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“Physicists believe that the Gaussian law has been proved 
in mathematics while mathematicians think that 

it was experimentally established in physics.”

—Henri Poincaré

T
his witty remark of a great mathematician [1]
reflects the fact of the ubiquitous use and success of
the Gaussian distribution law and at the same moment
gives both a humorous and serious hint to explain this
phenomenon. The majority of members of the scientific

community shares the common belief that it is due to the central limit
theorem (CLT). We will show that the CLT is not only a unique reason but
perhaps it is even not the main reason.

In this article, we try to answer the question: “Why the ubiquitous use and success of the
Gaussian distribution law?” The history of the Gaussian or normal distribution is rather
long, having existed for nearly 300 years since it was discovered by de Moivre in 1733, and
the related literature is immense. An extended and thorough treatment of the topic and a
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survey of the works in the related area are given in the posthu-
mously edited book of E.T. Jaynes [2], and we partially follow
this source, in particular while considering the history of the
posed question. The important aspects of the general history of
noise, especially of Brownian motion, are given in [3]. Our main
contribution to the topic is concerned with highlighting the role
of Gaussian models in signal processing based on the optimal
property of the Gaussian distribution minimizing Fisher infor-
mation over the class of distributions with a bounded variance.

In what follows, we deal only with the univariate Gaussian
distribution, omitting the properties of multivariate Gaussian
distribution. First of all, we present the ideas of classical deriva-
tions of the Gaussian law. Then we consider its properties and
characterizations including the CLT and minimization of the
distribution entropy and Fisher information. Finally, we dwell
on the connections between Gaussianity and robustness in sig-
nal processing.

HISTORICAL PRELIMINARIES
The Gaussian or normal distribution density is defined as 

N (x; μ, σ) = 1

σ
√

2π
exp

[
− (x − μ)2

2σ 2

]
,

− ∞ < x < ∞, (1)

where μ and σ are the parameters of location (mean) and scale
(standard deviation), respectively. Its standard form is common-
ly denoted by φ(x) = N (x ; 0, 1). (See Figure 1.)

Using Stirling’s approximations for factorials, it can be
shown that the Gaussian distribution is a limiting form of the
binomial distribution [4]

Pn,k(p) = C k
np kq n−k, k = 0, 1, . . . ,n,

0 < p < 1, q = 1 − p, C k
n = n!

k !(n − k)!
,

Pn,k(p) → 1√
n pq

φ

(
k − n p√

n pq

)
as n,k → ∞

with (k − np)/
√

npq finite.
In the particular case p = q = 1/2, the Gaussian distribu-

tion had been found by de Moivre [5] who did not recognize its
significance. In the general case 0 < p < 1, Laplace [6] had
derived its main properties and suggested that it should be tab-
ulated due to its importance. Gauss [7] considered another
derivation of this distribution (not as a limiting form of the
binomial distribution); it became popularized by his work and
thus his name was attached to it. The fundamental Boltzmann
distribution of statistical mechanics [8], exponential in ener-
gies, is the Gaussian in velocities [9].

It seems likely that the term “normal” is associated with a
linear regression model y = �β + e, where the vector y and
the matrix � are known, the vector of parameters β and the
noise vector e unknown; to solve this linear regression problem,
Gauss [10] suggested the least-squares (LS) method and called
the system of equations �′�β = �′ y, which give the least

square parameter estimates β̂, the nor-
mal equations.

One more name central distribution
originating from the term CLT was sug-
gested by Pólya [11] and then it was
actively backed by Jaynes [2].

A well-known historian of statistics, Stigler [12] for-
mulates an universal law of eponymy that “no discovery is
named for its original discoverer.” Jaynes [2] truly notices that
“the history of this terminology excellently confirms this law,
since the fundamental nature of this distribution and its main
properties were derived by Laplace when Gauss was six years
old; and the distribution itself had been found by de Moivre
before Laplace was born.”

DERIVATIONS OF THE GAUSSIAN DISTRIBUTION

DERIVATION OF GAUSS (1809)
Consider a sample of n + 1 independent observations
x0, x 1, . . . , xn taken from the distribution with density
f(x ; θ), where θ is a parameter of location. Its maximum likeli-
hood estimate ̂θ must satisfy

∂

∂θ
log

{
n∏

i=0

f(xi ; θ)

}
=

n∑
i=0

∂

∂θ
log f(xi ; θ) = 0.

Assuming differentiability of f(x ; θ) and denoting

log f (x ; θ) = g(x − θ),

we have that the maximum likelihood estimate will be the solution of

n∑
i=0

g′(xi − θ̂ ) = 0. (2)

Gauss [7] asked the following question: “What would be a distri-
bution density f(x ; θ) for which the maximum likelihood esti-
mate ̂θ is the sample mean

[FIG1] Standard Gaussian distribution density.
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θ̂ = x = 1
n + 1

n∑
i=0

xi ? ’’

Note that here we use the modern
terminology adopted by the scien-
tific community more than a centu-
ry later (the method of maximum
likelihood was proposed by Fisher
in 1921 [13]).

