
1-1 Copyright © Oracle Corporation, 2001. All rights reserved.

Introduction to Oracle9i:
SQL Basics

Electronic Presentation

40057GC11
Production 1.1
November 2001
D34048

1-2 Copyright © Oracle Corporation, 2001. All rights reserved.

Copyright © Oracle Corporation, 2000, 2001. All rights reserved.

This documentation contains proprietary information of Oracle Corporation. It is
provided under a license agreement containing restrictions on us e and disclosure and
is also protected by copyright law. Reverse engineering of the s oftware is prohibited.
If this documentation is delivered to a U.S. Government Agency of the Department of
Defense, then it is delivered with Restricted Rights and the following legend is
applicable:

Restricted Rights Legend

Use, duplication or disclosure by the Government is subject to restrictions for
commercial computer software and shall be deemed to be Restricted Rights software
under Federal law, as set forth in subparagraph (c)(1)(ii) of DFARS 252.227-7013,
Rights in Technical Data and Computer Software (October 1988).

This material or any portion of it may not be copied in any formor by any means
without the express prior written permission of Oracle Corporation. Any other copying
is a violation of copyright law and may result in civil and/or criminal penalties.

If this documentation is delivered to a U.S. Government Agency not within the
Department of Defense, then it is delivered with “Restricted Rights,” as defined in
FAR 52.227-14, Rights in Data-General, including Alternate III (June 1987).

The information in this document is subject to change without notice. If you find any
problems in the documentation, please report them in writing to Education Products,
Oracle Corporation, 500 Oracle Parkway, Box SB-6, Redwood Shores, CA 94065.
Oracle Corporation does not warrant that this document is error-free.

Oracle and all references to Oracle products are trademarks or registered trademarks
of Oracle Corporation.

All other products or company names are used for identification purposes only, and
may be trademarks of their respective owners.

Authors

Nancy Greenberg
Priya Nathan

Technical Contributors
and Reviewers
Josephine Turner
Martin Alvarez
Anna Atkinson
Don Bates
Marco Berbeek
Andrew Brannigan
Laszlo Czinkoczki
Michael Gerlach
Sharon Gray
Rosita Hanoman
Mozhe Jalali
Sarah Jones
Charbel Khouri
Christopher Lawless
Diana Lorentz
Nina Minchen
Cuong Nguyen
Daphne Nougier
Patrick Odell
Laura Pezzini
Stacey Procter
Maribel Renau
Bryan Roberts
Helen Robertson
Sunshine Salmon
Casa Sharif
Bernard Soleillant
Craig Spoonemore
Ruediger Steffan
Karla Villasenor
Andree Wheeley
Lachlan Williams

Publisher

May Lonn Chan-Villareal

I
Copyright © Oracle Corporation, 2001. All rights reserved.

Introduction

I-2 Copyright © Oracle Corporation, 2001. All rights reserved.

Objectives

After completing this lesson, you should be able
to do the following:
• List the features of Oracle9i

• Discuss the theoretical and physical aspects of
a relational database

• Describe the Oracle implementation of the
RDBMS and ORDBMS

I-3 Copyright © Oracle Corporation, 2001. All rights reserved.

Oracle9i

Scalability

Reliability

Single
development

model
Common
skill sets

One
management

interface

One
vendor

I-4 Copyright © Oracle Corporation, 2001. All rights reserved.

Oracle9i

I-5 Copyright © Oracle Corporation, 2001. All rights reserved.

Oracle9i Application Server

Business IntelligenceBusiness intelligence

Transactional AppsTransactional Apps

PortalsPortals

A
P
A
C
H
E

IntegrationIntegration

I-6 Copyright © Oracle Corporation, 2001. All rights reserved.

Oracle9i Database

MultimediaMultimedia

Object Relational DataObject Relational Data

MessagesMessages

Documents

XML

Documents

XML

I-7 Copyright © Oracle Corporation, 2001. All rights reserved.

Relational and Object Relational Database
Management System

• Relational model and object relational model

• User-defined data types and objects

• Fully compatible with relational database

• Support of multimedia and large objects

• High-quality database server features

I-8 Copyright © Oracle Corporation, 2001. All rights reserved.

Oracle Internet Platform

Clients
S

ys
te

m
 m

an
ag

em
en

t

Network services

Databases
Application

servers

D
evelo

p
m

en
t to

o
ls

Internet applications

Presentation and
business logic

Business logic
and data

Any browser Any FTP client
Any mail
client

JavaJava

SQLSQLSQL

PL/SQLPL/SQLPL/SQL

I-9 Copyright © Oracle Corporation, 2001. All rights reserved.

System Development Life Cycle

Strategy
and

analysis
Design

Build
and

document
Transition

Production

I-11 Copyright © Oracle Corporation, 2001. All rights reserved.

Data Storage on Different Media

Electronic
spreadsheet

Filing cabinet

Database

I-12 Copyright © Oracle Corporation, 2001. All rights reserved.

Relational Database Concept

• Dr. E.F. Codd proposed the relational model for
database systems in 1970.

• It is the basis for the relational database
management system (RDBMS).

