

FINITE WORD LENGTH EFFECTS IN DSP

PREPARED BY GUIDED BY

Snehal Gor Dr. Srikanth T.

ABSTRACT

 We know that computers store numbers not with infinite precision but rather in

some approximation that can be packed into a fixed number of bits or bytes, because of

which we are loosing some information. Our aim is to study the effect of loosing this

information on the response of digital filters. This effect we called Finite word length

effect.

 There are number of effects of finite word length like overflow error in addition,

round off error in multiplication, effects of coefficient quantization, limit cycle, etc. This

paper talks about effects on response of IIR filters for the case of coefficient quantization.

 Section 1 gives brief introduction to number system and shows why finite word

length effect occurs. Section 2 studies same phenomena from the view point of filters it

also includes results we have obtained.

 We have studied effect of finite word length on the response of Butterworth low

pass IIR filter. Also we have studied effect of finite word length on the response of 4th

order IIR filter for direct form and parallel form realization. On the basis of results we

have concluded well known result that parallel form realization is better than direct form

realization.

 2

1. INTRODUCTION

Computers store numbers not with infinite precision but rather in some

approximation that can be packed into a fixed number of bits or bytes. Almost all

computers allow the programmer a choice among several different such representations

or data types. Data types can differ in the number of bits utilized, but also in the more

fundamental respect of whether the stored number is represented in fixed-point or

floating-point format.

1.1 Fixed point representation

 A number in fixed point representation is exact. Arithmetic between numbers in

fixed point representation is also exact, with the conditions that (i) the answer is not

outside the range of integers that can be represented, and (ii) that division is interpreted as

producing an integer result, throwing away any integer remainder. There are many

formats to represent fixed point numbers like, Sign-magnitude, One’s compliment and

Two’s compliment, etc.

 A Real number can be represented with infinite precision in two’s complement

form as

∑
∞

=

−+−=
1

0)(
i

i
im zbbXx

Where, Xm is an arbitrary scale factor and bi’s are either 0 or 1. The quantity b0 is referred

to as sign bit. If b0 = 0, then 0 ≤ x ≤ Xm and if b0 = 1, then Xm ≤ x < 0.

An arbitrary real number x would require an infinite number of bits for its exact

binary representation. If we use only a finite number of bits (B+1), then the

representation of above equation must be modified to

∑
=

− =+−==
B

i
Bm

i
imB xXzbbXxQx

1
0 ˆ)(][ˆ

 3

The resulting binary representation is quantized, so that the smallest difference

between numbers is

∆ = Xm2-B

 The operation of quantizing number to (B + 1) bits can be implemented by

rounding or by truncation, but in either case quantization is a nonlinear memory less

operation. Figure 1.1 shows input - output relation for two’s complement rounding and

truncation, respectively, for the case of B = 2.

Figure 1.1 Nonlinear Relationship representing two’s complement (a) rounding and

(b) truncation for B = 2 [1]

In considering the effects of quantization, we often define quantization error as

e=QB[x] – x. For the case of two’s complement rounding, -∆/2 < e ≤ ∆/2, and for two’s

complement truncation, -∆ < e ≤ 0(Figure 1.2).

 4

Figure 1.2 probability density function for quantization errors (a) Rounding (b)

Truncation. [1]

If a number is larger than Xm, a situation called overflow occurs. Figure 1.3 (a)

shows two’s complement quantizer, including the effect of regular two’s complement

arithmetic overflow. An alternative, which is called saturation overflow or clipping, is

shown in figure 1.3 (b). This method of handling overflow is generally implemented for

A/D conversion, and it sometimes is implemented in specialized DSP microprocessor for

addition of two’s complement numbers. With saturation overflow, the size of the error

does not increases abruptly when overflow occurs; however disadvantage of such

methods is that it voids the property of two’s complement-arithmetic that ‘If several

two’s-complement numbers whose sum would not overflow are added, then the result of

two’s-complement accumulation of these numbers is correct even though intermediate

sums might overflow”.

