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Abstract

A brief survey of former and recent results on Huber’s minimax approach in robust statistics is given. The
least informative distributions minimizing Fisher information for location over several distribution classes
with upper-bounded variances and subranges are written down. These least informative distributions are
qualitatively different from classical Huber’s solution and have the following common structure: (i) with
relatively small variances they are short-tailed, in particular normal; (ii) with relatively large variances they
are heavy-tailed, in particular the Laplace; (iii) they are compromise with relatively moderate variances.
These results allow to raise the efficiency of minimax robust procedures retaining high stability as compared
to classical Huber’s procedure for contaminated normal populations. In application to signal detection
problems, the proposed minimax detection rule has proved to be robust and close to Huber’s for heavy-
tailed distributions and more efficient than Huber’s for short-tailed ones both in asymptotics and on finite
samples.
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1 Introduction

1.1 Preliminaries

About forty years has passed since publishing of the pioneer works of J. W. Tukey [1], P. J. Huber [2], and
F. R. Hampel [3]. These outstanding personalities defined a new area of mathematical statistics called robust
statistics which has been intensively developed since the sixties and is rather definitely formed by present.

The basic reasons of research in this field are of a general mathematical character. ”Optimality” and
”stability” are the mutually complementary characteristics of nearly all mathematical procedures. It is a well-
known fact that the behavior of many optimal decisions is rather sensible to ”small deviations” from prior
assumptions. In mathematical statistics, the remarkable example of such unstable optimal procedure is given
by the LS method: its performance may become extremely poor under small deviations from normality.

Roughly speaking, robustness means stability of statistical inference under the variations of the accepted
distribution models.

Nearly at the same time with robust statistics, there appeared another direction in statistics called ex-
ploratory or probability-free data analysis that also partly originated from J. W. Tukey [4]. By definition, data
analysis techniques aim at practical problems of data and signal processing. Although robust statistics involves
mathematically highly refined asymptotic tools, robust methods exhibit a satisfactory behavior on small samples
being quite useful in applications.

This paper represents new results having definite accents both on theoretical aspects of robustness and
practical needs of signal and data analysis technologies. In particular, we restrict ourselves to Huber’s minimax
approach in robustness [5] that is applied to the simplest problem of detection of a constant signal in not
so simple distribution models with the restrictions upon noise variances and subranges. We show that the
minimax approach has certain reserves both in theory and applications: first, for improving its ”optimality”
composition with retaining of the ”stability” one, and second, for effective performing of ”on line” signal
processing procedures.

1.2 Huber’s minimax approach

Now we briefly comment on Huber’s minimax approach in robust statistics. In general, the minimax principle
aims at the least favorable situation for which it suggests the best solution. Thus, in some sense, this approach
provides a guaranteed result, possibly too pessimistic.

To estimate a location parameter θ, Huber introduced the class of M -estimators θ̂N such that

θ̂N = arg min
θ

N∑

i=1

ρ(xi − θ) or
N∑

i=1

ψ(xi − θ̂N ) = 0, (1)

where the sample x1, . . . , xN is taken from the distribution with density f(x− θ) belonging to a certain class F ,
ρ(z) is a loss function with the derivative ψ(z) = ρ′(z) called a score function [2, 5].

Under rather general conditions of regularity put upon the distribution class F and the class Ψ of admissible
score functions ψ (these conditions will be specified later), the M -estimators are consistent and asymptotically
normal with variance

V (ψ, f) =
∫ ∞

−∞
ψ2(x)f(x) dx

[∫ ∞

−∞
ψ′(x)f(x) dx

]−2

. (2)

Huber proposed to use the supremum of asymptotic variance V (ψ∗, f∗) = sup
f∈F

V (ψ∗, f) ≥ V (ψ∗, f) as a

measure of robustness of the optimal M -estimator with the score function ψ∗: the less the range of the optimal
estimator variance V (ψ∗, f) over the class F , the more robust is this estimator, and vice versa.

The proposed measure of robustness allows to design reasonable robust estimators by minimizing the supre-
mum of asymptotic variance V (ψ∗, f∗) = inf

ψ∈Ψ
sup
f∈F

V (ψ, f).

