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Internet.
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1 Introduction

Consider the non-preemptive priority queueing system with two classes of packets. Class 1
packets have priority over class 2 packets. The packets of class 1 (2) arrive into the
buffer according to the Poisson process with rate λ1 (λ2, resp.). The service time has
the exponential distribution with the same rate µ for each class. The service times are
independent of the arrival processes. The buffer has a finite size N and it is shared by
both types of traffic. If the buffer is full, a new coming packet of class 1 can push out of
the buffer a packet of class 2 with the probability α. Note that if α = 1 we retrieve the
standard non-randomized push-out mechanism.

The infinite buffer priority queueing was studied thoroughly in the past [10,14,17]. The
case of finite buffer priority queueing received considerably less attention. Kapadia et al
[11,12] analyzed the M/M/C/K type finite buffer non-preemptive priority queueing with
non-randomized push-out mechanism. Bondi [3] analyzed the M/M/1/K type preemptive
and non-preemptive priority queueing with the following buffer management schemes:
complete partitioning, complete sharing and sharing with minimum allocation. Wagner
and Krieger [18] analyzed the M/M/1/K type non-preemptive priority queueing with the
complete sharing buffer management scheme and with the class-dependent service rates.
Recently Sharma and Virtamo [16] studied a finite buffer priority queueing with complete
sharing and complete partitioning buffer management schemes. The novelty of the model
in [16] is that the buffer size limits the amount of work and not the number of packets.
In [4] Cheng and Akyildiz considered the priority queueing with general service time
distributions and a general service discipline function. They analyzed the push-out with
threshold as the buffer management scheme. Another push-out scheme with threshold,
which makes better utilization of the buffer space, was proposed in [7].

Most of the above works use recursive relations to solve steady state Kolmogorov equa-
tions. We use the generating function based approach, which only requires the solution
of a linear system of N equations in contrast to approximately N2/2 Kolmogorov equa-
tions. Furthermore, the derived system has quasi-triangular form and is solved by efficient
recursive formulae. The computational complexity of the recursive formulae is O(N2)
which is significantly less than the computational complexity of the Folding Algorithm
O(N3 log2(N)) [19] and of the Linear Level Reduction, Block-Gaussian Elimination Al-
gorithms O(N4) [6,15] for the general level-dependent QBD processes.

To our best knowledge, the randomized push-out mechanism is analyzed for the first time.
In particular, we show that with the randomized push-out it is easy to control the loss
probability of priority packets in a very large range. Furthermore, in the particular case
of non-randomized push-out we obtain explicit analytic expressions for the loss probabil-
ities that are simpler than the recurrent expressions in Kapadia et al [11,12]. Finally we
present some numerical examples and compare the randomized push-out scheme with the
threshold based push-out scheme [7]. It turns out that the proposed scheme is easier to
tune than the threshold based scheme.
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Priority queueing discipline has a number of important applications in telecommunica-
tions and computer networks, e.g., Differentiated Services (DiffServ) architecture for the
Internet [2,13]. In the context of the DiffServ Expedited Forwarding [9], the proposed
scheme can be employed to guarantee the required Quality of Service level for the priority
traffic and at the same time to prevent the non-priority traffic from starvation. The major
part of traffic in the Assured Forwarding Differentiated Service [8] is carried by TCP,
the protocol which adjusts its sending rate based on packet losses. Thus, the randomized
push-out priority queueing which provides an easy control of the packet loss probabilities
leads to simple and efficient differentiation between AF traffic classes.

This is a full paper version of the extended abstract [1].

2 Main results

Denote by p(i, n) the stationary probability of the event that there are n packets in the
queue including i packets of class 1. Let p0 be the stationary probability of the event that
there are no packets in the system. These probabilities satisfy the following stationary
Kolmogorov equations:

(λ1 + λ2)p0 = µp(0, 0);

• n = 0

(λ1 + λ2 + µ)p(0, 0) = µp(1, 1) + µp(0, 1) + (λ1 + λ2)p0;

