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ABSTRACT 
 

 We know that computers store numbers not with infinite precision but rather in 

some approximation that can be packed into a fixed number of bits or bytes, because of 

which we are loosing some information. Our aim is to study the effect of loosing this 

information on the response of digital filters. This effect we called Finite word length 

effect.  

 

 There are number of effects of finite word length like overflow error in addition, 

round off error in multiplication, effects of coefficient quantization, limit cycle, etc. This 

paper talks about effects on response of IIR filters for the case of coefficient quantization.  

 

 Section 1 gives brief introduction to number system and shows why finite word 

length effect occurs. Section 2 studies same phenomena from the view point of filters it 

also includes results we have obtained.  

 

 We have studied effect of finite word length on the response of Butterworth low 

pass IIR filter. Also we have studied effect of finite word length on the response of 4th 

order IIR filter for direct form and parallel form realization. On the basis of results we 

have concluded well known result that parallel form realization is better than direct form 

realization. 
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1. INTRODUCTION  

 

Computers store numbers not with infinite precision but rather in some 

approximation that can be packed into a fixed number of bits or bytes. Almost all 

computers allow the programmer a choice among several different such representations 

or data types. Data types can differ in the number of bits utilized, but also in the more 

fundamental respect of whether the stored number is represented in fixed-point or 

floating-point format. 

 

1.1 Fixed point representation 

  

 A number in fixed point representation is exact. Arithmetic between numbers in 

fixed point representation is also exact, with the conditions that (i) the answer is not 

outside the range of integers that can be represented, and (ii) that division is interpreted as 

producing an integer result, throwing away any integer remainder. There are many 

formats to represent fixed point numbers like, Sign-magnitude, One’s compliment and 

Two’s compliment, etc. 

 

 A  Real number can be represented with infinite precision in two’s complement 

form as  
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Where, Xm is an arbitrary scale factor and bi’s are either 0 or 1. The quantity b0 is referred 

to as sign bit. If b0 = 0, then 0 ≤ x ≤ Xm and if b0 = 1, then Xm ≤ x < 0. 

  

An arbitrary real number x would require an infinite number of bits for its exact 

binary representation. If we use only a finite number of bits (B+1), then the 

representation of above equation must be modified to  

∑
=

− =+−==
B

i
Bm

i
imB xXzbbXxQx

1
0 ˆ)(][ˆ  

 3



The resulting binary representation is quantized, so that the smallest difference 

between numbers is  

∆ = Xm2-B

 The operation of quantizing number to (B + 1) bits can be implemented by 

rounding or by truncation, but in either case quantization is a nonlinear memory less 

operation. Figure 1.1 shows input - output relation for two’s complement rounding and 

truncation, respectively, for the case of B = 2. 

 

 
Figure 1.1 Nonlinear Relationship representing two’s complement (a) rounding and 

(b) truncation for B = 2 [1] 

 

In considering the effects of quantization, we often define quantization error as 

e=QB[x] – x. For the case of two’s complement rounding, -∆/2 < e ≤ ∆/2, and for two’s 

complement truncation, -∆ < e ≤ 0(Figure 1.2). 

 

 4



 
Figure 1.2 probability density function for quantization errors (a) Rounding (b) 

Truncation. [1]

If a number is larger than Xm, a situation called overflow occurs. Figure 1.3 (a) 

shows two’s complement quantizer, including the effect of regular two’s complement 

arithmetic overflow. An alternative, which is called saturation overflow or clipping, is 

shown in figure 1.3 (b). This method of handling overflow is generally implemented for 

A/D conversion, and it sometimes is implemented in specialized DSP microprocessor for 

addition of two’s complement numbers. With saturation overflow, the size of the error 

does not increases abruptly when overflow occurs; however disadvantage of such 

methods is that it voids  the property of two’s complement-arithmetic that ‘If several 

two’s-complement numbers whose sum would not overflow are added, then the result of 

two’s-complement accumulation of these numbers is correct even though intermediate 

sums might overflow”. 
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Figure 1.3 Two’s complement rounding (a) Natural Overflow (b) Saturation. [1] 

 

1.2 Floating point representation 

 

In floating-point representation (IEEE 754 standard), a number is represented 

internally by a sign bit s, an exact integer exponent E, and an exact positive integer 

mantissa M. Taken together these represent the number  

fx Es .121 127 ∗∗−= −  

where E is eight bit exponent (0 < E <255), s is sign bit ( 0 for positive and 1 for negative 

) and f is 23 bit fraction )
2

120( 23

23 −
<< f . Floating point representations provide a 

convenient means for maintaining wide dynamic range. 
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2. FINITE WORD LENGTH EFFECTS 

 

Numerical quantization affects the implementation of linear time-invariant 

discrete time system in several ways. Below we have given brief overview of some of 

them. 