For M -estimators of location, Huber’s minimax approach is reduced to the determination of a least in-
formative distribution density f∗ minimizing the Fisher information for location I(f) over a given class F of
distribution densities with the subsequent application of the maximum likelihood principle

f∗ = arg min
f∈F

∫ ∞

−∞
[f ′(x)/f(x)]2 f(x) dx, ρ∗(z) = − log f∗(z), ψ∗(z) = −f∗′(z)/f∗(z). (3)
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Furthermore, the saddle-point pair (ψ∗, f∗) provides the guaranteed level of the accuracy of estimation

V (ψ∗, f) ≤ V (ψ∗, f∗) = 1/I(f∗) for all f ∈ F .

1.3 Least informative distributions: classical results

Within the minimax approach, the choice of a distribution class determines all the subsequent stages and the
qualitative character of the corresponding robust procedure. In its turn, the choice of a distribution class
depends either on the available prior information about data distributions, or on the possibilities of getting this
information from the data sample.

Being historically the first [2], various ε-neighborhoods of normal distribution are not the only models of
interest. Firstly, we may consider the ε-neighborhoods of other distributions, say, the uniform, Laplace, or
Cauchy. Certainly, the reasons to introduce such classes are obviously weaker as compared to that based
on normal distribution, but nevertheless, they can be. Secondly, in applications rather often there exist a
prior information about the dispersion of a distribution, about its central part and/or its tails, about the
moments and/or subranges of a distribution. The empirical distribution function and relative estimators of a
distribution shape (quantile functions and their approximations, histograms, kernel estimators) along with their
confidence boundaries give other examples. It seems reasonable to use such information in the minimax setting
by introducing the corresponding distribution classes F in order to increase the efficiency (the ”optimality”
composition) of robust minimax procedures.

In what follows, we deal with distribution densities satisfying the following regularity conditions:

(F1) f is symmetric and unimodal.

(F2) f is twice continuously differentiable and f(x) > 0 for all x in R+ = (0,∞).

(F3) the Fisher information for location I(f) =
∫∞
−∞[f ′(x)/f(x)]2f(x) dx satisfies 0 < I(f) < ∞.

Obviously, also the conditions of non-negativeness and normalization hold f(x) ≥ 0,
∫∞
−∞ f(x) dx = 1. For

sake of brevity, we will not write these conditions any time we define a distribution class.
Now we enlist the classical results on the least informative distributions for several distribution classes which

seem natural and convenient for the description of a prior knowledge about data distributions.

The class F1 of nondegenerate distributions (with a bounded density value at the center of symmetry):

F1 = {f : f(0) ≥ 1/(2a) > 0} , f∗1 (x) = L(x; 0, a) = (2a)−1 exp(−|x|/a). (4)

In this case, the least informative density is the Laplace, hence we have the sign score function ψ∗1(z) = sgn(x)/a
and the sample median as the optimal M -estimator. This class is introduced in [6]. It is one of the most wide
classes: any unimodal distribution density with a nonzero value at the center of symmetry belongs to it. The
parameter a of this class characterizes the dispersion of the central part of a distribution, in other words, a is
the upper bound for that dispersion. The condition of belonging to this class is very close to the complete lack
of information about an underlying distribution.

The class F2 of distributions with an upper-bounded variance:

F2 =
{

f : σ2(f) =
∫ ∞

−∞
x2f(x) dx ≤ σ2

}
, f∗2 (x) = N(x; 0, σ) (5)

The least informative density is normal with the corresponding linear score function ψ∗2(z) = z/σ2 and the
sample mean as the optimal M -estimator. This class is considered in [7]. All distributions with upper-bounded
variances are members of this class. Obviously, the heavy-tailed Cauchy-type distributions do not belong to it.

The class F3 of approximately normal distributions, or the gross error model, or the class of ε-contaminated
normal distributions [2]:

F3 = {f : f(x) = (1− ε)N(x; 0, σN ) + εh(x), 0 ≤ ε < 1} , (6)

where N(x; 0, σ) is normal density, h(x) is an arbitrary density, and ε is a contamination parameter charac-
terizing the fraction of contamination and the level of the uncertainty of information about the shape of the
underlying distribution.
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In this case, the least informative density consists of two parts: the normal in the center and the exponential
tails given by

f∗3 (x) =

{
(1− ε)N(x; 0, σ), for |x| ≤ k σ,

(1− ε)(2 π)−1/2σ−1 exp
(−k σ|x|+ k2σ2/2

)
, for |x| > k σ,

(7)

where the dependence k = k(ε) is tabulated (see [5], p. 87). The optimal score function has the following
limited linear form ψ∗3(z) = max [−k σ,min (z/σ2, k σ)] with the trimmed mean as the optimal M -estimator
of location [2]. Note that the limit cases of Huber’s optimal score function ψ∗3(z) are the linear function
ψ∗3(z) = z/σ2 with ε = 0 and the sign function ψ∗3(z) = k σ sgn(z) as ε → 1 implying the sample mean and
sample median as the optimal statistics, respectively.

