
Computational Statistics & Data Analysis 52 (2007) 840–854
www.elsevier.com/locate/csda

A new fusion formula and its application to continuous-time linear
systems with multisensor environment
Vladimir Shin, Georgy Shevlyakov∗, Kiseon Kim

School of Information and Mechatronics, Gwangju Institute of Science and Technology, 1 Oryong-Dong Buk-Gu,
Gwangju 500-712, South Korea

Available online 14 December 2006

Abstract

The problem of fusion of local estimates is considered.An optimal mean-square linear combination (fusion formula) of an arbitrary
number of local vector estimates is derived. The derived result holds for all dynamic systems with measurements. In particular, for
scalar uncorrelated local estimates, the fusion formula represents the well-known result in statistics. The fusion formula is applied
to fusion of local Kalman estimates in multisensor filtering problem. Examples demonstrate high accuracy of the proposed fusion
formula.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

In recent years, there has been growing interest to fuse multisensor data in order to increase the accuracy of parameter
estimates and system states. This interest is motivated by the availability of different types of sensors which use various
characteristics of the optical, infrared, and electromagnetic spectra. In many situations, system states or targets are
measured by multisensors. The measurements used in estimation are assigned to a common target as a result of the
association process (see Bar-Shalom and Li, 1995; Beugnon et al., 2000; Li et al., 2000; Manyika and Durrant-Whyte,
1994; Zhu, 2003). Here the main problem is how to combine local estimates obtained from different types of sensors.

Suppose local scalar unbiased estimates x̂(1), . . . , x̂(N) of an unknown random variable x are obtained by independent
means. The associated error variances are P (11), . . . , P (NN). Then the optimal (in the mean-square sense) linear
combination of the local estimates represents the well-known result used in statistics and stochastic control problems
(see Gelb, 1974; Kendall and Stuart, 1963; Lewis, 1986)

x̂ = a(1)x̂(1) + · · · + a(N)x̂(N), a(1) + · · · + a(N) = 1,

a(i) = 1

P (ii)

(
1

P (11)
+ · · · + 1

P (NN)

)−1

,

P (ii) = E[(x − x̂(i))2], x̂(i), a(i) ∈ R, i = 1, . . . , N . (1)
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The optimal mean-square linear combination of two local vector estimates is proposed by Bar-Shalom and Campo
(1986)

x̂ = A(1)x̂(1) + A(2)x̂(2), A(1), A(2) ∈ Rn×n,

A(1) = (P (22) − P (21))(P (11) + P (22) − P (12) − P (21))−1,

A(2) = (P (11) − P (12))(P (11) + P (22) − P (12) − P (21))−1,

P (ij) = E[(x − x̂(i))(x − x̂(j))T], i, j = 1, 2. (2)

If the two local estimates x̂(1) and x̂(2) are uncorrelated, i.e., P (12) = P (21) = 0 in (2), then we have the Millman
formulas which are given in Gelb (1974) and Lewis (1986). The generalization of formulas (2) for N > 2 is proposed
by Shin and Shevlyakov (2005), where linear algebraic equations for matrix weights A(i), i = 1, . . . , N were derived.

In real-time applications such as estimation and control of large-scale systems with multisensor environment the
usage of the matrix weights is restricted by the toughly limited onboard computer memory, data transmission speed,
etc. Therefore, in the paper we focus on the fusion formula (1) for an arbitrary number of vector correlated estimates
and scalar weights.

The first goal of this paper is derivation of a new fusion formula (FF) for vector correlated local estimates x̂(1), . . . , x̂(N).
The new FF represents an optimal mean-square linear combination of local vector estimates with scalar weights
a(1), . . . , a(N) depending on the cross-covariances between local estimates P (ij) = E[(x − x̂(i))(x − x̂(j))T ], i �= j.

The second goal is to show how to apply the FF in the linear filtering problem. In this case, we propose a new
suboptimal fusion filter (SFF) based on the FF. Examples exhibit high accuracy of the proposed filter.

This paper is organized as follows. In Section 2, we present the FF with some examples. In Section 3, we propose
a suboptimal filter to fuse local Kalman estimates in multisensor continuous-time linear systems. In Section 4, the
proposed filter is numerically tested. The efficiency of the filter is studied in the case of a damper harmonic oscillator
motion and in other examples. It is shown that the proposed filter is only slightly suboptimal as compared with the
optimal Kalman filter (KF). Finally, we conclude our results in Section 5.

