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Abstract

Robust estimators of a correlation coefficient based on: (i) direct robust
counterparts of the sample correlation coefficient, (ii) nonparametric measures
of correlation, (iii) robust regression, (iv) robust estimation of the variances of
principal variables, (v) stable parameter estimation, and (vi) the preliminary
rejection of outliers from the data with the subsequent application of the
sample correlation coefficient to the rest of the observations, are considered.
Their performance in ε-contaminated normal models is examined both on
small and large samples, and the best of the proposed robust estimators are
revealed.
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1 Introduction

1.1. Preliminaries. The aim of robust methods is to ensure high stability
of statistical inference under the deviations from the assumed distribution model.
Far less attention is devoted in the literature to robust estimators of association and
correlation as compared to robust estimators of location and scale [1, 2]. However, it
is necessary to study these problems due to their widespread occurrence (estimation
of the correlation and covariance matrices in regression and multivariate analysis,
estimation of the correlation functions of stochastic processes, etc.), and also due to
the great instability of classical methods of estimation in the presence of outliers in
the data.

The simplest problem of correlation analysis is estimation of the correlation
coefficient ρ between the random variables X and Y defined as

(1) ρ = Cov(X,Y )/ [D(X) D(Y )]1/2,

where D(X), D(Y ) and Cov(X,Y ) are the variances and the covariance of the r.v.’s
X and Y , respectively. This definition of the correlation coefficient as the stan-
dardized covariance is only one of the possible definitions (their number is about a
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dozen) [3, 4]. In the sequel, we use some of those definitions, for example, such as
the standardized slope of a regression line and the geometric mean of two regres-
sion lines to construct new robust measures of correlation. Further, the correlation
coefficient itself is not a unique measure of interdependence (association): there are
other measures, e.g., the Spearman rank correlation [5], the quadrant (sign) corre-
lation [6], and the Kendall’s τ -correlation [7]. These measures are similar to the
correlation coefficient ρ and the first two of them are used for its estimation in our
paper. Thus, in general, the problem of estimation of a correlation coefficient is
more complicated than, say, the problem of estimation of the center of a symmetric
distribution in which at least it is clear what we really estimate.

Given the observed sample (x1, y1), . . . , (xn, yn) of a bivariate random variable
(r.v.) (X,Y ), the classical estimator of a correlation coefficient ρ is given by the
sample correlation coefficient

(2) r =
∑

(xi − x̄)(yi − ȳ)
/[∑

(xi − x̄)2
∑

(yi − ȳ)2
]1/2

,

where x̄ = n−1
∑

xi and ȳ = n−1
∑

yi are the sample means.
On the one hand, the sample correlation coefficient r is a statistical counterpart

of the correlation coefficient ρ (1). On the other hand, it is the maximum likelihood
estimator of ρ for a bivariate normal distribution density

N (x, y; µ1, µ2, σ1, σ2, ρ) =
1

2πσ1σ2

√
1− ρ2

exp

{
− 1

2(1− ρ2)

(3) ×
[
(x− µ1)

2

σ2
1

− 2ρ
(x− µ1)(y − µ2)

σ1σ2

+
(y − µ2)

2

σ2
2

]}
,

where the parameters µ1 and µ2 are the means, σ1 and σ2 are the standard
deviations of the r.v.’s X and Y , respectively.

To illustrate the necessity in robust counterparts of the sample correlation coeffi-
cient, consider the Tukey’s gross error model [8] described by the mixture of normal
densities (0 ≤ ε < 0.5)

(4) f(x, y) = (1− ε)N (x, y; µ1, µ2, σ1, σ2, ρ) + εN (x, y; µ′1, µ
′
2, σ

′
1, σ

′
2, ρ

′),

where the first and the second summands generate ”good” and ”bad” data, respec-
tively. In general, the characteristics of ”bad” data, namely their component means
µ′1, µ

′
2,, standard deviations σ′1, σ

′
2 and especially the correlation ρ′ may significantly

differ from their counterparts from the first summand.
Further, we are mostly interested in estimation of the correlation coefficient ρ of

”good” data regarding ”bad” data as the outliers. In model (4), the sample corre-
lation coefficient is strongly biased with regard to the estimated parameter ρ, i.e.,
for any positive ε > 0 there exists k = σ′1/σ1 = σ′2/σ2 sufficiently large such that
E(r) can be made arbitrarily close to ρ′ [9, 10]. For instance, estimating the corre-
lation coefficient ρ = 0.9 of the main bulk of the data under the contamination with
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Figure 1: ”Good” data (•) and outliers (∗) with their impact on correlation

ε = 0.1, k = 3 and ρ′ = −0.99, asymptotically (as n →∞) we have E(r) = −0.055,
what means that even the sign of the sample correlation coefficient is wrong. So, the
presence of even one or two outliers in the data can completely destroy the sample
correlation coefficient up to the change of its sign, as it can be seen from Fig. 1.
This effect is quite natural for the sample correlation coefficient, since it estimates
the correlation coefficient of the whole distribution (4), but not the correlation of
the ”good” data. Anyway, the sample correlation coefficient is extremely sensitive
to the presence of gross errors in the data, and hence it is necessary to use its ro-
bust counterparts. Now we specify what is understood under the term ”a robust
estimator” of the correlation coefficient.

1.2. General remarks on robustness. The field of mathematical statistics
called robust statistics appeared due to the pioneer works of J. W. Tukey, P. J. Hu-
ber, and F. R. Hampel [8, 11, 12]; it has been intensively developed since 1960 and is
rather definitely formed by present. The term ”robust” (strong, sturdy) as applied
to statistical procedures was proposed by G. E. P. Box [13].

Robustness deals with the consequences of possible deviations from the assumed
statistical model and suggests the methods protecting statistical procedures against
such deviations. Thus, statistical models used in robust statistics are chosen so that
to account possible violations of the assumptions about the underlying distribution.
For description of these violations, several neighborhoods of the underlying model
based on an appropriately chosen metric are used, for example, the Kolmogorov,
Prokhorov, or Lévy [1, 2, 14, 15]. Hence the initial model (basic or ideal) is enlarged
up to the so-called supermodel that describes both the ideal model and the deviations
from it.