 

• Parameter quantization in digital filters 

 

In the realization of FIR and IIR filters hardware or in software on a general 

purpose computer, the accuracy with which filter coefficients can be specified is limited 

by word length of the computer. Since the coefficients used in implementing a given 

filter are not exact, the poles and zeros of system function will be different from desired 

poles and zeros. Consequently, we obtain a filter having a frequency response that is 

different from the frequency response of the filter with unquantized coefficients. Also it 

sometimes affects stability of filter. 

 

• Round off noise in multiplication 

 

As already explained when a signal is sampled or a calculation in the computer is 

performed, the results must be placed in a register or memory location of fixed bit length. 

Rounding the value to the required size introduces an error in the sampling or calculation 

equal to the value of the lost bits, creating a nonlinear effect.  Round off error is a 

characteristic of computer hardware.  

 

• Sampling/Digitization Error 

 

There is another, different, kind of error that is a characteristic of the program or 

algorithm used, independent of the hardware on which the program is executed. Many 

numerical algorithms compute “discrete” approximations to some desired “continuous” 

quantity. For example, an integral is evaluated numerically by computing a function at a 

discrete set of points, rather than at “every” point. Or, a function may be evaluated by 
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summing a finite number of leading terms in its infinite series, rather than all infinity 

terms. In cases like this, there is an adjustable parameter, e.g., the number of points or of 

terms, such that the “true” answer is obtained only when that parameter goes to infinity. 

Any practical calculation is done with a finite, but sufficiently large, choice of that 

parameter. The difference between the true answer and the answer obtained in a practical 

calculation is called the truncation error. Truncation error would persist even on a 

hypothetical, “perfect” computer that had an infinitely accurate representation and no 

round off error. 

 

• Overflow in addition 

 

Overflow in addition of two or more binary numbers occurs when the sum 

exceeds the word size available in the digital implementation of the system. 

 

•  Limit cycles 

 

Since quantization inherent in the finite precision arithmetic operations render the 

system nonlinear, in recursive system these nonlinearities often cause periodic oscillation 

to occur in the output, even when input sequence is zero or some nonzero value. Such an 

oscillation in recursive systems are called limit cycles. 

 

As explained in above paragraphs finite word length affects LTI system in many 

ways. We have concentrated on effects due to coefficient quantization on filter response 

and in that also on IIR filters. Later we have given brief overview of effects of coefficient 

quantization in FIR system for the sack of completeness. 

 

2.1 Effects of coefficient quantization in IIR system 

 

When the parameters of a rational system function or corresponding difference 

equation are quantized, the poles and zeros of the system move to the new position in the 

z-plane, equivalently, the frequency response is perturbed from the original value. 
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The system function representation corresponding to both direct forms is  
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The sets of coefficients {ak} and {bk} are ideal infinite-precision coefficients. If 

we quantize these coefficients, we obtain the system function 
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where âk = ak + ∆ak and bk = bk + ∆bk are the quantized coefficients that differ from 

original coefficients by quantization by quantization error ∆ak and ∆bk. 

 

Kaiser showed that if poles (or zeros) are tightly clustered it is possible that small 

error in denominator (numerator) coefficient can cause large shifts of the poles and 

(zeros) for direct form structure. Thus, if the poles (zeros) are tightly clustered, 

corresponding narrow band pass filter or narrow-bandwidth low pass filter, then we can 

express poles of the direct-form structure to be quite sensitive to quantization error in the 

coefficients. Kaiser analysis also showed that the larger the number of clustered poles 

(zeros), the greater is the sensitivity to quantization error.  

 

The cascade and parallel form system function is consists of second order direct-

form systems. However, in both cases each pair of complex conjugate poles pair is 

realized independently of all other poles. Thus, the error in a particular pole pair is 

independent of its distance from the other poles of system function. 