2. Fusion formula and its particular cases

Suppose that we have local estimates of an unknown random vector x ∈ Rn,

x̂(1), . . . , x̂(N) ∈ Rn, (3)

where Rn is an n-dimensional Euclidean space. The associated local error cross-covariances are assumed given

P (ij) = E[e(i)e(j)T ], e(i) = x − x̂(i), i, j = 1, . . . , N . (4)

Let us consider the FF representing a linear combination of the local estimates (3)

x̂FF =
N∑

i=1

a(i)x̂(i),

N∑
i=1

a(i) = 1, (5)

where a(1), . . . , a(N) ∈ R are scalar unknown weights determined from the mean-square criterion

E[‖x − x̂FF‖2] = E[(x − x̂FF)T(x − x̂FF)] → min
a(i)

. (6)

The following results completely define the FF and its fusion error covariance:

P FF = E[eFF(eFF)T], eFF = x − x̂FF. (7)
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Theorem 1. Let x̂(1), . . . , x̂(N) ∈ Rn be the local estimates (3) of an unknown vector x ∈ Rn. Then the scalar weights
a(1), . . . , a(N) ∈ R satisfy the following linear system of equations:

N∑
i=1

a(i) tr(P (ij) + P (ji) − P (iN) − P (Ni)) = 0, j = 1, . . . , N − 1,

N∑
i=1

a(i) = 1, (8)

and they can be explicitly written down as

a = (1T
NP̃ −11N)−1P̃ −11N, a = [a(1) . . . a(N)]T, P̃ = [tr(P (ij))]Ni,j=1. (9)

In (8), tr(A) is the trace of a matrix and 1N = [1 . . . 1]T ∈ RN.

In general, both the results, namely linear equations (8) and expressions (9) are equivalent, being the implicit and
explicit forms of the solution, respectively. However, from the computational point of view, when the number of local
estimates is large or the covariance matrices are ill conditioned, linear equations (8) may be more preferable than
explicit expressions (9).

Corollary 1. The fusion error covariance P FF is given by

P FF =
N∑

i,j=1

a(i)a(j)P (ij). (10)

Corollary 2. If the local estimates x̂(1), . . . , x̂(N) are unbiased then the fusion estimate x̂FF is also unbiased, i.e.,
E[x̂FF] = E[x].

The proofs of Theorem 1 and corollaries are given in Appendix A. We would like to thank one of the anonymous
reviewers for showing us an elegant way of derivation of formula (9).

Further, we consider two examples of application of the obtained results. In the first example, we consider fusion of
two correlated and uncorrelated vector local estimates x̂(1) and x̂(2). In the second one, the scalar well-known FF (1)
is generalized on the vector case.

2.1. Example 1: fusion of two correlated and uncorrelated vector estimates

In the particular case when N = 2, linear equations (8) for the unknown weights a(1) and a(2) take the form{
a(1) tr(2P (11) − P (12) − P (21)) + a(2) tr(P (21) + P (12) − 2P (22)) = 0,

a(1) + a(2) = 1.

Solving these equations, we obtain linear fusion of two correlated vector estimates x̂(1) and x̂(2)

x̂FF = a(1)x̂(1) + a(2)x̂(2),

a(1) = tr(2P (22) − P (12) − P (21))

2 tr(P (11) + P (22) − P (12) − P (21))
,

a(2) = tr(2P (11) − P (12) − P (21))

2 tr(P (11) + P (22) − P (12) − P (21))
. (11)
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In Section 4, we apply formulas (11) for fusion of two local estimates of unknown using two independent noisy
measurements.

If the estimates x̂(1) and x̂(2) are uncorrelated, i.e., P (12) = P (21) = 0 then formulas (11) for weights are reduced to

a(1) = tr(P (22))

tr(P (11) + P (22))
, a(2) = tr(P (22))

tr(P (11) + P (22))
.

2.2. Example 2: fusion of uncorrelated vector estimates

Suppose that the local vector estimates x̂(1), . . . , x̂(N) ∈ Rn are uncorrelated, i.e., P (ij) = 0, i �= j . Then linear
system (8) takes the following simple form:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

a(1) tr(P (11)) − a(N) tr(P (NN)) = 0,

a(2) tr(P (22)) − a(N) tr(P (NN)) = 0,
...

a(N−1) tr(P (N−1,N−1)) − a(N) tr(P (NN)) = 0,

a(1) + · · · + a(N−1) + aN = 1.

The explicit solution of the system and the FF (5) has the form

x̂FF =
N∑

i=1

a(i)x̂(i), a(i) = 1

tr(P (ii))

⎡⎣ N∑
j=1

1

tr(P (jj))

⎤⎦−1

, i = 1, . . . , N . (12)

In the particular case of the scalar uncorrelated estimates x̂(1), . . . , x̂(N) ∈ R, tr(P (ii)) = P (ii) and the FF (12)
coincides with the well-known result (1).

Remark. The knowledge of the local error cross-covariances P (ij) is needed in many techniques for distributed
fusion. The cross-covariance P (ij) is a key quantity for the best fusion estimation (see Berg and Durrant-Whyte, 1994;
Hashemipour et al., 1988; Li and Zhang, 2001). In real-life problems, the local error covariances P (ii), i = 1, . . . , N ,
are usually known. For instance, in Kalman filtering, P (ii) is described by the Riccati equation (Bar-Shalom and Li,
1995; Gelb, 1974; Lewis, 1986). However, the local cross-covariances P (ij), i �= j are usually unknown and they
should be determined. This paper presents explicit equations for their computation in the linear continuous-time filtering
problem.