The class F4 of finite distributions:

F4 =

{
f :

∫ l

−l

f(x) dx = 1

}
, f∗4 (x) =

{
l−1 cos2(πz/(2l)), |z| ≤ l,

0, |z| > l.

The restriction on this class defines the boundaries of the data (i.e., |x| ≤ l holds with probability one), and
there is no more information about the distribution. The score function is unbounded: ψ∗4(z) = tan(πz/(2l))
for |z| ≤ l.

The class F5 of approximately finite distributions:

F5 =

{
f :

∫ l

−l

f(x) dx ≥ 1− β

}
. (8)

The parameters l > 0 and β, 0 ≤ β < 1, are given; the latter characterizes the degree of closeness of f(x) to a
finite distribution density. The restriction on this class means that the inequality |x| ≤ l holds with probability
at least equal 1− β. Moreover, the characterization condition (8) of approximate finiteness can be rewritten as
the restriction upon the distribution subrange: F−1(1− β/2)− F−1(β/2) ≤ 2 l.

The least informative density is given by

f∗5 (x) =

{
A1 cos2(B1x), |x| ≤ l,

A2 exp(−B2|x|), |x| > l,
(9)

where the constants A1, A2, B1, and B2 are determined from the simultaneous equations characterizing the re-
strictions of the class F5, namely the conditions of normalization and approximate finiteness, and the conditions
of smoothness at x = l:

∫ ∞

−∞
f∗5 (x) dx = 1,

∫ l

−l

f∗5 (x) dx = 1− β, f∗5 (l − 0) = f∗5 (l + 0), f∗5
′(l − 0) = f∗5

′(l + 0).

The details on this system of equations for the parameters A1, A2, B1, and B2 can be found in [5, 10]. Note
that the optimal score function ψ∗5(z) is bounded:

ψ∗5(z) =

{
tan(B1z), |z| ≤ l,

tan(B1l)sgn(z), |z| > l.

Apparently, the class F4 of finite distributions is the particular case of the class F5. These classes are
considered in [5, 8, 9].

Remark 1 The least informative density in the class F1 of nondegenerate distributions is the special limit

case of the optimal solution in the class of approximately finite distributions as l → 0, 1−β → 0,
1− β

2l
→ 1

2a
.

Remark 2 As it can be seen from the aforementioned results, the minimax approach does not necessarily
imply the boundness of an optimal score function and therefore, the robustness of a solution, like in the classes F2

and F4. On the other hand, the lack of stability of these solutions in heavy-tailed models is compensated by
their higher efficiency in short-tailed ones.

In the sequel, we consider the classes which are the intersections of the aforementioned: F12 = F1 ∩ F2

and F25 = F2 ∩ F5. Furthermore, we show that the additional restrictions, in other words, the additional
information about data distributions, allows to enhance the efficiency of robust procedures. These models were
used for robust estimation of location, regression and autogression parameters [6, 9, 10]. Further we shall apply
these models to the problems of signal detection to provide both high robustness of a solution for heavy-tailed
noise densities and its high efficiency for short-tailed ones.
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1.4 A note on robust detection of signals

Consider the problem of detection of a known signal θ in the additive i.i.d. noise {ni}N
1 with density f from

a certain class F . Given {xi}N
1 , it is necessary to decide whether the signal θ is observed. The problem of

detection is set up as the problem of hypotheses testing: H0 : xi = ni versus H1 : xi = θ+ni, i = 1, . . . , N .
Given a density f , the classical theory of hypotheses testing yields various optimal (in the Bayesian, minimax,
Neyman-Pearson senses) algorithms for the solution of this problem: all the optimal algorithms are based on the
value of the likelihood ratio (LR) statistic TN (x) =

∏N
i f(xi − θ)/f(xi) that must be compared with a certain

threshold. The differences between the aforementioned approaches result only in the values of a threshold [11].
In many practical problems of radio-location, acoustics, and communications, noise distributions are only

partly known. For instance, it may be known that either the underlying density is approximately normal, or
there is some information on its behavior in the central zone and on the tails, or an impulsive noise may distort
the observed signal, etc. For these detection problems, Huber’s minimax approach to hypotheses testing also
can be used with the bounded LR statistics [5], and several robust alternatives to the classical methods have
been proposed in [12, 13, 14], in which contaminated normal models were mostly used.

