If we take Φ(u) = u3, then the corresponding calculation
yields

EF{Bn+1(u3, t)} = (a+(b−a)t)3+
t(1 − t)
n + 2

6(a+(b−a)t)+
6t(1 − t)(1 − 2t)(b − a)3

(n + 2)(n + 3)
,

which exactly corresponds to Theorem 8.3.2.

The proofs of the assertions describing the asymptotic behavior of the Bern-
stein-type polynomials (8.3.12), (8.3.13), and (8.3.14) practically coincide with
the proof of the latter theorem. All differences refer to the choice of the points
which the function Φ(Q(u)) is expanded at.

We formulate the corresponding theorems.
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THEOREM 8.3.3. Let Ψ(u) ≡ Φ(Q(u)) be an analytical function on [0, 1]. Then
the expectation of the Bernstein-type polynomial (8.3.12) is of the form

I[a,∞](Φ, Q, t) = EF{B[a,∞]
n (Φ, t)}

= Φ(Q(t)) − t
n + 1

Φ′(Q(t)) +
t(1 − t)
n + 2

Φ′′(Q(t)) + o
(

1
n

)
.

THEOREM 8.3.4. Let Ψ(u) ≡ Φ(Q(u)) be an analytical function on [0, 1]. Then
the expectation of the Bernstein-type polynomial (8.3.13) is of the form

I[−∞,b](Φ, Q, t) = EF{B[−∞,b]
n (Φ, t)}

= Φ(Q(t)) +
1 − t
n + 1

Φ′(Q(t)) +
t(1 − t)
n + 2

Φ′′(Q(t)) + o
(

1
n

)
.

THEOREM 8.3.5. Let Ψ(u) ≡ Φ(Q(u)) be an analytical function on [0, 1]. Then
the expectation of the Bernstein-type polynomial (8.3.14) is of the form

I[−∞,∞](Φ, Q, t) = EF{B[−∞,∞]
n (Φ, t)}

= Φ(Q(t)) +
1 − 2t
n + 1

Φ′(Q(t)) +
t(1 − t)
n + 2

Φ′′(Q(t)) + o
(

1
n

)
.

EXAMPLE 8.3.2. Let the Bernstein-type polynomial (8.3.14) be used under the
conditions of Example 8.3.1. In this case, for the expectation EF{B[−∞,∞]

n (Φ, t)}
at Φ(u) = u we obtain

EF{B[−∞,∞]
n (u, t)} = a + (b − a)t +

(b − a)(1 − 2t)
n + 1

,

and if Φ(u) = u3, then

EF{B[−∞,∞]
n (u3, t)} = (a + (b − a)t)3 + 3

(1 − 2t)
n + 1

(a + (b − a)t)2(b − a)

+ 6
t(1 − t)
n + 2

(a + (b − a)t)(b − a)2 + 6
(5t2 − 5t + 1)a + (9t2 − 11t + 3)t(b − a)

(n + 1)(n + 2)

× (b − a)2 + 6
(1 − 2t)(10t2 − 10t + 1)

(n + 1)(n + 2)(n + 3)
(b − a)3.

It is easy to see that this result completely agrees with Theorem 8.3.5.

REMARK 8.3.3. It is rather convenient to use the Bernstein approximations to
the quantile function, as through them, it is easy to derive the moments char-
acteristics of random variables. In particular, for the estimator of expectation
we obtain

µ̂ =
∫ b

a
x dF̂(x) =

∫ 1

0
Q̂(t) dt.
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Hence, using the Bernstein-type polynomials (8.3.11), we obtain

µ̂ =
∫ 1

0
B

[a,b]
n (u, t) dt =

a +
∑n

1 x(i) + b
n + 2

.

For approximation (8.3.14)), we obtain

µ̂ =
∫ 1

0
B

[−∞,∞]
n (u, t) dt =

∑n
1 x(i)

n
.

The estimator for the distribution density is expressed in terms of the quantile
function in the parametric form, namely regarding t as a parameter:

ƒ(x) = F′(x) ∼= 1/B′
n(t), x = Bn(t).

8.3.4. The applications of the Bernstein polynomials
and related constructions

One of the principal problems in data analysis and applied statistics is con-
cerned with designing algorithms allowing to reduce the volumes of statistical
information without significant loss of its specific properties and indications.
The problems of determination of mean values, the methods of parametric
approximation, etc. can be related to this class of problems. As a result of
applying such methods, the initial data samples can be replaced by the corre-
sponding mean values or by some functional dependences. It is obvious that
the maximum of available information is contained in the complete initial
data sample, and any its reduction necessarily leads to some loss of informa-
tion. Thus, with small samples, it is reasonable to save the complete data.
Otherwise, with large samples, it is necessary to compress the data arrays.

Now we introduce one of the possible methods of data compression based
on the Bernstein polynomials.

Let x1, …, xn be a given sample, and the problem is to find a function
φ (i; a1, …, am) reconstructing the initial data collection with a given accuracy
so that m � n. There exist various algorithms of parametric approximation for
solution of this problem, but as the location of the nodes is given (these nodes
are equidistant), conventional approximations are usually unstable because
they are, as a rule, solutions of ill-posed problems.

Consider a two-stage approach to the problems of compressing information
which includes

(i) a preliminary approximation to the initial data by a continuous function;

(ii) an appropriate choice of the nodes and a final approximation to the
obtained continuous function.
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Figure 8.12. The histogram for the normal data

The preliminary approximation is made by the Bernstein polynomials after
which we make use of use the Padé–Chebyshev approximations to the obtained
function (Baker, 1975; Gilewicz, 1978).

The examples below are related with the following situations. Let a sample
x1, …, xn be from a distribution F(x). We assume that the sample elements are
independent, that is, we can change the ordering of these elements. By this
reason, we deal with the order statistics corresponding to a given sample.

It is desirable to

(i) find a dependence containing, as far as possible, the minimum number
of parameters and allowing for reconstruction of the initial data;

(ii) construct an estimator (an approximation) of the quantile function Q(y)
corresponding to the distribution function F(x);

(iii) construct an estimator (an approximation) of the distribution density
ƒ(x) = F′(x).

REMARK 8.3.4. Generation of random numbers and all further calculations are
made by the system of symbolic computations in Maple V.

EXAMPLE 8.3.3. Here we deal with the normal sample containing 150 random
numbers with mean 0 and variance 1.

The histogram for this initial data is shown in Fig. 8.12.
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Now construct the Bernstein polynomial for the set of order statistics. As
the underlying distribution is defined on R, we should use the Bernstein-type
polynomials (8.3.14)

B
[−∞,∞]
n (t) =

n−1∑

i=0

x(i)

(
n − 1

i

)
ti(1 − t)n−1−i.

We also evaluate the derivative of this polynomial

b[−∞,∞]
n (t) =

d
dt

B
[−∞,∞]
n (t).

The Padé–Chebyshev approximation to the Bernstein polynomial is obtained
with the use of the package for numerical approximation numapprox of
Maple V:

PChB(x) =
[
T(0, y) + T(1, y) + 0.00475T(2, y)

]−1

×
[
0.898T(0, y) + 1.875T(1, y) + 1.14T(2, y) + 0.288T(3, y) + 0.122T(4, y)

]
,

where T(n, y) = cos(n arccos y) is the Chebyshev polynomial and y = 2x − 1.
The error of the Bernstein approximation to this data does not exceed 0.088,

and the error of the approximation to the same sample by the Padé–Chebyshev
ratio is less than 0.13, whereas the maximum error of the Padé–Chebyshev
approximation to the Bernstein polynomial is 0.061. The maximum error of
approximation to the derivative of this polynomial is much greater (1.51), and
it is attained on the boundary of the interval [0, 1].

From Fig. 8.13 it can be seen that these approximations fit the data rather
accurately (except the boundaries of the interval).

Thus it is possible to reconstruct the data set to within accuracy 0.13 using
the Padé–Chebyshev rational approximations with only five coefficients.

Fig. 8.14 presents the derivatives of the Bernstein polynomial and Padé–
Chebyshev approximation, whence the smoothing properties of the latter ap-
proximation are obvious.

By Theorem 8.3.5 and the relation Φ(u) = u, we conclude that the Bernstein
polynomial and its Padé–Chebyshev approximation can be used as sufficiently
good estimators for the quantile function Q(y) corresponding to the normal
distribution function.

To construct the distribution density, we use its parametric representation
excluding the parameter t from x = B

[−∞,∞]
n (t) and substituting it into the

estimator for this density ƒ̂(x) = 1/b[−∞,∞]
n (t).

Fig. 8.15 presents this graph and the density estimator based on the Padé–
Chebyshev approximation. It is seen from these graphs that the first graph
fits well the histogram, whereas the second is close to the underlying normal
density (the slashed line).

If to take the approximation B
[−5,5]
n (t) instead of the B

[−∞,∞]
n (t), the results

will be practically the same.
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Figure 8.13. The graphs of the ordered data set (A), its Bernstein (B) and Padé-
Chebyshev (C) approximations for the normal data

Figure 8.14. The derivatives of the Bernstein and Padé–Chebyshev approxima-
tions for the normal data

REMARK 8.3.5. Generation of random numbers in Maple is not accurate
enough. In the next example, generation is performed with the use of
Statistica, while the subsequent calculations are made in Maple.

EXAMPLE 8.3.4. Consider now the sample from the Beta(2, 6)-distribution and
repeat all the stages of data processing as in Example 8.3.3.