• 0 < n < N

(λ1 + λ2 + µ)p(0, n) = µp(1, n + 1) +µp(0, n + 1) +λ2p(0, n− 1),

(λ1 + λ2 + µ)p(i, n) = µp(i + 1, n + 1) +λ1p(i− 1, n− 1) +λ2p(i, n− 1),

(λ1 + λ2 + µ)p(n, n) = µp(n + 1, n + 1) +λ1p(n− 1, n− 1);

• n = N

(αλ1 + µ)p(0, N) = λ2p(0, N − 1),

(αλ1 + µ)p(i, N) = λ1p(i− 1, N − 1) +λ2p(i, N − 1) +αλ1p(i− 1, N),

µp(N, N) = λ1p(N − 1, N − 1) +αλ1p(N − 1, N).
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Next we introduce the generating function for p(i, n) by index i

Fn(x) =
n∑

i=0

p(i, n)xi.

Using the above given Kolmogorov equations, we obtain relations for the generating func-
tions Fn(x), n = 0, 1, ..., N :

• n = 0

(λ1 + λ2 + µ)F0(x) =
µ

x
[F1(x)− p(0, 1)] + µp(0, 1) + (λ1 + λ2)p0,

• 0 < n < N

(λ1 + λ2 + µ)Fn(x) =
µ

x
[Fn+1(x)− p(0, n + 1)] + µp(0, n + 1) + (λ1x + λ2)Fn−1(x).

In particular, we get the following boundary condition

• n = N

(αλ1 + µ)FN(x)− αλ1p(N,N)xN = (1)

(λ1x + λ2)FN−1(x) + αλ1xFN(x)− αλ1x
N+1p(N, N).

Now introduce the generating function for Fn(x) by index n

Φ(x, y) =
N−1∑

n=0

Fn(x)yn.

The generating function Φ(x, y) satisfies equation (2) given in Lemma 1 below.

Lemma 1 The generating function Φ(x, y) satisfies the following equation

[(ρ + 1)xy − xy2(ρ1x + ρ2)− 1]Φ(x, y) = −yN+1x(ρ1x + ρ2)FN−1(x) + yNFN(x) (2)

+y(x− 1)A(y) + (xy − 1)ρp0,

where ρi = λi/µ, ρ = ρ1 + ρ2 and A(y) =
∑N−1

n=0 p(0, n + 1)yn.
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In the next theorem we determine the generating function Φ(x, y).

Theorem 2 The generating function Φ(x, y) is given by

Φ(x, y) =
[1− xy + αρ1xy(x− 1)]yNVN−1(x) + y(x− 1)A(y)

(ρ + 1)xy − xy2(ρ1x + ρ2)− 1

+
[1− xy]xNyNp(N, N) + ρ[xy − 1]p0

(ρ + 1)xy − xy2(ρ1x + ρ2)− 1
,

where

VN−1(x) =
N−1∑

k=0

xkp(k, N),

A(y) =−αρyN−1p(0, N)

+
N−1∑

k=1

[ρ2y
N−k Uk−1(t)

ρ
(k+1)/2
1

− αρyN−k−1Uk(t)

ρ
k/2
1

+ αyN−k−1Uk−1(t)

ρ
(k−1)/2
1

]p(k, N)

+ρ2
UN−1(t)

ρ
(N+1)/2
1

p(N, N)

with t = (ρ+1−ρ2y)/(2ρ
1/2
1 ), and where probabilities p(k, N), k = 0, ..., N can be obtained

as a solution to the following system of linear equations

• s = 0

αρ1C
1
N−1(t0)p(N − 1, N) +

[
ρC1

N−1(t0)− ρ1
1/2C1

N(t0)
]
p(N,N) + ρρ1

(N+1)/2p0 = 0,

• 0 < s < N

s−1∑

k=0

[
ρ
Cs−k

N−s−1(t0)ρ1
k+1

(−ρ2)k+1
− ρ1

3/2(1 + αρ)
Cs−k

N−s(t0)ρ1
k

(−ρ2)k+1

+ρ1α
Cs−k+1

N−s−1(t0)ρ1
k

(−ρ2)k

]
p(N − 1− k, N) + αρ1

s+1C1
N−s−1(t0)

(−ρ2)s
p(N − 1− s,N)

+
[
ρCs+1

N−s−1(t0)− ρ1
1/2Cs+1

N−s(t0)
]
p(N,N) = 0,

• s = N

−ρ1
3/2(1 + αρ)

N−1∑

k=0

CN−k
0 (t0)ρ1

k

(−ρ2)k+1
p(N − 1− k, N)− ρ1

1/2CN+1
0 (t0)p(N,N) = 0
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with Un(x) and Cν
n(x) denoting the Chebyshev polynomials of the second kind and the

Gegenbauer polynomials [5], respectively, and

p0 = (1− ρ)/(1− ρN+2), t0 = (ρ + 1)/(2ρ
1/2
1 ).