• The relational model consists of the following:
– Collection of objects or relations

– Set of operators to act on the relations

– Data integrity for accuracy and consistency

I-13 Copyright © Oracle Corporation, 2001. All rights reserved.

Definition of a Relational Database

A relational database is a collection of relations or
two-dimensional tables.

OracleOracle
serverserver

Table Name: EMPLOYEES Table Name: DEPARTMENTS

… …

I-14 Copyright © Oracle Corporation, 2001. All rights reserved.

Data Models

Model of
system

in client’s
mind

Entity model of
client’s model

Table model
of entity model

Tables on disk

Oracle
server

I-15 Copyright © Oracle Corporation, 2001. All rights reserved.

• Create an entity relationship diagram from
business specifications or narratives

• Scenario
– “. . . Assign one or more employees to a

department . . .”
– “. . . Some departments do not yet have assigned

employees . . .”

• Create an entity relationship diagram from
business specifications or narratives

• Scenario
– “. . . Assign one or more employees to a

department . . .”
– “. . . Some departments do not yet have assigned

employees . . .”

Entity Relationship Model

EMPLOYEEEMPLOYEE
#* #* numbernumber
** namename
oo job titlejob title

DEPARTMENTDEPARTMENT
#* #* numbernumber
** namename
oo locationlocation

assigned to

composed of

I-16 Copyright © Oracle Corporation, 2001. All rights reserved.

Entity Relationship
Modeling Conventions

Entity
Soft box
Singular, unique name
Uppercase
Synonym in parentheses

Attribute
Singular name
Lowercase
Mandatory marked with “*”
Optional marked with “o”

Unique Identifier (UID)
Primary marked with “#”
Secondary marked with “(#)”

EMPLOYEEEMPLOYEE
#* #* numbernumber
** namename
oo job titlejob title

DEPARTMENTDEPARTMENT
#* #* numbernumber
** namename
oo locationlocation

assigned to

composed of

I-18 Copyright © Oracle Corporation, 2001. All rights reserved.

Relating Multiple Tables

• Each row of data in a table is uniquely
identified by a primary key (PK).

• You can logically relate data from multiple
tables using foreign keys (FK).

Table Name: EMPLOYEES
Table Name: DEPARTMENTS

Primary key Primary keyForeign key

…

I-19 Copyright © Oracle Corporation, 2001. All rights reserved.

Relational Database Terminology

1

2
3 4

5

6

I-20 Copyright © Oracle Corporation, 2001. All rights reserved.

Relational Database Properties

A relational database:

• Can be accessed and modified by executing
structured query language (SQL) statements

• Contains a collection of tables with no physical
pointers

• Uses a set of operators

I-21 Copyright © Oracle Corporation, 2001. All rights reserved.

Communicating with a RDBMS
Using SQL

SELECT department_name
FROM departments;
SELECT department_name
FROM departments;

SQL statement
is entered.

Oracle
server

Statement is sent to
Oracle Server.

I-22 Copyright © Oracle Corporation, 2001. All rights reserved.

Relational Database Management System

User tables Data
dictionary

Oracle
server

I-23 Copyright © Oracle Corporation, 2001. All rights reserved.

SQL Statements
SELECT

INSERT
UPDATE
DELETE
MERGE
CREATE
ALTER
DROP
RENAME
TRUNCATE

COMMIT
ROLLBACK
SAVEPOINT

GRANT
REVOKE

Data retrieval

Data manipulation language (DML)

Data definition language (DDL)

Transaction control

Data control language (DCL)

I-24 Copyright © Oracle Corporation, 2001. All rights reserved.

Tables Used in the Course
EMPLOYEES

DEPARTMENTS JOB_GRADES

I-25 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary

• The Oracle9i Server is the database for Internet
computing.

• Oracle9i is based on the object relational database
management system.

• Relational databases are composed of relations,
managed by relational operations, and governed
by data integrity constraints.

• With the Oracle Server, you can store and manage
information by using the SQL language and
PL/SQL engine.

Copyright © Oracle Corporation, 2001. All rights reserved.

Writing Basic
SQL SELECT Statements

1-2 Copyright © Oracle Corporation, 2001. All rights reserved.

Objectives

After completing this lesson, you should be able to
do the following:
• List the capabilities of SQL SELECT statements

• Execute a basic SELECT statement

• Differentiate between SQL statements and
iSQL*Plus commands

1-3 Copyright © Oracle Corporation, 2001. All rights reserved.

Capabilities of SQL SELECT Statements

SelectionProjection

Table 1 Table 2

Table 1Table 1

Join

1-4 Copyright © Oracle Corporation, 2001. All rights reserved.

Basic SELECT Statement

SELECT *|{[DISTINCT] column|expression [alias],...}
FROM table;

SELECT *|{[DISTINCT] column|expression [alias],...}
FROM table;

• SELECT identifies what columns

• FROM identifies which table

1-5 Copyright © Oracle Corporation, 2001. All rights reserved.

SELECT *
FROM departments;

Selecting All Columns

1-6 Copyright © Oracle Corporation, 2001. All rights reserved.

