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Abstract—In practical communication environments, it is frequently ob-
served that the underlying noise distribution is not Gaussian and may vary
in a wide range from short-tailed to heavy-tailed forms. To describe par-
tially known noise distribution densities, a distribution class characterized
by the upper-bounds upon a noise variance and a density dispersion in the
central part is used. The results on the minimax variance estimation in the
Huber sense are applied to the problem of asymptotically minimax detec-
tion of a weak signal. The least favorable density minimizing Fisher infor-
mation over this class is called the Weber–Hermite density and it has the
Gaussian and Laplace densities as limiting cases. The subsequent minimax
detector has the following form: i) with relatively small variances, it is the
minimum -norm distance rule; ii) with relatively large variances, it is
the -norm distance rule; iii) it is a compromise between these extremes
with relatively moderate variances. It is shown that the proposed minimax
detector is robust and close to Huber’s for heavy-tailed distributions and
more efficient than Huber’s for short-tailed ones both in asymptotics and
on finite samples.

Index Terms—Huber’s -estimators, least favorable distributions, non-
Gaussian noise, robust minimum distance detection.

I. INTRODUCTION

Consider the problem of detection of a known signal � in the additive
independent and identically distributed (i.i.d.) noise fnigN1 with pdf f
from a certain class F . Given fxigN1 , it is necessary to decide whether
the signal � is observed. This problem of binary detection is set up
as the problem of hypotheses testing: H0 : xi = ni versus H1 :
xi = � + ni; i = 1; . . . ; N . Given a pdf f , the classical theory of
hypotheses testing yields various optimal (in the Bayesian, minimax,
Neyman-Pearson senses) algorithms for the solution of this problem:
all the optimal algorithms are based on the value of the likelihood ratio
(LR) statistic TN (x) = N

i
f(xi � �)=f(xi) that must be compared

with a certain threshold. The differences between the aforementioned
approaches result only in the values of a threshold.
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In this correspondence, we consider the asymptotic weak signal
approach when the useful signal � decreases with sample size as
� = �N = A=

p
N given some constant A > 0. For reasonable

decision rules, the error probability then converges as N ! 1 to a
nonzero limit [6]. Moreover, within this approach, the error probability
is closely related to the Pitman efficacy of the detector test statistic,
and therefore, Huber’s minimax theory can be used to analyze the
detector [10]–[12]. Finally, since weak signals are on the border of not
be distinguishable, and therefore, it is especially important to know
the error probabilities.
In what follows, we deal with the following minimum distance de-

tection rule [6]:

N

i=1

�(xi)
H

H

N

i=1

�(xi � �) (1)

where �(z) is a loss function characterizing the assumed form of a dis-
tance. This choice of a detection rule is mainly determined by the fact
that it allows for the direct and simple use of Huber’s minimax theory
on M -estimators of location [7], [8]. Further, it can be seen that the
choice �(z) = � log f(z) makes the optimal LR test statistic min-
imizing the Bayesian risk with equal costs and prior probabilities of
hypotheses. Note, that in this case, it is necessary to know exactly the
shape of pdf f to figure out the distance function, and the LR-statis-
tics usually behave poorly under the departures from the assumed pdf
model.
In many practical problems of radio-location, acoustics, and

communications, noise distributions are only partially known. For in-
stance, it may be known that either the underlying pdf is approximately
Gaussian, or there is some information on its behavior in the central
zone and on the tails, or an impulsive noise may distort the observed
signal, etc. For these detection problems, some robust alternatives
to the classical methods have been proposed in [8], [5], [10]–[12],
[6], [4]. Recently, some of these approaches have been extended to
more complicated static models of signals under the assumptions
of the approximately Gaussian character of noise distributions [3],
[18]. Heavy-tailed non-Gaussian noise models with finite and infinite
variances both for static and dynamic systems are considered in many
works, for example, in [2], [13], [16]. However, we are interested in a
static model containing short-tailed noise pdfs with small variances as
well as the heavy-tailed ones with large or even with infinite variances.
Within the minimax approach, the choice of a distribution class F

determines all the subsequent stages and the qualitative character of the
corresponding robust procedure. In its turn, the choice of a distribution
class depends either on the available prior information about data dis-
tributions, or on the possibilities of getting this information from the
data sample.
Being historically the first [7], various "-neighborhoods of the