Proof: given in Appendix.

Once we know the value of p(N,N), we can calculate the loss probabilities of class 1 and
class 2 packets.

Theorem 3 The loss probabilities of class 1 and class 2 packets are given by the following
formulae

P
(1)
loss = p(N,N) + (1− α)[PN − p(N,N)], (3)

P
(2)
loss = PN + α

ρ1

ρ2

[PN − p(N,N)], (4)

where

PN =
1− ρ

1− ρN+2
ρN+1.

Proof: A priority packet can be lost either when the whole buffer is filled only with
priority packets or when there are some packets of class 2 but with probability 1 − α
the push-out mechanism is not enabled. The probability of the first event is p(N, N) and
the probability of the second event is

∑N−1
k=0 p(k,N) = PN − p(N, N). Thus, we obtain

formula (3).

The stream of lost packets of class 2 consists of the stream of packets with rate λ2PN lost
when the buffer is full and the stream of packets with rate αλ1(Pn− p(N, N)) pushed out
by packets of class 1. Since the system is ergodic, we obtain formula (4).

2

Note that if α = 0 (no push-out), the loss probabilities for two classes coincide and
are equal to PN . We also would like to note that due to the fact that the service time
distribution is the same for the two classes, the expressions for p0, FN(1) and Φ(1, 1) could
be obtained immediately by elementary considerations.

In the particular case of the non-randomized push-out mechanism, that is, when α = 1,
we are able to calculate the loss probabilities explicitly.

Theorem 4 The loss probabilities of class 1 and class 2 packets in the case of non-
randomized push-out mechanism are given by

P
(1)
loss = ρρN

1

(1− ρ1)(1− ρN+1)

(1− ρN+1
1 )(1− ρN+2)

, (5)
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P
(2)
loss = PN +

ρ1

ρ2

[PN − P
(1)
loss]. (6)

Proof: In the case of non-randomized push-out mechanism (α = 1), the equation for the
generating function (2) takes the form

[(ρ + 1)xy − xy2(ρ1x + ρ2)− 1]Φ(x, y) = yN [1− xy + ρ1x(x− 1)y]FN(x) (7)

+y(x− 1)A(y) + ρ1(1− x)xN+1yN+1p(N, N) + (xy − 1)ρp0.

Setting x = 1 in (7), and then reducing it by the term (y − 1), we get

(1− ρy)Φ(1, y) = ρp0 − yNFN(1).

Then in the above equation we take subsequently y = 1 and y = 1/ρ to obtain

(1− ρ)Φ(1, 1) = ρp0 − FN(1) (8)

and

0 = ρp0 − 1

ρN
FN(1). (9)

Solving equations (8) and (9) together with the normalization condition

Φ(1, 1) + p0 + FN(1) = 1,

we obtain the following expressions for p0, FN(1) and Φ(1, 1):

p0 =
1− ρ

1− ρN+2
, FN(1) =

1− ρ

1− ρN+2
ρN+1, Φ(1, 1) =

1− ρN+1

1− ρN+2
ρ.

Next we take y = 1 in equation (7) and then reduce it by the term (x− 1)

(1− ρ1x)Φ(x, 1) = −(1− ρ1x)FN(x) + A(1)− ρ1x
N+1p(N, N) + ρp0.

We now set subsequently x = 1 and x = 1/ρ1 in the above equation. This results in the
following two equations:

(1− ρ1)Φ(1, 1) = −(1− ρ1)FN(1) + A(1)− ρ1p(N,N) + ρp0, (10)

0 = A(1)− 1

ρN
1

p(N, N) + ρp0. (11)
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Solving equations (10) and (11), we obtain

p(N, N) =
(1− ρ1)(1− ρN+1)

(1− ρN+1
1 )(1− ρN+2)

ρρN
1 .