Introducing a robust procedure, it is useful to answer the following questions: 1)
Robustness of what? 2) Robustness against what? 3) Robustness in what sense?

The first answer defines the type of a statistical procedure (point or interval
estimation, hypotheses testing, etc.); the second specifies the supermodel, regarding
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robustness against the extension of ideal models to supermodels; and the third
introduces the criterion of quality of a statistical procedure. Numerous problem
settings observed in robust statistics arise due to the fact that there exist a lot of
answers to each of those questions [1], [2], [16] – [20].

In this paper, we consider: 1) the point estimation of the correlation coefficient,
2) Tukey’s gross error supermodel, and 3) various criteria of quality of robust esti-
mation, items 2) and 3) further to be specified.

At present there exist two principal methods of designing robust estimators, i.e.,
Huber’s minimax method of quantitative robustness [1, 11], and Hampel’s method
of qualitative robustness based on influence functions [2, 21, 22]. According to
the first of these methods, we determine the least informative (favorable) distribu-
tion density minimizing Fisher information over a given class of distributions, with
the subsequent construction of the maximum likelihood estimator for this density.
This ensures that the asymptotic variance of an estimator will not exceed a certain
threshold (namely, the supremum of the asymptotic variance as a measure of quan-
titative robustness) which strongly depends on the characteristics of a chosen class
of distributions.

According to the second method, we construct an estimator with the assigned
influence function whose type of behavior determines the qualitative robustness
properties of an estimation procedure (such as its sensitivity to large outliers in the
data, their rounding off, etc.). Most of robust estimators of a correlation coefficient
have been obtained from heuristic considerations partially related to the desired
behavior of their influence functions [9, 10, 35, 36]. To design robust estimators
of correlation, in Section 2.6 we use the so-called variational optimization approach
to stable parameter estimation [23, 24], which may be considered as a version of
Hampel’s method based on the change-to-variance function [2, 25]: the robust es-
timators designed according to that approach belong to Meshalkin’s redescending
exponentially weighted λ-estimators [26, 27].

1.3. Tukey’s supermodel and criteria of quality of robust estimation.
In our study, the observations are generated by Tukey’s gross error supermodel (4).
It is chosen due to the following reasons.

First, it is a standard model of the neighborhood of a normal distribution widely
used in studies on robustness [1, 2], easily interpreted, since the distributions of the
main bulk of data and outliers (gross errors) can be described by the the first and
second terms of (4), respectively, allowing to consider different types of outliers, say,
caused by the shift in distribution location, scale, or shape (correlation).

Second, the contamination parameter ε can be regarded as the probability of
occurrence of outliers in the data sample with the number of outliers distributed
according to the binomial law.

Third, it is the simplest neighborhood of a normal distribution being easy for
modelling as compared to the other possible ε-neighborhoods of the normal distri-
bution, say, the Kolmogorov, Prokhorov, or Lévy distances [1, 2, 14, 15].

Finally, we use the bivariate normal distribution in the first term of (4) as a
conventional bivariate distribution [1, 9, 10]. Here we may also add that the nor-
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mal (Gaussian) distribution shape with its properties of gravity and stability nat-
urally arises in the description of smooth evolutionary processes with increasing
entropy [28] – [31]. Thus, the normal distribution can be regarded as a good candi-
date for description of the main bulk of data. The second term in (4) for contamina-
tion should not necessarily be of a normal shape, but in case of its large variances,
formula (4) yields a reasonable model for non-Gaussian distributions.

A survey on the applicability of Tukey’s model to description of the real-life data,
in particular on the frequency of gross errors, is given in [2]. It is concluded by the
following words: ”1 − 10% gross errors in routine data seem to be more the rule
than the exception.” ([2], pp. 25-28).

In the sequel, we use the simplified version of (4) in the following form

(5) f(x, y) = (1− ε)N (x, y; 0, 0, 1, 1, ρ) + εN (x, y; 0, 0, k, k, ρ′),

where 0 ≤ ε < 0.5, k > 1, sgn(ρ′) = − sgn(ρ): for the sample correlation coefficient,
this choice leads to its maximum bias with respect to ρ.

Numerous applications, e.g., in communication queueing systems [37, 38] and
in image processing [39, 40], show that the practice requires robust estimation of
the correlations for long range dependent and essentially non-Gaussian heavy-tailed
distributions, say, the Student t-distributions characterized by the low values of tail
indices [41]. Robust estimators of correlation under the heavy-tailed Cauchy contam-
ination of a bivariate normal distribution were studied in [9, 10] and it was shown
that good robust estimators have qualitatively similar performances in model (5)
and in models with essentially heavy-tailed contamination. The point is that, in
heavy-tailed models, the maximum likelihood estimators presume some trimming of
”tail” observations regardless of whether the tails are relatively or absolutely heavy,
e.g., in case of estimation of location for the Tukey’ mixture of normal distributions
and for the Cauchy distribution: these effects were observed in Princeton’s exper-
imental study of robust estimators of location [42]. Moreover, outliers themselves
can be well-defined only relatively, with respect to a given structure of the main
bulk of the data [43, 44], say, for uniformly distributed data, observations from a
normal distribution can be regarded as outliers and they also should be trimmed.

Thus, in this paper we use Tukey’s gross error supermodel (5). Nevertheless, we
underline that the problem of robust estimation of correlation for essentially heavy-
tailed distributions, say, for the bivariate Student t-distribution of the data, requires
a separate and thorough study.

Now we dwell on the criteria of quality of robust estimators. Those criteria
are inherent to each of the aforementioned principal approaches in robustness: in
Huber’s approach, it is the supremum of the asymptotic variance of an estimator
over a chosen class of distributions, and it is the influence and change-of-variance
functions with their characteristics of estimator’s sensitivity such as the breakdown
and rejection points, local-shift sensitivity, etc. in Hampel’s approach [2].