3. Fusion filtering in multisensor continuous-time linear systems

Many advanced systems now make use of a large number of sensors in practical applications ranging from aerospace
and defence, robotics automation systems, to the monitoring and control of process generation plants. Recent devel-
opments in integrated sensor network systems have further motivated the search for decentralized signal processing
algorithms. An important practical problem in the above systems is to find a fusion estimate to combine the information
from various local estimates to produce a global (fusion) estimate. In this section, we propose a new SFF for multisensor
continuous-time dynamic systems.

3.1. Problem setting

Consider a continuous-time linear dynamic system with additive white Gaussian noise

ẋt = Ftxt + Gtvt , t �0, (13)

where xt ∈ Rn is a state vector and vt ∈ Rr is a zero-mean Gaussian white system noise with intensity Qt , i.e.,
E[vtv

T
t ] = Qt�t−s , �t is the Dirac delta function.
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Suppose that the measurement system involves N sensors

y
(1)
t = H

(1)
t xt + w

(1)
t , y

(1)
t ∈ Rm1 ,

y
(2)
t = H

(2)
t xt + w

(2)
t , y

(2)
t ∈ Rm2 ,

...

y
(N)
t = H

(N)
t xt + w

(N)
t , y

(N)
t ∈ RmN , (14)

where wi
t represents a zero-mean Gaussian white sensor noise with intensity R

(i)
t , i = 1, . . . , N. We assume that the

initial state x0 ∼ N(x̄0, P0) and system and sensor noises vt , w
(1)
t , . . . , w

(N)
t are mutually uncorrelated.

A fundamental problem associated with such systems (13), (14) is that of state estimation of the state xt from the
overall noisy measurements Y t

0 = {y(1)
s , y

(2)
s , . . . , y

(N)
s , 0�s� t}.

3.2. Optimal estimator: Kalman filter

The KF can be used to produce the optimal mean-square state estimate x̂
opt

t based on the overall measurements

Yt = Htxt + wt, Yt ∈ Rm, (15)

where

Yt =
⎡⎣ y

(1)
t
...

y
(N)
t

⎤⎦ , Ht =
⎡⎣ H

(1)
t
...

H
(N)
t

⎤⎦ , wt =
⎡⎣ w

(1)
t
...

w
(N)
t

⎤⎦ , m = m1 + · · · + mN .

The KF equations for the system model (13), (15) are of the following form (Gelb, 1974 and Lewis, 1986):

˙̂x opt
t = Ft x̂

opt
t + Kt(Yt − Ht x̂

opt
t ), x̂

opt
0 = x̄0,

Kt = P
opt

t HtR
−1
t , Rt = diag[R(1)

t . . . R
(N)
t ],

Ṗ
opt

t = FtP
opt

t + P
opt

t F T
t − P

opt
t HT

t R−1
t HtP

opt
t + GtQtG

T
t , P

opt
0 = P0,

P
opt

t = E[(xt − x
opt

t )(xt − x
opt

t )T]. (16)

To compute the state estimate x̂
opt

t , the KF requires all the sensor measurements (15) jointly at each time instant t .
Unfortunately, because of the limited communication bandwidth or the increased survivability of the system in a poor
environment, such as a war situation, every local sensor has to carry out Kalman filtering upon its own measurements
y

(i)
t first for a local requirement, and then to transmit the processed data—the local state estimates x̂

(i)
t to a fusion

center. Therefore, the fusion center now needs to fuse all the received local estimates x̂
(1)
t , . . . , x̂

(N)
t to yield a globally

(fusion) state estimate (see Berg and Durrant-Whyte, 1994; Hashemipour et al., 1988; Zhu, et al., 2001). Next, it is
shown that the FF (5) can serve as an alternative to the solution of the filtering problem (13), (14).

3.3. Suboptimal estimator: suboptimal fusion filter

Here we solve the following problem—how to fuse the local Kalman estimates x̂
(1)
t , . . . , x̂

(N)
t ? The proposed filtering

algorithm includes two stages: the locally optimal Kalman estimates x̂
(1)
t , . . . , x̂

(N)
t computed at the first stage are

linearly fused at the second stage based on the FF (5). The proposed filter has a parallel structure and it is suitable for
parallel processing of individual sensor measurements. It can also help to minimize the computation time and produce
real-time state estimation. Examples of systems containing different types of sensors, demonstrating the accuracy of
the proposed filter, are given.
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First stage (“Calculation of local Kalman estimates”): According to Eqs. (13) and (14), we have N local dynamic
subsystems with the state vector xt and local (individual) sensor measurement y

(i)
t :

ẋt = Ftxt + Gtvt , t �0,

y
(i)
t = H

(i)
t xt + w

(i)
t , (17)

where the number i of a local subsystem is fixed.
Further, denote a local estimate of the state xt based on the local sensor measurement y

(i)
t by x̂

(i)
t . To find x̂

(i)
t , we

apply the KF to subsystem (17) and get the local Kalman estimates x̂
(1)
t , . . . , x̂