To answer the posed question, let us apply the following
method of functional equations [14]. First, set x0 = x1 = · · ·
= xn = 0, then check that x = 0,write out (2) and get that

g ′(0) = 0. (3)

Second, set x0 = u, x1 = −u, x2 = 0, . . . , xn = 0, check that
x = 0 and then from (2) and (3) it follows that

g ′(−u) = −g ′(u). (4)

Third, set x0 = −u (n + 1), x1 = 0, . . . , xn = 0 , get that
x = −u and then from (2) and (4) it follows that

g ′(−n u) +
n∑

i=1

g ′(u) = 0

and the function g(u) must satisfy the functional equation

g ′(n u) = n g ′(u), n = 1, 2, 3, . . . . (5)

From (5) it follows that

g ′(1) = n g ′
(

1
n

)
n = 1, 2, 3, . . . ,

g ′
( m

n

)
= m g ′

(
1
n

)
m, n = 1, 2, 3, . . . ,

and we get the linear equation that holds for all rational
numbers

g ′
( m

n

)
= a

m
n

m, n = 1, 2, 3, . . . , (6)

where a = g ′(1). Since any real number can be arbitrarily accu-
rately approximated by rational numbers, linear equation (6)
holds for real u

g ′(u) = au

with the corresponding quadratic form of g (u)

g(u) = 1
2

au2 + b,

and the Gaussian density

f(x ; θ) = N (x ; θ, 1/
√

α), α = −a > 0.

Look at this derivation from anoth-
er point of view: Gauss assumed the
sample mean (the estimate of the
LS method, the honor of inventing
that he shares with Legendre [15])
due to its computational conven-
ience and derived the Gaussian law.
This line of reasoning is quite the

opposite to the modern exposition in textbooks on statistics and
signal processing where the LS method is derived from the
assumed Gaussianity.

DERIVATION OF HERSCHEL (1850) AND MAXWELL (1860)
The astronomer John Herschel [16] considered the two-
dimensional probability distribution for errors in measuring the
position of a star and, ten years later, James Clerk Maxwell [9]
gave a three-dimensional version of the same derivation for the
probability distribution density for the velocities of molecules in
a gas, which has become well-known to physicists as the
Maxwellian velocity distribution law fundamental in kinetic
theory and statistical mechanics.

Here we consider the two-dimensional case. Let x be the
error in the east-west direction and y the error in the north-
south direction, and f(x, y) be the joint probability distribution
density. First, assume the independence and identity of coordi-
nate error distributions

f(x, y) dx dy = f(x) dx × f(y) dy. (A1)

Second, require that this distribution should be invariant to the
rotation of the coordinate axes

f(x, y) = g(x2 + y2). (A 2)

From assumptions (A1) and (A2) it immediately follows that

g(x2) = f(x) f(0), g(y2) = f(y) f(0),

yielding the functional equation

g(x2 + y2) ∝ g(x2) g(y2),

with the exponential solution [14]

g(u2) = exp(λ u2), λ < 0,

and the Gaussian law for the coordinate error distribution

f(x ) = N (x ; 0, 1/
√−2λ).

DERIVATION OF LANDON (1941)
Vernon D. Landon [17], an electrical engineer, considered the
distribution density p(x ; σ 2) of the electrical noise voltage
x(t) observed in a circuit at time t, where σ is the standard
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deviation of the noise voltage. He suggested that this
distribution is so universal that it must be determined theoreti-
cally: namely, that there exists a hierarchy of distributions
p(x ; σ 2) of the same functional form characterized only by σ .
Moreover, all the different levels of σ at which it occurs corre-
spond to different noise environments, such as temperatures,
amplifications, impedance levels, and even to different kinds of
sources—natural or man-made industrial, resulting only in a
new value of σ and preserving the functional shape. Landon’s
original derivation concerned the particular case of a sinusoidal
noise amplitude; in what follows, we use the generalization of
Landon’s approach proposed by Jaynes [2].

Suppose the noise amplitude x has the distribution density
p(x ; σ 2). Let it be incremented by a small extra contribution
�x so that x ′ = x + �x, where �x is small compared with σ ,
and let �x have a distribution density q(�x) independent of
p(x ; σ 2). Then, given a specific �x, the probability for the new
noise amplitude to have the value x ′ would be the previous
probability that x should have the value (x ′ − �x). Next, by the
product and sum rules of probability theory, the new distribu-
tion density is the convolution

f(x ′) =
∫

p(x ′ − �x ; σ 2) q(�x) d(�x). (7)

Expanding (7) in powers of the small quantity �x and dropping
the prime, we get

f(x) =p(x ; σ 2) − ∂p(x; σ 2)

∂ x

∫
�x q (�x) d (�x)

+ 1
2

∂2 p(x; σ 2)

∂ x2

∫
(�x)2 q (�x) d (�x) + · · · ,

or

f(x) = p(x; σ 2) − �x
∂p(x; σ 2)

∂ x

+ 1
2

�x2 ∂2 p(x; σ 2)

∂ x2 + · · · , (8)

where �x and �x2 stand for the expectation and second
moment of the increment �x, respectively.

Since the increment is as likely to be positive as negative,
assume that �x = 0. Moreover, assume also that the moments
of order higher than two can be neglected, that is,
�xk = o

(
�x2

)
for all k > 2. Then (8) can be rewritten as

follows

f(x) = p(x ; σ 2) + 1
2
�x2 ∂2 p(x ; σ 2)

∂ x2 + o
(
�x2

)
. (9)

Further, the variance of x is increased to 
σ 2 + Var [�x ], and Landon’s invariancy property requires that
f (x ) should be equal to

f(x ) = p(x ; σ 2 + Var [�x ]). (10)

Expanding (10) with respect to small Var [�x ], we get

f(x ) = p(x ; σ 2) + Var [�x]
∂p(x; σ 2)

∂(σ 2)
+ o

(
�x2

)
. (11)

Equating the main parts of (9) and (11), we obtain the following
condition for this invariance:

∂p(x ; σ 2)

∂(σ 2)
= 1

2
∂2 p(x ; σ 2)

∂ x2

that is the “diffusion equation” [3], whose solution with the ini-
tial condition p(x ; σ 2 = 0) = δ(x ) is given by the Gaussian
distribution

p(x ; σ 2) = N (x ; 0, σ ).