The histogram for 150 sample elements from the Beta distribution is given
in Fig. 8.16.
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Figure 8.15. The normal density and its estimators based on the Bernstein and
Padé–Chebyshev approximations for the normal data

0
0

10

20

Figure 8.16. The histogram for the Beta-distributed data

Construct the Bernstein-type polynomial (8.3.11) corresponding to the fi-
nite Beta-distribution that is defined on [0, 1]

B
[0,1]
n (Φ, t) = Φ(0)(1 − t)n+1 +

n∑

i=1

Φ(x(i))

(
n + 1

i

)
ti(1 − t)n+1−i + Φ(1)tn+1

for the case Φ(u) = u.
The Padé–Chebyshev approximation to the Bernstein polynomial is of the
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Figure 8.17. The graphs of the ordered data (A), its Bernstein (B) and Padé–
Chebyshev (C) approximations for the Beta-distributed data

form

PChB(x) =
[
T(0, y) − 0.121T(1, y) − 0.85T(2, y)

]−1

×
[
0.244T(0, y) + 0.12T(1, y) − 0.21T(2, y) − 0.105T(3, y) − 0.0186T(4, y)

]
,

where T(n, y) = cos(n arccos y) is the Chebyshev polynomial and y = 2x − 1.
The error of the Bernstein approximation to the initial sample does not ex-

ceed 0.1, and the error of the Padé–Chebyshev approximation to the same sam-
ple is less than 0.0664, whereas the maximum error of the Padé–Chebyshev
approximation to the Bernstein polynomial is 0.074. The maximum error of
approximation to the derivative of this polynomial does not exceed 0.23, and it
is attained on the boundary of the interval [0, 1].

From Fig. 8.17 it is seen that these approximations practically coincide and
both fit well the ordered data with exceptions at the boundaries of the interval.

Thus it is possible to reconstruct the data set to within the accuracy 0.064
using the Padé–Chebyshev approximations with only five coefficients.

Fig. 8.18 presents the derivatives of the Bernstein and Padé–Chebyshev
approximations, and the smoothing properties of the latter approximation are
again confirmed.

REMARK 8.3.6. In Example 8.3.4, all approximations possess greater accuracy
than under the normal distribution. This can be explained, first, by the shape
of the underlying Beta distribution which is well approximated by polynomials,
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Figure 8.18. The derivatives of the Bernstein polynomial and Padé–Chebyshev
approximations for the Beta-distributed data

Figure 8.19. The Beta(2, 6)-density and its estimators based on the Bernstein
and Padé–Chebyshev approximations for the Beta-distributed data

and, second, by the specific type (8.3.12) of the Bernstein approximation aimed
at finite bounds of the data range.

As in Example 8.3.3, taking into account Theorem 8.3.5 and the relation
Φ(u) = u, we conclude that the Bernstein polynomial and its Padé–Chebyshev
approximation can be used as reasonable estimators for the quantile function
Q(y) corresponding to the Beta distribution function.

To construct the distribution density, we use the procedure described in
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X

Figure 8.20. The boxplot based on the sample interquartile range

Example 8.3.3. Fig. 8.19 presents these density estimators. It is seen from
these graphs that the first graph adapts to the behavior of the histogram
(Fig. 8.16), whereas the second is close to the underlying Beta distribution
density (the slashed line in both figures).

8.4. Robust bivariate boxplots
The univariate boxplot (Tukey, 1977) is a graphical tool for summarizing the
distribution of a single random variable and for the fast visual comparison of
different batches of data. Being a simple data analysis technique, it yields
information about the location, scale, asymmetry, tails, and outliers of a data
distribution, and moreover, it is available in many statistical packages.

In this section we recall the definition of the univariate boxplot, describe
some its extensions to the bivariate case, and propose a simple robust bivariate
boxplot technique aimed at detection of outliers.

Boxplot for the univariate data. A boxplot is the rectangle with the base
equal to the sample interquartile range IQR, separated into two parts by the
sample median (see Fig. 8.20).

From each side of ‘the box’, the two straight line segments (‘mustaches’)
are drawn describing the distribution ‘tails’, and finally, the observations lying
aside these domains are marked and plotted being the candidates for outliers.
The left and right boundaries for the distribution ‘tails’ are given by

xL = max
{

x(1), LQ − 3
2

IQR
}

, xR = min
{

x(n), UQ +
3
2

IQR
}

;
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here LQ and UQ are the lower and upper sample quartiles, respectively. In
general, they can be defined by LQ = x(j) and UQ = x(n−j+1) with j = [0.25 n], or,
more accurately for small samples, by the medians of the left and right halves
([0.5 n]) of the sample

LQ =
x(k) + x(k+1)

2
, UQ =

x(3k) + x(3k+1)

2
, n = 4k,

LQ =
x(k) + x(k+1)

2
, UQ =

x(3k+1) + x(3k+2)

2
, n = 4k + 1,

LQ = x(k+1), UQ = x(3k+2), n = 4k + 2,
LQ = x(k+1), UQ = x(3k+3), n = 4k + 3.

This rule for the rejection of outliers is weaker than that proposed in Sec-
tion 7.5, because the sample interquartile range is less resistant to outliers
than the median absolute deviation. Nevertheless, one can use the other rule
for constructing the boxplot ‘mustache’ as

xL = max{x(1), med−5 MAD}, xR = min{x(n), med +5 MAD}.

Observe that the boxplot summarizes information about a batch of data
and it represents the following data characteristics:

• the sample median for location;

• the sample interquartile range for spread;

• the relation (UQ − med)/(med−LQ) for measuring asymmetry;

• LQ − xL and xR − UQ for the length of ‘tails’;

• the candidates for outliers.

Bivariate boxplots. As a rule, most of the proposed robust bivariate pro-
cedures are aimed at the data from a bivariate distribution of the elliptical
shape. In the normal case, the contours of the joint density are elliptical. If
the shape of the underlying distribution is far from elliptical, then normality
may often be provided by rejection of the outliers and by transformation of the
data.

However, the boxplot is a rather rough construction; it should allow depar-
tures from normality which preserve separation of the data into two groups:
the central part consisting of the ‘good’ observations (its unimodal structure is
strongly desirable) and the others, aside and sufficiently rare, ‘bad’.

In general, if one can construct robust elliptical contours containing a given
fraction of the data then it remains to inscribe a rectangle into the chosen
contour, and so to define a boxplot.
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In (Zani et al., 1998), a computationally intensive form of the bivariate
boxplot was proposed, successively peeling convex hulls to find the shape of
the central part of the data. Those convex hulls are peeled until the first one is
obtained which includes less than 50% of the data, and then this convex hull
called the 50% hull is smoothed using a B-spline.

In (Goldberg and Iglewicz, 1992), a computationally less intensive version
of boxplot was suggested by fitting ellipses to the data with the use of robust
estimators of the parameters. The component-wise medians are used as loca-
tion estimators. Then the required covariance matrix of the observations is
estimated by sums of squares and products in these medians.

In (Atkinson and Riani, 2000), a fast very robust (mainly based on the
LMS procedure) ‘forward’ search was applied to a large body of multivariate
problems, constructing the bivariate boxplots included.

All the above described approaches to creating the bivariate boxplots re-
quire more or less intensive calculations. Now we propose a computationally
simple technique that even allows to use calculations ‘by hand’ while construct-
ing robust bivariate boxplots.

The robust bivariate boxplot based on the median correlation coeffi-
cient. The algorithm suggests the elliptical structures of the central part of
the data, that is, we assume approximate normality of the data.

The main idea consists of transition to the principal axes of the ellipse of
equal probability for the bivariate normal distribution (Cramér, 1946)

x′ = (x − µ1) cos φ + (y − µ2) sin φ,

y′ = −(x − µ1) sin φ + (y − µ2) cos φ, (8.4.1)

where
tan 2φ =

2ρσ1σ2

σ2
1 − σ2

2
.

Fig. 8.21 illustrates the above.
We choose

• the component-wise medians µ̂1 = med x and µ̂2 = med y as estimators
for location;

• the median absolute deviations σ̂1 = MAD x and σ̂2 = MAD y as estima-
tors for scale;

• the median correlation coefficient rmed as an estimator for correlation;

and then use them in (8.4.1)

x′ = (x − med x) cos φ + (y − med y) sin φ,

y′ = −(x − med x) sin φ + (y − med y) cos φ, (8.4.2)
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Figure 8.21. The principal axes for the normal density contours

where
tan 2φ =

2rmed MAD x MAD y
(MAD x)2 − (MAD y)2 .

The boxplot itself consists of two rectangles: one into another with the
sides parallel to the axes x′ and y′. The lengths of these sides are defined
similarly to the univariate case:

(i) the sides of the inner rectangle are equal to the sample interquartile
ranges IQRx′ and IQRy′ evaluated by the samples {x′i} and {y′i};

(ii) the boundaries of the outer rectangle are defined by the median absolute
deviations

x′L = max{x′(1), med x′ − 5 MAD x′}, x′R = min{x′(n), med x′ + 5 MAD x′},

y′L = max{y′(1), med y′ − 5 MAD y′}, y′R = min{y′(n), med y′ + 5 MAD y′}.

The inner rectangle describes the modal zone of a distribution, the outer
rectangle is defined by the boundaries for the distribution tails (certainly, the
indexes L and R for the left and right boundaries are used here as convention-
al), and the data values lying aside the outer rectangle are marked being the
candidates for outliers. The relative location of these rectangles may indicate
the departures from symmetry.

Summarizing the abovesaid, we state that the boxplot gives the following
characteristics of the batch of observations:

LOCATION as the component-wise median and inner rectangle;

SPREAD/SCALE as the boundaries of the inner and outer rectangles;
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Figure 8.22. The robust bivariate boxplot

CORRELATION as the median correlation coefficient rmed;

ASYMMETRY as the relative location of the rectangles;

‘TAIL’ AREAS as the boundaries of the outer rectangle;

ORIENTATION ON THE PLANE as the angle φ between the axes x′ and x;

OUTLIERS as the marked observations.

