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ABSTRACT: The paper is concerned with the stability properties of the least favourable dis-
tributions minimizing Fisher information in a given class of distributions. The derivation of a least
favourable distribution (the solution of a variational problem) is a necessary stage of the Huber’s min-
imax approach in robust estimation of a location parameter. Generally, the solutions of variational
problems essentially depend on the regularity restrictions of a functional class.

The stability of these optimal solutions to the violations of smoothness restrictions is studied under
the lattice distribution classes. The discrete analogues of Fisher information are obtained in these
cases. They have the form of the Hellinger metrics with the estimation of a real continuous location
parameter and and the form of the χ2 metrics with the estimation of an integer discrete location
parameter.

The analytical expressions for the corresponding least favourable discrete distributions are derived
in some classes of lattice distributions by means of generating functions and Bellman’s recursive func-
tional equations of the dynamic programming. These classes include the class of nondegenerate dis-
tributions with the restriction on the value of a density in the centre of symmetry, the class of finite
distributions and the class of contaminated distributions.

The obtained least favourable lattice distributions preserve the structure of their prototypes in the
continuous case. These results show the stability of robust minimax solutions under the different types
of transitions from the continuous distribution to the discrete one.

1. Introduction

One of the basic approaches to the synthesis of robust estimation procedures is the minimax
principle. In this case, under a given class of distributions, the least favourable distribution (which
minimizes the Fisher information) is determined. The unknown parameters of a distribution model
are then estimated by means of the maximum likelihood method for this distribution [1].

As a result, if we know the set of possible deviations of the actual probability distribution from the
model that we are currently using, then we can construct robust statistical procedures, i.e., procedures
which are stable with respect to (possible) deviations from an apriori distribution model.

The robust minimax procedures provide a guaranteed level of the estimator’s accuracy (measured
by the supremum of an asymptotic variance) for any distribution of a given class.
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The form of the solution obtained by the minimax approach essentially depends upon the char-
acteristics of a distribution class. As a rule, the classes of continuous and symmetric distributions
are considered [1]. In many real-life problems of data processing, the results of measurements include
groops of equal values. Furthermore, the results of measurements usually come rounded in accordance
with the scale of a measuring device playing a role of a discretizator. Thus, in this cases, the use of
continuous distribution models seems not adequate to the original problem of data processing, and
it is rather important for applications to design robust methods for discrete distribution models that
correspond to the real nature of data.

In this paper, we describe the analogues of Fisher information for the discrete distribution classes
considering:

• the direct disretization procedure of the Fisher information functional in the problem
estimation of a continuous location parameter;

• the discrete analogue of the Rao-Cramer inequality in the problem of
estimation of a discrete location parameter.

In the last case, the obtained form of the Rao-Cramer inequality is similar to the Chapman-Robbins
inequality [2].

The derived terms corresponding to the Fisher information functional are different in the considered
cases but the solutions of the variational problems of minimization of these functionals (the least
favourable distributions) are the same. Moreover, they demonstrate a remarkable correspondence with
their continuous analogues. Thus, we can conclude that the structure of robust minimax procedures
[1] is rather stable to the deviations from the assumptions of regularity of distribution classes.

2. The Least Favourable Distributions in the Continuous Case

The main stage of the minimax approach to the design of a robust minimax estimate of a location
parameter θ of distribution density f(x, θ) = f(x− θ) belonging to a certain class F is the solution of
the variational problem of the minimization of the Fisher information [1]

f∗ = arg min
f∈F

I(f), I(f) =
∫ ∞

−∞
(f

′
(x)/f(x))2f(x) dx. (1)

For all considered classes of distributions F , the following conditions are common:

f(x) ≥ 0, f(−x) = f(x),
∫ ∞

−∞
f(x)dx = 1. (2)

Depending on the additional restrictions put upon the class F , different forms of the density f∗

may result.
Consider the following basic classes of distributions in robust estimation:
• the class of nonsingular densities

