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1.Introduction. The exponential distribution is a simplest model for the discription of time to
failure in the reliability theory. The effective maximum likelihood estimate of the failure intensity
parameter λ is the inverse value of the sample mean of the time to failure data observations:
λ̂ = 1/T , T =

∑
ti . The linear structure of the sample mean type estimators results in their marked

unstability to the occasional appearance of rare outliers in data. From the statistical point of view this
unstability causes a sharp loss of the estimators’ efficiency with small deviations from the accepted
stochastic model of data distribution which in turn may lead to great errors in designed reliability
characteristics.

In mathematical statistics, robust methods are used in order to provide the stability of statistical
inference under the uncertainty of distribution models [ 1 ]. The main results in robust statistics
refer to the normal and its neighbourhood models of data distributions. The goal of this article is
to use robust minimax approach to one of the traditional for the reliability theory models of data
distributions.

2. Problem statement. Consider a sample t1, ..., tn of i. i. d. random variables from the
mixture model of distributions [ 1 ]

F = {f : f (t,T) = (1− ε)T−1 exp(−t/T) + ε h(t), 0 ≤ ε < 1}, (1)

where ε is a contamination parameter characterizing the level of uncertainty of the accepted expo-
nential model; h(t) is an arbitrary p. d. f.; T is a scale parameter under estimation.

Following Huber [ 1 ], consider M - estimates of a scale parameter T

n∑

i=1

χ

(
ti
T̂n

)
= 0 , (2)

where χ is a defining function for the class (2).
In the important particular case with the known p. d. f. T−1f(t/T ) the following choice of the

defining function

χ(z) = −z
f ′(z)
f (z)

− 1 (3)

gives the maximum likelihood estimates as the solutions of the equation (2).
Under some definite restrictions of regularity put on the class of p. d. f. F ( 1 ) and on the

defining functions χ(z) ( later they will be formulated ), and with the condition
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∫ ∞

0
χ(z)f(z) dz = 0 (4)

the estimates T̂n are consistent, asymptotically normal and asymptotically efficient, and possess the
minimax property with respect to the asymptotic variance DT̂n = V (χ, f)

V(χ∗, f) ≤ V(χ∗, f∗) ≤ V(χ, f∗), (5)

where f∗ is a least favorable p. d. f., minimizing the Fisher information I(f) for a scale parameter
on the class (1)

f∗ = arg min I(f), I(f) =
∫ ∞

0
z2

(
(f ′(z)
f(z)

)2

f(z) dz− 1; (6)

χ∗(z) is determined from the equation (3) [ 1 ].
The condition (5) defines the saddle-point (χ∗, f∗) of the asymptotic variance V (χ, f) . The left

part of the inequality is of a practical importance: the choice of the estimate (2) with the defining
function χ∗(z) provides the guaranteed level of the estimate’s accuracy for all p. d. f. belonging to
the class (1):

V(χ∗, f) ≤ V(χ∗, f∗) =
1

n I(f∗)
(7)

3. The least favorable density f∗ . The problem of the design of the minimax estimate T̂n

comes formally to the variational problem (6) with the additional conditions of nonnegativeness and
norming

f∗ = arg min I(f), (8)

∫ ∞

0
f(z) dz = 1, (9)

f(z) ≥ (1− ε) e−z, (10)

where T = 1 is taken for convinience. The restriction of the class (1) is written in the form (10),
respectively it includes the nonnegativeness condition.

Theorem. The solution of the problem (8) with the restrictions (9) and (10) for the class of
continuously- differentiable on (0,∞) p. d. f. f(z) is of the following form:

with 0 ≤ ε < ε0 = (1 + e2)−1

f∗(z) =

{
(1− ε) e−z, with 0 ≤ z < ∆,
C zk, with z ≥ ∆,

(11)
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where the constants C, k and ∆ are the functions of the parameter ε

C = (1− ε) e−∆ ∆∆, k = −∆,
e−∆

∆− 1
=

ε

1− ε
; (12)

with ε0 ≤ ε < 1

f∗(z) =





C1z
k1 , with 0 ≤ z < ∆1,

(1− ε) e−z, with ∆1 ≤ z < ∆2,
C2z

k2 , with z ≥ ∆,
(13)

where the constants C1,∆1, k1, C2, ∆2, k2 are determined from the following equations

C1 = (1− ε)e−1+δ(1− δ)1−δ, ∆1 = 1− δ, k1 = −1 + δ,

C2 = (1− ε)e−1−δ(1 + δ1+δ), ∆2 = 1 + δ, k2 = −1− δ, (14)

eδ + e−δ

eδ
=

1
1− ε

.