Fig. 8.22 presents the bivariate boxplot defined so.
In Fig. 8.23, this boxplot technique is applied to the artificial data consisting

of the following 15 points: the eight of them (−10,−10), (−3,−3), (−2,−2),
(−1,−1), (1, 1), (2, 2), (3, 3), (10, 10) lie on the straight line y = x; other six
(−10, 10), (−5, 5), (−1, 1), (1,−1), (5,−5), (10,−10) lie on the line y = −x, and
one point (0, 0) belongs to these both lines.

In this case,

(i) med x = 0, med y = 0; hence, med x′ = 0, med y′ = 0;

(ii) MAD x = MAD y = 3 and rmed = 1; hence, φ = π/4;

(iii) IQRx′ = 2
√

2, IQRy′ = 0; MAD x′ =
√

2, MAD y′ = 0.

It follows from the above results and from Fig. 8.23 that the obtained box-
plot is degenerate: all the points lying on the line y = −x are regarded as the
candidates for outliers. Observe that the points (−10,−10) and (10, 10) lying
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Figure 8.23. The bivariate boxplot for the artificial data

on the line y = x are also such candidates. In addition, the value rmed = 1
confirms the high qualitative robustness of the median correlation coefficient.



9

Applications

In this chapter, we present two kinds of applications. First, the above-
developed methods may be used in some areas of applied statistics apparently
providing stability of data processing algorithms, and sometimes giving a new
point of view at inherent problems of the area of knowledge considered—
this kind of applications may be called theoretical. Here we touch on such
respectable sciences as the statistical theory of reliability and detection of
signals.

Second, the applications in the common sense of word, dealing with some
practical problems, desirably of a general interest. The problem of the de-
pendence of sudden cardiac deaths on the meteorological and solar activity is
surely of this kind.

9.1. On robust estimation in the statistical theory
of reliability

Main results in robust statistics refer to the normal and its neighborhood
models of data distributions. The aim of this section is to apply robust minimax
approach to one of the traditional for the statistical reliability theory models
of data distributions.

9.1.1. Robust minimax estimator of a scale parameter of the
exponential distribution

The exponential distribution is the simplest model for the description of dis-
tributions of time before failure in the reliability theory(Barlow and Proschan,
1965; Gnedenko et al., 1969; Barlow and Proschan, 1975; Gertsbakh, 1998).
The efficient maximum likelihood estimator of the failure intensity parameter
λ is the inverse value of the sample mean of the time to failure data: λ̂ = 1/T,
T =

∑
ti. The linear structure of the sample mean type estimators results in

their great instability to the occurrence of rare outliers in the data. From the

259
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statistical point of view, this instability causes a sharp loss of the estimators’
efficiency in the case of small deviations from the accepted stochastic model of
data distribution, which in its turn may lead to significant errors in designed
reliability characteristics.

Below we apply the Huber minimax approach to robust estimation of the
scale parameter of the exponential distribution in the model of gross errors
(Shevlyakov, 1995; Shevlyakov, 2000).

Problem setting. Consider a sample t1, …, tn of random variables from the
model of ε-contaminated exponential distributions

F =
{

ƒ : ƒ(t, T) =
1 − ε

T
exp

(
− t

T

)
+ εh(t), 0 ≤ ε < 1

}
, (9.1.1)

where ε is the contamination parameter characterizing the level of uncertainty
of the accepted exponential model; h(t) is an arbitrary distribution density; T
is the scale parameter to be estimated.

Following (Huber, 1964), we consider M-estimators of the scale parame-
ter T

n∑

i=1

χ

(
ti

T̂n

)
= 0, (9.1.2)

where χ is the score function.
Assume that regularity conditions (F1) and (F2) are imposed on the class

F of distribution densities, and conditions (χ1)–(χ4), on the class of score
functions χ (Section 4.3).

The least informative density in the class of ε-contaminated exponen-
tial distributions. The least informative density ƒ∗(t) is the solution of the
variational problem

ƒ∗ = arg min
ƒ∈F

I(ƒ), I(ƒ) =
∫ ∞

0
t2
(

ƒ′(t)
ƒ(t)

)2

ƒ(t) dt − 1 (9.1.3)

with the side conditions of normalization and approximate exponentiality
∫ ∞

0
ƒ(t) dt = 1, (9.1.4)

ƒ(t) ≥ (1 − ε) e−t, (9.1.5)

where, without loss of generality, we set T = 1.
Restriction (9.1.1) on the class F is written in the inequality form (9.1.5),

and it apparently includes the condition of non-negativeness.
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THEOREM 9.1.1. The solution of the variational problem (9.1.3) with side con-
ditions (9.1.4) and (9.1.5) is of the form

• for 0 ≤ ε < ε0 = (1 + e2)−1,

ƒ∗(t) =

{
(1 − ε) e−t, 0 ≤ t < ∆,
Ctk, t ≥ ∆,

(9.1.6)

where the parameters C, k, and ∆ are functions of ε

C = (1 − ε) e−∆ ∆∆, k = −∆,
e−∆

∆ − 1
=

ε
1 − ε

;

• for ε0 ≤ ε < 1,

ƒ∗(t) =





C1tk1 , 0 ≤ t < ∆1,
(1 − ε)e−t, ∆1 ≤ t < ∆2,
C2tk2 , t ≥ ∆,

(9.1.7)

where the parameters C1, ∆1, k1, C2, ∆2, and k2 are determined from the
equations

C1 = (1 − ε)e−1+δ (1 − δ )1−δ , ∆1 = 1 − δ , k1 = −1 + δ ,

C2 = (1 − ε)e−1−δ (1 + δ 1+δ ), ∆2 = 1 + δ , k2 = −1 − δ ,

eδ + e−δ

eδ
=

1
1 − ε

. (9.1.8)

In formulas (9.1.8), the auxiliary parameter δ , 0 ≤ δ ≤ 1, is introduced.
The expressions for the Fisher information are of the following form, for the
solutions (9.1.6) and (9.1.7), respectively:

I(ƒ∗) = 1 − ε∆2, I(ƒ∗) =
2δ

tanh δ
− δ 2. (9.1.9)

For small values of ε, the least informative density ƒ∗ corresponds to the
exponential distribution in the zone 0 ≤ t < ∆; in the ‘tail’ area it is similar to the
one-sided t-distribution. For large values of ε, a rather whimsical distribution
minimizing the Fisher information appears—its density is ∞ at t = 0 (see
also the Huber minimax solution in Section 4.4). The threshold values of the
parameters are

∆1 = 0, ∆2 = 2, ε = 0.119.
Some numerical results are given in Table 9.1.
The values of the distribution function

F∗(t) =
∫ t

0
ƒ∗(t) dt,

evaluated at the points of ‘glueing’ of the extremals C1tk1 and C2tk2 with the
constraint (1 − ε) e−t are also given in Table 9.1.
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Table 9.1. ε-contaminated exponential distributions minimizing the Fisher
information for the scale parameter

ε ∆1 ∆2 F∗(∆1) F∗(∆2) 1/I(ƒ∗)
0 0 ∞ 0 1 1

0.001 0 5.42 0 0.995 1.03
0.002 0 4.86 0 0.990 1.05
0.005 0 4.16 0 0.979 1.09
0.01 0 3.63 0 0.964 1.15
0.02 0 3.15 0 0.938 1.25
0.05 0 2.52 0 0.874 1.47
0.1 0 2.11 0 0.791 1.80

0.119 0 2 0 0.762 1.91
0.15 0.110 1.890 0.094 0.727 2.12
0.20 0.225 1.775 0.185 0.679 2.47
0.25 0.313 1.687 0.250 0.659 2.88
0.30 0.384 1.616 0.297 0.635 3.39
0.40 0.503 1.497 0.367 0.595 4.81
0.50 0.603 1.397 0.416 0.565 7.03
0.65 0.733 1.267 0.462 0.532 14.7
0.80 0.851 1.149 0.488 0.511 45.9

1 1 1 0.5 0.5 ∞

The structure of the robust minimax estimator. The robust minimax
estimator T̂n, obtained from equation (9.1.2), is defined by the score function
χ∗(t)

χ∗(t) = −t
(ƒ∗(t))′

ƒ∗(t)
− 1 =





∆1 − 1, 0 ≤ t < ∆1,
t − 1, ∆1 ≤ t < ∆2,
∆2 − 1, t ≥ ∆2.

(9.1.10)

Formula (9.1.10) holds for both solutions (9.1.6) and (9.1.7): solution (9.1.7)
turns into solution (9.1.6) with ∆1 = 0.

Fig. 9.1 gives the shape of the score function χ∗.
We introduce

I 1 = {i : ti/T̂n < ∆1}, I 2 = {i : ti/T̂n ≥ ∆2},

I = {i : ∆1 ≤ ti/T̂n < ∆2}.

Then equation (9.1.2) becomes

∑

i∈I 1

(∆1 − 1) +
∑

i∈I

(
ti

T̂n
− 1

)
+
∑

i∈I 2

(∆2 − 1) = 0. (9.1.11)
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Figure 9.1. The score function of the robust minimax estimator for the scale
parameter of the ε-contaminated exponential distribution

Denoting the numbers of observations belonging to the sets I 1, I 2, and I

as n1 n2, and n− n1 − n2, from (9.1.11) we obtain

T̂n =
1

n − n1∆1 − n2∆2

∑

i∈I

ti. (9.1.12)

The structure of estimator (9.1.12) is similar to the structure of the trimmed
mean with the correction term providing consistency

T̂n(n1, n2) =
1

n − n1∆1 − n2∆2

n−n2∑

i=n1+1

t(i), (9.1.13)

where t(i) is the ith order statistic. If the numbers of the trimmed order
statistics (left and right) are chosen as

n1 = [ F∗(∆1)n], n2 = [ (1 − F∗(∆2))n],

then the estimators T̂n derived from equation (9.1.11) and T̂n(n1, n2) are asymp-
totically equivalent. So, the simple estimator T̂n(n1, n2) (9.1.13) is recommend-
ed for the practical use.