Selecting Specific Columns

SELECT department_id, location_id
FROM departments;

1-7 Copyright © Oracle Corporation, 2001. All rights reserved.

Writing SQL Statements

• SQL statements are not case sensitive.

• SQL statements can be on one or more lines.

• Keywords cannot be abbreviated or split
across lines.

• Clauses are usually placed on separate lines.

• Indents are used to enhance readability.

1-8 Copyright © Oracle Corporation, 2001. All rights reserved.

Column Heading Defaults

• iSQL*Plus:
– Default heading justification: Center

– Default heading display: Uppercase

• SQL*Plus:
– Character and Date column headings are left-

justified

– Number column headings are right-justified

– Default heading display: Uppercase

1-9 Copyright © Oracle Corporation, 2001. All rights reserved.

Arithmetic Expressions

Create expressions with number and date data by
using arithmetic operators.

Operator

+

-

*

/

Description

Add

Subtract

Multiply

Divide

1-10 Copyright © Oracle Corporation, 2001. All rights reserved.

Using Arithmetic Operators

SELECT last_name, salary, salary + 300
FROM employees;

…

1-11 Copyright © Oracle Corporation, 2001. All rights reserved.

Operator Precedence

• Multiplication and division take priority over
addition and subtraction.

• Operators of the same priority are evaluated from
left to right.

• Parentheses are used to force prioritized
evaluation and to clarify statements.

*** /// +++ ___

1-12 Copyright © Oracle Corporation, 2001. All rights reserved.

Operator Precedence

SELECT last_name, salary, 12*salary+100
FROM employees;

…

1-13 Copyright © Oracle Corporation, 2001. All rights reserved.

Using Parentheses

SELECT last_name, salary, 12*(salary+100)
FROM employees;

…

1-14 Copyright © Oracle Corporation, 2001. All rights reserved.

Defining a Null Value

• A null is a value that is unavailable, unassigned,
unknown, or inapplicable.

• A null is not the same as zero or a blank space.
SELECT last_name, job_id, salary, commission_pct
FROM employees;

…

…

1-15 Copyright © Oracle Corporation, 2001. All rights reserved.

SELECT last_name, 12*salary*commission_pct
FROM employees;

Null Values
in Arithmetic Expressions

Arithmetic expressions containing a null value
evaluate to null.

…

…

1-16 Copyright © Oracle Corporation, 2001. All rights reserved.

Defining a Column Alias

A column alias:

• Renames a column heading

• Is useful with calculations

• Immediately follows the column name - there can
also be the optional AS keyword between the
column name and alias

• Requires double quotation marks if it contains
spaces or special characters or is case sensitive

1-17 Copyright © Oracle Corporation, 2001. All rights reserved.

Using Column Aliases

SELECT last_name "Name", salary*12 "Annual Salary"
FROM employees;

SELECT last_name AS name, commission_pct comm
FROM employees;

…

…

1-18 Copyright © Oracle Corporation, 2001. All rights reserved.

Concatenation Operator

A concatenation operator:

• Concatenates columns or character strings to
other columns

• Is represented by two vertical bars (||)

• Creates a resultant column that is a character
expression

1-19 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the Concatenation Operator

SELECT last_name||job_id AS "Employees"
FROM employees;

…

1-20 Copyright © Oracle Corporation, 2001. All rights reserved.

Literal Character Strings

• A literal is a character, a number, or a date
included in the SELECT list.

• Date and character literal values must be enclosed
within single quotation marks.

• Each character string is output once for each
row returned.

1-21 Copyright © Oracle Corporation, 2001. All rights reserved.

Using Literal Character Strings

SELECT last_name ||' is a '||job_id
AS "Employee Details"

FROM employees;

…

1-22 Copyright © Oracle Corporation, 2001. All rights reserved.

Duplicate Rows

The default display of queries is all rows, including
duplicate rows.

SELECT department_id
FROM employees;

SELECT department_id
FROM employees;

…

1-23 Copyright © Oracle Corporation, 2001. All rights reserved.

Eliminating Duplicate Rows

Eliminate duplicate rows by using the DISTINCT
keyword in the SELECT clause.

SELECT DISTINCT department_id
FROM employees;

1-24 Copyright © Oracle Corporation, 2001. All rights reserved.

SQL and iSQL*Plus Interaction

SQL statements

Oracle
server

Query resultsQuery resultsiSQL*Plus
commands

Client

Formatted report

InternetInternet
BrowserBrowser

iiSQL*PlusSQL*Plus

1-25 Copyright © Oracle Corporation, 2001. All rights reserved.

SQL Statements Versus
iSQL*Plus Commands

SQLSQL
statementsstatements

SQL
• A language
• ANSI standard
• Keyword cannot be

abbreviated
• Statements manipulate

data and table definitions
in the database

iiSQL*PlusSQL*Plus
• An environment
• Oracle proprietary
• Keywords can be

abbreviated
• Commands do not allow

manipulation of values in
the database

• Runs on a browser
• Centrally loaded, does not

have to be implemented
on each machine

iiSQL*PlusSQL*Plus
commandscommands

1-26 Copyright © Oracle Corporation, 2001. All rights reserved.