The proof of the theorem is in the Appendix.
In the formulae (14) the auxiliary parameter δ (0 ≤ δ ≤ 1) is introduced. The expressions for the

Fisher information are of the following form, respectively for the solutions (11) and (13):

I(f∗) = 1− ε∆2, I(f∗) =
2δ

thδ
− δ2. (15)

With the small values of ε the least favourable density f∗ (11) corresponds to the exponential
distribution in the zone 0 ≤ z < ∆ ; in the ”tail” zone it is similar to the one-sided t - distribution.
With the large values of ε the rather whimsical distribution minimizing the Fisher information
appears - its density tends to infinity at z = 0 . The border between these solutions is characterized
by the following values of the parameters: ∆1 = 0, ∆2 = 2, ε = 0.119 . Some numerical results are
represented in Tab. 1.

The values of the distribution function

F ∗(z) =
∫ z

0
f∗(t) dt ,

evaluated at the points of ”gluing” of the extremals C1z
k1 and C2z

k2 with the restriction (1−ε) e−z

are also given in Tab. 1.

4. The structure of the robust minimax estimate. The asymptotically effective estimate
T̂n , evaluated from the equation (2), has the following defining function χ(z)

χ∗(z) = −z
(f∗(z))′

f∗(z)
− 1 =





∆1 − 1, 0 ≤ z < ∆1,
z − 1, ∆1 ≤ z < ∆2,
∆2 − 1, z ≥ ∆2.

(16)
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The formula (16) is valid for the both solutions (11) and (13): the solution (13) comes to the
solution (11) with ∆1 = 0 .

Consider the following notations:

I1 = {i : ti/T̂n < ∆1}, I2 = {i : ti/T̂n ≥ ∆2}, I = {i : ∆1 ≤ ti/T̂n < ∆2}.
The equation (2) is written then as

∑

i∈I1

(∆1 − 1) +
∑

i∈I

(
ti
T̂n

− 1) +
∑

i∈I2

(∆2 − 1) = 0 . (17)

Denoting the numbers of observations belonging to the sets I1, I2 and I respectively as n1, n2

and n− n1 − n2 , we get from (17)

T̂n =
1

n− n1∆1 − n2∆2

∑

i∈I

ti . (18)

The structure of the estimate (18) is similar to the structure of the trimmed mean

T̂n(n1, n2) =
1

n− n1∆1 − n2∆2

n−n2∑

i=n1+1

t(i) , (19)

where t(i) is an i-th order statistic. If the numbers of the trimmed order statistics ( left and right )
are chozen as

n1 = [ F ∗(∆1)n ], n2 = [ (1− F ∗(∆2))n ],

where [·] is an integer part of a number then the estimates T̂n obtained from the equation ( 17 ) and
T̂n(n1, n2) are asyptotically equivalent. So, the simple estimate T̂n(n1, n2) (19) is recommended for
the practical use.

Notice that in the limit case with ε → 0 , the robust minimax estimate defined by the numerical
solution of the equation (17) ( or by the formula (19) ) is the sample median

T̂n = med ti =

{
t(h+1), n = 2h + 1,

(t(h) + t(h+1))/2, n = 2h.

With ε = 0 the robust minimax estimate T̂n is the sample mean T - the effective estimate of
a scale parameter of the exponential distribution.

5. Conclusions. The structure of the least favorable density and the corresponding structure of
the defining function show that with the small values of the contamination parameter ε the optimum
algorithm provides the one-side sample trimming with the following averaging of the remaining sample
elements. With the large values of ε the two-side trimming of the least and the largest sample elements
is realized.