Observe that in the limiting case where ε → 1, the robust minimax es-
timator defined by the numerical solution of equation (9.1.11) (or by formula
(9.1.13)) is the sample median T̂n = med ti.

For ε = 0, the robust minimax estimator T̂n coincides with the sample
mean T, the efficient estimator for the scale parameter of the exponential
distribution.

Summarizing the characteristics of the least informative density and score
function, we can conclude that

• for small values of ε, the optimal algorithm provides the one-side sample
trimming with subsequent averaging the remained observations;
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• for large values of ε, the two-side trimming of the smallest and largest
observations is realized.

The practical recommendations for using robust minimax estimator (9.1.13)
are mainly defined by the restrictions of model (9.1.1), and within the context
of this model, by the value of the contamination parameter ε. We recall that
the results of investigations in various areas of industrial statistics show a
good fit of ε-contamination models to actual data. As usual, the estimated
and expected values of ε lie in the interval (0.001, 0.1). If there is no a priori
information about the value of ε, then one may set it equal to 0.1. In this
case, according to formula (9.1.13) and to the results given in Table 9.1, the
estimator is the one-sided trimmed mean at the level 21%.

REMARK 9.1.1. The rejection of those 21% of the largest time to failure values
and the averaging of the remained gives perhaps not very optimistic but the
guaranteed and reliable value of the mean time to failure characteristic.

9.1.2. On robust minimax estimators of the scale parameter
for customary distributions of the statistical theory of
reliability

The exponential distribution is an important but particular case of such models
as the Weibull and gamma distributions (Ionescu and Limnios, 1999; Ushakov,
1994). In the problem of scale estimation, the parameters of location and form
of these distributions are nuisance parameters, so in this setting we assume
that their values are given. Now we apply the above approach to these general
cases.

The structure of robust minimax estimators of the scale parameter in
ε-contaminated models. We consider again the model of gross errors

F = {ƒ : ƒ(t) ≥ (1 − ε)g(t), 0 ≤ ε < 1} , (9.1.14)

where g(t) is a given distribution density satisfying the required regularity
conditions (F1) and (F2); the scale parameter T is set equal to 1. To realize the
Huber approach in its simplest version, we need an additional restriction on the
tails of the density g(t): they should be shorter than for t-type distributions,
in other words, shorter than the extremals tk of the variational problem of
minimizing the Fisher information for the scale. Anyway, the Weibull and
gamma distribution tails satisfy these restrictions.

In the general case of model (9.1.14), the solution of variational problem
(9.1.3) can be rather complicated, but in the case of ε small enough (actually,
this case precisely is of interest for applications), it is of the form

ƒ∗(t) =

{
(1 − ε) g(t), 0 ≤ t < ∆,
Ctk, t ≥ ∆,

(9.1.15)
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where the parameters C, k, and ∆ are determined from the normalization
conditions ∫ ∞

0
ƒ∗(t) dt = 1,

whereas the conditions of transversality provide the smoothness of glueing of
the free extremals Ctk with the constraint (1 − ε)g(t):

(1 − ε)g(∆) = C∆k, (1 − ε)g′(t) = kC∆k−1.

The concrete formulas for evaluating the parameters sought for can be
more or less easily written out both for the ε-contaminated Weibull, gamma, or
lognormal distributions, but the value of the upper bound ε0, which guarantees
the validity of solution (9.1.15) in the domain ε ≤ ε0, depends on the concrete
shape of the underlying distribution, and it seems not simple to get it in the
general form.

However, assuming that solution (9.1.15) holds with small ε, we describe
the structure of the minimax estimator for scale in this case.

The optimal score function is of the form

χ∗(t) = −t
(ƒ∗(t))′

ƒ∗(t)
− 1 =

{
−t g′(t)

g(t) − 1, 0 < t ≤ ∆,
−k − 1, t > ∆.

(9.1.16)

We introduce

I ∗ = {i : ti/T̂n > ∆}, I = {i : 0 < ti/T̂n ≤ ∆}.

Then equation (9.1.2) takes the form

∑

i∈I

(
− ti

T̂n

g′(ti/T̂n)

g(ti/T̂n)
− 1

)
+
∑

i∈I ∗

(−k − 1) = 0. (9.1.17)

Denoting the numbers of observations belonging to the sets I ∗ and I by
n∗ and n − n∗, we find from (9.1.17) that the robust minimax estimator with
score function (9.1.16) has the structure of the trimmed maximum likelihood
estimator where n∗ out of largest observations ti are rejected, the rest of the
sample being processed by the maximum likelihood method.

In the limiting case with ε → 0, this estimator is the maximum likelihood
estimator of scale for the g(t).

9.2. Robust detection of signals based on
optimization criteria

In this section we apply the results on the robust minimax estimation of loca-
tion to the problems of detection of known signals. This problem itself can be
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also re-formulated in a non-traditional for nonparametric statistics way, allow-
ing to choose the decision on detection by comparing the measures of closeness
of the signals to the observed data. Much attention is paid to the application
of the L1-norm criterion to the detection of known signals both in discrete and
continuous cases.

9.2.1. Preliminaries
Consider the problem of coherent binary detection of a known signal in the
discrete case

xi = θsi + ei, i = 1, 2, …, n, (9.2.1)

and in the continuous case

x(t) = θs(t) + e(t), 0 ≤ t ≤ T. (9.2.2)

The values of si are assumed to be known, and the independent errors ei are
from a common distribution F with density ƒ.

The problem of detection is formulated as follows: given {xi} or {x(t)}, it is
necessary to decide whether the signal s(t) is observed or not, which value does
the parameter θ take, θ = 0 or θ = 1. In this setting, the problem of detection
is equivalent to the problem to test the hypothesis

H0 : θ = 0 against H1 : θ = 1. (9.2.3)

Given prior information on error distributions, the classical theory of hy-
potheses testing yields various optimal (in the Bayesian, minimax, Neyman–
Pearson senses) algorithms to solve problem (9.2.3) (Lehmann, 1959; Kendall
and Stuart, 1963). In this case, all optimal algorithms are based on the like-
lihood ratio statistic (LHR): for solution, one must evaluate the value of this
statistic and compare it with a certain bound. The differences between the
above-mentioned approaches result only in the values of that bound.

Let us look back at problem (9.2.1); the LHR statistic is of the form

Tn(x) =
n∏

i=1

ƒ(xi − si)
ƒ(xi)

, x = (x1, x2, …, xn). (9.2.4)

Observe that in this case it is necessary to know the true density ƒ.
As a rule, in the practical problems of radio-location, acoustics, and com-

munication, the error (or signal) distributions are only partially known. For
instance, it may be known that the underlying distribution is close to normal,
or/and there is some information on its behavior in the central zone, and noth-
ing is known about the distribution tails, etc. In similar cases, distributions
may be distorted by impulsive noises, which is typical for acoustics (Milne,
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1962), sound location (Olshevskie, 1967), radio-location and communication
(Mertz, 1961; Engel, 1965; Hall, 1966; Bello and Esposito, 1969).

The classic methods based on the LHR statistic behave poorly in the above
situations (see some examples in (Huynh and Lecours, 1975; Krasnenker,
1980). There exists a great body of researches (e.g. (Krishnaiah and Sen,
1984)) on nonparametric and rank procedures of detection, which provide pro-
tection from impulsive noise and gross errors in the data, but, usually, at the
sacrifice of considerable lack of efficiency as compared with the parametric
LHR statistic tests in the case of absence of outliers. Therefore, designing
efficient and sufficiently simple nonparametric tests for detection of signals
still remains an important problem.

Huber minimax approach. There are some other alternatives to the para-
metric approach. In his fundamental work (Huber, 1965), Huber noticed that
the LHR statistic is not robust, since some observations xi making the term
ƒ(xi − si)/ƒ(xi) close to zero or very large destroy the LHR statistic. This hap-
pens, for example, when there are heavy-tailed deviations from normality.

Consider the problem of detection of a known constant signal in an additive
noise

H0 : xi = ei,
H1 : xi = θ + ei, i = 1, 2, …, n, (9.2.5)

where θ > 0 is a known signal.
Huber suggests to use the robust trimmed version of the LHR statistic

Tn(x) =
n∏

i=1

π(xi),

π(x) =





c′, x < c′,
ƒ1(x)/ƒ0(x), c′ ≤ x ≤ c′′,
c′′, x > c′′,

(9.2.6)

where ƒ0(x) and ƒ1(x) are the distribution densities of observations under the
hypotheses H0 and H1, respectively; 0 ≤ c′ < c′′ < ∞ are some parameters.
Observe that the lack of information about error distributions makes it neces-
sary to consider the composite hypotheses Hj, j = 0, 1, that is, to deal with the
problems of nonparametric nature. Usually, it is assumed that the hypotheses
Hj are formed by the deviations of the true distribution densities ƒj(x) from the
assumed (estimated or model) ones ƒ̂j(x). Huber considers the case where the
composite hypotheses Hj are set in the form of ε-contaminated distributions

Hj = {ƒj(x) : ƒj(x) ≥ (1 − εj)ƒ̂j(x)}, 0 ≤ εj ≤ 1, j = 0, 1,
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and constructs the minimax decision rule minimizing the risk in the least
favorable case. This rule is of form (9.2.6).

Observe that the parameters c′ and c′′ can be uniquely determined only
for sufficiently small εj, and, vice versa, with the fixed values of εj, they are
correctly defined for sufficiently large |s|.