(N)
t with the corresponding local error

covariances P
(11)
t , . . . , P

(NN)
t

˙̂x(i)

t = Ft x̂
(i)
t + K

(i)
t (y

(i)
t − Ht x̂

(i)
t ), x̂

(i)
0 = x̄0,

K
(i)
t = P

(ii)
t H

(i)
t (R

(i)
t )−1,

Ṗ
(ii)
t = FtP

(ii)
t + P

(ii)
t F T

t − P
(ii)
t H

(i)
t

T
(R

(i)
t )−1H

(i)
t P

(ii)
t + GtQtG

T
t ,

P
(ii)
0 = P0, P

(ii)
t = E[(xt − x̂

(i)
t )(xt − x̂

(i)
t )T]. (18)

Second stage (“Fusion of local Kalman estimates”): To express the final fusion estimate of the state in terms of the
local Kalman estimates x̂

(1)
t , . . . , x̂

(N)
t , we use the FF. From (5) it follows that

x̂ sub
t =

N∑
i=1

a
(i)
t x̂

(i)
t ,

N∑
i=1

a
(i)
t = 1. (19)

The linear equations (8) for the unknown weights a
(i)
t are given by

N∑
i=1

a
(i)
t tr(P (ij)

t + P
(ji)
t − P

(iN)
t − P

(Ni)
t ) = 0, j − 1, . . . , N − 1,

N∑
i=1

a
(i)
t = 1. (20)

Note that Eqs. (20) depend on the local error covariances P
(11)
t , . . . , P

(NN)
t determined by the Riccati equations (18),

and the cross-covariances

P
(ij)
t = E[(xt − x̂

(i)
t )(xt − x̂

(j)
t )T], i �= j

that satisfy the following differential equation:

Ṗ
(ij)
t = [Ft − P

(ii)
t H

(i)
t

T
(R

(i)
t )−1H

(i)
t ]P (ij)

t + GtQtG
T
t + P

(ij)
t [Ft − P

(jj)
t H

(j)
t

T
(R

(j)
t )−1H

(j)
t ]T,

P
(ij)
0 = P0, i, j = 1, . . . , N, i �= j . (21)

The derivation of Eqs. (21) is given in Appendix B.
Thus, the local Kalman estimates and covariances (x̂

(i)
t , P

(ii)
t ) (see (18)), the local cross-covariances P

(ij)
t , i �= j

(see (21)), and the fusion equations (19), (20) completely establish the two-stage SFF.

3.4. Discussion

(1) The local Kalman estimates x̂
(1)
t , . . . , x̂

(N)
t are separated for different types of sensors, i.e., each estimate x̂

(i)
t

is found independently of other estimates. Thus, they can be evaluated in parallel for the different sensors
y

(1)
t , . . . , y

(N)
t .

(2) The SFF can be corrected if one of the parallel local estimates x̂
(i)
t diverges. In this case, the corresponding

weight a
(i)
t tends to zero (a

(i)
t → 0), thereby indicating that the diverging estimate x̂

(i)
t is discarded in the

weighted sum (19).
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(3) The local error cross-covariances P
(ij)
t , filter gains K

(i)
t , and weights a

(i)
t can be pre-computed, since they do

not depend on the sensor measurements y
(1)
t , . . . , y

(N)
t but only on the noise statistics Qt, R

(i)
t , and the system

matrices and initial conditions Ft , Gt , H
(i)
t , x̄0, P0 which are the part of system model (13), (14). Thus, once the

measurement schedule has been settled, the real-time implementation of the SFF requires only the computation
of the local Kalman estimates x̂

(1)
t , . . . , x̂

(N)
t

˙̂x(i)

t = Ft x̂
(i)
t + K

(i)
t (y

(i)
t − Ht x̂

(i)
t ), x̂

(i)
0 = x̄0, i = 1, . . . , N

and the final suboptimal fusion estimate x̂ sub
t

x̂ sub
t = a

(1)
t x̂

(1)
t + a

(2)
t x̂

(2)
t + · · · + a

(N)
t x̂

(N)
t .

(4) Consider now the relation between the covariances P
opt

t and P sub
t of the optimal KF and SFF filter, respectively.

The covariance P
opt

t in (16) represents an optimal fusion covariance of the Kalman estimate based on overall
sensors, i.e., x̂

opt
t = x̂

opt
t (y

(1)
t , . . . , y

(N)
t ). The covariance P

(ii)
t in (18) represents an optimal local covariance of

the local Kalman estimate based only on the individual sensor y
(i)
t , i.e., x̂

(i)
t = x̂

(i)
t (y

(i)
t ). In general, the optimal

Kalman estimate x̂
opt

t is more accurate than the local one x̂
(i)
t , i.e., tr(P opt

t )� tr(P (ii)
t ) for all i = 1, . . . , N .

The relation between P
opt

t and P sub
t is established by the following result.