F1 =
{

f : f(0) ≥ 1
2a

> 0
}
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with the Laplace least favourable density

f∗1 (x) =
1
2a

exp(−|x|/a);

• the class of ε - contaminated distributions

F2 = {f : f(x) ≥ (1− ε)p(x), 0 < ε < 1}

with the least favourable density having the exponential ”tails”

f∗2 (x) =

{
(1− ε)p(x), | x |≤ ∆,
Af∗1 (Bx), | x |> ∆,

where p(x) is a given density; ε is a parameter characterising the degree of apriori uncertainty;
the constants A,B,∆ are chosen to satisfy the conditions of normalization and the sewing
smoothness at the point x = ∆ ;

• the class of finite distributions

F3 =
{

f :
∫ a

−a
f(x) dx = 1

}

with the following least favourable density

f∗3 (x) =

{
a−1 cos2((πx)/(2a)), | x |≤ a,
0, | x |> a.

The essential characteristic feature of these results presented in [1] is that the least favourable
densities are of the ”exponential” type (the cos-type density f∗3 is too), and it is caused by the
structure of the extremals of the variational problem (1) [3]. Hence, the least favourable exponential
tails imply the maximum likelihood procedures with rejection of outliers [1].

3. The Discrete Analogues of Fisher Information

Consider the class of lattice distributions:

fl(x) =
∑

i

piδ(x− i∆),
∑

i

pi = 1, (3)

where δ(·) is a delta-function of Dirac, ∆ is a step of discretization.
We consider two different cases :
• a location parameter is continuous with θ ∈ R;
• a location parameter is discrete with θ ∈ Z.

In the first case the following result is valid:
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Theorem 1 Under the class of lattice distributions (3) with a continuous parameter θ the variational
problem (1) is equivalent to the following variational problem

∑
(
√

pi+1 −√pi)
2 → min . (4)

The proofs are carried out into Appendix.

In the second case with a discrete location parameter θ the following analogue of the Rao-Cramer
inequalty is valid:

Theorem 2 Let x1, ..., xn be i.i.d.r.v. with the distribution density f(x − θ) (3) and pi > 0, i ∈ Z;
x1, ..., xn, θ ∈ Z;
Let θ̂n = θ̂n(x1, ..., xn) be a discrete unbiased estimate of a discrete location parameter:

θ̂n ∈ Z, Eθ̂n = θ.

Then the following inequality holds for the variance of this estimate:

Dθ̂n ≥ 1(
∑
i∈Z

(pi−1−pi)2

pi
+ 1

)n

− 1
. (5)

The essential feature of the obtained result is that, in the discrete case, the lower boundary of
the estimate’s variance decreases exponentially with n →∞ providing the corresponding efficiency of
estimation much greater than in the continuous case.

Corollary 1 Under the class of lattice distributions (3) with a discrete parameter θ, the variational
problem (1) is equivalent to the following variational problem

∑

i∈Z

p2
i−1

pi
→ min . (6)

4. The Discrete Least Favourable Distributions

In this section, we consider the discrete analogues of the least favourable distributions for the
continuous classes F1,F2 and F3 enlisted in Section 2.

Let P1 be a class of lattice symmetric nonsingular distributions

P1 =
{
pi, i ∈ Z : pi > 0, p0 ≥ γ0 > 0, p−i = pi,

∑
pi = 1

}
.

4



Theorem 3 Under the class of lattice distributions P1, the solution of the variational problem (4) is
of the form:

p∗−i = p∗i = αi γ0, α =
1− γ0

1 + γ0
, i = 0, 1, ... . (7)

Theorem 4 Under the class of lattice distributions P1, the solution of the variational problem (6) is
the same as in Theorem 3.

The least favourable lattice distribution f∗l1 (3) with the geometric progression of p∗i is the discrete
analogue of the least favourable Laplace density f∗1 for the continuous distribution class F1.

Consider the discrete analogue of the class of ε - contaminated distributions F2 with the restrictions
upon the values of pi in the central zone of a distribution:

P2 =
{
pi, i ∈ Z : pi > 0, p−i = pi ≥ γi > 0, i = 0, 1, ..., k;

∑
pi = 1

}
.