Gaussian distribution are not the only models of interest. In practice
there often exists a prior information about the distribution dispersion
in its central part and/or its tails, about the moments and/or subranges
of a distribution. The empirical distribution function and relative
estimators of a distribution shape (quantile functions and their approx-
imations, histograms, kernel estimators) along with their confidence
boundaries give other examples. In order to enhance efficiency of
robust minimax procedures, it is reasonable to use such information
in minimax settings by introducing the corresponding distribution
classes. In Section II, we describe such a class.
We now dwell on the contributions of this paper. In [15], the distri-

bution class with a bounded variance and density value at the center
of symmetry, as well as some other classes with bounded distribution
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variances and subranges, were effectively used for robust estimation of
location, regression and autogression parameters in heavy-tailed dis-
tribution models being close in performance to Huber’s conventional
approach. In this paper, first, we apply the aforementioned class to the
problems of detection under heavy-tailed noise distributions, and since
the problems of estimation and detection are very close, we may expect
the same effect also in this case. Second, and this was unfortunately
overlooked in [15], under short-tailed noise distributions, minimax al-
gorithms in this class work much better than Huber’s conventional al-
gorithms. Third, we consider not a neighborhood of the Gaussian pdf
but a class in which the Gaussian pdf with the corresponding least
squares method is not explicitly assumed in the model but arises as the
least favorable distribution in the classes with bounded noise variances,
and just this extends the possibilities of Huber’s minimax approach and
provides the aforementioned effect.

This paper is organized as follows. In Section II, a brief survey of
the classical results within Huber’s minimax approach is given and the
least favorable density in the class of densities with an upper-bounded
variance and density value at the center of symmetry is described. In
Section III, we show that the error probability for the minimum dis-
tance detector is asymptotically minimax in the Huber sense and study
the detector performance both in asymptotics and on finite samples
for the Gaussian, heavy-tailed "-contaminated Gaussian, Cauchy, and
short-tailed generalized Gaussian noise pdfs. In Section IV, concluding
remarks are made.

II. THE LEAST FAVORABLE DENSITY IN THE CLASS WITH A BOUNDED

VARIANCE AND DENSITY VALUE AT THE CENTER OF SYMMETRY

Since our results are essentially based on Huber’s minimax approach
to robust estimation of location, we briefly recall its basic stages. In
general, the minimax principle aims at the least favorable situation for
which it suggests the best solution. Thus, in some sense, this approach
provides a guaranteed result, possibly too pessimistic.

Let x1; . . . ; xN be i.i.d. random variables with common density
f(x� �) in a convex class F . Then theM -estimator �̂N of a location
parameter � is defined as a zero of N

1
 (xi � �) with a suitable

score function  [7]. The minimax approach implies the determina-
tion of the least favorable density f� minimizing Fisher information
I(f) = (f 0=f)2f dx over the class F : f� = argminf2F I(f),
followed by designing the maximum-likelihood estimator (MLE) with
the score function  � = �f�0=f�. Under rather general conditions
of regularity,

p
N(�̂N � �) is asymptotically normal with variance

V ( ; f) =  2fdx=[  0fdx]2 satisfying the minimax property

V ( �; f) � V ( �; f�) � V ( ; f�):

The saddle-point pair ( �; f�) provides the guaranteed boundary of
estimation accuracy V ( �; f)�V ( �; f�)=1=I(f�) for all f 2F .

In other words, Huber proposed to use the supremum of the asymp-
totic variance V ( �; f�) � V ( �; f) as a measure of robustness of
the optimalM -estimator with the score function  �: the less the range
of the optimal estimator variance V ( �; f) over the class F , the more
robust is this estimator, and vice versa.