In what follows, we use those criteria whenever they are available and appropri-
ate, but all the comparative study of various robust estimators of the correlation
coefficient ρ in (5) is performed using the following two conventional characteristics:
the bias E(ρ̂)− ρ and the variance D(ρ̂) , asymptotic or sample.
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1.4. The goals of the study. This paper pursues two main goals: first, we
give an overview of various approaches to robust estimation of correlation; second,
we present a comparative study of the performance of a selected subset of robust
estimators generated by those approaches in ε-contaminated normal distribution
models. Thus, it is mostly a survey and partially a contribution. The contribution
mainly refers to the specification of the area of applicability of the minimax variance
estimator of correlation in Section 2.5, to the study of a radical stable estimator of
correlation in Section 2.6 and Section 3, and to the comparative analysis of selected
estimators in Section 4.

The paper is organized as follows. In Section 2, we describe robust estimators
of a correlation coefficient based on: direct robust counterparts of the sample corre-
lation coefficient, nonparametric measures of correlation; robust regression, robust
estimation of the variances of principal components, minimax approach, stable pa-
rameter estimation, and the preliminary rejection of outliers from the data with
the subsequent application of the sample correlation coefficient to the rest of the
observations. In Section 3, the performance of the typical representatives of those
groups on small and large samples is studied. In Section 4, conclusions are made.

2 Robust estimators of a correlation coefficient

2.1. Robust correlation via direct robust counterparts of the sample
correlation coefficient. A natural approach to robustifying the sample correla-
tion coefficient is to replace the linear procedures of averaging by the corresponding
nonlinear robust counterparts [1, 9, 10]

(6) rα(ψ) = Σαψ(xi − x̂)ψ(yi − ŷ)/
[
Σαψ2(xi − x̂)Σαψ2(yi − ŷ)

]1/2
,

where x̂ and ŷ are some robust estimators of location, for example, the sample
medians med x and med y; ψ = ψ(z) is a monotone function, for instance, Huber’s
ψ-function: ψ(z, k) = max [−k, min(z, k)]; Σα is a robust analog of a sum.

The latter transformation is based on trimming the outer order statistics with
subsequent summation of the remaining ones:

Σαzi = nTα(z) = n(n− 2r)−1

n−r∑
i=r+1

z(i), 0 ≤ α ≤ 0.5, r = [α (n− 1)]

where [·] stands for the integer part. For α = 0, the operations of ordinary and of
robust summation coincide: Σ0 = Σ.

The following version of estimator (6)

rα = Σα(xi −med x)(yi −med y)/
[
Σα(xi −med x)2Σα(yi −med y)2

]1/2

with α = 0.1, 0.2 were used in [9, 10, 20]. For α = 0.5, x̂ = med x, ŷ = med y,
ψ(z) = z, formula (6) yields the correlation median estimator [35, 45]

r0.5 = rCOMED =
med{(x1 −med x)(y1 −med y), . . . , (xn −med x)(yn −med y)}

MAD x MAD y
,
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where MAD z = med{|z1−med z|, . . . , |zn−med z|} stands for the median absolute
deviation.

2.2. Robust correlation via nonparametric measures. An estimation
procedure can be endowed with robustness properties by the use of rank statistics.
The best known of them are the quadrant (sign) correlation coefficient [6]

(7) rQ = n−1
∑

sgn(xi −med x)sgn(yi −med y),

that is the sample correlation coefficient between the signs of deviations from medi-
ans, and the Spearman rank correlation coefficient [5]

(8) rS =

∑
[R(xi)−R(x)][R(yi)−R(y)]

(∑
[R(xi −R(x)]2

∑
[R(yi)−R(y)]2

)1/2
,

that is the sample correlation coefficient between the observation ranks R(xi) and
R(yi), where R(x) and R(y) stand for the average ranks, here equal to n(n + 1)/2.

For computing, it is more convenient to use the transformed version of (8) [46]

rS = 1− 6 S(d2)/[n3 − n], S(d2) =
∑

[R(xi)−R(yi)]
2.

2.3. Robust correlation via robust regression. The problem of estimation
of the correlation coefficient is directly related to the linear regression problem of
fitting the straight line of the conditional expectation [46]

E(X | Y = y) = µ1 + β1(y − µ2), E(Y | X = x) = µ2 + β2(x− µ1).

For the bivariate normal distribution (3),

(9) β1 = ρσ1/σ2, β2 = ρσ2/σ1

where σ1 and σ2 are the standard deviations of the r.v.’s X and Y , respectively [46].
Basing on (9), we propose the following robust estimator

(10) rREG = β̂1 σ̂2/σ̂1,

where β̂1 = med {(y −med y)/(x−med x)} is a robust estimate of slope, σ̂1 and σ̂2

are robust estimators of scale, namely, the median absolute deviations [35].
If the coefficients of linear regression are estimated by the least squares method

(α̂1, β̂1) = arg min
α1,β1

∑
(xi − α1 − β1yi)

2, (α̂2, β̂2) = arg min
α2,β2

∑
(yi − α2 − β2xi)

2,

then, for the sample correlation coefficient, we get r2 = β̂1β̂2 [46], and basing on this
dependence, we may propose a robust estimator of correlation in the form

(11) ρ̂ 2 = β̃1β̃2 or ρ̂ =

√
β̃1β̃2,
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where β̃1 and β̃2 are some robust estimators of the slope [35]. For instance, we may
use the least absolute values (LAV) estimators [47]

(α̃1, β̃1) = arg min
α1,β1

∑
|xi − α1 − β1yi|, (α̃2, β̃2) = arg min

α2,β2

∑
|yi − α2 − β2xi|

or the least median squares (LMS) estimators of regression coefficients [2, 48]

(α̃1, β̃1) = arg min
α1,β1

med(xi − α1 − β1yi)
2, (α̃2, β̃2) = arg min

α2,β2

med(yi − α2 − β2xi)
2.

The corresponding estimators of correlation are referred as rLAV and rLMS, respec-
tively.