The two crucial points of this derivation are, first, to guaran-
tee the expansions (8) and (11) hold, we should consider
smooth distributions p(x ; σ 2) and q (�x ); second, to neglect
the moments of �x of order higher than two, we should at
least assume their existence. Thus, discontinuous and heavy-
tailed distributions, such as Laplace and Cauchy, are excluded.
Here we conclude quoting Jaynes (see [2, p. 206]): “ … This is,
in spirit, an incremental version of the CLT; instead of adding
up all the small contributions at once, it takes them into
account one at a time, requiring that at each step the new
probability distribution has the same functional form (to sec-
ond order in �x ). …this is just the process by which noise is
produced in Nature—by addition of many small increments,
one at a time (for example, collisions of individual electrons
with atoms, each collision radiating another tiny impulse of
electromagnetic waves, whose sum is the observed noise).
Once a Gaussian form is attained, it is preserved; this process
can be stopped at any point, and the resulting final distribu-
tion still has the Gaussian form.”

PROPERTIES OF THE GAUSSIAN DISTRIBUTION
Here we enlist several properties of the Gaussian distribution:

■ the convolution of two Gaussian functions is another
Gaussian function
■ the Fourier transform of a Gaussian function is another
Gaussian function.
■ the CLT
■ maximizing entropy
■ minimizing Fisher information.

Apparently, the CLT, and based on it Gaussian approxima-
tions of the sums of random variables, can be regarded as
one of the main reasons for the ubiquitous use of a
Gaussian distribution. Nevertheless, we begin from the
other ones, which also relate to the CLT and explain why a
Gaussian form, once attained, is further preserved; the
remaining properties play each its own role deserving a
separate consideration.

Henceforth, a function f(x ) is said to be Gaussian or of a
Gaussian form if it is equal to the Gaussian distribution density
with accuracy up to the norming constant: f(x) ∝ N (x ; μ, σ).



CONVOLUTION OF GAUSSIANS
The operation of convolution arises in computing the dis-
tribution density fY(y) of the sum Y = X1 + X2 of two
independent random variables X1 and X2 with densities
f1(x1) and f2(x2), respectively, and it is given by the fol-
lowing relations

fY(y) =
∫ ∞

−∞
f1(x1) f2(y − x1) dx1

=
∫ ∞

−∞
f1(y − x2) f2(x2) dx2. (12)

Let the independent random variables X1 and X2 be Gaussian
with densities N (x1;μ1, σ1) and N (x2 ;μ2, σ2). Substitute
these densities into (12) and get 

fY (y) = 1
2πσ1σ2∫ ∞

−∞
exp

{
−1

2

[(
x − μ1

σ1

)2

+
(

y − x − μ2

σ2

)2
]}

dx

= 1
2πσ1σ2

∫ ∞

−∞
exp

{
−1

2

(
ax2 + bx + c

)}
dx,

where

a = 1

σ 2
1

+ 1

σ 2
2

, b = μ2 − y

σ 2
2

− μ1

σ 2
1

, c = μ2
1

σ 2
1

+ (y − μ2)
2

σ 2
2

.

Further use the following formula [18]

∫ ∞

−∞
exp

{
−1

2

(
ax2 + bx + c

)}
dx =

√
2π

a
exp

{
b2 − ac

2a

}
,

a > 0,

and obtain that the sum of independent Gaussian random vari-
ables is distributed according to the Gaussian law

fX1+X2(y) = N
(

y; μ1 + μ2,

√
σ 2

1 + σ 2
2

)
.

FOURIER TRANSFORM OF A GAUSSIAN
The Fourier transform of the Gaussian distribution density is
defined as

φX(t) =
∫ ∞

−∞
e itxN (x ;μ, σ) dx (13)

and it is well-known as the characteristic function of the
Gaussian random variable X.

Setting z = x − μ, we can rewrite (13) as

φX(t) = 1

σ
√

2π

∫ ∞

−∞
e−z 2/2σ 2

e it(μ+z) dx

=e itμ 1

σ
√

2π

×
(∫ ∞

−∞
e−z 2/2σ 2

cos tz dz+i
∫ ∞

−∞
e−z 2/2σ 2

sin tz dz
)

.

The second integral is zero as the integral of an odd function
over a symmetric interval. For computing the first integral, we
use the Laplace integral [18]

∫ ∞

0
e−αz2

cos βz dz = 1
2

√
π

α
exp

(
−β2

4α

)

and get that

φX(t) = exp

(
itμ − σ 2 t2

2

)
.

For the standard Gaussian random variable when μ = 0 and
σ = 1, we have that

φX(t) = e−t 2/2.

THE CLT 
The history of the CLT is long. It begins with the results of de Moivre
[5] and Laplace [6], who obtained the limit shape of a binomial distri-
bution. It was then followed the work of Lyapunov [19], who invented
the method of characteristic functions in probability theory and used
it to essentially generalize the de Moivre-Laplace results. Lindeberg
[20], Lévy [21], [22], Khintchine [24], and Feller [23] formulated gen-
eral necessary and sufficient conditions of asymptotic normality.

Basing on a simple sufficient condition in the case of identi-
cal distributions, we formulate and prove the Lindeberg-Lévy
CLT [20], [21].

Let X1, X2, . . . , Xn, . . . be independent identically distrib-
uted (i.i.d.) random variables with finite mean μ and variance
σ 2. Then the distribution function of the centered and standard-
ized random variable

Yn = 1

σ
√

n

n∑
k=1

(Xk − μ) (14)

tends to the Gaussian distribution function

FYn(x ) = P{Yn ≤ x } → �(x)

= 1√
2π

∫ x

−∞
e−t 2/ 2 dt as n → ∞

for every fixed x.
The proof is based on the asymptotical expansion of the char-

acteristic function of the sum of random variables, so in the
sequel, we use some properties of the characteristic functions
(Fourier transforms).
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Consider the centered and standardized random variables 

X ′
k = Xk − μ

σ
, k = 1, 2, . . . , n,

which are i.i.d.; hence they have the same characteristic func-
tion φX ′(t). Next return to formula (14) Yn = ∑n

k=1(X ′
k /

√
n)

and write out its characteristic function. Since the characteristic
function of the random variable X ′

k /
√

n is given by φX ′(t/
√

n),
the characteristic function for Yn is the product of φX ′

k
(t/

√
n)

φYn(t) = φn
X ′(t/

√
n).