However, we are interested in models containing short-tailed noise densities with small variances as well as
the heavy-tailed ones with large or even with infinite variances.

This paper is organized as follows. In Section 2, the least informative densities for different classes with
bounded variances and subranges are enlisted. In Section 3, the minimum distance detection rule is proposed,
its asymptotic minimaxity in the Huber sense is established, and the probability of detection error is obtained
in a closed form. In Section 4, for the distribution class F12 with a bounded variance and density value at
the center of symmetry, the performance of the proposed detection rule is compared with Huber’s detector in
asymptotics and on finite samples for the normal, Cauchy, and short-tailed exponential-power noise densities.
In Section 5, the concluding remarks are made.

2 Least informative densities in the classes with bounded variances
and subranges

2.1 The least informative density in the class F12

Consider the distribution class containing the restrictions of the both classes F1 and F2:

F12 =
{

f : f(0) ≥ 1/(2a) > 0, σ2(f) =
∫ ∞

−∞
x2f(x) dx ≤ σ2

}
. (10)

Note that this class comprises qualitatively different distribution densities, for example, the normal, Laplace,
Cauchy (with σ2 = ∞), short-tailed densities close to the uniform, etc.

For the class F12, the least informative density simultaneously depends on the two parameters a and σ
through the ratio σ2/a2 naturally having the Laplace and normal densities as the particular cases [10].

Theorem 1 In the class F12, the least informative density is of the form

f∗12(x) =





N(x; 0, σ), for σ2/a2 < 2/π,
WH(x; 0, ν, σ), for 2/π ≤ σ2/a2 ≤ 2,
L(x; 0, a), for σ2/a2 > 2,

(11)

where N(x; 0, σ) and L(x; 0, a) are the normal and Laplace densities, respectively, WH(x; 0, ν, σ) being called
the Weber-Hermite density is given by

WH(x; 0, ν, σ) =
Γ(−ν)

√
2ν + 1 + 1/S(ν)√
2π σ S(ν)

D2
ν

( |x|
σ

√
2ν + 1 + 1/S(ν)

)
(12)

with the real-valued shape parameter ν that takes its values in (−∞, 0] and depends on the ratio of the
parameters σ and a as follows

σ

a
=

√
2ν + 1 + 1/S(ν)Γ2(−ν/2)√

2π 2ν+1 S(ν) Γ(−ν)
.

Further, Dν(·) are the Weber-Hermite functions or the functions of the parabolic cylinder [15], S(ν) = [ψ(1/2−
ν/2)− ψ(−ν/2)]/2, and in this context, ψ(x) = d ln Γ(x)/dx is the digamma function.
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Fig. 1. The minimax score function for the class F12.

Now we comment on the structure of the optimal density. Note that the Weber-Hermite densities defined
by Eq. (12) appear as the solution to the Euler-Lagrange equation for the variational problem of minimizing
Fisher information (for details, see [10]). Further, the normal and Laplace densities arise as the particular cases
of Eq. (12) when ν = 0 and ν → −∞, respectively. Different branches of f∗12(x) appear due to the degree in
which the constraints are taken into account:

• For σ2/a2 < 2/π or with relatively small variances, only the restriction upon a variance does matter (it
becomes the equality σ2(f∗12) = σ2, and the restriction on the density value at the center of symmetry
takes the form of the strict inequality f∗12(0) > 1/(2a). Thus, the latter restriction can be omitted, and
the class F12 is reduced to the class F2 with the corresponding least informative normal density.

• For σ2/a2 > 2 or with relatively large variances, only the restriction upon the density value is essential:
f∗12(0) = 1/(2a), and the restriction on a variance σ2(f∗12) < σ2 is omitted. Therefore, the class F12 is
reduced to the class F1 with the corresponding least informative Laplace density.

• Finally, for 2/π ≤ σ2/a2 < 2 or with relatively moderate variances, the both restrictions become the
equalities: f∗12(0) = 1/(2a) and σ2(f∗12) = σ2. Thus, they both must be taken into account, and the least
informative density takes the most general Weber-Hermite form.