2.4. Robust correlation via the robust variances of principal variables.
Consider the following identity for the correlation coefficient ρ [9]

(12) ρ = [D(U)−D(V )]/[D(U) + D(V )],

where U = (X/σ1 +Y/σ2)/
√

2, V = (X/σ1−Y/σ2)/
√

2 are the principal variables
such that

Cov(U, V ) = 0, σ2
U = 1 + ρ, σ2

V = 1− ρ,

and σ1 and σ2 are the standard deviations of the r.v.’s X and Y , respectively.
Following Huber [1], introduce a scale functional S(X) : S(aX+b) = |a|S(X) and

write S2(·) for a robust counterpart of variance. Then a corresponding counterpart
for (12) is given by [1]

(13) ρ∗(X,Y ) = [S2(U)− S2(V )]/[S2(U) + S2(V )].

By substituting the sample robust estimates for S into (13), we obtain robust esti-
mates for ρ [1]

(14) ρ̂ = [Ŝ2 (U)− Ŝ2 (V )]/[Ŝ2 (U) + Ŝ2 (V )].

The choice of the median absolute deviation Ŝ(x) = MAD x in (14) yields a
remarkable estimator called the MAD-correlation coefficient [35]

(15) rMAD = (MAD2 u−MAD2 v)/(MAD2 u + MAD2 v),

where u and v are the robust principal variables

(16) u =
x−med x√
2 MAD x

+
y −med y√
2 MAD y

, v =
x−med x√
2 MAD x

− y −med y√
2 MAD y

.

Choosing Huber’s trimmed standard deviation estimators as Ŝ ∝
√∑n−n2

n1+1 x2
(i)

(see [1], pp. 120-122), we obtain the trimmed correlation coefficient:

(17) rTRIM =

(
n−n2∑

i=n1+1

u2
(i) −

n−n2∑
i=n1+1

v2
(i)

)/(
n−n2∑

i=n1+1

u2
(i) +

n−n2∑
i=n1+1

v2
(i)

)
,
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where u(i) and v(i) are the ith order statistics of the corresponding robust principal
variables, n1 and n2 are the numbers of trimmed observations.

Formula (17) yields the following limit cases: (i) the sample correlation coefficient
r with n1 = 0, n2 = 0 and with the classical estimators (the sample means for
location and the standard deviations for scale) in its inner structure; (ii) the median
correlation coefficient with n1 = n2 = [0.5(n− 1)]

(18) rMED = (med2 |u| −med2 |v|)/(med2 |u|+ med2 |v|)
asymptotically equivalent to rMAD [35].

2.5. Robust correlation via robust minimax estimation. In the litera-
ture, there are two results on applying the minimax approach to robust estimation
of correlation.

In [1], it is stated that the quadrant correlation coefficient rQ (7) is asymptotically
minimax with respect to bias at the mixture F = (1 − ε)G + εH (G and H being
centrosymmetric distributions in R2).

In [49], it is shown that the trimmed correlation coefficient rTRIM (17) is asymp-
totically minimax with respect to variance for ε-contaminated bivariate normal dis-
tributions

f(x, y) ≥ (1− ε)N (x, y; 0, 0, 1, 1, ρ), 0 ≤ ε < 0.205.

This result holds under rather general conditions of regularity imposed on joint
distribution densities f(x, y) similar to the conditions under which Huber’s M -
estimators of scale are consistent and minimax (for details, see [1, 49], and under
the following two additional conditions.

The first presumes that the parameters of location and scale of the r.v.’s X and Y
are known: then we set µ1 = µ2 = 0 and σ1 = σ2 = 1. In general, this condition
is not very restrictive, as any reasonable measure of correlation should be invariant
to the shifts of location and scale of the r.v.’s X and Y . Further, according to the
aforementioned result, the trimmed correlation coefficient (17) should be used with
the principal variables (16) in which zeros and units stand for the sample medians
and median absolute deviations, respectively. However, in real-life applications, one
should use formulas (16) as they are given.

The second condition is more restrictive: the underlying distribution should be
independent with respect to its principal variables taking the following form

(19) f(x, y) =
1√

1 + ρ
g

(
u√

1 + ρ

)
1√

1− ρ
g

(
v√

1− ρ

)
,

where the principal variables u, v are given by u = (x + y)/
√

2, v = (x − y)/
√

2,
and g(x) is a symmetric density g(−x) = g(x) with unit variance [49]. In this case
ρ is just the correlation coefficient of distribution (19) with D X = D Y = 1 in full
correspondence with the assumption that σ1 = σ2 = 1.

The upper-bound ε = 0.205 on the contamination parameter ε arises due to the
requirement of a bounded variance σ2

g . In this case, the least favorable distribution
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is normal in the middle and a t-distribution in the tails (with the number of degrees
of freedom defined by the value of ε), having a bounded variance just for ε < 0.205
(see [49] and [1], p. 121, Exhibit 5.6.1).

The idea of introducing class (19) can be formulated as follows: for any random
pair (X, Y ) the transformation U = X + Y, V = X − Y gives the uncorrelated
random principal variables (U, V ) (actually independent for densities (19)), and
estimation of their scales solves the problem of estimation of correlation between X
and Y with the use of the estimators of Section 2.4. Thus, class (14) of estimators
class entirely corresponds to class (19) of distribution densities, and this allows to
extend Huber’s results for minimax M - and L-estimators of location and scale on
estimation of correlation.

Note that class (19) contains the standard bivariate normal distribution density
f(x, y) = N (x, y; 0, 0, 1, 1, ρ) if g(x) = (2π)−1/2 exp(−x2/2).

The levels of trimming n1 and n2 of the trimmed correlation coefficient rTRIM

depend on the contamination parameter ε: n1 = n1(ε) = 0 and n2 = n2(ε) < [0.1 n]
for ε < 0.205.

The minimax variance estimator rTRIM is asymptotically equivalent to the sample
correlation coefficient r if ε = 0 with n1 = n2 = 0 and, in the particular case of
heavy contamination with ε = 0.2, it has the levels of trimming equal to n1 = 0
and n2 = [0.098 n]. Note that in the latter case, the level of trimming appears to be
rather moderate as compared with the level of contamination.

