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Abstract

A minimax variance (in the Huber sense) estimator of a correlation coe�cient for �-contaminated bivariate
normal distributions is given by the trimmed correlation coe'cient. Consistency and asymptotic normality of
this estimator are established, and the explicit expression for its asymptotic variance is obtained. The limiting
cases of this estimator are the sample correlation coe�cient with �=0 and the median correlation coe'cient as
� → 1. In �-contaminated normal models, the proposed trimmed correlation coe�cient is superior in e�ciency
than the sample correlation coe�cient. c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The aim of robust methods is to ensure high stability of statistical inferences under the deviations
from the assumed distribution model. Much less attention is devoted in the literature to robust
estimators of association and correlation as compared to robust estimators of location and scale
(see Huber, 1981; Hampel et al., 1986). However, it is necessary to study these problems due to
their widespread occurrence (estimation of the correlation and covariance matrices in regression and
multivariate analysis, estimation of the correlation functions of stochastic processes, etc.), and also
due to the great instability of classical methods of estimation in the presence of outliers in the data.
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The simplest problem of correlation analysis is to estimate the correlation coe�cient � of a
bivariate distribution density fXY (x; y) with the observed sample (x1; y1); : : : ; (xn; yn) of a bivariate
random variable (r.v.) (X; Y ). Its classical estimator is given by the sample correlation coe�cient

r =
∑

(xi − ?x)(yi − ?y)
/(∑

(xi − ?x)2
∑

(yi − ?y)2
)1=2

; (1)

where ?x = n−1∑ xi, and ?y = n−1∑yi are the sample means.
The sample correlation coe�cient is, on the one hand, a statistical counterpart of the correlation

coe�cient

� = Cov(X; Y )=(Var X Var Y )1=2; (2)

where Var X , Var Y and Cov(X; Y ) are the variances and the covariance of the r.v. X and Y . On the
other hand, it is an e�cient maximum likelihood estimator of � for a bivariate normal distribution
density N(x; y; �1; �2; �1; �2; �), where the parameters �1 and �2 are the means, �1 and �2 are the
standard deviations of the r.v. X and Y , respectively.

In the gross error model (the traditional in robustness studies contamination scheme (Huber, 1964,
1981; Hampel et al., 1986))

f(x; y) = (1 − �)N(x; y; 0; 0; 1; 1; �) + �N(x; y; 0; 0; k; k; �′); 06 �¡ 1; (3)

the sample correlation coe�cient is strongly biased with regard to � (Gnanadesikan et al., 1972;
Devlin et al., 1975). For instance, estimating the correlation coe�cient � = 0:9 of the main bulk of
the data under the contamination with � = 0:1, k = 3 and �′ = −0:99, asymptotically (as n → ∞)
we have Er =−0:055, what means that even the sign of the sample correlation coe�cient is wrong
(Shevlyakov, 1997). This shows that the sample correlation coe�cient r is very sensitive to the
presence of outliers in the data, and hence it is necessary to use its robust counterparts.

At present there exist two principal methods of design of robust estimators, i.e., the minimax
method of quantitative robustness (Huber, 1981), and the method of qualitative robustness based on
inEuence functions (Hampel et al., 1986). According to the Frst of these methods, we determine the
least informative (favorable) distribution density minimizing Fisher information over a given class
of distributions, with the subsequent construction of optimal maximum likelihood estimators for this
density. This ensures that the asymptotic variance of the estimator will not exceed a certain threshold
level (namely, the supremum of the asymptotic variance as a measure of quantitative robustness)
which strongly depends on the characteristics of a chosen class of distributions. According to the
second method, we construct an estimator with an assigned inEuence function whose type of behavior
determines the qualitative robustness properties of the estimation procedure (such as its sensitivity
to large outliers in the data, their rounding oH, etc.).

Most of robust estimators of a correlation coe�cient have been obtained from heuristic consider-
ations related to the desired behavior of their inEuence functions (Devlin et al., 1975; Huber, 1981;
Shevlyakov, 1997).

In the literature, there is only one result on applying the minimax approach to robust estimation of
� (Huber, 1981, p. 205): the quadrant correlation coe�cient is asymptotically minimax with respect
to bias at the mixture F = (1 − �)G + �H (G and H being centrosymmetric distributions in R2).