Theorem 5 Under the class of lattice distributions P2 with the additional resrictions put upon the
given values of γi

γ
1/2
i − γ

1/2
i−1 ≤

(1− α1/2)2

2α1/2

i−1∑

j=0

γ
1/2
j ,

the solution of the variational problem (4) is of the form:

p∗−i = p∗i =

{
γi, i = 0, 1, ..., s∗, s∗ ≤ k,
αi−s∗γs∗ , i > s∗,

(8)

where

α = (1− γ0 − 2
s∗∑

i=0

γi)/(1− γ0 − 2
s∗∑

i=0

γi + 2γs∗) ;

the sewing number s∗ is determined by the maximum value of s satisfying the following restrictions:

2(γs−1γs)1/2 +

(
1− γ0 − 2

s−1∑

i=0

γi

)1/2



(
1− γ0 − 2

s∑

i=0

γi

)1/2

−
(

1− γ0 − 2
s−2∑

i=0

γi

)1/2

 > 0.

The connection of this result with the Huber’s least favourable density f∗2 is obvious.

Finally, consider the discrete analogue of the class of finite distributions F3 :

P3 =
{
pi, i ∈ Z : pi ≥ 0, p−i = pi > 0, i = 0, 1, ..., n; pi = 0, i > n;

∑
pi = 1

}
.
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Theorem 6 Under the class of lattice distributions P3 the solution of the variational problem (4) is
of the form:

p∗−i = p∗i =
1

n + 1
cos2

(
iπ

2(n + 1)

)
, i = 0, ..., n. (9)

The results of Theorems 3, 4, 5 and 6 show the stability of robust minimax solutions under the
violations of regularity conditions of distribution classes caused by different types of transitions from
the continuous to the discrete case.

Appendix

Proof of Theorem 1. In the variational problem (1), the condition of nonnegativeness of a density
f ≥ 0 is accounted with the following change of variables f = g2:

I(g) =
∫ ∞

−∞
(g
′
(x))2 dx → min

g
,

∫ ∞

−∞
g2(x) dx = 1. (10)

Consider the δ - sequence approximation of the formula (3) with ∆ = 1:

fh(x) = g2
h(x), gh(x) =

∑

i

p
1/2
i

2πh2
exp

{
−(x− i)2

4h2

}
.

In this case, the functional (10) and the norming condition are written:

Ih =
1
h2
− 1

4h4

∑

i

∑

j

√
pi

√
pj(i− j)2 exp

{
−(i− j)2

8h2

}
,

∑

i

∑

j

√
pi

√
pj exp

{
−(i− j)2

8h2

}
= 1.

The main part of the functional Ih with h → 0 is −∑√
p

i

√
p

i+1
. Taking into account the norming

condition for pi, we get the statement of Theorem 1.

Proof of Theorem 2. Consider the likelihood

L(x1, ..., xn|θ) = px1−θ · · · pxn−θ.

The norming and unbiasedness conditions are in this case:
∑

x1,...,xn∈Z

L(x1, ..., xn|θ) = 1, (11)

∑

x1,...,xn∈Z

θ̂n(x1, ..., xn)L(x1, ..., xn|θ) = θ. (12)
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Writing out the unbiasedness condition for the parameter value θ + 1
∑

x1,...,xn∈Z

θ̂n(x1, ..., xn)L(x1, ..., xn|θ + 1) = θ + 1

and substracting the expression (12) from it, we have
∑

x1,...,xn∈Z

θ̂n(x1, ..., xn) [L(x1, ..., xn|θ + 1)− L(x1, ..., xn|θ)] = 1. (13)

Denote θ̂n(x1, ..., xn) = θ̂n and L(x1, ..., xn|θ) = L(θ). Then with the norming condition (11) we get
from (13)

∑

x1,...,xn∈Z

(θ̂n − θ)
[
L(θ + 1)− L(θ)

L(θ)

]
L(θ) = 1. (14)

Finally, the Cauchy-Bunyakovskiy inequality and the formula (14) imply

∑

x1,...,xn∈Z

(θ̂n − θ)2L(θ)
∑

x1,...,xn∈Z

[
L(θ + 1)− L(θ)

L(θ)

]2

L(θ) ≥ 1

and the Rao-Cramer type inequality in the following form

Dθ̂n ≥ 1
∑

x1,...,xn∈Z

[
L(θ+1)−L(θ)

L(θ)

]2
L(θ)

. (15)

The statement of Theorem 2 is directly obtained from the formula (15).