The minimax approach is also used in the following problem of testing the
composite hypotheses (Kuznetsov, 1976)

Hj = {ƒj(x) : ƒj(x) ≤ ƒj(x) ≤ ƒj(x)}, j = 0, 1,

where ƒj(x) and ƒj(x) are the fixed functions determining the bounds for the
true density ƒj(x). For instance, these bounds can be obtained with the use of
the confidence limits for the Parzen density estimators. The minimax decision
rule minimizing the Bayes risk in the least favorable case is reduced to the
algorithms of the type ‘supremum of the density by supremum’, ‘infimum by in-
fimum’, etc. Such algorithms can be applied to detection of any approximately
known signal.

Asymptotically optimal robust detection. The detection of weak signals
is of a particular interest, since the robust Huber test does not work in the zone
of weak signals, where the classes of distribution densities for the hypothesis
and alternative are overlapped.

Consider the problem to test the hypotheses

H0 : xi = ei,
H1 : xi = θsi + ei, i = 1, 2, …, n, (9.2.7)

for an arbitrary θ > 0. Let ƒ be a distribution density from the class F , and
d be some decision rule from the class D of randomized decision rules. The
power function PD for d ∈ D is then defined as

PD = βd(θ  ƒ) = Eθ{d(x)  ƒ}, ƒ ∈ F , (9.2.8)

and the probability of false alarm is PF = α = βd(0  ƒ).
Now we set the following problem of detection: find a decision rule that

guarantees the asymptotic level of quality of detection independently of the
chosen ƒ from the class F , i.e., find the solution of the following maximin
problem (El-Sawy and Vandelinde, 1977)

max
d∈D

min
ƒ∈F

βd(θ  ƒ) (9.2.9)

with the side condition

βd(0  ƒ) ≤ α for all ƒ ∈ F . (9.2.10)
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Choose the value
√

nθn as the statistic for the decision rule dρ , where θn is an
M-estimator of location of the form

θn = arg min
θ

n∑

i=1

ρ(xi − θsi). (9.2.11)

The function ρ should satisfy the conditions

(D1) the convex and symmetric function of contrast ρ(u) strictly increases with
positive u;

(D2) the score function ψ(u) = ρ ′(u) is continuous for all u;

(D3) EFψ2 < ∞ for all ƒ ∈ F ;

(D4)
∂EFψ(x − θ )

∂θ
exists and is nonzero in some neighborhood of θ .

It is proved in (El-Sawy and Vandelinde, 1977) that if ƒ∗ minimizes the
Fisher information over the class F

ƒ∗ = arg min
ƒ∈F

∫ ∞

−∞

(
ƒ′(x)
ƒ(x)

)2

ƒ(x) dx, (9.2.12)

the function ρ∗ = − ln ƒ∗ satisfies conditions (D1)–(D4), and the inequality

A(ƒ, ψ∗) ≤ A(ƒ∗, ψ∗) (9.2.13)

holds for all ƒ ∈ F , where

A(ƒ, ψ) ∝
EFψ2

(∂EFψ(x − θ )/∂θ |θ=0)2 ,

then the following relations hold for each ν greater than some bound γ:

βd(0  ƒ) ≤ βdρ∗ (0  ƒ∗) for all ƒ ∈ F ,

inf
ƒ∈F

βdρ∗ (ν  ƒ) = βdρ∗ (ν  ƒ∗) = sup
d∈D

βd(ν  ƒ∗).

From these relations it follows that the pair (dρ∗ , ƒ∗) is the saddle point of the
function βd(θ  ƒ), and also it is the solution of problem (9.2.9). The bound γ is
defined by the false alarm probability α.

REMARK 9.2.1. Since the term A(ƒ, ψ) is proportional to the asymptotic vari-
ance V(ƒ, ψ) for M-estimators of location, this assertion allows for direct ap-
plication of all results on minimax estimation of the location parameter to the
problem of detection of known signals.
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9.2.2. Asymptotic robust minimax detection on the basis of the
optimization criteria for M-estimators.

Formulation of the algorithm for binary detection. Consider again the
problems of testing hypotheses (9.2.1), (9.2.2), and (9.2.3). We suggest the
following nonparametric algorithm of detection for these problems:

d(x) =





1,
∑n

i=1 ρ(xi) −
∑n

i=1 ρ(xi − si) > 0,
1
2 ,

∑n
i=1 ρ(xi) −

∑n
i=1 ρ(xi − si) = 0,

0,
∑n

i=1 ρ(xi) −
∑n

i=1 ρ(xi − si) < 0,
(9.2.14)

in the discrete case, and

d(x) =





1,
∫ T

0 ρ[x(t)] dt −
∫ T

0 ρ[x(t) − s(t)] dt > 0,
1
2 ,

∫ T
0 ρ[x(t)] dt −

∫ T
0 ρ[x(t) − s(t)] dt = 0,

0,
∫ T

0 ρ[x(t)] dt −
∫ T

0 ρ[x(t) − s(t)] dt < 0,
(9.2.15)

in the continuous case, where ρ(u) is the contrast function (Shevlyakov, 1976;
Chelpanov and Shevlyakov, 1983).

Randomized decision rules (9.2.14) and (9.2.15) are of clear structure: the
choice of the hypotheses H0 or H1 depends on the distance of the signals {0}
and {si} from the observed data {x}measured by the value of the optimization
criterion.

Formulation of the algorithm for multi-alternative detection. Consid-
er the problem of multi-alternative detection

H0 : xi = s0 + ei,
H1 : xi = s1 + ei,

...
Hk : xi = sk + ei, i = 1, …, n, (9.2.16)

where the signals s0, s1, …, sk are known.
In this case, the decision is made in favor of the signal sj (the hypothesis

Hj) that minimizes the distance from the observed data

sj = arg min
θ=s0 ,…,sk

n∑

i=1

ρ(xi − θ ). (9.2.17)

One may think on the transition from the problem of multi-alternative
detection (9.2.16) to the problem of estimation of the location parameter θ if
to consider the continuum set of hypotheses in (9.2.16)

θn = arg min
θ

n∑

i=1

ρ(xi − θ ).
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Thus the proposed non-traditional forms (9.2.14), (9.2.15), and (9.2.17) of the
algorithm for detection have the obvious connection with the problem of esti-
mation of the location parameter.

There is another motivation for the introduced decision rules. In statistics,
there exist two general approaches to estimation of parameters: point and
interval estimation. Evidently, the above procedure of hypotheses testing may
be referred to as ‘point hypothesis testing’. Henceforth we call such a procedure
ρ-test.

Asymptotic normality of ρ-test statistics. Consider the problem of detec-
tion of a known constant signal θ > 0, or the problem of testing the simple
hypothesis H0 against the simple alternative H1

H0 : xi = ei,
H1 : xi = θ + ei, i = 1, 2, …, n. (9.2.18)

Given the error distribution density ƒ, the quality of detection by ρ-tests is
completely determined by the contrast function ρ. It is easy to see that the
choice ρ(u) = − log ƒ(u) leads to the optimal LHR test statistic minimizing the
Bayesian risk with equal costs and a priori probabilities of hypotheses

n∑

i=1

ρ(xi) <
n∑

i=1

ρ(xi − θ ) ⇐⇒
n∑

i=1

log ƒ(xi) >
n∑

i=1

log ƒ(xi − θ )

⇐⇒
n∏

i=1

ƒ(xi − θ )
ƒ(xi)

< 1. (9.2.19)

In this setting, under distributions symmetric about zero, the power func-
tion PD and the false alarm probability PF are mutually complementary so
that PD = 1 − PF.

The following particular cases are of interest:

• ρ(u) = u2 defines the LS or L2-norm test, which is optimal under normal
errors with the sample mean as the test statistic

n∑

i=1

x2
i <

n∑

i=1

(xi − θ )2 ⇐⇒ Tn(x) =
1
n

n∑

i=1

xi <
θ
2

;

• ρ(u) = |u| yields the LAV or L1-norm test, which is optimal under the
double-exponential or Laplace error distribution with the Huber-type
test statistic

n∑

i=1

|xi| <
n∑

i=1

|xi − θ | ⇐⇒ Tn(x) =
1
n

n∑

i=1

ψH(xi; 0, θ ) <
θ
2

,

where ψ(x; a, b) = max(a, min(x, b));
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• the Chebyshev norm ρ(u) = max |u| defines the L∞-norm test, which is
optimal under the uniform error distribution.

Now we establish the asymptotic normality of the ρ-test statistic.
Let a distribution density ƒ ∈ F and a score function ψ ∈ Ψ satisfy

the regularity conditions (F1), (F2), (Ψ1)–(Ψ4) of Section 1.2. Consider the
function

q(θn) = n−1
n∑

i=1

ρ(θn + ei) − n−1
n∑

i=1

ρ(ei).

By the Taylor expansion, we obtain

q(θn) = q(0) + q′(0)θn +
q′′(ξ θn)

2
θ 2

n , 0 < ξ < 1.

Furthermore,

q(θn) = θnn−1
n∑

i=1

ψ(ei) − (θ 2
n /2)n−1

n∑

i=1

ψ ′(ei + ξ θn).

Consider the infinitesimal alternative

θn → 0 as n → ∞ : θn = θ/
√

n.

Set Tn = n−1∑n
i=1 ψ(ei) and T′

n = n−1∑n
i=1 ψ ′(ei + ξ θn). Then we can write for

the power function

PD = P
(
q(θn) > 0

)
= P

(
Tn > −θn

2
T′

n

)
.