Now expand φX ′(t) into the Taylor series about the point t = 0
with the remainder in the Peano form

φX ′(t) = φX ′(0) + φ ′
X ′(0) t + [

φ ′′
X ′(0)/2 + α(t)

]
t 2.

The remainder is α(t) t 2 where α(t) → 0 as t → 0.
Further use the properties of the characteristic functions:

φX ′(0) = 1 and φ(k)
X ′ (0) = i k E [(X ′)k ], k = 1, 2, . . . , n. Since

E [X ′] = 0 and E [X ′ 2] = 1, φ ′
X ′(0) = 0 and φ ′′ X ′(0) = −1.

Hence,

φX ′(t) = 1 − t 2

2
+ α(t) t 2,

φX ′

(
t√
n

)
= 1 − t2

2n
+ α

(
t√
n

)
t 2

n
,

φYn(t) =
[

1 − t 2

2n
+ α

(
t√
n

)
t 2

n

]n

.

Taking the logarithm of the both parts of the last equation and
passing to the limit, we get

lim
n→∞ log φYn(t) = lim

n→∞ n log

[
1 − t 2

2n
+ α

(
t√
n

)
t 2

n

]
.

Using the relation of equivalency log(1 + x) ∼ x as x → 0, we
obtain

lim
n→∞ log φYn(t) = lim

n→∞

[
n

(
− t 2

2n
+ α

(
t√
n

)
t 2

n

)]

= lim
n→∞

(
− t 2

2
+ α

(
t√
n

)
t 2

)
= − t 2

2
.

Thus,

lim
n→∞ log φYn(t) = e−t 2/2.

Since the convergence of the characteristic functions to a cer-
tain limit implies the convergence of the distribution functions
to the corresponding limit [25], the limit law of the random
variables Yn is the standard Gaussian with the parameters μ = 0
and σ = 1.

If we assume the existence of the third absolute moment of
each Xk about its mean ν3k = E [|Xk − μk|3] < ∞, then the
requirement of distributions identity can be dropped.
Asymptotic normality, precisely the Lyapunov CLT [19], holds if
the Xs have different distributions with finite means μk and
variances σ 2

k , and if lim n→∞ ν3 /B3
n = 0, where ν3 = ∑n

1 ν3k

and B2
n = ∑n

1 σ 2
k . Then the random variable Yn = ∑n

1
(Xk − μk)/Bn has the limit distribution �(x).

Asymptotic normality may be established under conditions
that do not require the existence of third moments. Actually, it
is a necessary and sufficient condition that

lim
n→∞

1

B2
n

n∑
k=1

∫
|x−μk|>εBn

(x − μk)
2dFk(x ) = 0, (15)

where ε is an arbitrary positive number and Fk is the distribu-
tion function of Xk, k = 1, 2, . . . , n.

This condition, due to Lindeberg [20] who proved its suffi-
ciency and Feller [23] who proved its necessity, implies that the
total variance B2

n tends to infinity and that every σ 2
k /B2

n tends to
zero, in fact that no random variable dominates the others. The
theorem may fail to hold for random variables that do not pos-
sess a second moment; for instance, the mean of n variables
each distributed according to the Cauchy law 

dF(x) = dx
π(1 + x2)

, −∞ < x < ∞,

is distributed in precisely the same form. This can be easily seen
from the characteristic function φ(t) = e−|t | for the Cauchy
distribution [25].

The practical applications of the CLT are based on the corre-
sponding Gaussian approximations of the sums of random vari-
ables and their accuracy significantly depends on convergence
rate estimates in the CLT.

Return again to the Lindeberg-Lévy formulation of the CLT
(14) for the sums of i.i.d. random variables {Xk}n

k=1. In this case,
the classical Berry-Esseen convergence rate estimate in the uni-
form metric is given by

ρ(FYn,�) = sup
x

|FYn(x ) − �(x )| ≤ C
ν3

σ 3
√

n
, (16)

where σ 2 and ν3 are respectively the variance and the absolute
third moment about mean of the parent distribution FX , and C
is an absolute constant (this means that there exists such an FX

for which the upper boundary in inequality (16) is attained)
[26], [27]. The latest improvement of the value of the constant C
is given by 0.7655 [28].

It’s noteworthy that the Berry-Esseen boundary with the
convergence rate of 1/

√
n is, although pessimistic, funda-

mentally related to the Gram-Charlier and Edgeworth series
[29]. The practical implications of the aforementioned
results on the CLT probability approximations are usually
justified by the relative error of probability approximation
of the real-life problem, in many cases, to evaluate a certain
tail probability.



The classical Lindeberg-Lévy, Lyapunov, and Lindeberg-
Feller versions of the CLT state the convergence of the distribu-
tion FYn(x ) of the standardized sums Yn to the Gaussian
distribution �(x). Evidently, the conditions under which the
distribution density of Yn converges to the Gaussian density
should be stricter than for the classical versions of the CLT,
since the convergence FYn(x ) → �(x ) does not imply the con-
vergence F ′

Yn
(x) → � ′(x). In the case of continuous i.i.d. ran-

dom variables Xk, the sufficient condition for the uniform
convergence of distribution densities is just the existence of
mean and variance [30].