The optimal minimax score function is defined by the maximum likelihood principle (3)

ψ∗12(z) =





z/σ2, σ2/a2 < 2/π,

−WH ′(z; 0, ν, σ)/WH(z; 0, ν, σ), 2/π ≤ σ2/a2 ≤ 2,

a−1sgnz, σ2/a2 > 2.

(13)

From Fig. 1 we can see the qualitative character of these compromise score functions: (i) they have a discontinuity
at the origin; (ii) this discontinuity jump 2ψ∗12(+0) is less than the corresponding jump of the limit score
function ψ∗1(z) = a−1sgn(z) and it vanishes as ν →∞; (iii) it can be shown that the asymptotes of the curves
ψ∗ = ψ∗12(z) go through the origin having lesser slopes than the slope of the limit score function ψ∗2(z) = z/σ2;
(iv) the asymptotic slope ψ∗′12(+∞) vanishes as ν → −∞.

Some numerical results are: (i) with ν = −1 we have ψ∗′12(0) = 0.1 and ψ∗′12(∞) = 0.44; (ii) with ν = −2
we have ψ∗′12(0) = 0.04 and ψ∗′12(∞) = 0.25.

This score function qualitatively differs from Huber’s score function ψ∗3(z) that is optimal in the class F3,
though both have the linear and sign forms as the limit cases.

2.2 The least informative density in the class F25

Consider the intersection of the classes F2 and F5 with the constraints on the variance and on the mass of the
central part of a distribution

F25 =

{
f : σ2(f) ≤ σ2,

∫ l

−l

f(x) dx ≥ 1− β

}
. (14)

A lower bound upon the mass of the central zone of a distribution is equivalent to an upper bound upon its
dispersion, or more precisely, upon the subrange of a symmetric distribution. In this case, the following result
is true [10].
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Theorem 2 In the class of distributions F25, the least informative density is of the form

f∗25(x) =





N(x; 0, σ), σ2 ≤ k1l
2,

f
∗
25(x), k1l

2 < σ2 ≤ k2l
2,

f∗5 (x), σ2 > k2l
2,

(15)

where

• N(x; 0, σ) = f∗2 (x), f∗5 (x), and f
∗
25(x) are the least informative distribution densities in the classes F2, F5,

and F25 (the class F25 is defined as in Eq. (14) but with the restrictions in the form of equalities);

• the switching parameters k1 and k2 depend on the parameters of the class F25

σ2(f∗5 ) =
∫ ∞

−∞
x2f∗5 (x) dx = k2l

2,
1√

2π
√

k1l

∫ ∞

−∞
exp

(
− x2

2k1l2

)
dx = 1− β;

• the density f
∗
25(x) is expressed through the Weber–Hermite functions

f
∗
25(x) =

{
A1[Dν1(B1x) +Dν1(−B1x)]2, |x| ≤ l,

A2D2
ν2

(B2|x|), |x| > l;
(16)

The values of the parameters A1, A2, B1, B2, ν1, and ν2 in (16) are determined from the equations:

• the normalization condition ∫ ∞

−∞
f
∗
25(x) dx = 1, (17)

• the characterization restrictions of the class F25

∫ l

−l

f
∗
25(x) dx = 1− β,

∫ ∞

−∞
x2f

∗
25(x) dx = σ2; (18)

• the conditions of smoothness of the optimal solution at x = l

f
∗
25(l − 0) = f

∗
25(l + 0), f

∗′
25(l − 0) = f

∗′
25(l + 0); (19)

• the additional condition of optimality connecting the solutions in the zones |x| ≤ l and |x| > l

∫ l

−l

x2f
∗
25(x) dx = d∗1

2 = arg min
d∗1

2≤σ2
I(f). (20)

As with the solution of a similar problem in Subsection 2.1, the three branches of solution (15) appear
according to the degree in which the restrictions of the class F25 are taken into account:

• for the first branch N(x; 0, σ) = f∗2 (x), only the restriction on the variance in (14) does matter taking the
form of the equality: σ2(f∗2 ) = σ2;

• for the third branch, the restriction on the central part of a distribution in (14) is essential, and the
restriction on the variance has the form of the strict inequality:

∫ l

−l
f∗5 (x) dx = 1− β, σ2(f∗5 ) < σ2;

• for the second, both restrictions have the form of equalities.