Theorem 2. Let P
opt

t = cov(̂x
opt

t ) and P sub
t = cov(̂x sub

t ) be the covariances of the optimal Kalman estimate (16)
and suboptimal fusion estimate (19), respectively. Then P

opt
t �P sub

t .

The proof of Theorem 2 is given in Appendix C.

(5) The implementation of the optimal KF and SFF consists of two stages: off-line and on-line. The off-line stage in the
SFF is more complex than the off-line one in the KF, since it requires the computation of the local cross-covariances
P (ij), filter gains K

(i)
t and weights a

(i)
t . However, it is not essential since this stage can be pre-computed. The on-

line stage (real-time implementation) requires only computation of the local estimates x̂
(1)
t , . . . , x̂

(N)
t and fusion

estimates x̂
opt

t and x̂ sub
t . Therefore, the complexity of on-line stages is similar for the KF and SFF. However, to

compute x̂
opt

t , the KF requires all sensor measurements jointly at each time instant, whereas the SFF computes
x̂ sub

t sequentially.

4. Application of the suboptimal fusion filter

A comparative experimental analysis of the optimal KF and SFF is considered in three examples:

• In Example 3, we estimate the value of an unknown constant scalar from two measurements corrupted by additive
white noises. Here, we get precise formulas for mean-square errors (MSEs) for both filters and show that the SFF
provides a good estimation accuracy.

• In Example 4, we describe the scalar time-invariant system with N sensor measurements. In this case, we numer-
ically evaluate and compare MSEs depending on the number of sensors.

• In Example 5, the motion governed by Newton’s law is considered. Three measurement programs with two sensors
are examined.

4.1. Example 3: independent measurements of an unknown scalar

Estimate a random constant � ∼ N(m, �2), given two continuous measurements of � corrupted by Gaussian white
noises.
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The system and measurement equations describing this situation are

System: ẋt = 0, t �0, x0 ≡ � ∼ N(m, �2). (22)

Measurements: y
(1)
t = xt + w

(1)
t , y

(2)
t = xt + w

(2)
t , (23)

where w
(1)
t and w

(2)
t are the uncorrelated zero-mean white Gaussian noises with intensities r1 and r2, respectively.

4.1.1. Optimal estimator: Kalman filter
The KF (16) gives the optimal mean-square estimate x̂

opt
t of an unknown xt ≡ � based on the overall sensor

measurements Yt = [y(1)
t y

(2)
t ]T. In this case it takes the form:

˙̂x opt
t = P

opt
t

[
1

r1
(y

(1)
t − x̂

opt
t ) + 1

r2
(y

(2)
t − x̂

opt
t )

]
, x̂

opt
0 = m,

Ṗ
opt

t = −1

r
(P

opt
t )2, P

opt
t = �2, r = r1r2

r1 + r2
,

P
opt

t = E[(� − x̂
opt

t )2].

Integrating the Riccati equation for P
opt

t by separation of variables, we obtain the exact formula for MSE,

P
opt

t = r�2

r + �2t
= r1r2�2

r1r2 + (r1 + r2)�2t
. (24)

Together with the optimal KF, we apply the SFF.

4.1.2. Suboptimal estimator: suboptimal fusion filter
First using Eq. (18), we obtain equations for the local Kalman estimates x̂

(1)
t and x̂

(2)
t and MSEs P

(11)
t and P

(22)
t ,

i.e.,

˙̂x(i)

t = 1

ri
P

(ii)
t (y

(i)
t − x̂

(i)
t ), x̂

(i)
t = m,

Ṗ
(ii)
t = − 1

ri
(P

(ii)
t )2, P

(i)
0 = �2,

P
(ii)
t = E[(� − x̂

(i)
t )2], i = 1, 2. (25)

Similar to (24), the solution of the equations for local MSEs P
(ii)
t in (25) takes the form:

P
(ii)
t = ri�2

ri + �2t
, i = 1, 2. (26)

Next, using the scalar version of the FF (11) in Example 1, one can obtain the suboptimal fusion estimate x̂ sub
t of the

unknown parameter � as

x̂ sub
t = a

(1)
t x̂

(1)
t + a

(2)
t x̂

(2)
t ,

a
(1)
t = P

(22)
t − P

(12)
t

P
(11)
t + P

(22)
t − 2P

(12)
t

,

a
(2)
t = P

(11)
t − P

(12)
t

P
(11)
t + P

(22)
t − 2P

(12)
t

, (27)
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where P
(12)
t = E[(� − x̂

(1)
t )(� − x̂

(2)
t )] is the local cross-covariance determined by (21) that results in the following

differential equation:

Ṗ
(12)
t = −

[
1

r1
P

(11)
t + 1

r2
P

(22)
t

]
P

(12)
t , P

(12)
0 = �2. (28)

Substituting (26) for the local MSEs P
(11)
t and P

(22)
t into (28), we obtain the linear homogeneous differential equation

for P
(12)
t . The solution of (28) by separation of variables is given by

P
(12)
t = r1r2�2

(r1 + �2t)(r2 + �2t)
. (29)