The loss probability of class 1 packets P
(1)
loss is given by p(N,N). Then, we note that the

stream of lost packets of class 2 consists of the stream of packets with rate λ2FN(1) lost
when the buffer is full and the stream of packets with rate λ1(FN(1) − p(N,N)) pushed
out by packets of class 1. Hence, using the ergodicity property of the system, we obtain
formula (6) for P

(2)
loss.

2

3 Numerical Examples and Conclusions

In order to calculate the coefficients of the linear system for p(i, N), i = 0, ..., N in Theo-
rem 2, we need to compute the Gegenbauer polynomials. We suggest to use the recursive
formulae

(n + 1)Ck
n+1(t) = 2(n + k)tCk

n(t)− (n + 2k − 1)Ck
n−1(t),

with Ck
0 (t) = 1 and Ck

1 = 2kt [5, v.2, p.175]. Next we note that the system of linear
equations in Theorem 2 can be written in the following form




aT 1

A b







p

p(N, N)


 = −c




0

e


 , (12)

where p = [p(0, N), ..., p(N − 1, N)]T ∈ IRN×1, e = [0, ..., 0, 1]T ∈ IRN×1, c = ρρ
(N+1)/2
1 p0,

aT ∈ IR1×N with ai = (1 + αρ)(−ρ1/ρ2)
N−i+1, and b ∈ IRN×1 with bi = ρCN−i+1

i−1 (t0) −
ρ

1/2
1 CN−i+1

i (t0). The matrix A is triangular with the entries

aij =





[ρCj−i
i−1(t0)− ρ

1/2
1 (1 + αρ)Cj−i

i (t0)− αρ2C
j−i+1
i−1 (t0)](−ρ1/ρ2)

N−j+1, if j > i,

αρ1C
1
i−1(t0)(−ρ1/ρ2)

N−i, if j = i,

0, if j < i.

The solution of (12) can be written as follows:

p(N, N) = c
aT A−1e

1− aT A−1b
,

p = −p(N,N)A−1b− cA−1e.
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Let us introduce a vector v such that AT v = a. Then,

p(N, N) = c
vN

1− vT b
. (13)

Since A has a triangular structure, the elements of the vector v are easily calculated by
the recursive formulae

vj =
1

αρ2C1
j−1(t0)

× (14)




j−1∑

i=1

(
ρCj−i

i−1(t0)− ρ
1/2
1 (1 + αρ)Cj−i

i (t0)− αρ2C
j−i+1
i−1 (t0)

)
vi − 1− αρ


 ,

for j = 1, ..., N , with v1 = −(1 + αρ)/(αρ2).

We would like to note that the computational complexity of the proposed scheme is O(N2)
which is significantly less than the computational complexity of the Folding Algorithm
O(N3 log2(N)) [19] and of the Linear Level Reduction, Block-Gaussian Elimination Al-
gorithms O(N4) [6,15] for the general level-dependent QBD processes.

Let us now consider a numerical example with the following values for the system parame-
ters: ρ1 = 0.2, ρ2 = 0.9 and N = 30. This is a typical scenario when the intensity of arrival
of higher priority packets is smaller than the intensity of arrival of lower priority packets.
Once the value of p(N,N) is computed by formulae (14) and (13), we can calculate packet
loss probabilities by the formulae given in Theorem 3. In Figure 1 we plot the packet loss
probabilities for two classes as a function of parameter α. In the particular cases, α = 0
and α = 1, we can calculate the loss probabilities using the explicit analytic formulae (the
formula for PN and the formulae in Theorem 4). As one can see, the numerical solutions
for α = 0 and α = 1 coincide with the explicit analytical solutions.