The shape of the least favorable density f� and the corresponding
score function  � is wholly determined by the structure of class F .
We now enlist several results on the least favorable distributions in the
distribution classes qualitatively different from the conventional "-con-
taminated Gaussian models. The symmetry and unimodality of distri-
bution densities are assumed.

In the classF1 of nondegenerate pdfs (with a bounded density value
at the center of symmetry), the least favorable density is known to be
the Laplace [14], [4]

F1 = ff : f(0) � 1=(2a) > 0g
f�1 (x) = L(x; 0; a) = (2a)�1 exp(�jxj=a);

here the scale parameter a characterizes the pdf dispersion about the
center of symmetry. In this case, we have the sign score function
 �1(z) = sgn(z)=a and the sample median as the optimal L1-norm
estimator. It is one of the most wide classes: any unimodal distribution
density with a nonzero value at the center of symmetry belongs to it.
The condition of belonging to this class is very close to the complete
lack of information about an underlying distribution.
In the class F2 of pdfs with an upper-bounded variance, the least

favorable density is the Gaussian [9]

F2 = f :�2(f) = x2f(x)dx � ��2

f�2 (x) = N(x; 0; ��) =
1

��
p
2�

exp � x2

2��2

with the corresponding linear score function  �2(z) = z=�2 and the
sample mean as the optimal L2-norm estimator.

Remark: Note that minimax approach does not necessarily imply
robustness like in the class F2. But the lack of stability of this solution
in heavy-tailed models may be compensated by its higher efficiency
under short-tailed distributions.

As the optimal solutions for two aforementioned classes have com-
pensable characteristics of robustness and efficiency, we propose an-
other class of pdfs containing the restrictions of the both classes F1

and F2

F12 = ff : f(0) � 1=(2a) > 0; �2(f) � ��2g: (2)

Note that the introduced class of densities comprises qualitatively dif-
ferent densities, for example, the Gaussian, the heavy-tailed "-contam-
inated Gaussian, Laplace, Cauchy-type (with ��2 = 1), short-tailed
pdfs close to the uniform, etc.
For the classF12, the least favorable pdf simultaneously depends on

the two parameters a and �� through their ratio ��=a naturally having
the Gaussian and Laplace densities as the particular cases and is of the
form [17], [15]:

f�12(x) =

N(x; 0; ��); for ��2=a2 < 2=�

WH(x; 0; �; ��); for 2=� � ��2=a2 � 2

L(x; 0; a); for �2=a2 > 2:

(3)

HereN(x; 0; ��) and L(x; 0; a) are the Gaussian and Laplace pdfs, re-
spectively, andWH(x; 0; �; ��) being called the Weber–Hermite pdf is
given by

WH(x; 0; �; �)

=
�(��) 2� + 1+ 1=S(�)p

2� � S(�)
D2

�

jxj
�

2� + 1 + 1=S(�) (4)

with the real-valued shape parameter � that takes its values in the in-
terval (�1; 0] and also depends on the ratio ��=a (for details, see [15, p.
68]). Further, D�(�) are the Weber-Hermite functions or the functions
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of the parabolic cylinder [1], S(�) = [ (1=2� �=2)�  (��=2)]=2,
and in this context,  (x) = d ln �(x)=dx is the digamma function.

The Weber–Hermite pdfs (4) arise as the solution to the Euler–La-
grange equation for the variational problem of minimizing Fisher in-
formation. The Gaussian and Laplace pdfs are the particular cases of
(4) when � = 0 and � ! �1, respectively. For � < 0, the shape of
the Weber–Hermite pdf takes an intermediate unimodal form between
the Gaussian and Laplace pdf forms, having a discontinuity of the pdf
derivative at the center of symmetry similar to the Laplace pdf.