Overview of iSQL*Plus

After you log into iSQL*Plus, you can:

• Describe the table structure

• Edit your SQL statement

• Execute SQL from iSQL*Plus

• Save SQL statements to files and append SQL
statements to files

• Execute statements stored in saved files

• Load commands from a text file into the iSQL*Plus
Edit window

1-27 Copyright © Oracle Corporation, 2001. All rights reserved.

Logging In to iSQL*Plus

From your Windows browser environment:

1-28 Copyright © Oracle Corporation, 2001. All rights reserved.

The iSQL*Plus Environment

3 4 5

6

71

2

8 910

1-29 Copyright © Oracle Corporation, 2001. All rights reserved.

Displaying Table Structure

Use the iSQL*Plus DESCRIBE command to display
the structure of a table.

DESC[RIBE] tablenameDESC[RIBE] tablename

1-30 Copyright © Oracle Corporation, 2001. All rights reserved.

Displaying Table Structure

DESCRIBE employeesDESCRIBE employees

1-31 Copyright © Oracle Corporation, 2001. All rights reserved.

Interacting with Script Files

SELECT last_name, hire_date, salary
FROM employees; 1

2

1-32 Copyright © Oracle Corporation, 2001. All rights reserved.

Interacting with Script Files

1

D:\temp\emp_sql.htm

2SELECT last_name, hire_date, salary
FROM employees;

3

1-33 Copyright © Oracle Corporation, 2001. All rights reserved.

Interacting with Script Files

DESCRIBE employees
SELECT first_name, last_name, job_id
FROM employees;

1

23

1-34 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary

SELECT *|{[DISTINCT] column|expression [alias],...}
FROM table;

SELECT *|{[DISTINCT] column|expression [alias],...}
FROM table;

In this lesson, you should have learned how to:

• Write a SELECT statement that:

– Returns all rows and columns from a table

– Returns specified columns from a table

– Uses column aliases to give descriptive column
headings

• Use the iSQL*Plus environment to write, save, and
execute SQL statements and iSQL*Plus commands.

1-35 Copyright © Oracle Corporation, 2001. All rights reserved.

Practice 1 Overview

This practice covers the following topics:

• Selecting all data from different tables

• Describing the structure of tables

• Performing arithmetic calculations and specifying
column names

• Using iSQL*Plus

2
Copyright © Oracle Corporation, 2001. All rights reserved.

Restricting and Sorting Data

2-2 Copyright © Oracle Corporation, 2001. All rights reserved.

Objectives

After completing this lesson, you should be able to
do the following:

• Limit the rows retrieved by a query

• Sort the rows retrieved by a query

2-3 Copyright © Oracle Corporation, 2001. All rights reserved.

Limiting Rows Using a Selection

“retrieve all
employees
in department 90”

EMPLOYEES

…

2-4 Copyright © Oracle Corporation, 2001. All rights reserved.

Limiting the Rows Selected

• Restrict the rows returned by using the WHERE
clause.

• The WHERE clause follows the FROM clause.

SELECT *|{[DISTINCT] column|expression [alias],...}
FROM table
[WHERE condition(s)];

2-5 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the WHERE Clause

SELECT employee_id, last_name, job_id, department_id
FROM employees
WHERE department_id = 90 ;

2-6 Copyright © Oracle Corporation, 2001. All rights reserved.

Character Strings and Dates

• Character strings and date values are enclosed in
single quotation marks.

• Character values are case sensitive, and date
values are format sensitive.

• The default date format is DD-MON-RR.

SELECT last_name, job_id, department_id
FROM employees
WHERE last_name = 'Whalen';

2-7 Copyright © Oracle Corporation, 2001. All rights reserved.

Comparison Conditions

Operator

=

>

>=

<

<=

<>

Meaning

Equal to

Greater than

Greater than or equal to

Less than

Less than or equal to

Not equal to

2-8 Copyright © Oracle Corporation, 2001. All rights reserved.

SELECT last_name, salary
FROM employees
WHERE salary <= 3000;

Using Comparison Conditions

2-9 Copyright © Oracle Corporation, 2001. All rights reserved.

Other Comparison Conditions

Operator

BETWEEN
...AND...

IN(set)

LIKE

IS NULL

Meaning

Between two values (inclusive),

Match any of a list of values

Match a character pattern

Is a null value

2-10 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the BETWEEN Condition

Use the BETWEEN condition to display rows based on
a range of values.
SELECT last_name, salary
FROM employees
WHERE salary BETWEEN 2500 AND 3500;

Lower limit Upper limit

2-11 Copyright © Oracle Corporation, 2001. All rights reserved.

SELECT employee_id, last_name, salary, manager_id
FROM employees
WHERE manager_id IN (100, 101, 201);

Using the IN Condition

Use the IN membership condition to test for values in
a list.

2-12 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the LIKE Condition

• Use the LIKE condition to perform wildcard
searches of valid search string values.

• Search conditions can contain either literal
characters or numbers:
– % denotes zero or many characters.

– _ denotes one character.