There are at least two important conclusions that we can draw from Figure 1. First, by
changing parameter α we tune the loss probability of the priority packets in a very large
range, that is, in our particular example, from the order 10−22 to 10−1. At the same time,
we note that with the increase of α the loss of non-priority packets does not deteriorate
as quickly as the acceptance of priority packets improves. Namely, the loss probability of
the non-priority packets only changes by 22%. Second, in the considered scenario we note
that the dependence of the packet loss probabilities for both classes on the parameter
α is very close to linear. In fact, for this particular example the relative error between
the calculated values and the linear approximation is of the order 10−7. Of course, the
dependence of the packet loss probabilities on α is not close to linear in all cases. This
dependence is significantly non-linear when the high rate of the priority traffic leads to
starvation of the low priority traffic (see Figure 2).

Thus, in the case of no starvation of the non-priority traffic the randomized push-out mech-
anism can easily be applied for the engineering of the priority queueing systems. Namely,
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Fig. 1. Numerical example with ρ1 = 0.2, ρ2 = 0.9 and N = 30.
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Fig. 2. Numerical example with ρ1 = 1.2, ρ2 = 0.2 and N = 30.

one calculates the packet loss probabilities by the analytic formulae for the boundary
points α = 0 and α = 1 and then one uses the linear approximation for 0 < α < 1.

Finally, we would like to compare the randomized push-out scheme with the threshold
based push-out scheme proposed in [7]. In the push-out scheme proposed in [7] the priority

10



051015202530
0

0.02

0.04

0.06

0.08

0.1

0.12

threshold value

pa
ck

et
 lo

ss
 p

ro
ba

bi
lit

y

Priority class 1
Non−priority class 2

Fig. 3. Threshold based scheme with ρ1 = 0.2, ρ2 = 0.9 and N = 30.

and non-priority traffic also share a common buffer. Furthermore, when the buffer is
full, an arriving priority packet can push out a non-priority packet if the number of
non-prioiry packets in the buffer is above a given threshold. In Figure 3 we plot the
packet loss probabilities of the priority and non-priority traffic for different values of the
threshold. To compare with the randomized push-out scheme, we take the same values
of the parameters: ρ1 = 0.2, ρ2 = 0.9 and N = 30. One can see that the threshold
based scheme is too sensitive for the threshold values close to 30. One may also prefer the
randomized push-out scheme over the threshold based push-out scheme because it allows
continuous tuning of the loss probabilities, whereas in the threshold based scheme the
packet loss probabilities take their values from a discrete set.
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Appendix. Proof of Theorem 2

By substituting boundary condition (1) into equation (2) for the generating function
Φ(x, y), we get

[(ρ + 1)xy − xy2(ρ1x + ρ2)− 1]Φ(x, y) = [1− xy + αρ1xy(x− 1)]yNVN−1(x)

+[1− xy]xNyNp(N,N) + y(x− 1)A(y) + ρ[xy − 1]p0, (15)

where VN−1(x) =
∑N−1

i=0 xip(i, N), and hence the expression for Φ(x, y).

Next, we set z := xy and rewrite equation (15) as follows:

[(ρ1 + ρ2 + 1)z − ρ1z
2 − ρ2yz − 1]Φ

(
z

y
, y

)
= [(1− z)y + ρ1α(z − y)z]yN−1VN−1

(
z

y

)

+(z − y)A(y) + (1− z)zNp(N, N) + ρ(z − 1)p0.

Let us now consider the analyticity condition for the generating function Φ(z/y, y).
Namely, the following two conditions have to be satisfied simultaneously

(ρ1 + ρ2 + 1)z − ρ1z
2 − ρ2yz − 1 = 0,

[(1−z)y +ρ1α(z−y)z]yN−1VN−1

(
z

y

)
+(z−y)A(y)+(1−z)zNP (N, N)+ρ(z−1)p0 = 0.

The first condition can be rewritten as

ρ2(y − z)z = (1− z)(ρz − 1),

which gives

y − z =
(1− z)(ρz − 1)

ρ2z
.

Substitute the above expression for y−z into the first two terms of the second analyticity
condition and then reduce it by 1− z, to get

(
y − ρ1

ρ2

α(ρz − 1)

)
yN−1VN−1

(
z

y

)
− ρz − 1

ρ2z
A(y) + zNp(N,N)− (ρ1 + ρ2)p0 = 0.(16)

Next we denote by a and b the roots of the following quadratic equation with respect to
the variable z

(ρ1 + ρ2 + 1)z − ρ1z
2 − ρ2yz − 1 = 0.