From Eqs. (17)–(20) we have the following particular cases of solution (16):

• for σ2 = k1l
2,

f
∗
25(x) = f∗2 (x) = N(x; 0, σ) =

1√
2πσ

exp
(
− x2

2σ2

)
, ν1 = ν2 = 0, B1 = B2 = 1/σ;
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• for σ2 = k2l
2,

f
∗
25(x) = f∗5 (x) =

{
A1 cos2(B1x), |x| ≤ l,

A2 exp(−B2|x|), |x| > l.

We now turn directly to the restrictions of the class F25:

• as σ2 → ∞, the first restriction in (14) is inessential, and, in this case, we have the optimal solution in
the class F5: f∗25 = f∗5 ;

• as l → 0, 1−β → 0, and (1−β)/(2l) → 1/(2a), we obtain the restriction of the class F12: f(0) ≥ 1/(2a) > 0,
and the optimal solution f∗25 = f∗12, respectively.

Consider the important particular case of the class F25 when the restriction on the central part of the
distribution has the form of an upper bound upon the value of the distribution interquartile range

F−1(3/4)− F−1(1/4) ≤ b.

Then from Theorem 2 we obtain the following result.

Corollary 1 In the class F̃25 =
{
f : F−1(3/4)− F−1(1/4) ≤ b, σ2(f) ≤ σ2

}
, the least informative density

is of the form

f̃∗25(x) =





N(x; 0, σ), σ2 ≤ 0.548b
2
,

f
∗
25(x), 0.548b

2
< σ2 ≤ 0.903b

2
,

f∗5 (x), σ2 > 0.903b
2
,

(21)

where the parameters of the density f
∗
25(x) (16) are determined from Eqs. (17)–(20) with β = 1/2.

The score functions ψ̃∗25(z) for the three branches of solution (21) are exhibited in Fig. 2.

3 The minimax robust detection rule

To detect the constant signal θ (see the set-up of detection problem in Subsection 1.4), we use the following
minimum distance detection rule

N∑

i=1

ρ(xi) ≶
N∑

i=1

ρ(xi − θ), (22)

where ρ(z) is a loss function characterizing the assumed form of a distance. This choice of a detection rule
is mainly determined by the fact that it allows the direct use of Huber’s minimax theory on M− estimators
of location. Further, it can be seen that the choice ρ(z) = − log f(z) makes the optimal LR test statistic
minimizing the Bayesian risk with equal costs and prior probabilities of hypotheses.

To formulate the result, we must specify the regularity conditions put on densities f and score functions ψ.
These conditions can be formulated in many ways, say, strengthening the conditions imposed on score functions
and weakening those put on densities, and vice versa. We use the following set of assumptions sufficient for our
aims, first, the conditions (F1) - (F3) on densities from Subsection 1.3 and, second, the conditions on score
functions (for details, see [12], pp. 125-127):

(Ψ1) ψ is well-defined and continuous on R+ \ C(ψ), where C(ψ) is finite. At each point of C(ψ) there exist
finite left and right limits of ψ.

(Ψ2) The set D(ψ) of points at which ψ is continuous but in which ψ′ is not defined or not continuous is finite.

(Ψ3)
∫∞
−∞ ψ(x)f(x) dx = 0.

(Ψ4)
∫∞
−∞ ψ2(x)f(x) dx < ∞.

(Ψ5) 0 <
∫∞
−∞ ψ′(x)f(x) dx = − ∫∞

−∞ ψ(x)f ′(x) dx < ∞.
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Fig. 2. The minimax score function for the class F25: l = b/2.

Theorem 3 Let a density f ∈ F and a score function ψ ∈ Ψ satisfy the assumptions (F1) – (F3), and
(Ψ1) – (Ψ5), respectively.

Then the probability of detection error for the minimum distance detection rule (22) takes the following
form as N →∞:

PE = Q

A

2

∫∞
−∞ ψ′(x)f(x) dx√∫∞
−∞ ψ2(x)f(x) dx


 , (23)

where Q(z) is the complementary error function and the parameter A determines the amplitude of a weak signal
as a decreasing sequence θ = θN = A/

√
N .

Proof Now we derive Eq. (23), using the key idea of derivation of the asymptotic variance for M -
estimators [2].

Write down the expression for the probability of detection error

PE = P

(∑

i

ρ(xi) <
∑

i

ρ(xi − θ)|H1

)
= P

(∑

i

ρ(θ + ni)−
∑

i

ρ(ni) < 0

)
(24)

and denote the expression in parentheses as the function

qN (θ) =
∑

i

ρ(θ + ni)−
∑

i

ρ(ni).