 

For the cascade form same arguments holds for the zeros, since they are realized 

as independent second order factors. Thus cascade form is generally much less sensitive 

to coefficient quantization than the equivalent direct-form realization. 
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The zeros of the parallel form structure are realized implicitly through combining 

the quantized second order sections. Thus, particular zero is affected by quantization 

error in the numerator and denominator coefficients of all the second order sections. 

However for most practical filter the parallel form is also found to be much less sensitive 

to coefficient quantization than the equivalent direct-form realization. 
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In summery, because of the sensitivity to finite word length effect, the direct 

forms are rarely used for implementing anything other than second - order structures.  

Cascade and parallel structures are more often used. 

 

2.1.1 What we did 

 

 Before jumping on to designing of filters and seeing finite word length effect let 

us explain what we have did. Here we are not going to explain designing of filters or any 

other filter designing fundamentals, one can refer any good book available for same[1][2]. 

But one should ask how we did quantization, so let us explain how we did quantization 

and give some examples which show capability and limitation of our routine.  

 

Our quantization routine is very simple and it basically performs following steps: 

1) Take 32 bit floating point number between ranges 0 to 2. 

2) Multiply it with 231 – 1 (if your numbers are between 0 to 1 then multiply it with 

232 – 1)  to get equivalent integer number stores it in 32 bit format  

3) Shift above number required number of bits as per requirement to obtain N bits 

representation of corresponding number (In a way make zero least significant       

32 – N bits. So we have number which is still in 32 bits but least significant bits 

removed). 

4) Convert above number back into corresponding floating point number.  
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Quantization routine and examples 

 

 Below we have given out C program routine which takes as input floating point 

number which we want to quantize and desire bit representation and gives as output 

corresponding floating point number in desire bit representation. 

 
float quant(float cof,int n) 
/*===================================================================== 
 
Routine that generates decimal equivalent of the binary representation 
of a decimal number with p bits for magnitude part obtained by rounding 
 
cof – floating point number in IEEE 754 standard ( No between 0 – 1 ) 
n   - Bit representation I want….any number between 0 - 32  
 
=====================================================================*/ 
{ 
   unsigned long int icof=0,m; 
   int sign = 1; 
   float fract,quan; 
 
   if(cof<0)   //loop that stores sign of number 
   { 
      sign = -1; 
      cof = -1 * cof;  //if number is negative make it positive 
   } 
 

icof = ceil((pow(2,31) – 1) * cof);  // Convert floating point no. 
                                 // between 0 – 1 into corresponding  
      // 32 bit integer representation 
      // - kind of scaling    

      // ceil() is a function in C which 
// rounds of the numbers.  

 
   m = 32 - n;    // m is the number position by 

// which I need shift number to get 
// n bit representation 

   icof = icof >> m; 
   icof = icof << m; 
 

fract = (float)icof/(pow(2,31) – 1);   // Convert integer number   
       // back into floating point 

 
   quan = sign * fract;   // put back sign 
    
 
   return(quan); 
} 
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Examples: 
 

Before starting let’s see how much 1 bit represents (Note: below examples are 
considering numbers between range 0 to 1). : 

 

10-685e431469961870807973752.32830643
12

1
32 =

−
   

 
Input floating 
point number 

Number of bit 
representation 

Obtained floating 
point number 

Comment 

32 bits -1.0000000000  

30 bits -1.0000000000  

24 bits -0.9999999404  

16 bits -0.9999847412  

-0.9999999999 

8 bits -0.9960937500  

32 bits 0.4919821918 We are not using 
full dynamic range 

30 bits 0.4919821918  

24 bits 0.4919821620  

16 bits 0.4919738770  

0.4919822006 

8 bits 0.4882812500  

0.0000000001 32 bits 0.0000000002 Here it fails 

 

2.1.2 Designing of Butterworth low pass filter using bilinear transformation 

 

Let us start with fundamental steps needed to design Butterworth low pass filter 

using bilinear transformation. Description is very brief just to give basic idea: 

 

1) Determination of the analog filter’s edge frequencies. Use below equation 

2
tan2 ω

T
=Ω  

where is Analog frequency, T is sampling time period and Ω ω  is digital     

frequency. 
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2) Determination of order of the filter 
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      Where N is filter order, 1δ  and 2δ  is Pass band and Stop band ripple respectively. 1Ω   

      and  are filter edge frequencies.  2Ω

3) Determination of -3 dB cutoff frequency 
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4) The transfer function of Butterworth filter is usually written in the factored as given  

      below  

∏
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            Where bk and ck are given by 
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Filter parameters: 