In this paper we extend Huber’s results on robust M -estimators of location and scale in �-contami-
nation models (Huber, 1964, 1981) to the problem of robust estimation of a correlation coe�cient
for �-contaminated bivariate normal distributions.



G.L. Shevlyakov, N.O. Vilchevski / Statistics & Probability Letters 57 (2002) 91–100 93

The class of robust estimators for � based on robust estimators for the variances of principal
variables is described in Section 2. The corresponding class of bivariate distributions is introduced
in Section 3. The minimax variance estimator for � in the class of �-contaminated bivariate normal
distributions is proposed in Section 4. Final remarks are made in Section 5.

2. Robust estimation of correlation via robust estimation of scale

2.1. Main groups of estimators

Most of robust estimators of a correlation coe�cient are based on: (i) direct robust counterparts of
the sample correlation coe�cient; (ii) nonparametric measures of correlation; (iii) robust regression;
(iv) robust estimation of the variances of principal variables; (v) the preliminary rejection of outliers
from the data and the subsequent application of the sample correlation coe�cient to the rest of the
observations.

The behavior of the typical representatives of these groups in gross error model (3) was thor-
oughly examined in asymptotics and on Fnite samples (n = 20; 30; 60), and the estimators based on
robust variances proved to be remarkably robust (Gnanadesikan and Kettenring, 1972; Devlin et al.,
1975; Pasman and Shevlyakov, 1987; Shevlyakov, 1997) and therefore advantageous for the further
theoretical examination.

2.2. The estimators based on robust variances

Consider the following identity for �

� = (VarU − Var V )=(VarU + Var V ); (4)

where

U = (X=�1 + Y=�2)=
√

2; V = (X=�1 − Y=�2)=
√

2

are the principal variables such that

Cov(U; V ) = 0; VarU = 1 + �; Var V = 1 − �:

By introducing a robust scale functional S(X ): S(aX +b)= |a|S(X ), we can write S2(·) for a robust
counterpart of variance, and a robust counterpart for (4) in the form

�∗(X; Y ) = [S2(U ) − S2(V )]=[S2(U ) + S2(V )]: (5)

By substituting the sample robust estimates for S into (5), we obtain robust estimates for �

�̂ = [Ŝ
2
(U ) − Ŝ

2
(V )]=[Ŝ

2
(U ) + Ŝ

2
(V )]: (6)

2.3. M-estimators of scale

Here we use Huber’s M -estimator of scale for S(X ) which is deFned by the following implicit
relation:∫

�(x=S(X )) dF(x) = 0; (7)

where � is a score function, typically even �(−x) = �(x) (Huber, 1981).
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The following cases are of our particular interest:

• the choice

�(x) = −xf′(x)=f(x) − 1 (8)

yields the maximum likelihood estimator of � for the scale family of densities �−1f(x=�);
• the standard deviation is an M -estimator with �(x) = x2 − 1;
• the mean absolute deviation occurs with �(x) = |x| − 1;
• Huber (1981) proposes the choice

�(x) =




x2
0 − 1 for |x|¡x0;

x2 − 1 for x06 |x|6 x1;

x2
1 − 1 for |x|¿x1

(9)

for the �-contaminated normal distribution, with some constants x0 = x0(�) and x1 = x1(�)–this
estimator is asymptotically equivalent to the trimmed standard deviation;

• the median absolute deviation S=Med |X | is a limiting case of the latter estimator as � → 1, with
�(x) = sign(|x| − 1).

2.4. The median and trimmed correlation coe'cients

The choice of the median absolute deviation Ŝ = MAD x = med |xi − med x| yields a remarkable
robust estimator called the median correlation coe'cient (Pasman and Shevlyakov, 1987)

rmed = (med2 |u| − med2 |v|)=(med2 |u| + med2 |v|); (10)

where u and v are the robust principal variables

u =
x − med x√
2MAD x

+
y − med y√

2MADy
; v =

x − med x√
2MAD x

− y − med y√
2MADy

: (11)

Choosing Huber’s proposal (9) for Ŝ, we obtain the structure of a trimmed correlation coe'cient
for �̂:

rtr =

(
n−n2∑
i=n1+1

u2
(i) −

n−n2∑
i=n1+1

v2
(i)

)/(
n−n2∑
i=n1+1

u2
(i) +

n−n2∑
i=n1+1

v2
(i)