 5

Figure 1.3 Two’s complement rounding (a) Natural Overflow (b) Saturation. [1]

1.2 Floating point representation

In floating-point representation (IEEE 754 standard), a number is represented

internally by a sign bit s, an exact integer exponent E, and an exact positive integer

mantissa M. Taken together these represent the number

fx Es .121 127 ∗∗−= −

where E is eight bit exponent (0 < E <255), s is sign bit (0 for positive and 1 for negative

) and f is 23 bit fraction)
2

120(23

23 −
<< f . Floating point representations provide a

convenient means for maintaining wide dynamic range.

 6

2. FINITE WORD LENGTH EFFECTS

Numerical quantization affects the implementation of linear time-invariant

discrete time system in several ways. Below we have given brief overview of some of

them.

• Parameter quantization in digital filters

In the realization of FIR and IIR filters hardware or in software on a general

purpose computer, the accuracy with which filter coefficients can be specified is limited

by word length of the computer. Since the coefficients used in implementing a given

filter are not exact, the poles and zeros of system function will be different from desired

poles and zeros. Consequently, we obtain a filter having a frequency response that is

different from the frequency response of the filter with unquantized coefficients. Also it

sometimes affects stability of filter.

• Round off noise in multiplication

As already explained when a signal is sampled or a calculation in the computer is

performed, the results must be placed in a register or memory location of fixed bit length.

Rounding the value to the required size introduces an error in the sampling or calculation

equal to the value of the lost bits, creating a nonlinear effect. Round off error is a

characteristic of computer hardware.

• Sampling/Digitization Error

There is another, different, kind of error that is a characteristic of the program or

algorithm used, independent of the hardware on which the program is executed. Many

numerical algorithms compute “discrete” approximations to some desired “continuous”

quantity. For example, an integral is evaluated numerically by computing a function at a

discrete set of points, rather than at “every” point. Or, a function may be evaluated by

 7

summing a finite number of leading terms in its infinite series, rather than all infinity

terms. In cases like this, there is an adjustable parameter, e.g., the number of points or of

terms, such that the “true” answer is obtained only when that parameter goes to infinity.

Any practical calculation is done with a finite, but sufficiently large, choice of that

parameter. The difference between the true answer and the answer obtained in a practical

calculation is called the truncation error. Truncation error would persist even on a

hypothetical, “perfect” computer that had an infinitely accurate representation and no

round off error.

• Overflow in addition

Overflow in addition of two or more binary numbers occurs when the sum

exceeds the word size available in the digital implementation of the system.

• Limit cycles

Since quantization inherent in the finite precision arithmetic operations render the

system nonlinear, in recursive system these nonlinearities often cause periodic oscillation

to occur in the output, even when input sequence is zero or some nonzero value. Such an

oscillation in recursive systems are called limit cycles.

As explained in above paragraphs finite word length affects LTI system in many

ways. We have concentrated on effects due to coefficient quantization on filter response

and in that also on IIR filters. Later we have given brief overview of effects of coefficient

quantization in FIR system for the sack of completeness.

2.1 Effects of coefficient quantization in IIR system

When the parameters of a rational system function or corresponding difference

equation are quantized, the poles and zeros of the system move to the new position in the

z-plane, equivalently, the frequency response is perturbed from the original value.

 8

The system function representation corresponding to both direct forms is

∑

∑

=

−

=

−

−
= N

k

k
k

M

k

k
k

za

zb
zH

1

0

1
)(

The sets of coefficients {ak} and {bk} are ideal infinite-precision coefficients. If

we quantize these coefficients, we obtain the system function

∑

∑

=

−

=

−

−
= N

k

k
k

M

k

k
k

za

zb
zH

1

0

ˆ1

ˆ

)(ˆ

where âk = ak + ∆ak and bk = bk + ∆bk are the quantized coefficients that differ from

original coefficients by quantization by quantization error ∆ak and ∆bk.