SELECT first_name
FROM employees
WHERE first_name LIKE 'S%';

2-13 Copyright © Oracle Corporation, 2001. All rights reserved.

• You can combine pattern-matching characters.

• You can use the ESCAPE identifier to search for the
actual % and _ symbols.

Using the LIKE Condition

SELECT last_name
FROM employees
WHERE last_name LIKE '_o%';

2-14 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the NULL Conditions

Test for nulls with the IS NULL operator.

SELECT last_name, manager_id
FROM employees
WHERE manager_id IS NULL;

2-15 Copyright © Oracle Corporation, 2001. All rights reserved.

Logical Conditions

Operator

AND

OR

NOT

Meaning

Returns TRUE if both component

conditions are true

Returns TRUE if either component

condition is true

Returns TRUE if the following
condition is false

2-16 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the AND Operator

AND requires both conditions to be true.

SELECT employee_id, last_name, job_id, salary
FROM employees
WHERE salary >=10000
AND job_id LIKE '%MAN%';

2-17 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the OR Operator

OR requires either condition to be true.OR requires either condition to be true.
SELECT employee_id, last_name, job_id, salary
FROM employees
WHERE salary >= 10000
OR job_id LIKE '%MAN%';

2-18 Copyright © Oracle Corporation, 2001. All rights reserved.

SELECT last_name, job_id
FROM employees
WHERE job_id

NOT IN ('IT_PROG', 'ST_CLERK', 'SA_REP');

Using the NOT Operator

2-19 Copyright © Oracle Corporation, 2001. All rights reserved.

Rules of Precedence

Override rules of precedence by using parentheses.

Order Evaluated Operator
1 Arithmetic operators
2 Concatenation operator
3 Comparison conditions
4 IS [NOT] NULL, LIKE, [NOT] IN
5 [NOT] BETWEEN
6 NOT logical condition
7 AND logical condition
8 OR logical condition

2-20 Copyright © Oracle Corporation, 2001. All rights reserved.

SELECT last_name, job_id, salary
FROM employees
WHERE job_id = 'SA_REP'
OR job_id = 'AD_PRES'
AND salary > 15000;

Rules of Precedence

2-21 Copyright © Oracle Corporation, 2001. All rights reserved.

SELECT last_name, job_id, salary
FROM employees
WHERE (job_id = 'SA_REP'
OR job_id = 'AD_PRES')
AND salary > 15000;

Rules of Precedence

Use parentheses to force priority.Use parentheses to force priority.

2-22 Copyright © Oracle Corporation, 2001. All rights reserved.

SELECT last_name, job_id, department_id, hire_date
FROM employees
ORDER BY hire_date ;

ORDER BY Clause

• Sort rows with the ORDER BY clause

– ASC: ascending order, default

– DESC: descending order

• The ORDER BY clause comes last in the SELECT
statement.

…

2-23 Copyright © Oracle Corporation, 2001. All rights reserved.

Sorting in Descending Order

SELECT last_name, job_id, department_id, hire_date
FROM employees
ORDER BY hire_date DESC ;

…

2-24 Copyright © Oracle Corporation, 2001. All rights reserved.

Sorting by Column Alias

SELECT employee_id, last_name, salary*12 annsal
FROM employees
ORDER BY annsal;

…

2-25 Copyright © Oracle Corporation, 2001. All rights reserved.

• The order of ORDER BY list is the order of sort.

• You can sort by a column that is not in the
SELECT list.

SELECT last_name, department_id, salary
FROM employees
ORDER BY department_id, salary DESC;

Sorting by Multiple Columns

…

2-26 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary

SELECT *|{[DISTINCT] column|expression [alias],...}
FROM table
[WHERE condition(s)]
[ORDER BY {column, expr, alias} [ASC|DESC]];

In this lesson, you should have learned how to:

• Use the WHERE clause to restrict rows of output

– Use the comparison conditions
– Use the BETWEEN, IN, LIKE, and NULL conditions

– Apply the logical AND, OR, and NOT operators

• Use the ORDER BY clause to sort rows of output

2-27 Copyright © Oracle Corporation, 2001. All rights reserved.

Practice 2 Overview

This practice covers the following topics:

• Selecting data and changing the order of
rows displayed

• Restricting rows by using the WHERE clause

• Sorting rows by using the ORDER BY clause

3
Copyright © Oracle Corporation, 2001. All rights reserved.

Single-Row Functions

3-2 Copyright © Oracle Corporation, 2001. All rights reserved.

Objectives

After completing this lesson, you should be able to
do the following:

• Describe various types of functions available
in SQL

• Use character, number, and date functions in
SELECT statements

• Describe the use of conversion functions

3-3 Copyright © Oracle Corporation, 2001. All rights reserved.

SQL Functions

FunctionFunction
Input

arg 1arg 1

arg 2arg 2

arg arg nn

Function
performs action

Output

ResultResult
valuevalue

3-4 Copyright © Oracle Corporation, 2001. All rights reserved.

Two Types of SQL Functions

FunctionsFunctions

SingleSingle--row row
functionsfunctions

MultipleMultiple--rowrow
functionsfunctions

3-5 Copyright © Oracle Corporation, 2001. All rights reserved.