Since n1/2Tn is asymptotically normal with mean 0 and variance EFψ2 and T′
n

tends in probability to the positive constant c = EFψ ′ > 0, we obtain

PD = Φ

(
θ
2

EFψ ′
√

EFψ2

)
. (9.2.20)

From (9.2.20) it follows that the maximin problem

max
ψ∈Ψ

min
ƒ∈F

PD(ƒ, ψ) (9.2.21)

is equivalent to the minimax problem

min
ƒ∈F

max
ψ∈Ψ

V(ƒ, ψ), (9.2.22)

where V(ƒ, ψ) = EFψ2/(EFψ ′)2 is the asymptotic variance for M-estimators of a
location parameter.
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Thus, all results on minimax estimation of location are also true in this
case, i.e., they provide the guaranteed level of the power function PD

PD(ƒ, ψ∗) ≥ PD(ƒ∗, ψ∗) for all ƒ ∈ F ,

and/or of the false alarm probability PF

PF(ƒ, ψ∗) ≤ PD(ƒ∗, ψ∗) for all ƒ ∈ F ,

since PD = 1 − PF.

9.2.3. The L1-norm test
In this section we present some results on the properties of the L1-test both in
small samples and asymptotics. Certainly, it is easy to foresee these results:
the behavior of the L1-norm test as compared to the L2-norm procedure must
be similar to the comparative behavior of the sample median and sample mean
due to the structures of the corresponding test statistics. Moreover, we recall
that, since the L1-norm procedure is optimal for the class F 1 of nondegenerate
distributions and for the ε-contaminated models as ε → 1, the L1-test inherits
these minimax properties.

Discrete case: detection of a known signal under gross errors. Con-
sider the problem of detection of a known signal θ > 0 (9.2.18)

H0 : xi = ei,
H1 : xi = θ + ei, i = 1, 2, …, n.

in the gross error model

ƒe(x) = (1 − ε)N (x; 0, 1) + εN (x; 0, k), 0 ≤ ε < 1, k ≥ 1 (9.2.23)

for various values of the contamination parameters ε and k in small samples
(n = 5, 7, 9), large samples (n = 100), and in asymptotics as n → ∞.

Comparative studies of the power functions for the L1- and L2-tests in small
samples show that PD(L1) > PD(L2) (recall that the power function completely
characterize the quality of detection in this setting) from k ≈ 3 (ε = 0.1, 0.2),
and, only in the normal case, the L1-test is inferior to the optimal L2-test (see
Fig. 9.2).

In asymptotics, we use the Pitman asymptotic relative efficiency (ARE)
(Pitman, 1948) as the measure to compare the tests. For ARE(L1, L2),

ARE(L1, L2) = 4ƒ2
e (0)σ2

e , (9.2.24)
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Figure 9.2. The power functions of the L1- and L2-tests under gross errors
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Figure 9.3. Asymptotic relative efficiency of the L1- and L2-tests under gross
errors

and for model (9.2.23)

ARE(L1, L2) =
2
π

(
1 − ε +

ε
k

)−2
(1 − ε + εk2). (9.2.25)

Fig. 9.3 presents the ARE-curves for two values of ε. From (9.2.25) it
follows that the L1-test is inferior to the optimal L2-test under normal errors
(ARE = 2/π ≈ 0.637), and it is essentially superior to the L2-test under gross
errors.

Observe that formula (9.2.24) coincides with the asymptotic relative ef-
ficiency of the sample median and sample mean, which are the optimal L1-
and L2-estimators of the location parameter—here the connection between the
problems of detection and estimation is evident. It is also known (Kendall and
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Stuart, 1963; Hájek and Šidák, 1967) that formula (9.2.24) gives the value of
the ARE of the sign test to the Student t-test based on the sample mean. Hence
it follows that the L1-test is equivalent in the sense of ARE to the sign test for
the problem (9.2.18).

Continuous case: detection of a known signal under the Gaussian
white noise. Consider the problem of detection of a known signal θ (t)

H0 : x(t) = e(t),
H1 : x(t) = θ (t) + e(t), 0 ≤ t ≤ T. (9.2.26)

Now we find the power of the L1-test under the Gaussian white noise.
Let the noise e(t) be the white noise with zero mean and Ee(t)e(t+τ) = N0δ (τ),

where N0 is its power spectrum.
It is well known (van Trees, 1971) that the Gaussian white noise can be

derived by the limit transition from the following discrete scheme. Let [0, T] be
the interval of processing, ∆t = T/n, {ek} be a sequence of independent normal
random variables with zero mean and variance N0/δ t, k = 1, …, n. Then the
random process {ek} converges to the Gaussian white noise.

For problem (9.2.26), the power of the L2-test is

PD(L2) = Φ(d/2), (9.2.27)

where d =
√

E/N0, E =
∫ T

0 θ 2(t) dt is the signal energy.
For the power of the L1-test,

PD(L1) = Φ(d/
√

2π). (9.2.28)

From (9.2.27) and (9.2.28) it follows that the L1-test is inferior to the L2-
test under the Gaussian white noise, but all the qualitative peculiarities of
the optimal detection by the L2-test are preserved for the L1-test as well. For
instance, the power depends only on the signal-noise ratio d and does not
depend on the signal shape.

Fig. 9.4 demonstrates the dependence of the false alarm probability PF =
1 − PD on the signal-noise ratio d for the L1- and L2-tests.

Continuous case: detection of a constant signal under impulsive
noise. Consider now the impulsive noise case. Let θ (t) = θ > 0 be a con-
stant signal, and the noise e(t) be the impulses of magnitude h > θ and total
duration T+.

In this case, for the L1-test

PD = 1, PF = P(T+ > T/2). (9.2.29)
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Figure 9.4. The false alarm probability for the L1- and L2-tests under
the Gaussian white noise

For the impulsive noise of the opposite sign where−h < −θ , these probabilities
can be rewritten as

PD = P(T− < T/2), PF = 0, (9.2.30)

where T− is the total duration of negative impulses.
From (9.2.29) and (9.2.30) it is seen that the characteristics of the quality

of detection do not depend on the magnitude of impulsive noise but are deter-
mined by the value of its total duration. Comparing the quality of detection
by the L2-test, for example, in the case of positive impulses, we obtain

PD = 1, PF = P
(

T+ >
θ
2h

T
)

.

Here with increasing h, the false alarm probability tends to 1. Given 0 < h < θ ,
the false alarm probabilities for the L1- and L2-tests coincide

PF(L1) = PF(L2) = P
(

T+ >
θ
2h

T
)

,

and they are equal to zero for h < θ/2.
The marked independence of PF(L1) of the magnitude of impulsive noise

qualitatively repeats the peculiarities of the best L1-norm approximations (see
Chapter 6) and predetermines the robustness properties of detection by the L1-
test.

Setting a specific shape of the distributions for the times of impulse dura-
tion and pauses, it is possible to estimate numerically the quality of detection.
For arbitrary distribution laws, the expression for the distribution of the total
duration of impulses has a complicated form (Gnedenko et al., 1969) and thus
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Figure 9.5. The false alarm probabilities for the L1- and L2-tests under
impulsive noise

it is practically useless. However, given a large time of processing, one can use
the normal approximation to this distribution function. In the case where the
duration of impulses and pauses are distributed by the exponential law with
parameters λ and µ, and the noise e(t) is the Markov process with two states
{0} and {h}, the expectation and variance of T+ are (see Section 6.1):

ET+ =
T1

T1 + T2
T, Var T+ =

2T2
1T2

2
(T1 + T2)3 T,

where T1, T2 are the mean duration of impulses and pauses: T1 = 1/λ and
T2 = 1/µ. Setting k = T2/T1 and n = T/

√
T1T2, for the false alarm probability

we obtain

PF(L1) = 1 − Φ((k − 1)(k + 1)1/2n1/2/k3/4). (9.2.31)

Observe that

PF(L1) = 1/2, k = 1;
lim
n→∞

PF(L1) = 0, k > 1;

lim
n→∞

PF(L1) = 1, k < 1.

Hence it follows that the L1-test is consistent only for k > 1.
Fig. 9.5 demonstrates dependence of PF(L1) and PF(L2) on the value of k

for n = 100 and h = 1.5θ . The superiority of the L1-test is obvious here.

Continuous case: detection of a periodic signal under impulsive noise.
We introduce

T
+
θ = {t  θ (t) ≥ 0}, T

−
θ = {t  θ (t) < 0}, T

+
e = {t  e(t) ≥ 0}.
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Assume that the signal θ (t) and the impulsive noise e(t) satisfy the condi-
tions

∫ T

0
θ (t) dt = 0, e(t) > max

t∈T e
|θ (t)|. (9.2.32)

Then the power function and false alarm probability for the L1-test can be
represented as

PF(L1) = (1 − p)P(T +
e ⊃ T

+
θ ), PD(L1) = 1 − pP(T +

e ⊃ T
−
θ ), (9.2.33)

where p is a priori probability of the hypothesis H0.
The robustness of detection by the L1-test is manifested in the indepen-

dence of the power and false alarm probability on the magnitude of noise.
Relations (9.2.33) describe the quality of detection of any signal satisfying

the first condition in (9.2.32). If a one-sided impulsive noise does not satisfy
the second condition in (9.2.32), then expressions (9.2.33) can be used as the
upper and lower bounds for the false alarm probability and power function of
the test. It is almost obvious that reducing the noise magnitude makes the
quality of detection only better.