Kaiser showed that if poles (or zeros) are tightly clustered it is possible that small

error in denominator (numerator) coefficient can cause large shifts of the poles and

(zeros) for direct form structure. Thus, if the poles (zeros) are tightly clustered,

corresponding narrow band pass filter or narrow-bandwidth low pass filter, then we can

express poles of the direct-form structure to be quite sensitive to quantization error in the

coefficients. Kaiser analysis also showed that the larger the number of clustered poles

(zeros), the greater is the sensitivity to quantization error.

The cascade and parallel form system function is consists of second order direct-

form systems. However, in both cases each pair of complex conjugate poles pair is

realized independently of all other poles. Thus, the error in a particular pole pair is

independent of its distance from the other poles of system function.

For the cascade form same arguments holds for the zeros, since they are realized

as independent second order factors. Thus cascade form is generally much less sensitive

to coefficient quantization than the equivalent direct-form realization.

 9

∏
+

=
−−

−−

−−
++

=
2/)1(

1
2

2
1

1

2
2

1
10

1
)(

N

k kk

kkk

zaza
zbzbbzH

The zeros of the parallel form structure are realized implicitly through combining

the quantized second order sections. Thus, particular zero is affected by quantization

error in the numerator and denominator coefficients of all the second order sections.

However for most practical filter the parallel form is also found to be much less sensitive

to coefficient quantization than the equivalent direct-form realization.

∑∑
+

=
−−

−−

=

−

−−
+

+=
2/)1(

1
2

2
1

1

1
10

0 1
)(

N

k kk

kk
NM

k

k
k zaza

zeezCzH

In summery, because of the sensitivity to finite word length effect, the direct

forms are rarely used for implementing anything other than second - order structures.

Cascade and parallel structures are more often used.

2.1.1 What we did

 Before jumping on to designing of filters and seeing finite word length effect let

us explain what we have did. Here we are not going to explain designing of filters or any

other filter designing fundamentals, one can refer any good book available for same[1][2].

But one should ask how we did quantization, so let us explain how we did quantization

and give some examples which show capability and limitation of our routine.

Our quantization routine is very simple and it basically performs following steps:

1) Take 32 bit floating point number between ranges 0 to 2.

2) Multiply it with 231 – 1 (if your numbers are between 0 to 1 then multiply it with

232 – 1) to get equivalent integer number stores it in 32 bit format

3) Shift above number required number of bits as per requirement to obtain N bits

representation of corresponding number (In a way make zero least significant

32 – N bits. So we have number which is still in 32 bits but least significant bits

removed).

4) Convert above number back into corresponding floating point number.

 10

Quantization routine and examples

 Below we have given out C program routine which takes as input floating point

number which we want to quantize and desire bit representation and gives as output

corresponding floating point number in desire bit representation.

float quant(float cof,int n)
/*===

Routine that generates decimal equivalent of the binary representation
of a decimal number with p bits for magnitude part obtained by rounding

cof – floating point number in IEEE 754 standard (No between 0 – 1)
n - Bit representation I want….any number between 0 - 32

===*/
{
 unsigned long int icof=0,m;
 int sign = 1;
 float fract,quan;

 if(cof<0) //loop that stores sign of number
 {
 sign = -1;
 cof = -1 * cof; //if number is negative make it positive
 }

icof = ceil((pow(2,31) – 1) * cof); // Convert floating point no.
 // between 0 – 1 into corresponding
 // 32 bit integer representation
 // - kind of scaling

 // ceil() is a function in C which
// rounds of the numbers.

 m = 32 - n; // m is the number position by

// which I need shift number to get
// n bit representation

 icof = icof >> m;
 icof = icof << m;

fract = (float)icof/(pow(2,31) – 1); // Convert integer number
 // back into floating point

 quan = sign * fract; // put back sign

 return(quan);
}

 11

Examples:

Before starting let’s see how much 1 bit represents (Note: below examples are
considering numbers between range 0 to 1). :

10-685e431469961870807973752.32830643
12

1
32 =

−

Input floating
point number

Number of bit
representation

Obtained floating
point number

Comment

32 bits -1.0000000000

30 bits -1.0000000000

24 bits -0.9999999404

16 bits -0.9999847412

-0.9999999999

8 bits -0.9960937500

32 bits 0.4919821918 We are not using
full dynamic range

30 bits 0.4919821918

24 bits 0.4919821620

16 bits 0.4919738770

0.4919822006

8 bits 0.4882812500

0.0000000001 32 bits 0.0000000002 Here it fails

2.1.2 Designing of Butterworth low pass filter using bilinear transformation

Let us start with fundamental steps needed to design Butterworth low pass filter

using bilinear transformation. Description is very brief just to give basic idea:

1) Determination of the analog filter’s edge frequencies. Use below equation

2
tan2 ω

T
=Ω

where is Analog frequency, T is sampling time period and Ω ω is digital

frequency.

 12

2) Determination of order of the filter

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Ω
Ω

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

=

1

2

2
1

2
2

log

1/1
1/1

log

2
1 δ

δ

N

 Where N is filter order, 1δ and 2δ is Pass band and Stop band ripple respectively. 1Ω

 and are filter edge frequencies. 2Ω

3) Determination of -3 dB cutoff frequency

N
c

2
1

2
1

1

11
⎥
⎦

⎤
⎢
⎣

⎡
−

Ω
=Ω

δ

4) The transfer function of Butterworth filter is usually written in the factored as given

 below

∏
= Ω+Ω+

Ω
=

2/

1
22

2

)(
N

k ckck

ck

csbs
BsH N = 2, 4, 6, …

 Or

∏
−

= Ω+Ω+
Ω

Ω+
Ω

=
2/)1(

1
22

2

0

0)(
N

k ckck

ck

c

c

csbs
B

cs
B

sH N = 3, 5, 7, …

 Where bk and ck are given by

⎥⎦
⎤

⎢⎣
⎡ −

=
N

kbk 2
)12(sin2 π and 1=kc

 The parameter Bk can be obtained from

∏
=

=
2/

1

N

k
kBA , for even N

 And

∏
−

=

=
2/)1(

1

N

k
kBA , for odd N

5) Determination of H(z)

)1(
)1(2|)()(

+
−

=
=

z
z

T
s

sHzH

 13

Filter parameters:

Pass band ripple: 0.99

Stop band ripple: 0.001

Pass band frequency: 1.2566

Stop band frequency: 1.885

Filter Order: 14 (so total seven 2nd order filters are there)

Cutoff Frequency: 1.672363

Filter coefficient:

 Numerator coefficients are BB1-7 = 2
ckB Ω

 Denominator coefficients are bb1-7 = ckb Ω and cc1-7 = 2
ckc Ω

Note: In above table don’t get confused by values of coefficients. It may seem they are going beyond range 0-2 but

actually it’s because of multiplication with cΩ term. See the equation of H(s)

Coefficie
nt

Original
Value

Quantized
value – 24

bits

Quantized
value – 16

bits

Quantized
value – 12

bits

Quantized
value – 8 bits

Quantized
value – 5 bits

BB1-7 2.7967977483 2.7967977483 2.7966968725 2.7951660156 2.7951660156 2.6406250000

bb1 0.3744903875 0.3744902380 0.3744477993 0.3738861084 0.3657226563 0.3046875000

cc1-7 2.7967977483 2.7967977483 2.7966968725 2.7951660156 2.7951660156 2.6406250000

bb2 1.1046926835 1.1046926835 1.1046643881 1.1036987305 1.0971679688 1.0156250000

bb3 1.7795010259 1.7795010259 1.7794563742 1.7788162231 1.7763671875 1.7265625000

bb4 2.3650778886 2.3650778886 2.3649871908 2.3641357422 2.3641357422 2.2343750000

bb5 2.8320599592 2.8320599592 2.8319624346 2.8310852051 2.8212890625 2.7421875000

bb6 3.1570306704 3.1570306704 3.1569567900 3.1559906006 3.1478271484 3.0468750000

bb7 3.3236948360 3.3236948360 3.3235878469 3.3225250244 3.3176269531 3.1484375000

NOTE: In below figures red line is quantized response.