Finally substituting (26) and (29) into (27) and (10), we obtain precise formulas for the unknown weights a
(1)
t , a

(2)
t ,

and overall MSE for the SFF, P sub
t = E[(� − x̂ sub

t )2]:

a
(1)
t = r2/(r1 + r2), a

(2)
t = r1/(r1 + r2),

P sub
t = (a

(1)
t )2P

(11)
t + 2a

(1)
t a

(2)
t P

(12)
t + (a

(2)
t )2P

(22)
t

= r1r2�
2(r1 + r2 + �t)/[(r1 + r2)(r1 + �2t)(r2 + �2t)]. (30)

Comparing the optimal and suboptimal MSEs (24) and (30), we get

P sub
t − P

opt
t = r2

1 r2
2 �4

(r1 + r2)(r1 + �2t)(r2 + �2t)[r1r2 + (r1 + r2)�2t] = O

(
1

t3

)
.

This result shows that the SFF yields good accuracy and certain well-defined convergence properties.

4.2. Example 4: a scalar system with N-sensors

Consider a continuous-time scalar system

ẋt = axt + vt , t ∈ [0, T ], (31)

where vt is a white Gaussian system noise with intensity q, x0 ∼ N(x̄0, P0), a = const.
The measurement model for the system is

y
(i)
t = xt + w

(i)
t , i = 1, . . . , N , (32)

where w
(i)
t represents a zero-mean Gaussian white sensor noise with intensity ri = const, i = 1, . . . , N .

4.2.1. MSE for the optimal Kalman filter
Let x̂

opt
t be an optimal Kalman estimate of the state xt based on the overall measurements Yt = [y(1)

t · · · y
(N)
t ]T

and P
opt

t = E[(xt − x̂
opt

t )2] be the MSE. By the KF equations (16), P
opt

t satisfies the Riccati equation:

Ṗ
opt

t = 2aP
opt

t − 1

r
(P

opt
t )2 + q,

1

r
= 1

r1
+ · · · + 1

rN
, P

opt
t = P0. (33)
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Fig. 1. MSE analysis of the KF and SFF for N sensors.

4.2.2. MSE for the suboptimal fusion filter
For the SFF, let x̂ sub

t be a suboptimal estimate of the state xt , which represents the weighted sum of the local estimates

x̂
(1)
t , . . . , x̂

(N)
t

x̂ sub
t =

N∑
i=1

a
(i)
t x̂

(i)
t ,

N∑
i=1

a
(i)
t = 1.

According to (10), the MSE P sub
t = E[(xt − x̂ sub

t )2] is given by

P sub
t =

N∑
i,j=1

a
(i)
t a

(j)
t P

(ij)
t . (34)

Here the local error variances P
(ii)
t and cross-covariances P

(ij)
t satisfy Eqs. (18) and (21), respectively,

Ṗ
(ii)
t = 2aP

(ii)
t − 1

ri
(P

(ii)
t )2 + q, P

(ii)
0 = P0,

Ṗ
(ij)
t = 2aP

(ij)
t −

[
P

(ii)
t

ri
+ P

(jj)
t

rj

]
P

(ij)
t + q,

P
(ij)
t = P0, i, j = 1, . . . , N, i �= j . (35)

Further, the unknown weights a
(i)
t , i = 1, . . . , N , can be computed from (9). Finally, Eqs. (34) and (35) determine the

overall MSE of the SFF (32). Fig. 1 shows P
opt

t and P sub
t for the following parameter values

N = 4, q = 0.01, x̄0 = 0.5, P0 = 1,

r1 = 0.2, r2 = 0.1, r3 = 0.06, r4 = 0.04.

From Fig. 1 it can be seen that P
opt

t and P sub
t are very close. Also it is clear that estimation accuracy is increasing

with the number of sensors N. In the case of a single sensor when N = 1, the optimal KF and SFF are identical.
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4.3. Example 5: estimation of a damper harmonic oscillator motion

Consider an example of dynamic systems modeled by the second Newton law. For multisensor environment, we
examine the following three cases. In the first and second cases, there are two sensors one of which is main and another
is reserved (Measurement programs 1 and 2). In the third case, there are two independent sensors observing position
and velocity separately (Measurement program 3).

In this example, we verify the SFF using the harmonic oscillator motion in the following system model z̈ = ut/M ,
where zt is the position, M is the mass, and ut is the deterministic input (control). In the canonical form, we have

x̂t =
[

0 1
0 0

]
xt +

[
0

1/M

]
ut +

[
0
1

]
, xt =

[
x1,t

x2,t

]
=
[
zt

żt

]
, (36)

where vt is a zero-mean Gaussian white system noise with intensity q. This noise has been added for compensation of
modeling errors. The initial condition is x0 ∼ N(x̄0, P0), where x̄0 = [01]T, P0 = diag[21].