2.6. Robust correlation via stable parameter estimation. In this sec-
tion, the variational optimization approach to robust estimation proposed in [23, 24]
is applied to stable estimation of the correlation coefficient ρ of a bivariate normal
distribution.

For the observations (x1, y1), . . . , (xn, yn) from a bivariate normal distribution
with zero means, unit variances and an unknown correlation coefficient ρ with
density N (x, y; 0, 0, 1, 1, ρ) (for brevity, denote it as N (x, y; ρ)), consider the M -
estimators of ρ in the form

(20)
∑

ψ(xi, yi; ρ̂) = 0,

where ψ(x, y; ρ) is a score function belonging to some class Ψ.
Under general conditions of regularity put on score functions ψ, M -estimators

are consistent and asymptotically normal with the asymptotic variance D(ρ̂) =
n−1V (ψ) = n−1EN (ψ2)/[EN (∂ψ/∂ρ)]2 [1], where EN(·) denotes the operation of
expectation over the underlying bivariate normal distribution N(x, y) with density
N (x, y; ρ). The minimum of the asymptotic variance is attained at the maximum
likelihood score function ψML(x, y; ρ) = ∂ logN (x, y; ρ)/∂ρ (here, the ML-estimator
is given by rML = n−1

∑
xiyi) with variance V ∗ = V (ψML) = (1−ρ2)2/(1+ρ2) [46],

and the efficiency of an M -estimator is defined by the ratio Eff(ρ̂) = V ∗/V (ψ).
To measure robustness of estimation, other characteristics, complementary to

efficiency, are used, e.g., such as the supremum of asymptotic variance over a given
class of distributions within Huber’s minimax approach [1], or the influence and
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change-of-variance functions within Hampel’s approach [25], etc. In [23, 24], a func-
tional called the instability of an M -estimator is defined as

W (ψ) =

∫ ∫
ψ2(x, y; ρ) dx dy/[EN (∂ψ/∂ρ)]2,

and an optimal score function ψ∗(x, y; ρ) minimizing the instability is obtained:
ψ∗ = arg minψ∈Ψ W (ψ). The M -estimator with this score function is called an es-
timator of maximum stability yielding W∗ = W (ψ∗), and similarly to efficiency, a
new characteristic called the stability of an M -estimator is introduced as follows:
Stb(ρ̂) = W∗/W (ψ), naturally lying in the [0, 1] range. This characteristic of ro-
bustness measures the local sensitivity of an estimator to the variations of a model
distribution, in our case, the bivariate normal distribution.

Setting different weights for efficiency and stability, various criteria of optimiza-
tion of estimation were proposed in [24]. The equal weights, when Eff(ρ̂) = Stb(ρ̂),
lead to a radical M -estimator with the score function

(21) ψRAD(x, y; ρ) = (∂ logN (x, y; ρ)/∂ρ + β)
√
N (x, y; ρ),

where the constant β is obtained from the condition of consistency EN(ψRAD) = 0.
Note that it is impossible to provide simultaneously unit efficiency and stability,

as usually the stability of an efficient maximum likelihood estimator is zero.
From (21) it follows that the radical M -estimator of correlation rRAD, henceforth

called as the radical correlation coefficient, satisfies

(22)
∑

i

{
2r3

RAD + [3(x2
i + y2

i )− 2]rRAD − 3(1 + r2
RAD) xiyi

}
e−qi/2 = 0,

where qi = (x2
i − 2rRAD xiyi + y2

i )/[2(1 − r2
RAD)]. Since ψRAD(x, y; ρ) → 0 as√

x2 + y2 → ∞, equation (22) defines Meshalkin’s redescending λ-estimator with
exponential weights [26, 27].

Finally, equation (22) was obtained in the setting, where the parameters of loca-
tion and scale were assumed known. In practice, this assumption, as a rule, does not
hold. Hence, in (22), one should use the data {(xi, yi)}n

1 centered and standardized
by the sample median and the sample median absolute deviation, respectively.

2.7. Robust correlation via rejection of outliers. The preliminary rejec-
tion of outliers from the data with the subsequent application of a classical estimator
(for example, the sample correlation coefficient) to the rest of the observations de-
fines the two-stage group of robust estimators of correlation. Their variety wholly
depends on the variety of the rules for detection and/or rejection of multivariate
outliers based on using discriminant, component, factor analysis, canonical correla-
tion analysis, projection pursuit, etc. [44], [50] – [54] (note the work [53] for a deep
insight into the problem).

Obviously, this topic deserves a separate consideration. However, we emphasize
the following main characteristics of rejection of multivariate outliers: since multi-
variate outliers can distort not only location and scale, but also the orientation and
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shape of the point-cloud in the space, the types of outliers are numerous and it is
difficult to figure out which type the outlier belongs to [53]. Thus, it might prove to
be impossible to develop just one procedure which would be a reliable guard against
outliers. Hence, there must be a variety of procedures for different types of outliers
with the corresponding two-stage procedures of robust estimation of correlation.

Moreover, each robust procedure of estimation inherently possesses its own rule
for rejection of outliers [1, 2], and it may seem that then there is no need for any
independent procedure for rejection, at least if to aim at estimation, and therefore
no need for two-stage procedures of robust estimation. However, a rejection rule
may be quite informal, for example, based on a prior knowledge about the nature
of outliers, and, in this case, its use can improve the efficiency of estimation.

Consider a classical approach to rejection of outliers based on the use of the
Mahalanobis distances d2

i between the points pi = (xi, yi)
T , i = 1, . . . , n in R2 and

the sample mean m = n−1
∑

pi: d2
i = (pi − m)T S−1(pi − m) , where S is the

sample covariance matrix S = n−1
∑

(pi−m)(pi−m)T . These distances are ranked
d2

(1) ≤ d2
(2) ≤ · · · ≤ d2

(n), and, obviously, the observations with greater Mahalanobis
distances are the candidates for outliers. Further, one can use some rejection tests
based on the largest Mahalanobis distances, say, the test d2

(n) ≤ λα (the threshold

λα is determined from the test size P [d2
(n) ≤ λα] = 1− α) [43, 50].