)
; (12)

where u(i) and v(i) are the ith order statistics of the corresponding robust principal variables.
Note that the general construction (12) yields the following limiting cases: (i) the sample correla-

tion coe�cient r with n1 =0, n2 =0 and with the classical estimators (the sample means for location
and the standard deviations for scale) in its inner structure; (ii) the median correlation coe�cient
rmed with n1 = n2 = [0:5(n− 1)].
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3. The class of bivariate distributions

Consider the class of bivariate distribution densities corresponding to the above-introduced class
of estimators (6) (the parameters of location and scale of the r.v. X and Y are assumed known:
�1 = �2 = 0, �1 = �2 = 1)

f(x; y) =
1

�u(�)
g
(

u
�u(�)

)
1

�v(�)
g
(

v
�v(�)

)
; (13)

where u and v are the principal variables

u = (x + y)=
√

2; v = (x − y)=
√

2;

g(x) is a symmetric density g(−x) = g(x) belonging to a certain class G.
If the variance of the density g exists (�2

g =
∫
x2g(x) dx¡∞) then the straightforward calculation

yields

Var X = Var Y = (�2
u + �2

v)�
2
g=2; Cov(X; Y ) = (�2

u − �2
v)�

2
g=2

and the correlation coe�cient of distributions (13) depends on the scale parameters �u and �v
as follows:

� = (�2
u − �2

v)=(�
2
u + �2

v): (14)

Now assume that the variances of the r.v. X and Y do not depend on the unknown �

Var X = Var Y = �2 = const:(�):

Setting for convenience �g = 1, we obtain for �u and �v that

�u = �
√

1 + �; �v = �
√

1 − �

and hence for densities (13)

f(x; y) =
1

�
√

1 + �
g
(

u
�
√

1 + �

)
1

�
√

1 − �
g
(

v
�
√

1 − �

)
: (15)

It is important that class (13) and its subclass (15) contain the standard bivariate normal distri-
bution density f(x; y) = N(x; y|0; 0; 1; 1; �) if �u(�) =

√
1 + �, �v(�) =

√
1 − � and g(x) = !(x) =

(2")−1=2 exp(−x2=2).
Using other forms of univariate distribution densities, say the Laplace or even the long-tailed

Cauchy (with the apparent modiFcation of the deFnition for �), we can construct the bivariate
analogs for the corresponding univariate distributions.

Henceforth we shall use subclass (15).
Now we recall the principal idea of introducing class (13): for any random pair (X; Y ) the trans-

formation U =X + Y; V =X − Y gives the uncorrelated random principal variables (U; V ) (actually
independent for densities (13)), and estimation of their scale solves the problem of estimation of
correlation between X and Y .
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4. Main results

4.1. The estimation procedure

Given (x1; y1); : : : ; (xn; yn), we propose the following estimation procedure for the correlation
coe�cient:

• transform the initial data

ui = (xi + yi)=
√

2; vi = (xi − yi)=
√

2; i = 1; : : : ; n;

• evaluate the M -estimates of scale �̂u and �̂v as the solutions to the equations∑
�(ui=�̂u) = 0;

∑
�(vi=�̂v) = 0; (16)

where �(·) is some score function;
• evaluate the estimate of � of the form

�̂n = (�̂
2
u − �̂

2
v)=(�̂

2
u + �̂

2
v): (17)

The choice of a score function in (16) will be made by applying the minimax approach in Section
4.3.

4.2. Consistency and asymptotic normality

The asymptotic properties of the proposed estimator (17) are completely determined by the asymp-
totic properties of M -estimators of scale (16). The su�cient conditions of regularity providing the
desired properties are put on the densities g and score functions � (Hampel et al., 1986, pp. 125, 139):
(g1) g is twice continuously diHerentiable and satisFes g(x)¿ 0 for all x in R1.
(g2) Fisher information for scale I(g) satisFes 0¡I(g)¡∞.
(�1) � is well-deFned and continuous on R1\C(�), where C(�) is Fnite. In each point of C(�)

there exist Fnite left- and right-limits of � which are diHerent. Also �(−x) = �(x) if (−x; x) ⊂
R1\C(�), and there exists d¿ 0 such that �(x)6 0 on (0; d) and �(x)¿ 0 on (d;∞).

(�2) The set D(�) of points in which � is continuous but in which �′ is not deFned or not continuous
is Fnite.