Assume that the measurement model contains two sensors

y
(1)
t = H(1)xt + w

(1)
t , y

(2)
t = H(2)xt + w

(2)
t , (37)

where H(1) and H(2) are the 1 × 2 measurement matrices, w
(1)
t and w

(2)
t are uncorrelated zero-mean white Gaussian

sensor noises with intensities r1 and r2, respectively.
The two filters (KF and SFF) for the system model (36), (37) are considered. In this example, there are three

measurement programs of measurements being illustrated and compared:
Measurement Program 1: Only the position x1,t = zt is measured by two different sensors, one of which is main and

another is reserved. In this case H(1) = [1 0] and H(2) = [1 0].
Measurement Program 2: Only the velocity x2,t = żt is measured by two different sensors, one of which is main and

another is reserved. Then H(1) = [0 1] and H(2) = [0 1].
Measurement Program 3: Both the position and velocity are measured. Then H(1) = [1 0] and H(2) = [0 1].
To study the behavior of the KF and SFF error covariances, set r1 = 0.02, r2 = 0.01 and q = 1. The point of interest

is the 2 × 2 MSE matrices in estimation of state components: position(x1,t ) and velocity (x2,t )

P
opt

t = E[e opt
t (e

opt
t )T] =

[
P

opt
11,t P

opt
12,t

P
opt

12,t P
opt

22,t

]
, e

opt
t =

[
x1,t − x̂

opt
1,t

x2,t − x̂
opt

2,t

]
,

P sub
t = E[e sub

t (e sub
t )T] =

[
P sub

11,t P sub
12,t

P sub
12,t P sub

22,t

]
, e sub

t =
[

x1,t − x̂ sub
1,t

x2,t − x̂ sub
2,t

]
.

These are the quantities shown in Figs. 2 and 3. In Fig. 2 we show the MSE comparisons for “position” (P
opt

11,t and

P sub
11,t ) and “velocity” (P

opt
22,t and P sub

22,t ) for Measurement Program 1.
System (36), (37) becomes unobservable for the velocity in Measurement Program 2. In this case, the rank of the

observable matrix � is equal to 1, i.e.,

rank(�) = 1, � = [HT F THT], H =
[

H(1)

H (2)

]
=
[

0 1
0 1

]
, F =

[
0 1
0 0

]
.

Fig. 3 shows the MSEs for “position” (P
opt

11,t and P sub
11,t ) and “velocity” (P

opt
22,t and P sub

22,t ) for Measurement Program 3.

From Figs. 2 and 3 it follows that the difference between the optimal MSEs (P
opt

ii,t , i = 1, 2) and the suboptimal

one (P sub
ii,t , i = 1, 2) is negligible for Measurement Programs 1 and 3, especially for steady-state regimes. This means

that, for our example, application of the SFF can produce good results in real-time processing requirements. In the case
of the unobservability of the pair {F, H }, Measurement Program 2 must be adjusted.

In Examples 3–5 we observe a relative loss of accuracy of the SFF as compared to the optimal KF.
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Fig. 2. Program 1: MSE analysis for position and velocity.

Fig. 3. Program 3: MSE analysis for position and velocity.

5. Conclusion

In this paper the optimal mean-square linear combination of local vector estimates (the fusion formula) is derived.
This result is a theoretical basis for the linear estimation fusion. A new suboptimal fusion filter for linear continuous-
time dynamic systems with multi-sensor environment based on the FF is proposed. Differential equations for local
cross-covariances of filtering errors are derived. These cross-covariances are the key quantities for the best linear
fusion. Numerical examples show that the suboptimal filter yields a reasonably good estimation accuracy, especially
for the steady-state regime. The obtained fusion filter is slightly suboptimal as compared with the optimal KF.
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Appendix A: Proofs of Theorem 1 and corollaries

(i) Using (4) and (5), the mean-square criterion (6) can be rewritten as

J = E[(x − x̂FF)T(x − x̂FF)] = tr
{
E[(x − x̂FF)(x − x̂FF)T]

}
= tr

⎧⎨⎩E

⎡⎣ N∑
i,j=1

a(i)a(j)(x − x̂(i))(x − x̂(i))T

⎤⎦⎫⎬⎭
=

N∑
i,j=1

a(i)a(j) tr(P (ij)) → min
a(1),...,a(N)

, (A.1)

where P (ij) = E[(x − x̂i )(x − x̂j )T]. So formula (10) of Corollary 1 for the overall fusion error covariance is derived.
Next substitute the expression

a(N) = 1 −
N−1∑
j=1

a(j)

into (A.1) and obtain that

J =
N−1∑
i,j=1

a(i)a(j) tr(P (ij)) +
⎛⎝1 −

N−1∑
j=1

a(j)

⎞⎠N−1∑
i=1

a(i) tr(P (Ni) + P (iN))

+
⎛⎝1 −

N−1∑
j=1

a(j)

⎞⎠2

tr(P (NN)) → min
a(1),...,a(N−1)

. (A.2)

Differentiating criterion (A.2) with respect to a(1), . . . , a(N−1) and then equating the result to zero, i.e.,