Pass band ripple: 0.99 

Stop band ripple: 0.001 

Pass band frequency: 1.2566 

Stop band frequency: 1.885 

Filter Order: 14 (so total seven 2nd order filters are there) 

Cutoff Frequency: 1.672363 

Filter coefficient: 

 Numerator coefficients are BB1-7 =  2
ckB Ω

            Denominator coefficients are bb1-7 = ckb Ω  and cc1-7 =  2
ckc Ω

Note: In above table don’t get confused by values of coefficients. It may seem they are going beyond range 0-2 but 

actually it’s because of multiplication with cΩ  term. See the equation of H(s) 

Coefficie
nt 

Original 
Value 

Quantized 
value – 24 

bits 

Quantized 
value – 16 

bits 

Quantized 
value – 12 

bits 

Quantized 
value – 8 bits 

Quantized 
value – 5 bits 

BB1-7 2.7967977483 2.7967977483 2.7966968725 2.7951660156 2.7951660156 2.6406250000 

bb1 0.3744903875 0.3744902380 0.3744477993 0.3738861084 0.3657226563 0.3046875000 

cc1-7 2.7967977483 2.7967977483 2.7966968725 2.7951660156 2.7951660156 2.6406250000 

bb2 1.1046926835 1.1046926835 1.1046643881 1.1036987305 1.0971679688 1.0156250000 

bb3 1.7795010259 1.7795010259 1.7794563742 1.7788162231 1.7763671875 1.7265625000 

bb4 2.3650778886 2.3650778886 2.3649871908 2.3641357422 2.3641357422 2.2343750000 

bb5 2.8320599592 2.8320599592 2.8319624346 2.8310852051 2.8212890625 2.7421875000 

bb6 3.1570306704 3.1570306704 3.1569567900 3.1559906006 3.1478271484 3.0468750000 

bb7 3.3236948360 3.3236948360 3.3235878469 3.3225250244 3.3176269531 3.1484375000 

 

NOTE: In below figures red line is quantized response. 
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 Fig 2.1 Response when coefficient quantized to 32 bits 

 

 
     Fig 2.2 Response when coefficient quantized to 24 bits 
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Fig 2.3 Response when coefficient quantized to 16 bits 

 

 
Fig 2.4 Response when coefficient quantized to 12 bits 
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Fig 2.5 Response when coefficient quantized to 8 bits 

 

 
Fig 2.6 Response when coefficient quantized to 5 bits 
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2.1.3 Designing of 4th order low pass filter and to show response of filter while direct 

realization and parallel form realization 

 

 Direct form realization 

 

                                   0.323z3 + 0.4218z2 + 0.04278  

      H(z)    =    -----------------------------------------------------------  

z4 – 0.5172z3 + 0.40619z2 – 0.1233z + 0.016533 

 

 Parallel form realization 

 

                         -1.4509z2 + 0.2321z            1.4509z2 + 0.1848z 

      H(z)     =    ---------------------------  +  ---------------------------- 

z2 – 0.1310z + 0.3006         z2 – 0.3862z + 0.055  
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Filter Coefficient Direct Form Realization: 

 

 

Coeffi
cients 

Original 
Value 

Quantized value 
– 24 bits 

Quantized value 
– 12 bits 

Quantized 
value – 8 bits 

Quantized value 
– 6 bits 

Quantized value 
– 4 bits 

b0 0.04278 0.0427799225 0.0424804688 0.0390625000 0.0312500000 0.0000000000 

b1 0.4218 0.4217998981 0.4213867188 0.4140625000 0.4062500000 0.3750000000 

b2 0.323 0.3229999542 0.3227539063 0.3203125000 0.3125000000 0.2500000000 

a0 0.016533 0.0165328979 0.0161132813 0.0156250000 0.0000000000 0.0000000000 

a1 -0.1233 -0.1232999563 -0.1230468750 -0.1171875000 -0.0937500000 0.0000000000 

a2 0.40619 0.4061899185 0.4057617188 0.3984375000 0.3750000000 0.3750000000 

a3 0.5172 -0.5171999931 -0.5170898438 -0.5156250000 -0.5000000000 -0.5000000000 

a4 1.0 1.0000000000 1.0000000000 1.0000000000 1.0000000000 1.0000000000 

Filter Coefficient parallel Form Realization: 