Concluding our remarks on the CLT, we note that the distri-
butions with finite third moments are of a special interest in the-
ory not only because of that Lyapunov’s sufficient condition
ν3 < ∞ is evidently simpler to verify than Lindeberg-Feller con-
dition (15), but due to the following results. The finiteness of the
moment ν2+δ , 0 < δ < 1, guarantees the decrease rate n−δ/2 for
ρ(FYn,�) as n → ∞ [19]; for δ ≥ 1, ρ(FYn,�) = O(n−1/2),
that is, just the Berry-Esseen convergence rate, and this rate is
not improvable [31].

We have mentioned several classical results on the limit
theorems in probability theory dealing with the sums of inde-
pendent random variables. Further extensions and generaliza-
tions of the CLT are concerned i) with the study of different
schemes of dependency between the summands: homogeneous
Markov chains with the finite number of states [32], m-
dependent random variables [33], martingales [34]; ii) with the
random number of summands, mostly the Poisson and gener-
alized Poisson models being considered [35], [36], and iii) with
the properties of various metrics and measures characterizing
convergence rates in the CLT [37]. This topic still remains
rather popular among mathematicians: in [37], a comprehen-
sive study of the former and recent results in this area is given,
focusing on the classical versions of the CLT as well as on the
CLT analogs in the classes of non-Gaussian infinitely divisible
and stable distribution laws.

MAXIMIZING ENTROPY
Consider the variational problem of maximizing entropy

H( f ) = −
∫ ∞

−∞
f(x ) log f(x ) dx

in the class of symmetric distributions with a bounded variance

f ∗(x ) = arg max
f(x )

H( f ), (17)

f(x ) ≥ 0, f(−x ) = f(x ),∫ ∞

−∞
f(x) dx = 1, σ 2( f) =

∫ ∞

−∞
x2 f(x) dx ≤ σ 2.

Its solution is given by the Gaussian distribution density
f ∗(x) = N (x; 0, σ ) [38].

To show this, first note that the entropy of any distribution
increases with increasing of its variance, say, for the Gaussian as
log σ . Thus, it suffices to solve problem (17) under given vari-
ance σ 2( f ) = d 2 assuming d 2 ≤ σ 2 . Second, consider two

random variables X and Y with zero mean and variance σ 2 such
that fX(x) is th probability density function (pdf) for X and Y is
a Gaussian with pdf fY , and use the IT-inequality for entropies

H( fY ) = −
∫

fY(y) log fY(y) dy

=
∫

fY(y)

[
log(σ

√
2 π) + y2

2σ 2

]
dy

= log(σ
√

2 π) + 1
2σ 2 E[Y 2]

= log(σ
√

2 π) + 1
2σ 2 E[X2]

= −
∫

fX(y) log fY (x) dx ≥

−
∫

fX(y) log fX(x ) dx = H( fX ).

So, we arrive at the inequality H ( fY ) ≥ H ( fX ) with equality if
and only if fX = fY . In other words, the Gaussian distribution
has higher entropy than any other with the same variance: thus,
any operation on a distribution, which discards information and
preserves variance bounded, leads us to a Gaussian. The best
example of this is given by the CLT as, evidently, the summation
discards information and the appropriate standardizing even
conserves variance.

MINIMIZING FISHER INFORMATION
The notion of the Fisher information arises in the Cramér-Rao
inequality [29], one of the principal results of the mathematical
statistics, which gives the lower boundary upon an parameter
estimator’s variance

Var θ̂n ≥ 1
n I( f )

, (18)

where θ̂n is an unbiased estimator of a parameter θ of the distri-
bution density f(x, θ) from a sample x1, . . . , xn and I ( f ) is the
functional of the Fisher information given by

I( f ) =
∫ ∞

−∞

(
∂ log f(x, θ)

∂θ

)2

f(x, θ) dx. (19)

In the case of estimation of a location parameter, say, the mean,
when the distribution density depends on θ as f(x − θ), it can
be easily seen that formula (19) takes the following form

I( f ) =
∫ ∞

−∞

(
f(x)
f(x)

)2

f(x) dx. (20)

Now we show that the solution to the variational problem of
minimization of Fisher information for location (20) for the dis-
tributions with a bounded variance is achieved at the Gaussian
[39], precisely that

N (x ; 0, σ ) = f ∗(x ) = arg min
f(x )

I ( f )

subject to
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f(x ) ≥ 0, f(−x ) = f(x ),

∫ ∞

−∞
f (x ) dx = 1, σ 2( f ) =

∫ ∞

−∞
x2 f (x ) dx ≤ σ 2.

Similar to the aforementioned derivation for entropy, it suffices
to consider the case of a given variance σ 2( f ) = d2 ≤ σ 2. Next
we use the following version of the Cauchy-Bunyakovskiy
inequality:

(∫
φ(x)ψ(x) f(x)dx

)2

≤
∫

φ2(x) f(x)dx
∫

ψ2(x) f(x) dx,

(21)

where the functions φ(x) and ψ(x)
should only provide the existence of
the integrals in (21) and remain
arbitrary in all other aspects.

Now choose φ(x) = x and
ψ(x) = − f ′(x)/f (x ) . The inte-
grals in the right-hand part of (21)
are the distribution variance
σ 2( f ) = d 2 and the Fisher infor-
mation (20), respectively. Using
symmetry and integrating by parts,
we compute the integral in the left-hand part of (21)

−
∫ ∞

−∞
xf ′(x) dx = −2

∫ ∞

0
xf ′(x) dx

= −2
[

xf(x)|∞0 −
∫ ∞

0
f(x) dx

]

= 1,

assuming that the distribution tails satisfy limx→∞ xf (x ) = 0.
Collecting the obtained results and substituting them into (21),
we get the lower boundary upon Fisher information

I( f ) ≥ 1
d 2 .