�J

�a(i)
= 0, j = 1, . . . , N − 1,

we obtain Eq. (8) for the unknown weights a(1), . . . , a(N−1).
(ii) The derivation of expressions (9) is based on the well-known result in quadratic optimization with restrictions

given by (Seber and Lee, 2003){
E[(Y − H�)T(Y − H�)] = min

�
D� = d

(A.3)

from which it follows that

�̂ = �̂0 + [E(HTH)]−1DT
{
D[E(HTH)]−1DT

}−1
(d − D�̂0),

�̂0 = [E(HTH)]−1E(HTY ). (A.4)

Putting in (A.3) and (A.4)

Y = x, H = [x̂(1) . . . x̂(N)], � = [â(1) . . . â(N)], D = [1 . . . 1], d = 1,

we obtain the explicit expression (9) for scalar weights.
This completes the proof of Theorem 1. �
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(iii) If the local estimates x̂(i) are unbiased, i.e., E[x̂(i)] = E[x], i = 1, . . . , N , then we get

E[x̂FF] =
N∑

i=1

a(i)E[x̂(i)] =
(

N∑
i=1

a(i)

)
E[x] = E[x].

Corollary 2 is proved.

Appendix B: Derivation of Eq. (21) for cross-covariances

The KF equations (18) yield the following differential equation for the local filtering error e
(i)
t = xt − x̂

(i)
t :

ė
(i)
t = ẋt − ẋ

(i)
t = Ftxt + Gtvt − Ft x̂

(i)
t − K

(i)
t (y

(i)
t − H

(i)
t x̂

(i)
t )

= Fte
(i)
t + Gtvt − K

(i)
t (H

(i)
t + w

(i)
t − H

(i)
t x̂

(i)
t ) = (Ft − K

(i)
t H

(i)
t )e

(i)
t + Gtvt − K

(i)
t w

(i)
t .

Substitute this relation into the Lyapunov equation for the cross-covariance P
(ij)
t = E(e

(i)
t e

(j)T

t ), i �= j (see Lewis,
1986). By virtue of the assumptions that Gaussian white system and sensor noises vt , w

(i)
t and w

(j)
t , i �= j , are mutually

uncorrelated, we obtain the linear differential equation for P
(ij)
t .

This completes the derivation of (21).

Appendix C: Proof of Theorem 2

Consider two filtering errors �x̂
opt

t = x̂
opt

t − xt and �x̂ sub
t = x̂ sub

t − xt . Since both estimates x̂
opt

t and x̂ sub
t are

unbiased, we can write P
opt

t = cov(�x̂
opt

t ) and P sub
t = cov(�x̂ sub

t ).
Next

0�cov(�x̂ sub
t − �x̂

opt
t )

= P sub
t − cov(�x̂

opt
t , �x̂ sub

t ) − cov(�x̂ sub
t , �x̂

opt
t ) + P

opt
t . (C.1)

To prove Theorem 2, it is sufficient to show that P
opt

t = cov(�x̂
opt

t , �x̂ sub
t ) or that

cov(�x̂ sub
t − �x̂

opt
t , �x̂

opt
t ) = 0. (C.2)

Equality (C.2) is equivalent to

E[(�x̂ sub
t − �x̂

opt
t )(�x̂

opt
t )T] = 0. (C.3)

The optimal and suboptimal estimates x̂
opt

t and x̂ sub
t linearly depend on N sensor measurements

y(i)
s ∈ Rmi , 0�s� t, i = 1, . . . , N . (C.4)

Stack all measurements (C.4) over each other to form one vector Y T
t ∈ Rt ·m, m = m1 + · · · + mN , and again enlarge

it to Ỹt = [Y T
t , 1] ∈ R�t , �t = tm + 1. The linear span Lt = Lt {Ỹt } consists of all linear combinations of Ỹt . Since x̂

opt
t

is optimal among all linear filters, its error �x̂
opt

t is orthogonal to Lt , i.e.,

E[(�x̂
opt

t )T(Mt Ỹt )] = 0,

where Mt ∈ Rn×�t is an arbitrary matrix, and n is the dimension of a state vector xt ∈ Rn.
Let ep, p = 1, . . . , n, and dq, q = 1, . . . , �t , denote the canonical basis in Rn and R�t , respectively. Plugging in

Mt = epdT
q , p = 1, . . . , n, q = 1, . . . , �t , we can see that (C.5) is equivalent to

E[�x̂
opt

t Ỹ T
t ] = cov(�x̂

opt
t , Ỹt ) = 0.

Then for some particular matrix M̃t ∈ Rn×�t , we have

�x̂ sub
t − �x̂

opt
t = M̃t Ỹt ∈ Lt
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and hence equalities (C.3) and (C.2) hold, i.e.,

cov(�x̂
opt

t , �x̂ sub
t − �x̂

opt
t ) = cov(�x̂

opt
t , M̃t Ỹt ) = cov(�x̂

opt
t , Ỹt )M̃

T
t = 0.

This completes the proof of Theorem 2. �
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