Proof of Theorem 3. Denote λi =
√

p
i
, i ∈ Z. Let the parameter λ0 =

√
p
0
≥ √

γ
0

> 0 be free,
the optimization by it will be done at a final stage of a solution.

The variational problem (4) may be reformulated as the following:

∑

i∈Z

λiλi+1 → max
Λ

, (16)

where Λ = {λi, i ∈ Z}.
In this case, the Lagrange functional is of the form:

2(
√

p0λ1 +
∞∑

i=1

λiλi+1)− µ(p0 + 2
∞∑

i=1

λ2
i − 1) → max

µ,Λ
, (17)

where µ is a Lagrangian multiplier corresponding to the norming condition.
The extremum conditions for the problem (17) are given by the following infinite system of equa-

tions:
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



√
p
0
− 2µλ1 + λ2 = 0,

λ1 − 2µλ2 + λ3 = 0,
. . . . . . . . . ,
λk−1 − 2µλk + λk+1 = 0,
. . . . . . . . . .

(18)

For the solution of the system (18), let introduce a generating function

F (x) =
∞∑

i=0

λi+1x
i, |x| < 1. (19)

We obtain the evident expression for (19) by multiplying the equations (18) by xi (i = 0, 1, ..., ) and
summarizing them:

F (x) =
λ1 −√p

0
x

x2 − 2µx + 1
. (20)

Set λ1 = t
√

p
0

in (20)

F (x) =
t− x

x2 − 2µx + 1
√

p0. (21)

The denominator of (21) expands into the multipliers

x2 − 2µx + 1 = (x− x0)(x− 1/x0), x0 = µ−
√

µ2 − 1,

with x0 = t. Hence, the formula (21) takes the form

F (x) =
t

1− tx

√
p0 = t

√
p0

∞∑

i=0

tixi. (22)

Comparing the series (19) and (22) we get

λi = ti
√

p0, i ∈ N.

The value of t is determined from the norming condition

p0 + 2p0

∞∑

i=1

t2i = 1,

which gives

t =
1− p0

1 + p0
.

The functional (16) depends of the free parameter p0 as following:

2(
√

p0λ1 +
∞∑

i=1

λiλi+1) =
√

1− p2
0.
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With the condition p0 ≥ γ0 > 0, we obtain the optimum solution

p∗0 = arg max
p0≥γ0>0

√
1− p2

0 = γ0.

Denoting α = t2(p∗0) = (1− γ0)/(1 + γ0), we get the statement of Theorem 3.

Remark 1 If the parameter λ0 is not free with the optimization provided by it, then the following
equation is to be added to the system (18): −µλ0 + λ1 = 0. In our case, it is fulfilled as a strict
inequality: −µ

√
γ0 + λ1 < 0.

Proof of Theorem 4. In the symmetric case p−i = pi with the free parameter p0 ≥ γ0 > 0, the
optimization problem (6) is written as:

I = min
p1,...

[ ∞∑

i=0

(
p2

i

pi+1
+

p2
i+1

pi

)
,

∞∑

i=1

pi =
1− p0

2

]
− 1. (23)

Consider the following auxiliary optimization problem:

∞∑

i=0

(
p2

i

pi+1
+

p2
i+1

pi

)
→ min

p1,...
,

∞∑

i=1

pi = b.

Denote the optimum value of a functional in this case as

Φ(p0, b) = min
p1,...