(�3)
∫
� dG = 0 and

∫
�2 dG¡∞.

(�4) 0¡
∫
x�′(x) dG(x)¡∞.

Theorem 1. Under the conditions of regularity (g1)–(�4); estimator (17) is consistent and asymp-
totically normal with the following variance:

Var �̂n =
2(1 − �2)2

n
V (�; g); V (�; g) =

∫
�2(x)g(x) dx

(
∫
x�′(x)g(x) dx)2

: (18)

Proof. Consistency of estimator (17) immediately follows from consistency of M -estimators of
scale: as �̂u and �̂v tend to �u = �

√
1 + � and �v = �

√
1 − � in probability; hence �̂n tends to � in

probability.
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We have asymptotic normality by the reasoning of Huber (1964, p. 78, Lemma 5): the numerator
of the fraction in (17) is asymptotically normal, the denominator tends in probability to the positive
constant c = �2

u + �2
v , hence n1=2�n is asymptotically normal (CramQer, 1946, p. 20.6).

The precise structure of (18) is obtained by a direct routine calculation using the following formula
for the variance of a fraction of r.v. ( and ) (Kendall and Stuart, 1962)

Var
(
)

=
(

E(
E)

)2(Var (
E2(

+
Var )
E2)

− 2Cov((; ))
E(E)

)
+ o(1=n); (19)

where ( = �̂
2
u − �̂

2
v and ) = �̂

2
u + �̂

2
v .

By the independence of �̂u and �̂v we have the following components of (19):

E( = �2
u − �2

v + �2
u − �2

v ; E) = �2
u + �2

v + �2
u + �2

v ;

Var ( = Var ) = 4(�2
u�

2
u + �2

v�
2
v) + o(1=n);

Cov((; )) = 4(�2
u�

2
u − �2

v�
2
v) + o (1=n);

where

�2
u = �2(1 + �); �2

v = �2(1 − �); �2
u = �2

uV (�; g)=n; �2
v = �2

vV (�; g)=n:

By substituting these components into (19) we obtain (18).

Example 1. From (18) we get the expression for asymptotic variance of the sample correlation
coe�cient for a bivariate normal distribution with �(x)=x2−1 and g(x)=!(x): Var r=(1−�2)2=n.

Example 2. The choice �(x) = sign(|x| − 1) and g(x) = !(x) yields asymptotic variance for the
median correlation coe�cient

Var rmed =
(1 − �2)2

8n!2(*3=4)*2
3=4

; *3=4 = +−1(3=4);

where +(x) is a standard normal cumulative; !(x) = +′(x).

Formula (18) for asymptotic variance has two factors: the Frst depends only on �, the second
n−1V (�; g) is the asymptotic variance of M -estimators of scale (Huber, 1981, p. 123). Thus, we
can directly apply the minimax variance estimators of scale in the gross error model (Huber, 1964,
1981) for the minimax variance estimation of a correlation coe�cient.

4.3. Minimax variance estimators

Huber (1981) showed that under rather general conditions of regularity (g1)–(�4) M -estimators
�̂n (16) are consistent, asymptotically normal and possess the minimax property with regard to
V (�; g) = nVar �̂n

V (�∗; g)6V (�∗; g∗): (20)
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Here g∗ is the least informative (favorable) density minimizing Fisher information I(g) for scale
over a certain class G

g∗ = arg min
g∈G

I(g); I(g) =
∫

(−xg′(x)=g(x) − 1)2g(x) dx (21)

and the score function �∗(x) is given by (8).
Inequality (20) shows that the estimator �̂n determined by the score function �∗ provides the

guaranteed level of the accuracy of estimation for all g in G

V (�∗; g)6V (�∗; g∗) = 1=(nI(g∗)):

For the class of �-contaminated univariate normal distributions

G = {g: g(x)¿ (1 − �)!(x); 06 �¡ 1}; (22)

the minimax variance M -estimator of scale is deFned by (9), where the parameters x0(�) and x1(�) are
tabulated in (Huber, 1981, p. 121). This M -estimator is asymptotically equivalent to the L-estimator
of the trimmed standard deviation type (see Huber, 1981, p. 122) with the levels of trimming n1(�)
and n2(�) satisfying the following equations:

n1(�) = [(0:5 − G∗(x0))n]; n2(�) = [G∗(−x1)n]; (23)

where G∗ is the least informative cumulative distribution.
The following result is obtained by the direct application of the above solution.