Its Taylor expansion has the form

qN (θ) = q(0) + q′(0)θ +
q′′(ξθ)

2
θ2, 0 ≤ ξ ≤ 1.
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Furthermore,

qN (θ) = θ
∑

i

ψ(ni) +
θ2

2

∑

i

ψ′(ni + ξθ).

Now consider the case of a weak signal (the infinitesimal alternative)

θ = θN → 0 as N →∞ : θN = A/
√

N, A > 0,

rewrite Eq. (24) as

PE = P (qN (θ) < 0) = P

(
1√
N

∑

i

ψ(ni) < −A

2
1
N

∑

i

ψ′(ni + ξ A/
√

N)

)
,

and consider the asymptotic behavior of the statistics:

TN =
1√
N

∑

i

ψ(ni) and T ′N =
1
N

N∑

i=1

ψ′
(

ni + ξ
A√
N

)
.

From assumptions (Ψ3) and (Ψ4) it follows that each summand ψ(ni) has mean 0 and variance
∫

ψ2(x)f(x) dx.
Hence by the CLT, the statistic TN is asymptotically normal with mean 0 and variance

∫
ψ2(x)f(x) dx. Further,

by the law of large numbers, the statistic T ′N tends in probability to the positive constant
∫

ψ′(x)f(x) dx > 0
under assumption (Ψ5).

Therefore, we obtain the probability of detection error for the minimum distance detection rule in the form
of Eq. (23)

PE = P

(
TN < −AT ′N

2

)
→ Q


A

2

∫∞
−∞ ψ′(x)f(x) dx√∫∞
−∞ ψ2(x)f(x) dx


 as N →∞. Q.E.D.

From Eq. (23) it follows that the minimax problem with respect to the probability of detection error

min
ψ∈Ψ

max
f∈F

PE(ψ, f) (25)

is equivalent to Huber’s minimax problem min
ψ∈Ψ

max
f∈F

V (ψ, f),.

Thus, all the results on the minimax variance estimation of location are also applicable in this case: the
optimal loss function ρ∗ in the minimum distance detector is defined by the maximum likelihood choice for
the least informative density f∗ minimizing the Fisher information for location I(f) over the given class F .
Furthermore, the saddle-point pair (ψ∗, f∗) provides the guaranteed maximal level of the probability of detection
error PE

PE(ψ∗, f) ≤ PE(ψ∗, f∗) for all f ∈ F .

Remark 3 Since the signal energy E is equal to θ2 N , we have A =
√

E, and moreover, in the particular case
of the unit noise variance, it can be written down as A =

√
SNR.

4 Minimax detector performance

In this paper, we apply the obtained results for the class F12 to the aforementioned detection problem. As the
optimal minimax detector (22) involves the loss function ρ∗12(u) which is based on the analytically complicated
Weber–Hermite functions, we use the low-complexity Lp-norm approximations to it in the form

N∑

i=1

|xi|p
∗

<

N∑

i=1

|xi − θ|p∗ .

The optimal values of the exponent p∗ are expressed through the ratio σ2/a2 and given by

p∗ =

{
5.333− 7.610 x + 3.731 x2, 2/π ≤ x ≤ 1.35,

2.656− 1.646 x + 0.409 x2, 1.35 < x ≤ 2,
(26)
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Fig. 3. Detection in the normal noise: asymptotics, A =
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Fig. 4. Detection in the Cauchy noise: asymptotics, A =
√

E.

where x = σ2/a2.
It can be shown that the decrease in power of the low-complexity detector as compared to the detector based

on the Weber-Hermite functions does not exceed 2.5%.
The asymptotic performance of detection is measured by the probability of detection error PE given by

Eq. (23) that can be rewritten as
PE = Q

(
AI1/(2

√
I2 )

)
, (27)

where I1 =
∫∞
−∞ ψ′(x)f(x) dx and I2 =

∫∞
−∞ ψ2(x)f(x) dx.

We compute the probability of error for the normal noise with the density f(x) = N(x; 0, 1), the heavy-tailed
Cauchy noise with the density

f(x) = C(x; 0, 1) = 1/[π(1 + x2)],

and for the exponential-power noises with the densities

f(x; q, β) =
q

2βΓ(1/q)
exp

(
−|x|

q

βq

)
,

where β is a scale parameter and q is a shape parameter. This formula describes a wide collection of symmetric
unimodal densities: the Laplace density with q = 1, the Gaussian with q = 2, and the uniform with q →∞.
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Fig. 5. Detection in the exponential-power noise: asymptotics, q = 100, A =
√

SNR.