Substitute subsequently the roots a and b into (16), which allows us to eliminate A(y)

ρb− 1

b

(
y − ρ1

ρ2

α(ρa− 1)

)
yN−1VN−1

(
a

y

)
− ρa− 1

a

(
y − ρ1

ρ2

α(ρb− 1)

)
yN−1VN−1

(
b

y

)
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+

(
ρb− 1

b
aN − ρa− 1

a
bN

)
p(N,N)− ρ

(
ρb− 1

b
− ρa− 1

a

)
p0 = 0.

Taking into account the properties of the roots of the quadratic equation

ab = 1/ρ1, (ρa− 1)(ρb− 1) =
ρ2

ρ1

(ρy − 1),

we have

((ρ− ρ1a)y − q(ρy − 1)ρ1a)yN−1VN−1

(
a

y

)
− ((ρ− ρ1b)y − q(ρy − 1)ρ1b)y

N−1VN−1

(
a

y

)

+(ρ(aN − bN)− ρ1(a
N+1 − bN+1))p(N, N) + ρρ1(a− b)p0 = 0,

ρyN

(
VN−1

(
a

y

)
− VN−1

(
b

y

))
− ρ1(y + q(ρy − 1))

(
aVN−1

(
a

y

)
− bVN−1

(
b

y

))
yN−1

+(ρ(aN − bN)− ρ1(a
N+1 − bN+1))p(N, N) + ρρ1(a− b)p0 = 0,

ρy
N−1∑

i=1

vi(a
i − bi)yN−1−i − ρ1(y + q(ρy − 1))

N−1∑

i=0

vi(a
i+1 − bi+1)yN−1−i

+(ρ(aN − bN)− ρ1(a
N+1 − bN+1))p(N, N) + ρρ1(a− b)p0 = 0. (17)

By denoting cos ϕ = (ρ + 1− ρ2y)/(2ρ1
1/2), the roots a and b can be written in the form

a =
exp(iϕ)

ρ1
1/2

, b =
exp(−iϕ)

ρ1
1/2

.

Then equation (17) can be rewritten as

ρy
N−1∑

i=1

viUi−1(t)
yN−1−i

ρ1
i/2

− ρ1(y + q(ρy − 1))
N−1∑

i=0

viUi(t)
yN−1−i

ρ1
(i+1)/2

+

(
ρUN−1(t)

1

ρ1
(N)/2

− ρ1UN(t)
1

ρ1
(N+1)/2

)
p(N, N) + ρρ1

1/2p0 = 0, (18)

where t := cos ϕ = (ρ+1− ρ2y)/(2ρ1
1/2) and Us(t) are the Chebyshev polynomials of the

second kind [5]

Us(cos ϕ) =
sin(s + 1)ϕ

sin ϕ
.

The Taylor series for the function Us(t) with respect to y, being actually a polynomial in
this case, has the following form

Us(t(y)) =
s∑

s=0

U (i)
s (t0)

i!
(−1)i ρi

2y
i

2iρ1
i/2

13



with t0 = (ρ + 1)(2ρ1
1/2). By changing the order of summation in the expressions

N−1∑

i=1

viUi−1(t)
yN−1−i

ρ1
i/2

=
N−2∑

l=0

yl
l∑

k=0

vN−1−k

U
(l−k)
N−k−2(t0)(−ρ2)

l−k

(l − k)!2l−kρ1
(N−1−2k+l)/2

,

N−1∑

i=0

viUi(t)
yN−1−i

ρ1
(i+1)/2

=
N−1∑

l=0

yl
l∑

k=0

vN−1−k

U
(l−k)
N−k−1(t0)(−ρ2)

l−k

(l − k)!2l−kρ1
(N−2k+l)/2

,

we rewrite equation (18) as follows:

ρ
N−1∑

s=1

ys
s−1∑

k=0

vN−1−k

U
(s−k−1)
N−k−2 (t0)(−ρ2)

s−k−1

(s− k − 1)!2s−k−1ρ1
(N−2−2k+s)/2

−ρ1(1 + αρ)
N∑

s=1

ys
s−1∑

k=0

vN−1−k

U
(s−k−1)
N−k−1 (t0)(−ρ2)

s−k−1

(s− k − 1)!2s−k−1ρ1
(N−2k+s−1)/2

+ρ1α
N−1∑

s=0

ys
s∑

k=0

vN−1−k

U
(s−k)
N−k−1(t0)(−ρ2)

s−k

(s− k)!2s−kρ1
(N−2k+s)/2

+


ρ

N−1∑

s=0

ys U
(s)
N−1(t0)(−ρ2)

s

(s)!2sρ1
(N+s)/2

− ρ1

N∑

s=0

ys U
(s)
N (t0)(−ρ2)

s

(s)!2sρ1
(N+s+1)/2


 p(N,N) + ρρ1

1/2p0 = 0.

Next we use the relation between the derivatives of the Chebyshev polynomials and Gegen-
bauer polynomials [5, v.2, p.186]

U (m)
n (x) = 2mm!Cm+1

n−m(x)

to get

ρ
N−1∑

s=1

ys
s−1∑

k=0

vN−1−k
Cs−k

N−s−1(t0)(−ρ2)
s−k−1

ρ1
(N−2−2k+s)/2

−ρ1(1 + αρ)
N∑

s=1

ys
s−1∑

k=0

vN−1−k
Cs−k

N−s(t0)(−ρ2)
s−k−1

ρ1
(N−2k+s−1)/2

+ρ1α
N−1∑

s=0

ys
s∑

k=0

vN−1−k
Cs−k+1

N−s−1(t0)(−ρ2)
s−k

ρ1
(N−2k+s)/2

+

(
ρ

N−1∑

s=0

ys C
s+1
N−s−1(t0)(−ρ2)

s

ρ1
(N+s)/2

− ρ1

N∑

s=0

ys C
s+1
N−s(t0)(−ρ2)

s

ρ1
(N+s+1)/2

)
p(N, N) + ρρ1

1/2p0 = 0.

Collecting the terms with the same power of y, we obtain the required system of equations:

• s = 0

αρ1C
1
N−1(t0)vN−1 +

[
ρC1

N−1(t0)− ρ1
1/2C1

N(t0)
]
p(N,N) + ρρ1

(N+1)/2p0 = 0,

• 0 < s < N

14



ρ
s−1∑

k=0

Cs−k
N−s−1(t0)ρ1

k+1

(−ρ2)k+1
vN−1−k − ρ1

3/2(1 + αρ)
s−1∑

k=0

Cs−k
N−s(t0)ρ1

k

(−ρ2)k+1
vN−1−k

+αρ1

s∑

k=0

Cs−k+1
N−s−1(t0)ρ1

k

(−ρ2)k
vN−1−k

+
[
ρCs+1

N−s−1(t0)− ρ1
1/2Cs+1

N−s(t0)
]
p(N, N) = 0,

• s = N

−ρ1
3/2(1 + αρ)

N−1∑

k=0

CN−k
0 (t0)ρ1

k

(−ρ2)k+1
vN−1−k − ρ1

1/2CN+1
0 (t0)p(N,N) = 0,

or, equivalently,

• s = 0

αρ1C
1
N−1(t0)vN−1 +

[
ρC1

N−1(t0)− ρ1
1/2C1

N(t0)
]
p(N,N) + ρρ1

(N+1)/2p0 = 0,

• 0 < s < N

s−1∑

k=0

[
ρ
Cs−k

N−s−1(t0)ρ1
k+1

(−ρ2)k+1
− ρ1

3/2(1 + αρ)
Cs−k

N−s(t0)ρ1
k

(−ρ2)k+1

+ρ1α
Cs−k+1

N−s−1(t0)ρ1
k

(−ρ2)k

]
vN−1−k + α

C1
N−s−1(t0)ρ1

s+1

(−ρ2)s
vN−1−s

+
[
ρCs+1

N−s−1(t0)− ρ1
1/2Cs+1

N−s(t0)
]
p(N, N) = 0,

• s = N

−ρ1
3/2(1 + αρ)

N−1∑

k=0

CN−k
0 (t0)ρ1

k

(−ρ2)k+1
vN−1−k − ρ1

1/2CN+1
0 (t0)p(N,N) = 0.