 14

 Fig 2.1 Response when coefficient quantized to 32 bits

 Fig 2.2 Response when coefficient quantized to 24 bits

 15

Fig 2.3 Response when coefficient quantized to 16 bits

Fig 2.4 Response when coefficient quantized to 12 bits

 16

Fig 2.5 Response when coefficient quantized to 8 bits

Fig 2.6 Response when coefficient quantized to 5 bits

 17

2.1.3 Designing of 4th order low pass filter and to show response of filter while direct

realization and parallel form realization

 Direct form realization

 0.323z3 + 0.4218z2 + 0.04278

 H(z) = ---

z4 – 0.5172z3 + 0.40619z2 – 0.1233z + 0.016533

 Parallel form realization

 -1.4509z2 + 0.2321z 1.4509z2 + 0.1848z

 H(z) = --------------------------- + ----------------------------

z2 – 0.1310z + 0.3006 z2 – 0.3862z + 0.055

 18

Filter Coefficient Direct Form Realization:

Coeffi
cients

Original
Value

Quantized value
– 24 bits

Quantized value
– 12 bits

Quantized
value – 8 bits

Quantized value
– 6 bits

Quantized value
– 4 bits

b0 0.04278 0.0427799225 0.0424804688 0.0390625000 0.0312500000 0.0000000000

b1 0.4218 0.4217998981 0.4213867188 0.4140625000 0.4062500000 0.3750000000

b2 0.323 0.3229999542 0.3227539063 0.3203125000 0.3125000000 0.2500000000

a0 0.016533 0.0165328979 0.0161132813 0.0156250000 0.0000000000 0.0000000000

a1 -0.1233 -0.1232999563 -0.1230468750 -0.1171875000 -0.0937500000 0.0000000000

a2 0.40619 0.4061899185 0.4057617188 0.3984375000 0.3750000000 0.3750000000

a3 0.5172 -0.5171999931 -0.5170898438 -0.5156250000 -0.5000000000 -0.5000000000

a4 1.0 1.0000000000 1.0000000000 1.0000000000 1.0000000000 1.0000000000

Filter Coefficient parallel Form Realization:

Coeffici
ents

Original
Value

Quantized
value – 24 bits

Quantized value
– 12 bits

Quantized
value – 8 bits

Quantized value
– 6 bits

Quantized value
– 4 bits

b10 -0.2321 -0.2320998907 -0.2319335938 -0.2265625000 -0.2187500000 -0.1250000000

b11 -1.4509 -1.4508999586 -1.4506835938 -1.4453125000 -1.4375000000 -1.3750000000

b20 0.1848

0.1847999096

0.1845703125

0.1796875000 0.1562500000 0.1250000000

b21 1.4509 1.4508999586 1.4506835938 1.4453125000 1.4375000000 1.3750000000

a10 0.3006 0.3005999327 0.3002929688 0.2968750000 0.2812500000 0.2500000000

a11 -0.1310 -0.1232999563 -0.1308593750 -0.1250000000 -0.1250000000 -0.1250000000

a12 1.0 1.0000000000 1.0000000000 1.0000000000 1.0000000000 1.0000000000

a20 0.055 0.0549999475 0.0546875000 0.0546875000 0.0312500000 0.0000000000

a21 -0.3862 -0.3861999512 -0.3857421875 -0.3828125000 -0.3750000000 -0.3750000000

a22 1.0 1.0000000000 1.0000000000 1.0000000000 1.0000000000 1.0000000000

 19

Fig 2.7 Response when coefficient quantized to 24 bits (Direct form)