Now we apply these results to the problem of detection of the sine-signal
Θ(t) = A sin ωt (the interval T = 2πk/ω and the integer number k of periods) un-
der the impulsive noise with exponential distributions of duration and pauses.
Under these conditions, it is possible to obtain rather simple relations for the
characteristics PF(L1) and PD(L1) sought for in the following particular cases:

λ = µ:

PF =
1
4

exp
(
−λ (2k − 1)π

ω

)
,

PD = 1 − 1
4

[(
cosh λ

π
ω

)k
+
(

sinh λ
π
ω

)k
]

exp
(
−λ2kπ

ω

)
;

µ � λ :

PF =
1
4

exp
(
−λ (2k − 1)π

ω

)
, PD = 1 − 1

4
exp

(
−λ2kπ

ω

)
;

λ � µ:

PF =
1
4

exp
(
−λ (2k − 1)π

ω

)
, PD = 1 − 1

2
exp

(
−λπk

ω

)
.
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Figure 9.6. The lower (1) and upper (2) boundaries for the power of the L1-test
under impulsive noise with exponential distributions of duration
and pauses

From the abovesaid it follows that, for any µ, the power PD is bounded
below and above, namely between the limits

1 − 1
2

exp
(
−λT

2

)
≤ PD ≤ 1 − 1

4
exp (−λT) , (9.2.34)

and PD → 1 as λT → ∞, as well as PF → 0. Also we have a better detection with
increasing frequency ω of the signal under the fixed remained parameters.

Fig. 9.6 illustrates the abovesaid.
Now we give a simple qualitative analysis of detection of a periodic signal

by the L2-test under impulsive noise.
Let us choose θ (t) = θ0 sgn(sin ωt) on the interval of processing [0, T =

2π/ω]. For the impulsive noise of magnitude h and total duration T+, we
set T+

1 + T+
2 = T+, where T+

1 and T+
2 are the parts of T+ corresponding to the

intervals [0, T/2] and [T/2, T] respectively. Then for the false alarm probability
we obtain

PF(L2) = P(T+
1 − T+

2 > θ0/(2h)),

and, for sufficiently large values of h, assuming closeness of the distributions
for T+

1 and T+
2 , we obtain

PF = P(T+
1 − T+

2 > 0) ≈ 1/2.

Here the power is also close to 1/2. Thus we observe an extremely poor de-
tection by the L2-test like in the case of a constant signal. Furthermore,
non-robustness of the L2-test is obvious under an arbitrary number of periods.

Summarizing the above, we conclude that the L1-test is highly robust under
a rare impulsive noise, and it is slightly inferior to the optimal L2-test under
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the Gaussian white noise. The obtained results allow us to expect a good
performance of the L1-test under the mixture of Gaussian white noise with a
rare impulsive noise of high magnitude. This has been demonstrated in the
discrete case, and the continuous case does not differ much from the discrete
one here.

9.2.4. The Lp-norm tests
The Log-test. Now we revert to the problem of detection of a constant signal
θ > 0

H0 : x(t) = e(t),
H1 : x(t) = θ + e(t), 0 ≤ t ≤ T, (9.2.35)

where the impulsive noise e(t) with impulses of magnitude h > θ and total
duration T+ is of the form

e(t) =

{
h, t ∈ Eh,
0, t ∈ [0, T] \ Eh,

(9.2.36)

such that µ(Eh) = T+ (µ(x) is the ordinary Lebesgue measure on the real line).
Using the L1-test, we obtain

PD = 1, PF = P(T+ > T/2),

i.e., the detection is true if the noise occupies less than half of the interval of
processing. It is possible to improve the quality and robustness of detection
of a constant signal under impulsive noise if to consider the nonparametric
Lp-test (p ≥ 0)

d(x) =





1,
∫ T

0 |x(t)|p dt −
∫ T

0 |x(t) − θ |p dt > 0,
1
2 ,

∫ T
0 |x(t)|p dt −

∫ T
0 |x(t) − θ |p dt = 0,

0,
∫ T

0 |x(t)|p dt −
∫ T

0 |x(t) − θ |p dt < 0.
(9.2.37)

Assume that the hypothesis H0 is true. Then the Lp-test takes the form

T+ <
θ p

hp − (h − θ )p + θ p T. (9.2.38)

Under the condition h > θ > 0, the maximum of the expression

max
p

θ p

hp − (h − θ )p + θ p = 1
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is attained at p = 0. Hence test (9.2.37) can be written as T+ < T, i.e., the
decision is always true except T+ = T. For equal a priori probabilities of the
hypotheses H0 and H1, the characteristics of detection are

PF = 1
2P(T+ = T), PD = 1 − 1

2 P(T+ = T).

Now we transform the test statistic for the case p = 0. The Lp-norm takes
the following form at p = 0

lim
p→0

( n∑

i=1

|xi|p
)1/p

=
n∏

i=1

|xi|.

Hence for the problem (9.2.35), we can use the logarithmic form of the test
statistic or the Log-test

d(x) =





1,
∫ T

0 log |x(t)|dt −
∫ T

0 log |x(t) − θ |dt > 0,
1
2 ,

∫ T
0 log |x(t)|dt −

∫ T
0 log |x(t) − θ |dt = 0,

0,
∫ T

0 log |x(t)|dt −
∫ T

0 log |x(t) − θ |dt < 0.
(9.2.39)

It follows from the above that the quality the Log-test under the impulsive
noise is much better than that of the L1-test: the Log-test fails only when the
impulses occupy the whole interval [0, T].

Now let the noise be described as

e(t) =

{
h, t ∈ Eh,
h1, t ∈ [0, T] \ Eh,

(9.2.40)

where h � θ and 0 < h1 � θ . It is easy to see that the quality of detection by
the Log-test in this case is close to the quality of detection in model (9.2.36).
Observe that model (9.2.40) is more realistic than (9.2.36). Thus extremely
high robustness of the Log-test is explained by its structure and not by the
degenerate character of the model.

Consider now the detection of an arbitrary signal θ (t) under impulsive
noise (9.2.36) by the Log-test. It is easy to see that if the condition

∣∣∣∣∣

∫ T

0
log |θ (t) ± h|dt

∣∣∣∣∣ < ∞ (9.2.41)

is satisfied, then the characteristics of the detection quality lie within the
boundaries

PD(Log) ≥ 1 − P(T+ = T), PF(Log) ≤ P(T+ = T). (9.2.42)
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This result holds also in the case where e(t) is an arbitrary impulsive noise
satisfying the condition

∣∣∣∣∣

∫ T

0
log |θ (t) + e(t)|dt

∣∣∣∣∣ < ∞.

The Log-test manifests higher robustness with respect to impulsive noise
than the L1-test. However, the use of the L1-test under the Gaussian noise
yields a small lack in efficiency of detection as compared to the optimal L2-test.
It is interesting to know how the Log-test behaves in this case.

Consider the discrete version of the Log-test for detection of a constant
signal θ under the Gaussian noise

d(x) =





1,
∑n

i=1 log |xi| −
∑n

i=1 log |xi − θ | > 0,
1
2 ,

∑n
i=1 log |xi| −

∑n
i=1 log |xi − θ | = 0,

0,
∑n

i=1 log |xi| −
∑n

i=1 log |xi − θ | < 0.
(9.2.43)

The quality of detection is examined in small (n = 5, 7, 9) and large samples
(n = 100) in ε-contaminated normal models for the fixed level of the signal θ .
In the first case, Monte Carlo modeling is used; in the second, we apply the
normal approximation to the distribution of the Log-test statistic

T(x) =
1
n

n∑

i=1

log
∣∣∣∣
xi − θ

xi

∣∣∣∣ . (9.2.44)

Fig. 9.7 and 9.8 present the power function curves for the Log- and L2-tests;
hence the considerable loss of efficiency of the Log-test as compared to the L2-
test is seen, for example, PD(L2) = 0.933, PD(Log) = 0.655 for θ = 0.3 and
n = 100. Nevertheless, the Log-test is consistent because of the asymptotic
normality of its test statistic.

The results of modeling demonstrate high robustness of the Log-test under
contamination, in particular, it begins to dominate over the L2-test only with
sufficiently large values of the contamination parameters k and ε, namely from
k ≈ 7 with ε = 0.2. Recall that the L1-test dominates over the L2-test from
k ≈ 3 under the same conditions.

We conclude that the use of the Log-test is preferable in a clearly expressed
non-normality of the impulsive noise.

The L∞-test. Now we consider another particular case of the Lp-test as p →
∞, and the Lp-norm becomes the Chebyshev uniform norm

lim
p→∞

( n∑

i=1

|xi|p
)1/p

= max
i
|xi|.
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Figure 9.7. The power of the Log- and L2-tests in Gaussian noise for θ = 0.3,
n = 100
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Figure 9.8. The power of the Log- and L2-tests in ε-contaminated normal model
for θ = 1, n = 7

In the case of detection of a constant signal θ , it is easy to see that the
L∞-test statistic is half of the sum of extremal order statistics optimal for the
uniform distribution

PF(L∞) = P
(

e(1) + e(n)

2
>

θ
2

)
, PD(L∞) = P

(
e(1) + e(n)

2
<

θ
2

)
.

Obviously, it follows from the above that if the underlying uniform distribution
is defined on the interval (−a, a) with θ > 2a, then PF = 0 and PD = 1.
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Figure 9.9. The power of the Lp-tests under the normal (upper) and Laplace
(lower) distributions

Some particular cases of Lp-tests. Now we consider the exotic extreme
case of the Lp-test as p → −∞. It is easy to see that

lim
p→−∞

( n∑

i=1

|xi|p
)1/p

= min
i
|xi|,

and the corresponding L−∞-test is based on the test statistic

T(x) = min
i
|xi| − min

i
|xi − θ |.

Intuition suggests that the properties of the L−∞-test resemble the properties
of the Log-test, for example, in the case where ei = 0 for some i and θ ± ei ≠ 0
for all other observations, the detection is true.

Now we study the quality of detection by the above tests for a wide spectrum
of noise distribution laws. We consider the detection of a constant signal θ by
the Lp-tests (p = −∞,−2, 0, 1, 2, ∞) under the normal, Laplace, Cauchy, ε-
contaminated normal, uniform, and Simpson distributions by Monte Carlo for
n = 9. The value of θ is set equal to 1. The power function curves are given in
Figures 9.9–9.11.