Single-Row Functions

Single row functions:

• Manipulate data items

• Accept arguments and return one value

• Act on each row returned

• Return one result per row

• May modify the data type

• Can be nested

• Accept arguments which can be a column or an
expression

function_name [(arg1, arg2,...)]function_name [(arg1, arg2,...)]

3-6 Copyright © Oracle Corporation, 2001. All rights reserved.

Single-Row Functions

ConversionConversion

CharacterCharacter

NumberNumber

DateDate

GeneralGeneral
SingleSingle--row row
functionsfunctions

3-7 Copyright © Oracle Corporation, 2001. All rights reserved.

Character Functions

CharacterCharacter
functionsfunctions

LOWER
UPPER
INITCAP

CONCAT
SUBSTR
LENGTH
INSTR
LPAD | RPAD
TRIM
REPLACE

CaseCase--manipulation manipulation
functionsfunctions

CharacterCharacter--manipulationmanipulation
functionsfunctions

3-9 Copyright © Oracle Corporation, 2001. All rights reserved.

Function Result

Case Manipulation Functions

These functions convert case for character strings.

LOWER('SQL Course')
UPPER('SQL Course')
INITCAP('SQL Course')

sql course
SQL COURSE
Sql Course

3-10 Copyright © Oracle Corporation, 2001. All rights reserved.

Using Case Manipulation Functions

Display the employee number, name, and department
number for employee Higgins:

SELECT employee_id, last_name, department_id
FROM employees
WHERE last_name = 'higgins';
no rows selected

SELECT employee_id, last_name, department_id
FROM employees
WHERE last_name = 'higgins';
no rows selectedno rows selected

SELECT employee_id, last_name, department_id
FROM employees
WHERE LOWER(last_name) = 'higgins';

3-11 Copyright © Oracle Corporation, 2001. All rights reserved.

CONCAT('Hello', 'World')
SUBSTR('HelloWorld',1,5)
LENGTH('HelloWorld')
INSTR('HelloWorld', 'W')
LPAD(salary,10,'*')
RPAD(salary, 10, '*')
TRIM('H' FROM 'HelloWorld')

HelloWorld
Hello
10
6
*****24000
24000*****
elloWorld

Function Result

Character-Manipulation Functions

These functions manipulate character strings:

3-12 Copyright © Oracle Corporation, 2001. All rights reserved.

SELECT employee_id, CONCAT(first_name, last_name) NAME,
job_id, LENGTH (last_name),
INSTR(last_name, 'a') "Contains 'a'?"

FROM employees
WHERE SUBSTR(job_id, 4) = 'REP';

Using the Character-Manipulation
Functions

1

2

31 2

3

3-13 Copyright © Oracle Corporation, 2001. All rights reserved.

Number Functions

• ROUND: Rounds value to specified decimal
ROUND(45.926, 2) 45.93

• TRUNC: Truncates value to specified decimal
TRUNC(45.926, 2) 45.92

• MOD: Returns remainder of division
MOD(1600, 300) 100

3-14 Copyright © Oracle Corporation, 2001. All rights reserved.

SELECT ROUND(45.923,2), ROUND(45.923,0),
ROUND(45.923,-1)

FROM DUAL;

Using the ROUND Function

DUAL is a dummy table you can use to view results
from functions and calculations.

1 2

3

31 2

3-15 Copyright © Oracle Corporation, 2001. All rights reserved.

SELECT TRUNC(45.923,2), TRUNC(45.923),
TRUNC(45.923,-2)

FROM DUAL;

Using the TRUNC Function

31 2

1 2

3

3-16 Copyright © Oracle Corporation, 2001. All rights reserved.

SELECT last_name, salary, MOD(salary, 5000)
FROM employees
WHERE job_id = 'SA_REP';

Using the MOD Function

Calculate the remainder of a salary after it is divided
by 5000 for all employees whose job title is sales
representative.

3-17 Copyright © Oracle Corporation, 2001. All rights reserved.

Working with Dates

• Oracle database stores dates in an internal
numeric format: century, year, month, day, hours,
minutes, seconds.

• The default date display format is DD-MON-RR.
– Allows you to store 21st century dates in the 20th

century by specifying only the last two digits of the
year.

– Allows you to store 20th century dates in the 21st
century in the same way.

SELECT last_name, hire_date
FROM employees
WHERE last_name like ''G%';';

3-18 Copyright © Oracle Corporation, 2001. All rights reserved.

Working with Dates

SYSDATE is a function that returns:

• Date

• Time

3-19 Copyright © Oracle Corporation, 2001. All rights reserved.

Arithmetic with Dates

• Add or subtract a number to or from a date for a
resultant date value.

• Subtract two dates to find the number of days
between those dates.

• Add hours to a date by dividing the number of
hours by 24.

3-20 Copyright © Oracle Corporation, 2001. All rights reserved.

Using Arithmetic Operators
with Dates

SELECT last_name, (SYSDATE-hire_date)/7 AS WEEKS
FROM employees
WHERE department_id = 90;

3-21 Copyright © Oracle Corporation, 2001. All rights reserved.