As this lower boundary just gives the Fisher information value
for the Gaussian distribution density

∫ ∞

−∞

(N ′(x; 0, d)

N (x ; 0, d )

)2

N (x ; 0, d ) dx = 1
d 2

and the minimization problem in the class of distributions
with a bounded variance allows for the following two-step
decomposition:

f ∗ = arg min
f : σ 2( f )≤σ

2
I ( f ) = arg min

d 2≤σ
2

{
min

f : σ 2( f )=d 2
I( f )

}
,

we arrive at the required relation f ∗(x) = N (x ; 0, σ ).

This important result that the Gaussian distribution is the
least favorable distribution in the class of distributions with a
bounded variance gives another reason for the ubiquitous use of
the Gaussian distribution in signal processing and, moreover,
links Huber’s results in robustness.

ROBUSTNESS VERSUS GAUSSIANITY
In this section, we show that the Gaussian distribution being
least favorable and, therefore, the LS method being robust in
Huber’s sense naturally arise in robustness, despite the conven-
tional emphasis on the departures from Gaussianity.

The field of mathematical statistics called robust statistics
appeared due to the pioneer works of Tukey [40], Huber [41], and
Hampel [42], respectively; it has been intensively developed since

1960 and is rather definitely formed
by present. The term “robust” (strong,
sturdy, rough) as applied to statistical
procedures was proposed by Box [43].

Robustness deals with the conse-
quences of possible deviations from
the assumed statistical model and
suggests the methods providing sta-
bility of statistical procedures
against such deviations.

Using the model of ε-contaminat-
ed normal distributions, Tukey [40]

showed that the LS estimators are not stable under small devia-
tions from Gaussianity, furthermore, that the LS estimators are
catastrophically bad in the presence of outliers in the Gaussian
data. The simplest way to see this is to consider the Cauchy distri-
bution contamination of the Gaussian underlying distribution

f(x ; θ) = (1 − ε)N (x ; θ, σ ) + εC (x ; θ), 0 ≤ ε < 1,

C (x ; θ) = 1
π[1 + (x − θ)2]

.

It is easy to see that for any ε > 0, the sample mean, the opti-
mal LS estimator of location for the Gaussian distribution, is
not even consistent in this case. Since such negligible devia-
tions from Gaussianity in the tail area cannot be detected by
any statistical procedure, it seems that the aforementioned
phenomenon seriously undermines the belief in the ubiqui-
tous applicability of Gaussian models.

Next, we are going to show that, nevertheless, Gaussian
models also successfully work in robust procedures within
Huber’s minimax approach [41], [44].

HUBER’S MINIMAX APPROACH
We now briefly recall the basic stages of Huber’s minimax
approach to robust estimation of location. In general, the mini-
max principle aims at the least favorable situation for which it
suggests the best solution. Thus, in some sense, this approach
provides a guaranteed result, possibly too pessimistic. Huber’s
minimax approach in robustness represents a good example of
application of the minimax principle.

THE ARGUMENTS PRO
GAUSSIANITY CAN BE CLASSIFIED
IN THE FOLLOWING TWO GROUPS:

THE ARGUMENTS FOR THE
GRAVITY AND STABILITY OF A
GAUSSIAN SHAPE AND THE

ARGUMENTS FOR THE OPTIMALITY
OF A GAUSSIAN SHAPE.



Let x1, . . . , xn be i.i.d. random variables with common den-
sity f(x − θ) in a convex class F . Then the M-estimator θ̂n of a
location parameter θ is defined as

θ̂n = arg min
θ

n∑
i=1

ρ(xi − θ)

or n∑
i=1

ψ(xi − θ̂n) = 0,

where ρ(x) is a loss function and ψ(x) = ρ ′(x) is a score
function [41].

The minimax approach implies the determination of the
least favorable density f ∗ minimizing Fisher information
I( f) = ∫

( f ′/f)2 f dx over the class F :

f ∗ = arg min
f∈F

I( f ), (22)

followed by designing the maximum-likelihood estimator with
the loss function ρ ∗ = − log f ∗ and the score function
ψ ∗ = − f ∗ ′/f ∗ . The necessary and sufficient condition for f ∗
to minimize Fisher information I(f ) is given by the condition∫ (

2ψ ∗ − ψ ∗2
)

( f − f ∗) dx ≥ 0 (23)

that must hold for any density f ∈ F .The required convexity of
class F guarantees that the variations of the optimal density f ∗
retain densities f in this class [41], [44].

Under rather general conditions of regularity [41],√
n (θ̂n − θ) is asymptotically normal with variance

V(ψ, f ) =
∫

ψ2 f dx[∫
ψ ′ f dx

]2

satisfying the minimax property

V(ψ∗, f) ≤ V(ψ∗, f ∗) ≤ V(ψ, f ∗).

The both sides of this saddle-point inequality have sense: the
right-hand side is just the Cramér-Rao inequality (18) whereas
the left-hand side provides the guaranteed accuracy of estimation

Var θ̂n = V(ψ∗, f)
n

≤ V(ψ∗, f ∗)
n

= 1
n I( f ∗)

for all f ∈ F .

Concluding, we may say that Huber proposed to use the supre-
mum of the asymptotic variance V(ψ∗, f ∗) = supf∈F V(ψ∗ f) as
a measure of robustness of the optimal M-estimator: the less the
range of the optimal estimator variance V(ψ∗, f) over the class
F , the more robust is this estimator in this class, and vice versa.

LEAST FAVORABLE DISTRIBUTIONS
The shape of the least favorable density f ∗ and the correspon-
ding score function ψ∗ is wholly determined by the structure of

class F . We now describe how to obtain a least favorable distri-
bution and enlist several examples. The symmetry and uni-
modality of distribution densities are assumed.