In case when there are gross errors in the data, the use of the classical sam-
ple mean and covariance matrix destroys this rejection procedure because of great
sensitivity of the classical estimators to outliers. Thus the problem of rejecting
outliers in the multivariate case obviously requires robust estimation of multivari-
ate location and shape. The latter problem is one of the most difficult in robust
statistics [1, 2, 24, 26, 33, 34, 44, 55, 56]. The classical procedure of rejection can
be robustified by the use of robust analogs of the Mahalanobis distances with ro-
bust estimates for means and covariance matrices, e.g., the minimum volume and
minimum covariance determinant combinatorial estimators [2, 44].

However, in our study, the problem of rejection of outliers is subordinate to the
problem of robust estimation of correlation, so we are mainly interested in relatively
simple procedures of rejection in the bivariate case.

Now we sketch a heuristic rejection procedure in principal axes based on the
ellipse rule (ELL) [20, 57]. Assume that the main bulk of the data is of an elliptic
shape, outliers are of a gross error nature, and the expected fraction of outliers is
approximately known. Then transform the initial data (x1, y1), . . . , (xn, yn) to the
principal variables (u1, v1), . . . , (un, vn) (16) and trim all the points lying out of the

ellipse contour

(
ui −med u

k MAD u

)2

+

(
vi −med u

k MAD v

)2

= 1, where k is determined itera-

tively so that the given fraction of the data should lie inside the ellipse (”good” data).
Further, the number of outliers can be specified by the use of robust Mahalanobis
distances (for details, see [20, 57]). The corresponding estimator of correlation is
denoted as rELL and it is the sample correlation coefficient of the ”good” data. In
our study, the expected fraction of outliers was taken equal to ε = 0.1.

Note that the use of only the first, relatively simple, stage of this algorithm
can considerably improve the performance of the sample correlation coefficient in
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Figure 2: Outliers (∗) in the initial and principal axes

contaminated normal models [20]. It is important to detect outliers in the principal
axes u and v, not in the initial axes x and y. Fig. 2 illustrates this effect: the data
regarded as outliers (marked by stars) in the principal axes should not necessarily
be such in the initial axes.

3 Performance evaluation

In this section, we examine the performance of the introduced estimators of a corre-
lation coefficient for the bivariate normal distribution density N (x, y; 0, 0, 1, 1, 0.9)
and for the ε-contaminated bivariate normal distribution (5) with ε = 0.1, k = 10
and ρ′ = −0.9 both on large (as n →∞) and small (n = 20) samples. The analytic
expressions for estimator’s means and asymptotic variances are exhibited whenever
they are available and not cumbersome, however, their numerical values are written
out for the considered models.

3.1. Performance evaluation on large samples. The performance of ro-
bust estimators on large samples was measured by their means and asymptotic
variances computed partially with the use of the influence functions IF (x, y; ρ̂) [2]

E(ρ̂) ≈ ρ +

∫
IF (x, y; ρ̂) f(x, y) dx dy, D(ρ̂) = n−1

∫
IF 2(x, y; ρ̂) f(x, y) dx dy,

where density f(x, y) is given by (5). In the bivariate case, the influence function
IF (x, y; ρ) is defined as

(23) IF (x, y; ρ̂) =
d

ds
ρ ((1− s)F + s∆xy)

∣∣∣∣
s=0

where ρ = ρ(F ) is a functional defining the correlation measure (e.g., the classi-
cal correlation coefficient, the quadrant correlation, etc.), F = F (x, y) is a bivari-
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ate distribution function and ∆x0y0 is a bivariate analog of the Heaviside function:
∆x0y0 = 1 for x ≥ x0, y ≥ y0 and ∆x0y0 = 0 otherwise.

Note that the influence function itself can serve as an important tool for the
analysis of the qualitative robust properties of an estimator such as the sensitivity
to gross outliers, to rounding off, etc. [2].

The sample correlation coefficient r.
For the bivariate normal distribution [46],

E(r) = ρ
[
1− (1− ρ2)/(2n) + O

(
1/n2

)]
, D(r) = (1− ρ2)2/n;

and under contamination,

IF (x, y; r) = −E(r) (x2 + y2)/[2(1− ε + εk2)] + xy/[1− ε + εk2],

where E(r) = [(1− ε)ρ + εk2ρ′]/[1− ε + εk2] .

The direct robust counterparts of r: rα(ψ), rα, and rCOMED.
For the ε-contaminated bivariate normal distribution, the analytical results on the
mean and variance of rCOMED can be found in [35, 45], some numerical results on
the performance of rα are represented in [9].

The nonparametric measures: rQ and rS.
For the ε-contaminated bivariate normal distribution,

E(rQ) = 2 (1− ε) arcsin(ρ)/π + 2 ε arcsin(ρ′)/π, D(rQ) = [1− E2(rQ)]/n,

IF (x, y; rQ) = sgn(x−Med X) sgn(y −Med Y )− ρQ,

where ρQ =
∫

sgn (x−Med X) sgn (y−Med Y ) dF (x, y). Note that, for the bivariate
normal distribution, E(rQ) = 2 arcsin(ρ)/π, thus the quadrant correlation coefficient
measures the different from ρ quantity [6].

For the Spearman rank correlation coefficient rS [46],

E(rS) = 6(1− ε) arcsin (ρ/2) /π + 6 ε arcsin (ρ′/2) /π.

Similarly to rQ, for the bivariate normal distribution, it measures the following
quantity: 6 arcsin(ρ/2)/π, not ρ.

Since robustness to gross errors is provided by the bounded influence func-
tion [2], we confirm this assertion having the bounded IF (x, y; rQ) and the un-
bounded IF (x, y; r).

The regression group estimators: rREG, rLAV and rLMS.
For regression group estimators, we represent the result on the mean for the rREG

based on the median of slopes [35]

E(rREG) = ρ + ε arctan[(ρ′ − ρ)
√

1− ρ2/

√
1− ρ′2] + o(ε).