Theorem 2. In class (15) of �-contaminated bivariate normal distributions

f(x; y)¿ (1 − �)N(x; y|0; 0; 1; 1; �); 06 �¡ 1; (24)

the minimax variance estimator of � is the trimmed correlation coe'cient (12); where the numbers
n1 = n1(�) and n2 = n2(�) of the trimmed smallest and greatest order statistics u(i) and v(i) depend
on the value of the contamination parameter � through the auxiliary parameter -=1−√

1 − �. The
precise character of the dependencies n1=n1(-) and n2=n2(-) can be found in (Huber; 1981; p. 5.6).

Proof. It su�ces to check that densities (24) belong to class (15).
From (22) we have the following inequalities:

1
�
√

1 + �
g
(

u
�
√

1 + �

)
¿ (1 − -)

1
�
√

1 + �
!
(

u
�
√

1 + �

)
;

1
�
√

1 − �
g
(

v
�
√

1 − �

)
¿ (1 − -)

1
�
√

1 − �
!
(

v
�
√

1 − �

)
:

By multiplying them we obtain the restriction of the class of �-contaminated bivariate normal dis-
tributions (24), where � = 2-− -2.

In the limiting case as � → 1, n1 and n2 tend to [n=2], the estimates of scale �̂u and �̂v tend to the
median absolute deviations MAD u and MAD v, respectively, and hence �̂ tends to the median cor-
relation coe�cient rmed. If �=0 then the trimmed correlation coe�cient is asymptotically equivalent
to the sample correlation coe�cient (see Section 2.4).
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The following example illustrates the application of Theorem 2 to the choice of the levels of
trimming n1 and n2 in the minimax variance estimator.

Example 3. Consider the case of heavy contamination with �= 0:2. Then we have for the auxiliary
parameter -: - = 1 − √

0:8 ≈ 0:1. Using formula (23) and the table for the parameters of the least
informative distribution G∗ (see Huber; 1981; p. 121); we get for the parameters of trimming n1

and n2

n1 = 0; n2 = [0:098n]:

Note that the level of trimming appears to be rather moderate as compared with the level of
contamination.

5. Discussion

• The minimax variance estimator was obtained in the setting, where the parameters of location
and scale were assumed known. In real-life applications, this assumption, as a rule, is not true.
Hence one should use robust estimates, namely the sample median and the sample median abso-
lute deviation, for those parameters, or, robust principal variables (11) for (ui; vi); i = 1; : : : ; n in
Eqs. (16).

• On Fnite samples, the comparison of estimators’ behavior can be made using Monte Carlo
modeling. Below we exhibit some experimental results on this issue.
The mixture of normal populations (3) (� = 0:2, � = 0:5, �′ = −0:99, k = 3) was simulated on
samples n = 30. The experiment was repeated 1000 times for the sample correlation coe�cient,
the trimmed correlation coe�cient with n1 = 0 and n2 = 3, and the median correlation coe�cient
as the estimators of the correlation coe�cient � = 0:5. We have the following values for their
means and variances, respectively:

r: − 0:70; 0:06; rtr: 0:45; 0:02; rmed: 0:48; 0:05:

Here we again conFrm the extremely poor behavior of the classical sample correlation coe�cient.
Its robust counterparts show a good quality of estimation, the best in variance for the optimal
trimmed correlation coe�cient. The median correlation coe�cient is the best with regard to bias.
It can also be seen from the above results that bias seems to be a more informative characteristic
than variance. Thus the problem of designing a minimax bias estimator of a correlation coe�cient
is important, but this issue deserves a separate consideration.

• The conFdence intervals for estimator (17) can be constructed using the Fisher transformation
z= ln[(1 + �̂)=(1− �̂)]=2. In this case, the variance of the transformed variable z does not depend
on �: Var z = 2V (�; g)=(n− 3).

• The median correlation coe�cient has the highest qualitative robustness properties (Shevlyakov,
1997): its breakdown point is 1

2 . Thus, the median correlation coe�cient rmed may be regarded as
a correlation analog of the sample median and the median absolute deviation—these well-known
robust estimators of location and scale also possess both quantitative minimax and highest quali-
tative robustness properties.
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