Consider the restrictions defining the classes of distribu-
tion densities F . In general, these restrictions are of the fol-
lowing forms:∫ ∞

−∞
sk(x) f(x) dx ≤ αk, k = 1, . . . , m, (24)

f(x) ≥ ϕ(x), (25)

where αk, k = 1, . . . , m, and ϕ(x) are given constraints.
In particular, the normalization condition 

∫
f(x) dx = 1

(s(x) = 1) and the restriction on the variance ∫
x2 f(x ) dx ≤ σ 2 (s(x) = x2) are referred to (24); the condi-

tion of non-negativeness f(x) ≥ 0 is described by (25), etc.
The variational problem of minimization of Fisher informa-

tion under conditions (24) and (25) is nonstandard, and at
present, there are no general methods of its solution.

Nevertheless, using heuristic and plausible considera-
tions (in the Polya sense [45]), it is possible to find a candi-
date for the optimal solution and then check its validity.
Certainly, such a reasoning must ground on the classical
results of the calculus of variations. In general, it may be
described as follows: first, use the restrictions of form (24);
second, solve the Euler-Lagrange equation and determine
the family of extremals; third, try to satisfy the restrictions
of form (25) by gluing the pieces of free extremals with the
constraints ϕ(x); and finally, verify the obtained solution
checking condition (23).

Now we describe a procedure of searching for a candidate for
the solution of problem (22) under conditions (24). In this case,
the Lagrange functional is composed as

L( f, λ1, . . . , λm) = I( f) +
m∑

k=1

λk

(∫ ∞

−∞
sk(x) f(x) dx − αk

)
,

and by (20) it can be rewritten as

L( f, λ1, . . . , λm) =
∫ ∞

−∞

[(
f ′(x)

)2

f(x )
+

m∑
k=1

λksk(x ) f(x)

]
dx

−
m∑

k=1

λ k α k, (26)

where λ1, . . . , λm are the Lagrange multipliers. Denoting by
G(x, f(x), f ′(x)) the integrand, we get

L( f, λ1, . . . , λm) =
∫ ∞

−∞
G

(
x, f(x), f ′(x)

)
dx −

m∑
k=1

λk αk.

Noting the necessary condition of minimum of
L( f, λ1, . . . , λm), namely the Euler-Lagrange equation
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d
dx

∂G
∂ f ′ − ∂G

∂ f
= 0,

we obtain

2
(

f ′(x)
f(x)

) ′
+

(
f ′(x)
f(x)

)2

−
m∑

k=1

λksk(x) = 0. (27)

Equation (27), as a rule, cannot be solved in a closed form.
Hence, one should use numerical methods (for details, see [46]
and [47]). In what follows, we consider some classes F with ana-
lytical solutions for the least favorable density.

THE EXPONENTIAL EXTREMALS OF THE BASIC
VARIATIONAL PROBLEM
Consider the problem of minimization of Fisher information
with the only side normalization condition

minimize I( f) =
∫ ∞

−∞

(
f ′(x)
f(x)

)2

f(x) dx

subject to
∫ ∞

−∞
f(x) dx = 1.

Then, from (27), it follows that the Euler-Lagrange equation has
the form

2
(

f(x)
f(x)

) ′
+

(
f ′(x)
f(x)

)2

− λ = 0. (28)

Changing the variable f(x) = g2(x) ≥ 0, we can rewrite (28) as
follows

4g ′′(x) − λg(x) = 0. (29)

For the positive λ, the system of the fundamental solutions for
(29) is given by

g1(x) = e−k x, g2(x) = e k x

with the corresponding exponential extremals

f1(x) = e−2k x, f2(x) = e 2k x, (30)

where k = √
λ/2.

CONTAMINATED GAUSSIAN DISTRIBUTIONS
Though it is not the simplest example of a least favorable distri-
bution, we begin with historically the first Huber’s solution [41]
for the class of ε-contaminated Gaussian distributions

FH = {
f : f(x) = (1 − ε)N (x ; 0, σ ) + εh(x)

}
,

where h(x) is an arbitrary density and ε (0 ≤ ε < 1) is a con-
tamination parameter.

Using condition (25) with ϕ(x) = (1 − ε)N (x ; 0, σ ) for
defining this class

FH = {
f : f(x) ≥ (1 − ε)N (x ; 0, σ )

}
,

we can foresee the qualitative structure of the least favorable
density: there should be the exponential extremals of form (30)
smoothly sewed with the constraint ϕ(x) = (1 − ε)N (x ; 0, σ ).
Its exact form is given by

f ∗
H (x) =

{
(1 − ε)N (x ; 0, σ ), for |x| ≤ kσ,

1−ε√
2 πσ

exp
(
−kσ |x| + k2σ 2

2

)
, for |x| > kσ,

where the dependence k = k(ε) is tabulated in [44]. The opti-
mality of f ∗

H is established by checking inequality (23): here it is
just f(x) ≥ (1 − ε)N (x ; 0, σ ) taking the form of the charac-
terization condition of class FH. The optimal score function has
the following limited linear form

ψ∗
H(x) =

{
x/σ 2, for |x| ≤ kσ,

k sgn(x)/σ, for |x| > kσ

with the Winsorized mean as the minimax M-estimator of location.
The qualitatively similar solution also holds for the class of approxi-
mately Gaussian distributions in which the ε-neighborhood of a
Gaussian distribution is defined by the Kolmogorov distance as
supx|F(x) − 	(x)| ≤ ε [41]. These both results exhibit the direct
way how Gaussian models can be used in robust settings.