To understand the branch structure of the least favorable density
f�12(x), we have to consider the two aspects of the question. First, the
value of the ratio ��2=a2 reflects the relative weight of tails in the total
distribution dispersion, since the pdf value at the center of symmetry
and the variance along with their corresponding bounds a and �� are es-
pecially sensitive to the form of a distribution central part and tails,
respectively. Thus, for �2=a2 < 2=� or with relatively short tails,
we have the Gaussian branch of the f�12(x), and so on. Second, dif-
ferent branches of the f�12(x) appear due to the degree in which the
constraints are taken into account: for ��2=a2 < 2=� or with rela-
tively short tails, only the restriction upon a variance does matter (it
becomes the equality �2(f�12) = ��2), and the restriction upon the pdf
value at the center of symmetry takes the form of the strict inequality
f�12(0) > 1=(2a), and therefore it is removed, thus classF12 is reduced
to class F2 with the corresponding least favorable Gaussian density.
Similarly, for ��2=a2 > 2 or with relatively heavy tails, only the re-
striction upon the pdf value at the center of symmetry is essential and
the the restriction upon a variance is removed. Therefore, class F12
is reduced to class F1 with the corresponding least favorable Laplace
density. Finally, for 2=� � ��2=a2 < 2, both restrictions become the
equalities and both must be taken into account, so the least favorable
density takes the most general Weber-Hermite form.

The corresponding minimax estimator of location can be described
as follows: i) with ��2(f) � 2a2=� or with relatively small variances
(relatively short tails), it is the sample mean or the L2-norm estimator;
ii) with ��2 > 2a2 or with relatively large variances (relatively heavy
tailes ), it is the sample median or theL1-norm estimator; iii) with rela-
tively moderate variances, it is a compromise between theL1-norm and
the L2-norm estimators. In the latter case, the loss function is �(z) =
� log f�12(z) that can be rather effectively (with at most 2.5% relative
error) approximated by the low-complexity Lp -norm loss function
with the power p� 2 (1; 2) given by (for details, see [15, p. 76–79])

p� =
5:33� 7:61x+ 3:73x2; 2=� < x � 1:35

2:66� 1:65x+ 0:41x2; 1:35 < x < 2
(5)

where x = ��2=a2.

III. DETECTION PERFORMANCE IN ASYMPTOTICS AND ON

FINITE SAMPLES

Under rather general conditions of regularity imposed on the classes
	 and F (see, say, [5, pp. 125–127]), the error probability of detection
for the minimum distance rule (1) takes the following form asN !1:

PE = Q A

2 V ( ; f)
(6)

where

Q(x) = (2�)�1=2
1

x

e�t =2dt

the parameter A determines the amplitude of a weak signal as a de-
creasing sequence � = �N = A=

p
N , and V ( ; f) is the aforemen-

tioned asymptotic variance of Huber’sM -estimators of location. Since
the signal energyE is equal to �2N , we haveA =

p
E, and moreover,

in the particular case of the unit noise variance, it can be written as
A =

p
SNR. This result can be derived using the standard asymptotic

technique as in [7], [6], [12].
From (6) it follows that the minimax problem with respect to the

error probabilitymin 2	maxf2F PE( ; f) is equivalent to Huber’s
minimax problem min 2	maxf2F V ( ; f). Thus, all the results on
the minimax estimation of location are also applicable in this case: the
optimal loss function �� in theminimumdistance detector (1) is defined
by the maximum likelihood choice for the least favorable (informative)
pdf f� minimizing Fisher information: ��(z) = � log f�(z). More-
over, the error probability is upper-bounded in class F : PE( 

�; f) �
PE( 

�; f�).
Further, we compute the error probabilities for the Gaussian noise

with the pdf f(x) = N(x; 0; 1), the heavy-tailed Cauchy noise with
the pdf C(x; 0; 1) = 1=[�(1 + x2)], the heavy-tailed "-contaminated
Gaussian noise with the pdf fCN(x) = (1�")N(x; 0; 1)+"C(x; 0; 1)
where " is the contamination parameter (0 � " < 1), and for the
generalized Gaussian noises with the pdf

fGG(x;�; q) =
q

2��(1=q)
exp �jxj

q

�q

where � and q are the parameters of scale and shape, respectively.
Also we set the unit distribution variance with the following excep-

tions—for the Cauchy and "-contaminated Gaussian pdfs.
Further, we compare the performance of the low-complexity min-