Summarizing these graphs, we arrive at the following:

• As expected, the L1-test is the best under the Laplace distribution, the
L2-test, under the normal distribution, and the L∞-test, under the uni-
form distribution.

• The L∞-test is the best for finite distributions like the Simpson and
uniform ones; the quality of detection by other tests in this case decreases
as p → −∞, and it is the least for p = −∞.
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Figure 9.10. The power of the Lp-tests under the Cauchy (upper) and uniform
(lower) distributions

• Under heavy-tailed distributions such as the Cauchy, Laplace, and con-
taminated normal ones, the Lp-tests with p < 1 possess greater power
than those with p > 2.

• The L1-test is also the best under the Cauchy distribution; the Log-test
is a little inferior to it in this case.

In general, the use of the Lp-tests with p < 0 seems senseless, these tests
behave poorly in the majority of cases. As for the remained group of the Lp-
tests with p ≥ 0, we may recommend the Log-test for a specific impulsive noise,
and the L∞-test for finite distributions, but the latter test fails if there occurs
an outlier in the data. The L1-test performs uniformly well under nearly all
the distributions due to its minimax properties, so we may recommend it as a
simple robust test for detection of known signals.
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Figure 9.11. The power of the Lp-tests under the ε-contaminated normal
(ε = 0. 1, k = 5) and Simpson distributions

9.3. Statistical analysis of sudden cardiac death
risk factors

In this section we expose the meteorological and solar sudden cardiac death
risk factors by classical and robust statistical methods. The methodological
aspects of their use are discussed.

9.3.1. Preliminaries
The exposure of sudden cardiac death (SCD) risk factors (RF) is a rather old
problem. There are many researches treating this problem and similar ques-
tions mainly studying the influence of cardio-pathological factors (blood pres-
sure, atherosclerosis), psychological factors (stresses), social factors (smoking,
alcoholism), etc. (Mindlin and Kosagovskaya, 1986).

Here we consider only the RFs connected with meteorological and solar
factors. This direction appeared due to the pioneering works (Tchijevsky,
1928; Tchijevsky, 1930; Tchijevsky, 1934; Tchijevsky, 1936).
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The actuality of studying of this problem depends on the following:

• the mortality rate by coronary heart diseases is about 50% of the general
mortality;

• the rate of SCD is about the 70% of the coronary heart mortality.

Another problem concerns the choice of adequate statistical methods for
data processing. The high level of meteorological and solar data distribution
uncertainty forces us to use nonparametric and robust procedures. The com-
parative study of classical and robust solutions of the above problem may be
of interest both for physicians and statisticians.

9.3.2. Sudden cardiac death data and the problem formulation
There are different medical definitions of the sudden cardiac death (Mindlin
and Kosagovskaya, 1986), and in this study, we accept as sudden the deaths
occurring within 6 hours after appearing of onset symptoms.

The data under processing are the daily measured SCDs and meteo-solar
factors in Arkhangelsk for 1983–85, totally 1096 days:

N is the daily number of the SCD, (0 ≤ N ≤ 5);

T is the average temperature (°C);

∆T is the daily increment of temperature;

∆P is the daily increment of pressure (mbar);

V is the average wind speed (m/s);

AK is the terrestrial magnetic activity index (H ⋅ 10−5);

W is the Wolf number;

S is the area of sunspots (in the solid angle units = 2π ⋅ 10−6 steradian);

AS is the integral solar activity index (0—low, 1—moderate, 2—high, 3—very
high);

PS is the number of sun flares.

The level of mortality N varies from N = 0 (the class N = 0 when there are
no sudden deaths, totally 682 days) up to N = 5. The class N ≠ 0 when sudden
deaths occur includes 414 days: one SD a day N = 1—289 cases, two SDs a
day N = 1—92, more than two SDs a day N > 2—33.

The exploratory data analysis shows that

• the data distributions vary much;
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Table 9.2. Factor means and their standard errors for the class N = 0

Factors T ∆T ∆∆∆P v AK W S AS PS
x 1.09 2.69 4.89 2.85 25.3 64.2 447 0.67 4.89
sx .46 .09 .16 .05 1.17 1.96 22 .03 .24

med 1.40 2.50 4.10 2.80 16.0 55.0 200 0 4.00
smed .53 .11 .15 .06 .52 1.89 18 - .20

• they are mostly asymmetric and have heavy tails;

• there are outliers in the data.

The factors are measured in different scales (interval, ordinal, and mixed),
the measurement procedures for some factors (AK, AS, W) are poorly provided
from the metrological point of view (Ol, 1971). These data characteristics
give definite warning against the use of classical statistical methods based
on the least squares procedures and, in addition, give favor for the use of
nonparametric and robust statistical procedures to provide the stability of
inference.

9.3.3. Sudden cardiac death risk factors
Three types of statistical data characteristics are evaluated while exposing the
SCDRF: the characteristics of location, scale, and correlation. Parallel with
classical estimators, the robust median-type ones are used. Recall that the
sample median possesses not only high qualitative (its breakdown point equals
1/2) and quantitative (the B- and V-robustness) robust properties, but what is
more important here, the sample median is the unique estimator to be used
with the ordinal scale: it is equivariant under monotonic data transformations
(see Chapter 2) and therefore it is stable under comparisons in ordinal scales
(Pfanzagl, 1969; Orlov, 1976).

Discrimination between the classes N = 0 and N > 0. The sudden death
risk factors are exposed by comparing the values of sample means x, the sample
medians, and their standard errors for the classes N = 0 and N > 0 (Chirejkin
and Shevlyakov, 1990; Chirejkin and Shevlyakov, 1993). The results are given
in Tables 9.2 and 9.3.

The classes N = 0 and N > 0 obviously differ in the risk factors ∆∆∆P,
the pressure increment, and AS, the integral index of solar activity, both for
classical and robust estimators.
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Table 9.3. Factor means and their standard errors for the class N > 0

Factors T ∆T ∆∆∆P v AK W S AS PS
x .26 2.98 11.80 2.89 23.09 60.9 416 1.17 4.55
sx .62 .07 .39 .07 1.26 2.57 27 .02 .32

med 2.70 2.50 10.30 2.75 16.0 44.0 140 1 1.50
smed .55 .15 .32 .07 .50 2.10 20 - .21

Correlation and factor analysis. The sample correlation matrix R and the
robust correlation matrix Rmed with elements rmed evaluated for the classes
N = 0 and N > 0 are qualitatively similar but there are definite quantitative
differences.

All factors of solar activity W, S, AS, and PS are strongly correlated with
each other in both classes, and the values of correlation coefficients (classical
and robust) are greater than 0.6, for example, r(W, S) = 0.742, rmed(W, S) =
0.936 and r(W, PS) = 0.700, rmed(W, PS) = 0.914. The greater values of the
robust estimator rmed can be explained by presence of outliers in the data: the
real correlation is stronger, and it is estimated by the robust median correlation
coefficient.

The correlation matrices R and Rmed are used in the principal component
procedure of factor analysis, which gives the following principal components:

SOLAR formed by all factors of solar activity W, S, AS, PS, AK;

TEMPERATURE formed by T and ∆T;

PRESSURE formed by ∆P, v, and ∆T.

These three components explain 70% and 80% of the data variance by
classical and robust methods respectively.

On some details of discrimination. The results of discrimination between
the classes N = 0 and N > 0 by the values of the integral index of solar activity
AS (one of the main risk factors) are shown in Table 9.4.

Table 9.4 demonstrates that the low solar activity (AS=0) practically in-
duces absence of the SCDs, but there is an essential specification: with AS > 0,
occurrence of the SCDs is more plausible during the periods of the lower solar
activity.

The last row of Table 9.4 for 1985 (the year of the ‘calm’ Sun) indicates that
if the AS-index exceeds 0 then the SCDs occur inevitably. The analysis of the
periods of low and high solar activity shows that the most dangerous factors
with respect to the SCD are the leaps of the AS-index against the background
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Table 9.4. Discrimination between the classes N = 0 and N > 0 by the integral
index of solar activity AS

The numbers of days with sudden deaths
1983 N=0 AS=0 33 1983 N>0 AS=0 1 AS = 1.11
1984 N=0 AS=0 82 1984 N>0 AS=0 0 AS = 0.98
1985 N=0 AS=0 219 1985 N>0 AS=0 0 AS = 0.41
1983 N=0 AS>0 202 1983 N>0 AS>0 127 AS = 1.11
1984 N=0 AS>0 111 1984 N>0 AS>0 151 AS = 0.98
1985 N=0 AS>0 5 1985 N>0 AS>0 134 AS = 0.41

of the low solar activity (from 0 to 1). During the period of the high solar
activity, such leaps are not essential.

9.3.4. Conclusions
(1) The daily rate of SCDs is significantly influenced by the solar activity

factors, especially by the AS-index and by the daily increment of pressure
∆P. Influence of the terrestrial magnetic activity (the AK-index) has not
manifest itself.

(2) Robust median-type estimators prove to be more efficient than classical
estimators in the factor analysis procedure.

(3) The sample median should be used for estimation of location while data
processing in order to provide:

(a) the stability of statistical inference;

(b) the possibility to compare the results of various studies.

Recall that the latter property can be provided only due to the equivariancy
of the sample median under monotonic transformations of the data.

REMARK 9.3.1. The problem of statistical analysis of the SDCRF is regarded
here as the problem of multivariate statistical analysis, though the observed
data are the multivariate time series, so the above results should be consid-
ered only as preliminary. Various mysterious aspects of prediction for sudden
deaths lie aside this study.

In addition, we may put forward the conjecture that the meteorological
risk factors seem to be of lunar origin, not solar.
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rang. Austérisque. #43–44, 41–64.

Azencott, R. (1977b). Robustesse des R-estimateurs. Austérisque. #43–44, 189–202.
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