Date Functions

Number of months
between two dates

MONTHS_BETWEEN

ADD_MONTHS

NEXT_DAY

LAST_DAY

ROUND

TRUNC

Add calendar months to
date

Next day of the date
specified

Last day of the month

Round date

Truncate date

Function Description

3-22 Copyright © Oracle Corporation, 2001. All rights reserved.

• MONTHS_BETWEEN ('01-SEP-95','11-JAN-94')

Using Date Functions

• ADD_MONTHS ('11-JAN-94',6)

• NEXT_DAY ('01-SEP-95','FRIDAY')

• LAST_DAY('01-FEB-95')

19.6774194

'11-JUL-94'

'08-SEP-95'

'28-FEB-95'

3-23 Copyright © Oracle Corporation, 2001. All rights reserved.

• ROUND(SYSDATE,'MONTH') 01-AUG-95

• ROUND(SYSDATE ,'YEAR') 01-JAN-96

• TRUNC(SYSDATE ,'MONTH') 01-JUL-95

• TRUNC(SYSDATE ,'YEAR') 01-JAN-95

Using Date Functions

Assume SYSDATE = '25-JUL-95':

3-24 Copyright © Oracle Corporation, 2001. All rights reserved.

Practice 3, Part One: Overview

This practice covers the following topics:
• Writing a query that displays the current date
• Creating queries that require the use of numeric,

character, and date functions
• Performing calculations of years and months of

service for an employee

3-25 Copyright © Oracle Corporation, 2001. All rights reserved.

Conversion Functions

Implicit data typeImplicit data type
conversionconversion

Explicit data typeExplicit data type
conversionconversion

Data typeData type
conversionconversion

3-26 Copyright © Oracle Corporation, 2001. All rights reserved.

Implicit Data Type Conversion

For assignments, the Oracle server can automatically
convert the following:

VARCHAR2 or CHAR

From To

VARCHAR2 or CHAR

NUMBER

DATE

NUMBER

DATE

VARCHAR2

VARCHAR2

3-27 Copyright © Oracle Corporation, 2001. All rights reserved.

Implicit Data Type Conversion

For expression evaluation, the Oracle Server can
automatically convert the following:

VARCHAR2 or CHAR

From To

VARCHAR2 or CHAR

NUMBER

DATE

3-28 Copyright © Oracle Corporation, 2001. All rights reserved.

Explicit Data Type Conversion

NUMBER CHARACTER

TO_CHAR

TO_NUMBER

DATE

TO_CHAR

TO_DATE

3-29 Copyright © Oracle Corporation, 2001. All rights reserved.

Explicit Data Type Conversion

NUMBER CHARACTER

TO_CHAR

TO_NUMBER

DATE

TO_CHAR

TO_DATE

3-31 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the TO_CHAR Function with Dates

The format model:

• Must be enclosed in single quotation marks and is case
sensitive

• Can include any valid date format element

• Has an fm element to remove padded blanks or
suppress leading zeros

• Is separated from the date value by a comma

TO_CHAR(date, 'format_model')TO_CHAR(date, 'format_model')

3-32 Copyright © Oracle Corporation, 2001. All rights reserved.

YYYY

Elements of the Date Format Model

YEAR

MM

MONTH

DY

DAY

Full year in numbers

Year spelled out

Two-digit value for month

Three-letter abbreviation of the
day of the week

Full name of the day of the week

Full name of the month

MON
Three-letter abbreviation of the
month

DD Numeric day of the month

3-34 Copyright © Oracle Corporation, 2001. All rights reserved.

Elements of the Date Format Model

• Time elements format the time portion of the date.

• Add character strings by enclosing them in double
quotation marks.

• Number suffixes spell out numbers.

HH24:MI:SS AM 15:45:32 PM

DD "of" MONTH 12 of OCTOBER

ddspth fourteenth

3-36 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the TO_CHAR Function with Dates

SELECT last_name,
TO_CHAR(hire_date, 'fmDD Month YYYY')
AS HIREDATE

FROM employees;

…

3-37 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the TO_CHAR Function with
Numbers

These are some of the format elements you can use
with the TO_CHAR function to display a number value
as a character:

TO_CHAR(number, 'format_model')TO_CHAR(number, 'format_model')

9

0

$

L

.

,

Represents a number

Forces a zero to be displayed

Places a floating dollar sign

Uses the floating local currency symbol

Prints a decimal point

Prints a thousand indicator

3-38 Copyright © Oracle Corporation, 2001. All rights reserved.