imax Lp -norm detector

N

i=1

jxijp
N

i=1

jxi � �jp (7)

in which the power p� is chosen from (5) with the L1-, L2-norm, and
Huber’s detectors. In the latter case, we consider the minimum distance
detection rule (1) with the conventional Huber loss function ��H(z) =
� log f�H(z) where the least favorable distribution is described by the
Gaussian central part and exponential tails (for details, see [8]) and the
contamination parameter " is fixed to 0.1. The chosen value of " seems
to be a reasonable upper bound upon the contamination parameter in
applications [5].
To clarify the procedure of computing the error probability, let us

consider the Gaussian case in details. To simplify the analysis, we
rewrite (6) as follows:

PE = Q A
I1

2
p
I2

(8)

where

I1 =
1

�1

 0(x)f(x)dx and I2 =
1

�1

 2(x)f(x)dx:

Example 1: Consider the error probability for the minimax
Lp -norm and L2-norm detectors in the Gaussian noise. Then the
choice of the optimal structure is defined by the ratio �2=a2. Subse-
quently, we have f(0)=1=

p
2�; �2(f)=1; a= �=2; �2=a2=2=�.

Hence, the minimax detector is based on the L2-norm distance with
p�=2, the score function is linear  �(x)=x, the integrals are I1=1
and I2=1, and thus, its error probability is given by PE =Q(0:5A).
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Fig. 1. Detection in the "-contaminated Gaussian noise: asymptotics, " = 0:1; A =
p
E. (To avoid ambiguity, note that here and henceforth, the parameter

A unit is not dB).

For the L2-norm detector, apparently the choice is the same:  (x)=x
and PE =Q(0:5A).
Example 2: Consider the error probability for Huber’s andL1-norm

detectors in the Gaussian noise. For " = 0:1, the score function is
 (x) =  �H(x) = max[�1:14;min(x; 1:14)], the required integrals
cannot be evaluated in a closed form, hence they were computed nu-
merically, and PE = Q(0:461A).

For the L1-norm detector with p� = 1, the score function is the sign
function  (x) = sgn(x), the integrals are I1 = 2f(0) = 2=� and
I2 = 1, and thus, we get PE = Q(A=p2�) = Q(0:399A).

The results of computing for the Gaussian, extremely heavy-tailed
Cauchy, heavy-tailed "-contaminated Gaussian with " = 0:1 and the
close to the uniform pdf exponential-power (q = 100) density are
exhibited in Table I and Figs. 1 and 2.

The structure of the minimax Lp -norm detector is determined by
the ratio ��2=a2, and contrary to Huber’s detector, the parameters ��2

and a2 of class F12 can be directly estimated from the sample. In gen-
eral, for estimating ��2 we can use, for example, the upper confidence
limit for the estimate of variance, and for 1=(2a) the lower confidence
limit for the nonparametric estimate of a distribution density at the
center of symmetry: f̂(0) � f̂(0). Taking into account the Lp -norm
form of the minimax detector with the parameter 1 � p� � 2 when
both restrictions of class F12 hold as equalities, we choose the esti-
mates of variance and density as the characteristics of this class. For a
variance, this is the customary sample variance

�̂�
2
= N�1

N

i=1

(xi � x)2:

To avoid the difficulties of nonparametric estimation of a distribution
density, we estimate the value of the underlying density at its center

TABLE I
THE FACTOR I

2
p
I

IN (8) FOR VARIOUS NOISES

of symmetry and the related parameter a using the following simple
formula based on the central order statistics x(k) and x(k+1)(N = 2k
or N = 2k + 1) [15]

â = 1=[2f̂(0)] = [(N + 1)(x(k+1) � x(k))]=2:

On finite samples when N = 20 and N = 100, the performance
of the Lp -norm, Huber’s, L1- and L2-norm detectors under the
Gaussian, Cauchy, "-contaminated Gaussian and uniform noises was
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Fig. 2. Detection in the generalized Gaussian noise close to uniform: asymptotics, q = 100; A =
p
SNR.

Fig. 3. Detection in the Gaussian noise: N = 20; A =
p
SNR.