NONDEGENERATE DISTRIBUTIONS
In the class F1 of nondegenerate distribution densities (with a
bounded density value at the center of symmetry)

F1 =
{

f : f(0) ≥ 1
2a

> 0
}

,

the least favorable density is known to be the Laplace [49], [50]

f ∗
1 (x) = L(x ; 0, a) = 1

2a
exp

(
−|x|

a

)
,

here the scale parameter a characterizes the distribution dis-
persion about the center of symmetry. In this case, we also
observe the two exponential extremals of form (30) sewed at
the center of symmetry and satisfying the constraint
f(0) = 1/(2a) of class F1.

The score function is of the sign form ψ∗
1 (x) = sgn(x)/a

with the conventional robust estimator of location, the sample
median as the optimal L1-norm estimator [44]. Class F1 is one
of the most wide classes: any unimodal distribution density with
a nonzero value at the center of symmetry belongs to it. The
condition of belonging to this class is very close to the complete
lack of information about an underlying distribution.

DISTRIBUTIONS WITH A BOUNDED VARIANCE
As it was shown before, in the class F2 of distributions with a
bounded variance



F2 =
{

f : σ 2( f) =
∫ ∞

−∞
x2 f(x) dx ≤ σ 2

}
,

the least favorable density is the Gaussian

f ∗
2 (x) = N (x; 0, σ ) = 1

σ
√

2π
exp

(
− x2

2σ 2

)
.

The optimal score function is linear ψ∗
2 (x) = x/σ 2 and the

minimax estimator of location is the sample mean xn.
Taking into account the role of a

least favorable distribution in
Huber’s minimax approach, we
have arrived to a rather strange
result: the sample mean xn is
robust in the Huber sense in the
class of distributions with a bound-
ed variance!

Let us dwell on this phenome-
non in more detail. Since the Fisher information for the least
favorable Gaussian distribution attains its minimum value at
I( f∗2 ) = 1/σ 2, the sample mean is an estimator of guaranteed
accuracy in F2, that is

Var xn ≤ σ 2/n for all f ∈ F2.

Thus, if the bound on variance σ 2 is small, then the minimax
approach yields a reasonable result and the LS method can be
successfully used with relatively short-tailed distributions in
estimation and detection of signals, e.g., see [48].

On the contrary, if we deal with really heavy-tailed distribu-
tions (gross errors, impulse noise) when σ 2 is large or even
infinity like for the Cauchy-type distributions, then the minimax
solution in class F2 is still trivially correct as Varθ̂n ≤ ∞ but
practically senseless. In this case, we must use robust versions of
the LS method such as Huber’s M-estimators optimal for the
class of ε-contaminated Gaussian distributions.

We also may say that the minimax principle gives an
unrealistic result in this case. However, this disadvantage
becomes a significant advantage of the LS estimator if to
consider the class of nondegenerate distributions with a
bounded variance, in other words, the intersection of the
classes F1 and F2

F12 =
{

f : f(0) ≥ 1
2a

> 0, σ 2( f) ≤ σ 2
}

.

This class comprises qualitatively different densities, for exam-
ple, the Gaussian, the heavy-tailed ε-contaminated Gaussian,
Laplace, Cauchy-type (with σ 2 = ∞), and short-tailed densities.

For this class, the least favorable density simultaneously
depends on the two parameters a and σ through their ratio σ/a
having the Gaussian and Laplace densities as the particular
cases (for details, see [47]).

In this case, the corresponding minimax estimator of loca-
tion can be described as follows: 1) with relatively small vari-
ances when σ 2/a2 < 2/π or with relatively short tails, it is
the sample mean or the L2-norm estimator; 2) with relatively
large variances when σ 2/a2 > 2 or with relatively heavy tails,
it is the sample median or the L1-norm estimator; 3) and with
relatively moderate variances when 2/π ≤ σ 2/a2 ≤ 2, it is a
compromise between the L1-norm and the L2-norm estima-
tors. This solution is robust and close to Huber’s solution for
the class FH of heavy-tailed distributions due to the presence
of the Laplace branch and more efficient than Huber’s for

short-tailed distributions due to
the presence of the Gaussian
branch [47], [48]. In other words,
the additional information on the
relative weight of distribution tails
given by the ratio σ 2/a2 may sig-
nificantly improve the quality of
estimation and detection.

CONCLUSIONS
Now we return to the initial question posed at the beginning:
“Why the ubiquitous use and success of Gaussian distributions?”

All the arguments pro Gaussianity can be classified in the
following two groups: 1) the arguments for the gravity and
stability of a Gaussian shape: the statistical gravity (the CLT,
the Landon derivation), the stability (the convolution proper-
ty), and geometrical invariancy (the Herschel-Maxwell deriva-
tion) and 2) the arguments for the optimality of a Gaussian
shape (the Gauss derivation, the maximization of entropy, and
minimization of Fisher information). In this list, we skipped
various characterization properties of a multivariate Gaussian,
especially of a bivariate one, represented in [39] and the sta-
bility aspects related to the Gaussian infinite divisibility ana-
lyzed in [37]; some additional reasons pro Gaussianity can be
found in [2] and [29].

On the whole, we may repeat after Jaynes  that, “in Nature,
all smooth processes with increasing entropy lead to
Gaussianity and once it is reached, it is then preserved” [2].
The fact that a Gaussian is the least favorable distribution
minimizing Fisher information is significantly important in
signal and data processing.

All the arguments contra Gaussianity arise when the
aforementioned conditions of smoothness are violated: this
refers to the presence of gross errors and outliers in the
data, impulse noises in observed signals, etc. Moreover, we
may add that most of the formulated properties of a
Gaussian, say, the CLT, are of an asymptotic nature, so on
finite samples, they hold only approximately. For instance,
we never know the tails of distributions in real-life data. On
the whole, these reasons lead to robust methods and algo-
rithms of signal processing and what is important that a
Gaussian again naturally emerges in robustness either in the
form of various Gaussian ε-neighborhoods or as the least
favorable distribution.
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