Further, we compare the performance of the minimax detector with the L1-, L2-norm, and Huber’s de-
tectors. In the latter case, we consider the minimum distance detection rule (22) with Huber’s optimal loss
function ρ∗3(x) = − log f∗3 (x) in the model of ε-contaminated normal distributions (6) with ε = 0.1.

To clarify the procedures of the choice of the minimax detector structure and of computing the probability
of detection error, we consider the following examples.

Example 1. The probability of detection error for the minimax and L2-norm detectors in the normal noise.
The choice of the optimal structure is defined by the ratio σ2/a2. Subsequently, we have f(0) = 1/

√
2 π,

σ2(f) = 1, a =
√

π/2, σ2/a2 = 2/π. Hence, the minimax detector is the minimum L2-norm distance, the score
function is linear ψ∗(x) = x, the integrals are I1 = 1 and I2 = 1, and thus, its probability of error is given by
PE = Q(A/2).

Example 2. The probability of detection error for Huber’s and L1-norm detectors in the normal noise.
For ε = 0.1, the score function ψ(x) = ψ∗3(x) = max [−1.14,min (x, 1.14)], the integrals are evaluated numeri-
cally, and PE = Q(0.461A). For the L1-norm detector, the score function is the sign function ψ(x) = sgn(x),
the integrals are I1 = 2f(0) =

√
2/π and I2 = 1, and thus, we get PE = Q(A/

√
2π) = Q(0.399 A).

The results of computing for the normal, Cauchy, and the close to the uniform the exponential-power
(q = 100) density are exhibited in Fig. 1 – Fig. 3. These results are analyzed in Section 5.

The structure of the minimax detector is determined by Eq. (26) through the ratio σ2/a2, and contrary to
Huber’s detector, the parameters σ2 and a2 of the class F12 can be directly estimated from the sample. Taking
into account the form of the middle branch of the minimax detection rule with the parameter 1 < p∗ < 2, when
the both restrictions of the class F12 hold as equalities, we choose the estimates of variance and density as the
characteristics of this class.

For the variance estimate, it is the sample variance σ̂
2

= N−1
∑N

i=1(xi − x)2. For the parameter a, its
estimate is based on the central order statistics x(k) and x(k+1) (N = 2k or N = 2k + 1) and is given by

â = 1/[2f̂(0)] = [(N + 1)(x(k+1) − x(k))]/2.

On finite samples when N = 20 and N = 100, the performance of the minimax, Huber’s, L1- and L2-norm
detectors under the normal, Cauchy, and uniform noises was studied by Monte Carlo technique. The detection
model was chosen consistently with the initial assumption of detection of a weak signal:

H0 : xi = ni versus H1 : xi = θ + ni, i = 1, . . . , N,

where the useful signal θ = θN = A/
√

N .
On small samples with N = 20, the results of modelling are discussed in Section 5. On large samples with

N = 100, these results are close to the asymptotic results given by Eq. (27).
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5 Concluding Remarks

The normal noise: large samples and asymptotics. As it can be seen from Fig. 1, the minimax detector coincides
with the optimal L2-norm detector both being better than Huber’s.
The normal noise: small samples. On the contrary, the minimax detector is close in performance to the robust
L1-norm detector being slightly inferior to Huber’s on small samples. Here we observe the so-called small size
sample effect that arises due to the bias of the threshold statistic σ̂

2
/â2 on small samples [10].

The Cauchy noise. From Fig. 2 it can be seen that the L2-norm detector naturally has the extremely poor
performance in asymptotics (the qualitatively similar performance is also observed on small samples). The
minimax, L1-norm and Huber’s detectors exhibit their good robust properties, the latter being inferior to the
former.
The short-tailed noises (the exponential-power with q = 100 and uniform). In asymptotics, the L2-norm and
minimax detectors prove their superiority over Huber’s and the L1-norm detectors, but on small samples, the
aforementioned small size sample effect reveals itself: the minimax detector is close in performance to the
L1-norm detector, and thus it is slightly inferior to Huber’s.
Final remark. Our main aim is to show some new possibilities of Huber’s minimax approach. In the problem
of robust detection, the minimax detector designed for the distribution class with an upper-bounded variance
demonstrates both high robustness in heavy-tailed noises and good efficiency in short-tailed noises on small and
large samples.
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