Fig 2.8 Response when coefficient quantized to 24 bits (Parallel form)

 20

Fig 2.9 Response when coefficient quantized to 12 bits (Direct form)

Fig 2.10 Response when coefficient quantized to 12 bits (Parallel form)

 21

Fig 2.11 Response when coefficient quantized to 8 bits (Direct form)

Fig 2.12 Response when coefficient quantized to 8 bits (Parallel form)

 22

Fig 2.13 Response when coefficient quantized to 6 bits (Direct form)

Fig 2.14 Response when coefficient quantized to 6 bits (Parallel form)

 23

Fig 2.15 Response when coefficient quantized to 4 bits (Direct form)

Fig 2.16 Response when coefficient quantized to 4 bits (Parallel form)

 24

2.2 Effects of coefficient quantization in FIR system

For FIR system, we have to concerned with locations of zeros only, since for

causal FIR system all poles are at z = 0. Although we have just seen that direct form

structure should be avoided for high order IIR system, it turns out that direct form

structure is commonly used for FIR systems. To understand why this is so, we express

the system function for a direct form FIR system in the form

∑
=

−=
M

n

nznhzH
0

][)(

Now suppose that the coefficients {h[n]} are quantized, resulting in a new set of

coefficients {ĥ[n] = h[n] + ∆h[n]}. The system function for quantized system is then

)()(][)(ˆ
0

zHzHznhzH
M

n

n ∆+== ∑
=

−

Where

n
M

n
znhzH −

=
∑∆=∆

0
][)(

Thus, system function of the quantized system is linearly related to the quantization

errors in the impulse response coefficients.

If the zeros of H (z) are tightly clustered, then their locations will be highly

sensitive to quantization errors in the impulse response coefficients. The reason that

direct form FIR system is widely used is that for most linear phase FIR filters, the zeros

are more or less uniformly spread in the z-plane.

Designing of FIR low pass filter using Parks-McClellan design technique

Pass band ripple: 0.99

Stop band ripple: 0.001

Pass band frequency: 1.2566

Stop band frequency: 1.885

 25

Fig 2.17 FIR quantization example (a) Log magnitude for unquantized case;

Approximation error for (b) unquantized case (c) 16 bit quantization [1]

Fig 2.17 (continued) Approximation error for (d) 14 bit quantization (e) 13 bit

quantization (f) 8 bit quantization [1]

 26

CONCLUSION

Finite word length is inherent problem which occur due to finite bit representation

of number in digital representation. Effect of finite word lengths are Overflow in

addition, Limit cycles and Round off noise in multiplication. We have seen effect of

coefficient quantization on filter response. Also we have conclude that coupled form and

parallel form structure of filter realization are more secure against finite word length

effect as compare to direct form realization.

 Although due to advanced in technology we have now available machine with 64

bit representation (which is almost infinite precision), but it’s still needs to be consider

due to rise of embedded technology and competitive market which needs low cost

product.

 27

REFERENCES

• Discrete Time Signal Processing, Oppenheim A. V and Schafer R. W., Prentice-Hall.

• Digital Signal Processing, John G. Proakis and Dimitris G. Manolakis, Prentice-Hall.

• Numerical Recipes in C, The Art of Scientific Computing William H. Press, Saul A.

Teukolsky, William T. Vetterling, P. Flannery, Second Edition, Cambridge University

Press..

• Digital Signal Processing, A Computer-Based Approach, Sanjit K. Mitra, McGraw

Hill, Second Edition.

• http://cnx.rice.edu/content/coll10259/latest/

• http://embedded.com/97/feat9707.html

• http://spectrumdi.com/ch4.pdf

 28

http://cnx.rice.edu/content/coll10259/latest/
http://embedded.com/97/feat9707.html
http://spectrumdi.com/ch4.pdf

	Snehal Gor Dr. Srikanth T.