Finally, to obtain an expression for A(y) in terms of p(k, N), k = 0, ..., N and Chebyshev
polynomials, we again substitute subsequently the roots a and b into (16) and subtract
one equation from another

yN
N−1∑

k=0

ak − bk

yk
p(k, N)− ρ1

ρ2

αρyN−1
N−1∑

k=0

ak+1 − bk+1

yk
p(k,N)

+
ρ1

ρ2

αyN−1
N−1∑

k=0

ak − bk

yk
p(k,N) + (aN − bN)p(N, N)− ρ1

ρ2

A(y)(a− b) = 0.

As above, taking into account that

ak − bk

a− b
=

Uk−1(t)

ρ
(k−1)/2
1

,

15



we can express A(y) in terms of p(k, N), k = 0, ..., N and the Chebyshev polynomials of
the second type.

2

References

[1] K.E. Avrachenkov, N.O. Vilchevsky, and G.L. Shevlyakov, Priority queueing with
finite buffer size and randomized push-out mechanism, Extended Abstract, ACM
SIGMETRICS’03, 2003, San Diego, 2 pages.

[2] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss, An architecture for
differentiated services, RFC 2475, December 1998.

[3] A.B. Bondi, An analysis of finite capacity queues with priority scheduling and common or
reserved waiting areas, Comput. & Ops. Res., 16(3), 1989, pp.217-233.

[4] X. Cheng and F. Akyildiz, A finite buffer two class queue with different scheduling and
push-out schemes, IEEE INFOCOM’92, 1992, pp. 231-241.

[5] A. Erdelyi and H. Bateman, Higher transcendental functions, 2nd ed., v.1,2, Robert E.
Krieger Publishing Company, 1985.

[6] D.P. Gaver, P.A. Jacobs, and G. Latouche, Finite birth-and-death models in randomly
changing environments, Adv. Appl. Prob., 16, 1984, pp.715-731.

[7] N. Hegde and K.E. Avrachenkov, Service differentiation and guarantees for TCP-based
elastic traffic, in From QoS Provisioning to QoS Charging. QofIS/ICQT 2002, Burkhard
Stiller, Michael Smirnow, Martin Karsten, and Peter Reichl, Eds., October 2002, v. 2511 in
Lecture Notes in Computer Science, pp. 159–168.

[8] J. Heinanen, F.Baker, W. Weiss, and J. Wroclawski, Assured forwarding PHB group, RFC
2597, June 1999.

[9] V. Jacobson, K. Nichols, and K. Poduri, (1999), An expedited forwarding PHB group, RFC
2598, June 1999.

[10] N.K. Jaiswal, Priority queues, Academic Press, 1968.

[11] A.S. Kapadia, M.F. Kazmi, and A.C. Mitchell, Analysis of a finite capacity non-preemptive
priority queue, Comput. & Ops. Res., 11(3), 1984, pp.337-343.

[12] A.S. Kapadia, Y.K. Chiang, and M.F. Kazmi, Finite capacity priority queues with potential
health applications, Comput. & Ops. Res., 12(4), 1985, pp.411-420.

[13] K. Kilkki, (1999) Differentiated services for the Internet, Macmillan Technical Publishing,
1999.

[14] L. Kleinrock, Queueing systems, v.2: Computer applications, Wiley, 1976.

[15] G. Latouche and V. Ramaswami, Introduction to matrix analytic methods in stochastic
modeling, ASA-SIAM Series on Statistics and Applied Probability, 1999.

16



[16] V. Sharma and J.T. Virtamo, A finite buffer queue with priorities, Performance Evaluation,
47, 2002, pp.1-22.

[17] H. Takagi, Queueing analysis, Vacation and Priority Systems, Part 1. North Holland, 1991.

[18] D. Wagner and U.R. Krieger, Analysis of a finite buffer with non-preemptive priority
scheduling, Comm.Stat.-Stochastic Models, 15(2), 1999, pp.345-365.

[19] J. Ye and S.Q. Li, Folding algorithm: A computational method for finite QBD processes
with level dependent transitions, IEEE Trans. Commun., 42, 1994, pp.625-639.

17