 

Coeffici
ents 

Original 
Value 

Quantized 
value – 24 bits 

Quantized value 
– 12 bits 

Quantized 
value – 8 bits 

Quantized value 
– 6 bits 

Quantized value 
– 4 bits 

b10 -0.2321 -0.2320998907 -0.2319335938 -0.2265625000 -0.2187500000 -0.1250000000 

b11 -1.4509 -1.4508999586 -1.4506835938 -1.4453125000 -1.4375000000 -1.3750000000 

b20 0.1848 
 

0.1847999096
  

 
0.1845703125

  
0.1796875000 0.1562500000 0.1250000000 

b21 1.4509 1.4508999586 1.4506835938 1.4453125000 1.4375000000 1.3750000000 

a10 0.3006 0.3005999327 0.3002929688 0.2968750000 0.2812500000 0.2500000000 

a11 -0.1310 -0.1232999563 -0.1308593750 -0.1250000000 -0.1250000000 -0.1250000000 

a12 1.0 1.0000000000 1.0000000000 1.0000000000 1.0000000000 1.0000000000 

a20 0.055 0.0549999475 0.0546875000 0.0546875000 0.0312500000 0.0000000000 

a21 -0.3862 -0.3861999512 -0.3857421875 -0.3828125000 -0.3750000000 -0.3750000000 

a22 1.0 1.0000000000 1.0000000000 1.0000000000 1.0000000000 1.0000000000 
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Fig 2.7 Response when coefficient quantized to 24 bits (Direct form) 

 

 
Fig 2.8 Response when coefficient quantized to 24 bits (Parallel form) 
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Fig 2.9 Response when coefficient quantized to 12 bits (Direct form) 

 

 
Fig 2.10 Response when coefficient quantized to 12 bits (Parallel form) 
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Fig 2.11 Response when coefficient quantized to 8 bits (Direct form) 

 

 
Fig 2.12 Response when coefficient quantized to 8 bits (Parallel form) 
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Fig 2.13 Response when coefficient quantized to 6 bits (Direct form) 

 

 
Fig 2.14 Response when coefficient quantized to 6 bits (Parallel form) 
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Fig 2.15 Response when coefficient quantized to 4 bits (Direct form) 

 

 
Fig 2.16 Response when coefficient quantized to 4 bits (Parallel form) 
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2.2 Effects of coefficient quantization in FIR system 

 

For FIR system, we have to concerned with locations of zeros only, since for 

causal FIR system all poles are at z = 0. Although we have just seen that direct form 

structure should be avoided for high order IIR system, it turns out that direct form 

structure is commonly used for FIR systems. To understand why this is so, we express 

the system function for a direct form FIR system in the form 
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Now suppose that the coefficients {h[n]} are quantized, resulting in a new set of 

coefficients {ĥ[n] = h[n] + ∆h[n]}. The system function for quantized system is then 
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Thus, system function of the quantized system is linearly related to the quantization 

errors in the impulse response coefficients. 

 

If the zeros of H (z) are tightly clustered, then their locations will be highly 

sensitive to quantization errors in the impulse response coefficients. The reason that 

direct form FIR system is widely used is that for most linear phase FIR filters, the zeros 

are more or less uniformly spread in the z-plane. 

 

Designing of FIR low pass filter using Parks-McClellan design technique 

 

Pass band ripple: 0.99 

Stop band ripple: 0.001 

Pass band frequency: 1.2566 

Stop band frequency: 1.885 
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Fig 2.17 FIR quantization example (a) Log magnitude for unquantized case; 

Approximation error for (b) unquantized case (c) 16 bit quantization [1]

 
Fig 2.17 (continued) Approximation error for (d) 14 bit quantization (e) 13 bit 

quantization (f) 8 bit quantization [1]
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CONCLUSION 

 

Finite word length is inherent problem which occur due to finite bit representation 

of number in digital representation. Effect of finite word lengths are Overflow in 

addition, Limit cycles and Round off noise in multiplication. We have seen effect of 

coefficient quantization on filter response. Also we have conclude that coupled form and 

parallel form structure of filter realization are more secure against finite word length 

effect as compare to direct form realization. 

  

 Although due to advanced in technology we have now available machine with 64 

bit representation (which is almost infinite precision), but it’s still needs to be consider 

due to rise of embedded technology and competitive market which needs low cost 

product. 
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