Its asymptotic variance is also given in [35]. Another good estimator of this group,
the rLMS based on the LMS regression, has the order of convergence n−1/3 [44],
hence, on large samples, it is inferior to all other estimators examined in this study.
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Table 1. Normal distribution N (x, y; 0, 0, 1, 1, 0.9) : asymptotics.

r rQ rS rREG rLAV rMAD rMED rTRIM rRAD

E(ρ̂) 0.90 0.93 0.90 0.90 0.90 0.90 0.90 0.90 0.90
n D(ρ̂) 0.02 0.13 0.05 0.07 0.09 0.06 0.06 0.04 0.03

The estimators based on robust principal variables: rTRIM and rMED.
Recall that these estimators are the minimax variance estimators of a correlation
coefficient for ε-contaminated bivariate normal distributions (see Section 2.5), and
their asymptotic variances are written out in [49], e.g., for the bivariate normal
distribution, the asymptotic variance of rMED is given by

D(rMED) = (1− ρ2)2/[8nφ2(ζ3/4)ζ
2
3/4],

where ζ3/4 = Φ−1(3/4) , Φ(z) = (2π)−1/2

∫ z

−∞
e−t2/2 dt is the standard normal cu-

mulative and φ(z) = Φ′(z). The asymptotic relative efficiency of the rMED to the
sample correlation coefficient r is rather low being equal to 0.367.

The radical correlation coefficient: rRAD.
Its characteristics of accuracy and stability are given by

D (rRAD) = [81(9 + 10ρ2)(1− ρ2)2]/[512(1 + ρ2)2 n],

(24) Eff(rRAD) = Stb(rRAD) = [512(1 + ρ2)]/[81(9 + 10ρ2)].

The efficiency and stability of the radical estimator vary in a narrow range from
Effmin = Stbmin = 0.6654 to Effmax = Stbmax = 0.7023. Thus the radical estimator
possesses reasonable levels of efficiency and stability. Note that the efficiency of the
maximum likelihood estimator rML = n−1

∑
xiyi, namely the solution of (20) with

ψ = ψML, is unit, but its stability is zero, since the integral
∫ ∫

ψ2
ML(x, y; ρ) dx dy

does not exist.

The two-stage estimators.
Since it is difficult to describe the distribution of the data after applying any reason-
able rejection procedure (there is always a nonzero probability that a small fraction
of ”bad” data is in the core of ”good” data), there are no results on the asymptotic
performance of these estimators.

Some numerical results are listed in Table 1 and Table 2. The analysis of these
results is given in Section 4.

3.2. Monte Carlo results on small samples. Now we display some results
on small samples when n = 20 for the same models which were used in Section 3.1.
As a rule, the number of trials was set to 1000, and in particular cases, it was
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Table 2. Contaminated normal distribution (5) with ε = 0.1, ρ = 0.9,
ρ′ = −0.9, k = 10 : asymptotics.

r rQ rS rREG rLAV rMAD rMED rTRIM rRAD

E(ρ̂) −0.75 0.57 0.71 0.84 0.74 0.88 0.88 0.85 0.86
n D(ρ̂) 1.00 0.46 0.32 0.50 0.65 0.13 0.13 0.05 0.05

Table 3. Normal distribution N (x, y; 0, 0, 1, 1, 0.9) : n = 20.

r rQ rS rREG rLMS rMAD rMED rTRIM rRAD rELL

E(ρ̂) 0.90 0.69 0.87 0.88 0.90 0.83 0.83 0.81 0.80 0.85
D(ρ̂) 0.00 0.03 0.01 0.05 0.04 0.02 0.02 0.01 0.00 0.01

increased to 10000 for the sake of accuracy. In our study, the performance of all
estimators, in definition of which the parameters of location and scale were supposed
known, was obtained using their sample estimates, namely the sample median and
the median absolute deviation. The results of modelling are displayed in Tables 3,
4 and discussed in Section 4.

4 Discussion and conclusions

To the best of our knowledge, only a few works survey robust methods of estimation
of correlation: namely, the pioneer works [9, 10], in which direct robust counter-
parts of the sample correlation coefficient, robust estimators based on nonparametric
measures, principal variables and trimming outliers were examined; the book of Hu-
ber [1], in which one chapter is mainly devoted to a significantly more complicated
problem of robust estimation of covariance matrices; and the works [20, 35, 36, 49],
the results of which are partially represented in this paper. In particular, in the
former work [35], a new group of robust estimators based on robust regression was
proposed; in [49], the minimax variance approach was applied to designing robust
estimators; and in the book [20], one chapter highlights the problem of robust esti-
mation of correlation.

In our study, basing on the former and recent results in robust estimation of

Table 4. Contaminated normal distribution (5) with ε = 0.1, ρ = 0.9,
ρ′ = −0.9, k = 10 : n = 20.

r rQ rS rREG rLMS rMAD rMED rTRIM rRAD rELL

E(ρ̂) −0.55 0.48 0.37 0.71 0.90 0.81 0.81 0.78 0.76 0.83
D(ρ̂) 0.37 0.04 0.09 0.06 0.04 0.02 0.02 0.01 0.01 0.02
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correlation, we have selected several robust estimators, the best and typical repre-
sentatives of the groups of estimators introduced in Section 2, and compared their
performances in ε-contaminated normal model (5). The reasons for the choice of
this model were given in Section 1.3. To characterize the case of a relatively heavy
contamination distinct from the main bulk of the data, the particular values of the
parameters of contamination ε = 0.1, ρ′ = −ρ and k = 10 were chosen. Further, we
discuss the influence of the choice of the parameters ε and k on the performance of
optimal estimators. The choice of the sample size n = 20 was also made in order to
consider the two distinct cases, small samples and asymptotics. The performance
of robust estimators of ρ = 0 and ρ = 0.5 on samples n = 30 and n = 60 was
represented in [9, 10, 20, 35], and it was shown that, on samples n = 60, the results
of modelling practically coincided with the asymptotic recipes.