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 3, MARCH 2006 1211

studied by Monte Carlo technique. The detection model was chosen
consistently with the initial assumption of detection of a weak signal:
H0 : xi = ni versus H1 : xi = � + ni; i = 1; . . . ; N , where the
useful signal � = �N = A=

p
N .

On small samples with N = 20, the results of modeling in the
Gaussian noise are displayed in Fig. 3; the other results are discussed
below. On large samples with N = 100, the results of modeling are
close to the asymptotic results given by (8).

IV. CONCLUDING REMARKS

The Gaussian Noise: Large Samples and Asymptotics. The minimax
Lp -norm detector coincides with the optimal L2-norm detector both
being better than Huber’s and the L1-norm detector.
The Gaussian Noise: Small Samples. On the contrary, Fig. 3. shows

that the minimax Lp -norm detector is close in performance to the ro-
bust L1-norm detector being slightly inferior to Huber’s on small sam-
ples.
The Sample Size Effects. There are some peculiarities of the depen-

dence of the minimax detector on the sample size N , this deserves
a separate attention. Since the estimators �̂�

2

and â of the parameters
of class ~F are consistent, the sample minimax detection performance
tends in probability to the exact minimax detection performance as
N ! 1. This is confirmed by Monte Carlo modeling on samples of
size N = 100.

The results exhibited in Fig. 3. can be explained by the bias of the
sample distribution of the threshold statistic �̂�

2

=â2 with small N : its
values determine the choice of the appropriate branch of the algorithm.
For Gaussian samples of size N = 20, the choice of the L2-norm oc-
curs approximately for the 10% of cases (P [�̂�

2

=â2 < 2=�] � 0:1),
the choice of theL1-norm detector—for the 20% of cases (P [�̂�

2

=â2 >
2] � 0:2), and the Lp -norm detectors with 1 < p� < 2 are chosen
for the rest 70% of cases with the average value of the power param-
eter �p� � 1:25. For samples of size N = 100, we have the opposite
situation: approximately for the 45% of cases, the L2-norm branch of
the minimax detector is realized, whereas the L1-norm branch occurs
only for the 5% with the average value of the power as p� � 1:85.
The Cauchy and "-Contaminated Gaussian Noise. Though these

models describe extremely heavy-tailed noises, nevertheless they
deserve attention as, say, the Cauchy pdf may arise through the
distribution of the ratio of Gaussian random variables. From Fig. 1
and Table I it can be seen that the L2-norm detector with the linear
test statistic naturally has the extremely poor performance both in
asymptotics and on finite samples; the minimax,L1-norm and Huber’s
detectors exhibit their good robust properties with the latter being
evidently better than the former in the mixture models, and vice versa
for the Cauchy noise. Note that we also examined the detection perfor-
mance in other heavy-tailed distribution models, namely, the Laplace,
the mixture models with the Gaussian contamination not so heavy as
the Cauchy, and the generalized Gaussian pdfs with 1 < q < 2, but
the obtained results were qualitatively the same.
The Short-Tailed Noise. The detection performance again reverts

not once in short-tailed noise models described by the generalized
Gaussian pdf with q = 100 close to the uniform (see Fig. 2). In asymp-
totics, the L2-norm and minimax detectors proved their superiority
over Huber’s and the L1-norm detectors, but on small samples, the
aforementioned small size sample effect reveals itself: the minimax
detector is close in performance to the L1-norm detector, and thus it is
slightly inferior to Huber’s. The qualitatively similar effects were also
observed in some other examined short-tailed and finite pdf models,
for example, for the generalized Gaussian pdf with q = 4.

Final Remark. Our main aim was to show some new possibilities
of Huber’s minimax approach to robust detection associated with the
usage of a new class of densities with an upper-bounded variance. The
proposed low-complexity minimax power detector exhibits both high
robustness in heavy-tailed noise and good efficiency in short-tailed
noise on small and large samples. The similar approach can be applied
to much more complicated models of signal detection than the simple
binary detection model analyzed in this paper.
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