The practical recommendations for the use of the designed robust estimator ( 19 ) are defined
by the restrictions of the contamination model (1) and within the frames of this model by the value
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ε ∆1 ∆2 F ∗(∆1) F ∗(∆2) 1/I(f∗)
0 0 ∞ 0 1 1

0.001 0 5.42 0 0.995 1.03
0.002 0 4.86 0 0.990 1.05
0.005 0 4.16 0 0.979 1.09
0.01 0 3.63 0 0.964 1.15
0.02 0 3.15 0 0.938 1.25
0.05 0 2.52 0 0.874 1.47
0.1 0 2.11 0 0.791 1.80

0.119 0 2 0 0.762 1.91
0.15 0.110 1.890 0.094 0.727 2.12
0.20 0.225 1.775 0.185 0.679 2.47
0.25 0.313 1.687 0.250 0.659 2.88
0.30 0.384 1.616 0.297 0.635 3.39
0.40 0.503 1.497 0.367 0.595 4.81
0.50 0.603 1.397 0.416 0.565 7.03
0.65 0.733 1.267 0.462 0.532 14.7
0.80 0.851 1.149 0.488 0.511 45.9
1 1 1 0.5 0.5 ∞

Table 1: ε - contaminated exponential distributions minimizing the Fisher information for a scale
parameter

of the contamination parameter ε . The results of investigations in various areas of technical and
engineering applications of statistical methods show the good fit of the contamination model with data
[ 1 ]. The estimated and expected values of ε as usual are in the interval (0.001, 0.1) . If there is no
a prior information about the value of ε then one may put it equal to 0.1. In this case according to
the formula (19) and to the results represented in Tab.1 the estimator is the one-sided trimmed mean
at the level 21 %.

The rejection of the 21 % of the largest time to failure values and the averaging of the remain-
ing gives perhaps not very optimistic but the guaranteed reliable value of the mean time to failure
characteristic.

APPENDIX

First we obtain the structure of the solutions (11) and (13), and then prove their optimality.
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The variational problem (8) with the restriction (9) is reformulated by the use of the following
change of variables f(z) = g2(z) ≥ 0

J(g) =
∫ ∞

0
z2g′(z)2 dz → min ,

∫ ∞

0
g2(z) dz = 1. (A1)

The Lagrange functional for the problem (A1) is

L(g, λ) =
∫ ∞

0
z2g′(z)2 dz + λ(

∫ ∞

0
g2(z) dz − 1).

The Euler equation for it is of the form

z2g′′(z) + 2zg′(z)− λg(z) = 0,

and respectively its solutions are the extremals of the problem (A1)

f1(z) = g2
1(z) = C1z

k1 , f2(z) = g2
2(z) = C2z

k2 , k1 + k2 = −2 (A2)

The optimum solution of the original problem (8) with the restictions (9) and (10) is the smooth
”gluing” of the free extremals (A2) and the restriction (1− ε) e−z (10) in the form of (11) and (13).
The parameters of ”gluing” C1, ∆1, k1, C2, ∆2, k2 are determined from the conditions of norming,
continuity and differentiability of the solution at the points z = ∆1 and z = ∆2 what gives the
equations (12) and (14).

It is known [ 1 ], that the density f∗ belonging to the class of convex densities F (1) minimizes
the Fisher information iff

[
d

dt
I(ft)]t=0 ≥ 0 , (A3)

where ft = (1− t)f∗ + tf , and f is an arbitrary p. d. f. with I(f) < ∞ .
The inequality (A3) is written as

∫ ∞

0
(2χ∗′ − χ∗2)(f − f∗) dt ≥ 0 , (A4)

where χ∗(z) is the defining function (16).
The direct evaluation of the left part of (A4) gives

f(t)− f∗(t) = f(t)− (1− ε) e−t ≥ 0

so the inequality (A3) is equivalent to the restriction (10) of the variational problem, and this remark
finishes the proof.
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