[
p2
0

p1
+

p2
1

p0
+

∞∑

i=1

(
p2

i

pi+1
+

p2
i+1

pi

)
,

∞∑

i=1

pi = b, pi ≥ 0

]

or

min
0≤p1≤b

[
p2
0

p1
+

p2
1

p0
+ min

p2,...

[
p2
1

p2
+

p2
2

p1
+

∞∑

i=2

(
p2

i

pi+1
+

p2
i+1

pi

)
,

∞∑

i=2

pi = b− p1, pi ≥ 0

]]
=

= min
0≤p1≤b

[
p2
0

p1
+

p2
1

p0
+ Φ(p1, b− p1)

]
.

Consider the function:

ψ(y) = min
z1,...

[
y2

z1
+

z2
1

y
+

∞∑

i=1

(
z2
i

zi+1
+

z2
i+1

zi

)
,

∞∑

i=1

zi = 1, zi ≥ 0

]
.

The following equation is valid:

Φ(p0, b) = bψ

(
p0

b

)
.

Hence, we get the recursive Bellman equations:

Φ(p0, b) = min
0≤p1≤b

[
p2
0

p1
+

p2
1

p0
+ Φ(p1, b− p1)

]
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or

bψ

(
p0

b

)
= b min

0≤z≤1

[
p2
0

b2

1
z

+
z2

p0/b
+ (1− z)ψ

(
z

1− z

)]
.

The Bellman function ψ(y) satisfies the following functional equation:

ψ(y) = min
0≤z≤1

[
y2

z
+

z2

y
+ (1− z)ψ

(
z

1− z

)]
. (24)

It can be directly checked that the solution of (24) is

ψ(y) =
1

1 + y
+ (1 + y)2. (25)

Thus, we have

min
0≤z≤1

[
y2

z
+

z2

y
+ (1− z)

[
(1− z) +

1
(1− z)2

]]
= min

0≤z≤1

[
y2

z
+

z2

y
+ (1− z)2 +

1
(1− z)

]
.

Taking a derivative, we get

−y2

z2
+ 2

z

y
− 2(1− z) +

1
(1− z)2

= (z − y(1− z))
[
2
y

+
z + y(1− z)
(1− z)2z2

]
= 0.

The derivative equals zero with z = y/(1 + y), and that implies (25).
It follows from (23) that the Fisher information is of the form:

I =
1− p0

2
ψ

(
2

p0

1− p0

)
− 1 =

4p2
0

1− p2
0

and

min
p0≥γ0>0

I =
4γ2

0

1− γ2
0

with

pi =
(

1− γ0

1 + γ0

)i

γ0,

and this concludes the proof.

Proof of Theorem 5 is based on:
• the solution of the infinite system of equations as (18) with the first equation:

λs∗+1 − 2µλs∗+2 + λs∗+3 = 0;

• the following maximization of a functional (16) with checking the restrictions of the problem

pi ≥ γi > 0, i = 0, 1, ..., k

10



• and the inequalities of a gradient type:

λk − 2µλk+1 + λk+2 < 0 with 0 ≤ k ≤ s∗.

Proof of Theorem 6. In this case, the Lagrange functional is of the form:

2
n−1∑

i=0

λiλi+1 − µ(λ2
0 + 2

n∑

i=1

λ2
i − 1) → max

µ,λ0,...,λn

, (26)

where µ is a Lagrangian multiplier corresponding to the norming condition. The extremum conditions
for the problem (26) are given by the following system of equations:





− µλ0 + λ1 = 0,
λ0 − 2µλ1 + λ2 = 0,
. . . . . . . . . ,
λn−2 − 2µλn−1 + λn = 0,

λn−1 − 2µλn = 0.

(27)

The system (27) gives the recursive equations for the Chebyshev polynomials of the first kind Ti.
Thus, we have:

λ1 = µλ0, λ2 = (2µ2 − 1)λ0, ... , λi = Ti(µ)λ0, i = 0, 1, ..., n.

The account of a norming condition gives the statement of Theorem 6.
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