Now we analyze and discuss the results represented in Section 3.
Normal distribution. From Table 1 and Table 3 it follows that
1) on small and large samples, the best is the sample correlation coefficient r both
by its bias and variance;
2) on large samples, the radical correlation coefficient rRAD is the best among the
rest of estimators by its variance, but on small samples it has a considerable bias.
3) the quadrant correlation coefficient rQ and the rank correlation rS have compar-
atively moderate variances, but the bias of the rQ is not satisfactory;
4) the regression estimators rREG, rLAV, and rLMS are inferior in variances to the
MAD, median and trimmed correlation coefficients, the latter slightly better than
the former;
5) the two-stage estimator rELL performs well on small samples being better than
rQ, rTRIM, rMED and rMAD both in bias and variance;
6) the MAD- and median correlation estimators practically repeat each other in
behavior;
7) on large samples, the biases of estimators can be neglected, but not their variances.

Contaminated normal distribution. From Table 2 and Table 4 it follows that
1) the sample correlation coefficient r is catastrophically bad under contamination;
2) the classical nonparametric estimators rQ and rS behave moderately ill;
3) the regression estimators rREG and rLAV are good in bias but have large variances,
the exception is the estimator rLMS based on the least median squares method, which
performs well on small samples;
4) the best estimators are the trimmed rTRIM and radical correlation rRAD coefficients
together with rLMS and rELL which are good only on small samples;
5) the radical correlation coefficient rRAD is superior in variance, but the median
correlation rMED is better in bias;
6) under heavy contamination, the bias of an estimator seems to be a more infor-
mative characteristic than its variance, thus the problem of designing a best robust
estimator of correlation with respect to bias is still actual.

The trimmed and radical correlation coefficients: rTRIM and rTRIM.
1) These competitive estimators are rather close in performance, though they belong
to different groups of estimators. The trimmed correlation coefficient rTRIM is the
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minimax variance estimator in the class of ε-contaminated normal distributions (in
fact, a specific subclass of it) with a rather arbitrary contamination distribution,
which, in particular, may be significantly more heavy-tailed than the normal distri-
bution. The radical correlation coefficient rRAD is a locally robust estimator strongly
depending on the assumed parametric form of the underlying distribution, e.g., for
the bivariate normal distribution, defined by (22). The rTRIM is a correlation analog
of such estimators as the trimmed mean for location and the trimmed standard de-
viation for scale [1, 49] and it inherits from them such a global robustness property
as their high breakdown points (roughly speaking, a breakdown point defines the
maximum fraction of the sample contamination still admissible for an estimator’s
performance [2]). Since the breakdown point of rTRIM is ε∗ = ε, it is easy to pre-
dict its performance in ε-contaminated normal models (5): e.g., if rTRIM is designed
for some fixed fraction of contamination ε, say, for ε = 0.1, then its performance
will remain good for any ε < 0.1 regardless of the value of the contamination scale
parameter k, and it may get worse for ε > 0.1.
2) The trimmed correlation coefficient rTRIM proved its high robustness in former
experimental studies [9, 10], and its optimality in ε-contaminated models explains
those results. Since it is not easy to estimate the parameter of contamination ε
from the sample, we recommend to use rTRIM designed for a practically reasonable
upper-bound value of contamination ε = 0.205 with the corresponding 10% level of
trimming: n1 = 0 and n2 = [0.1 n].
3) The median correlation coefficient rMED has the maximum value of the breakdown
point ε∗ = 1/2 being maximally resistant against gross errors in the data. It may be
regarded as a correlation analog to such well-known and widely used estimators as
the sample median for location and the median absolute deviation for scale. Thus,
we recommend to use rMED as a fast and highly robust estimator of correlation,
though it has a low efficiency (0.367) under normal models.
4) In Section 2.5, it was mentioned that the quadrant correlation coefficient rQ

is asymptotically minimax with respect to bias over ε-contaminated distributions.
Although its bias is minimax, the quadrant correlation coefficient rQ demonstrates
moderate robustness in the Monte Carlo experiment. This can be explained by
the choice of a relatively poor class of direct robust counterparts of the sample
correlation coefficient (rα(ψ)-estimators of Section 2.1) for which the optimality of
rQ is established (see Fig. 2). Nevertheless, rQ can be regarded as a moderate
robust alternative to the sample correlation coefficient, for its simple structure and
its sample binomial distribution [6].
5) Since the asymptotic variance of rTRIM depends on the estimated correlation
coefficient ρ only through the multiplier (1 − ρ2)2 [49], it is possible to construct
confidence intervals for it using the Fisher transformation z = ln[(1 + ρ̂)/(1− ρ̂)]/2:
in this case, the variance of the transformed variable z does not depend on ρ [46]. As
the asymptotic variance of rRAD is not of the required form (24), its z-transform does
not have the desired property, and the corresponding confidence intervals cannot be
so easily constructed.
6) Computation of robust estimators of correlation requires determination of the
sample medians for various data that can be performed either using some algorithm
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of sorting [58] or the method of re-weighted least squares (RWLS) [47, 59]. In our
computations, we usually use the latter method: to reach a practically acceptable
accuracy of computing the sample median, say, with the relative error δ = 0.01, it
needs about 3 − 5 iterations of the RWLS, and about 5 − 7 iterations of Newton’s
method are required for computing the radical correlation coefficient rRAD from (22)
with the quadrant correlation rQ as a starting point. Thus, with respect to compu-
tation, rTRIM is preferable as compared to rRAD: on average, computing of rTRIM is
three times faster than of rRAD.
7) Finally, we definitely conclude that, on large samples (n ≥ 60) from ε-contaminated
bivariate normal distributions, the trimmed correlation coefficient rTRIM is prefer-
able as compared to the radical correlation coefficient rRAD due to its optimality in
a wider class of distributions and a definitely easier computation. On small sam-
ples, we cannot so definitely conclude, for, in applied statistics, recommendations
for small samples are usually indefinite.

Acknowledgement: The authors are very grateful to the reviewers whose helpful
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