SELECT TO_CHAR(salary, '$99,999.00') SALARY
FROM employees
WHERE last_name = 'Ernst';

Using the TO_CHAR Function with Numbers

3-39 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the TO_NUMBER and TO_DATE
Functions

• Convert a character string to a number format
using the TO_NUMBER function:

• Convert a character string to a date format using
the TO_DATE function:

• These functions have an fx modifier. This modifier
specifies the exact matching for the character
argument and date format model of a TO_DATE
function

TO_NUMBER(char[, 'format_model'])TO_NUMBER(char[, 'format_model'])

TO_DATE(char[, 'format_model'])TO_DATE(char[, 'format_model'])

3-40 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the TO_NUMBER and TO_DATE
Functions

• Convert a character string to a number format
using the TO_NUMBER function:

• Convert a character string to a date format using
the TO_DATE function:

• These functions have an fx modifier. This modifier
specifies the exact matching for the character
argument and date format model of a TO_DATE
function

TO_NUMBER(char[, 'format_model'])TO_NUMBER(char[, 'format_model'])

TO_DATE(char[, 'format_model'])TO_DATE(char[, 'format_model'])

3-41 Copyright © Oracle Corporation, 2001. All rights reserved.

RR Date Format

Current Year
1995
1995
2001
2001

Specified Date
27-OCT-95
27-OCT-17
27-OCT-17
27-OCT-95

RR Format
1995
2017
2017
1995

YY Format
1995
1917
2017
2095

If two digits
of the
current
year are:

0–49

0–49 50–99

50–99

The return date is in
the current century

The return date is in
the century after
the current one

The return date is in
the century before
the current one
The return date is in
the current century

If the specified two-digit year is:

3-42 Copyright © Oracle Corporation, 2001. All rights reserved.

Example of RR Date Format

To find employees hired prior to 1990, use the RR
format, which produces the same results whether the
command is run in 1999 or now:

SELECT last_name, TO_CHAR(hire_date, 'DD-Mon-YYYY')
FROM employees
WHERE hire_date < TO_DATE('01-Jan-90', 'DD-Mon-RR');

3-43 Copyright © Oracle Corporation, 2001. All rights reserved.

Nesting Functions

• Single-row functions can be nested to any level.

• Nested functions are evaluated from deepest level
to the least deep level.

F3(F2(F1(col,arg1),arg2),arg3)

Step 1 = Result 1

Step 2 = Result 2

Step 3 = Result 3

3-44 Copyright © Oracle Corporation, 2001. All rights reserved.

SELECT last_name,
NVL(TO_CHAR(manager_id), 'No Manager')

FROM employees
WHERE manager_id IS NULL;

Nesting Functions

3-45 Copyright © Oracle Corporation, 2001. All rights reserved.

General Functions

These functions work with any data type and pertain
to using nulls.
• NVL (expr1, expr2)
• NVL2 (expr1, expr2, expr3)
• NULLIF (expr1, expr2)
• COALESCE (expr1, expr2, ..., exprn)

3-46 Copyright © Oracle Corporation, 2001. All rights reserved.

NVL Function

Converts a null to an actual value.

• Data types that can be used are date, character,
and number.

• Data types must match:
– NVL(commission_pct,0)
– NVL(hire_date,'01-JAN-97')
– NVL(job_id,'No Job Yet')

3-47 Copyright © Oracle Corporation, 2001. All rights reserved.

SELECT last_name, salary, NVL(commission_pct, 0),
(salary*12) + (salary*12*NVL(commission_pct, 0)) AN_SAL

FROM employees;

Using the NVL Function

…

1 2

1
2

3-48 Copyright © Oracle Corporation, 2001. All rights reserved.

SELECT last_name, salary, commission_pct,
NVL2(commission_pct,

'SAL+COMM', 'SAL') income
FROM employees WHERE department_id IN (50, 80);

Using the NVL2 Function

1 2

1
2

3-49 Copyright © Oracle Corporation, 2001. All rights reserved.

SELECT first_name, LENGTH(first_name) "expr1",
last_name, LENGTH(last_name) "expr2",
NULLIF(LENGTH(first_name), LENGTH(last_name)) result

FROM employees;

Using the NULLIF Function

…

1

2
3

1 2 3

3-50 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the COALESCE Function

• The advantage of the COALESCE function over the
NVL function is that the COALESCE function can
take multiple alternate values.

• If the first expression is not null, it returns that
expression; otherwise, it does a COALESCE of the
remaining expressions.

3-51 Copyright © Oracle Corporation, 2001. All rights reserved.

SELECT last_name,
COALESCE(commission_pct, salary, 10) comm

FROM employees
ORDER BY commission_pct;

Using the COALESCE Function

…

3-52 Copyright © Oracle Corporation, 2001. All rights reserved.

Conditional Expressions

• Provide the use of IF-THEN-ELSE logic within a
SQL statement

• Use two methods:
– CASE expression

– DECODE function

3-53 Copyright © Oracle Corporation, 2001. All rights reserved.

The CASE Expression

Facilitates conditional inquiries by doing the work of
an IF-THEN-ELSE statement:

CASE expr WHEN comparison_expr1 THEN return_expr1
[WHEN comparison_expr2 THEN return_expr2
WHEN comparison_exprn THEN return_exprn
ELSE else_expr]

END

CASE expr WHEN comparison_expr1 THEN return_expr1
[WHEN comparison_expr2 THEN return_expr2
WHEN comparison_exprn THEN return_exprn
ELSE else_expr]

END

3-54 Copyright © Oracle Corporation, 2001. All rights reserved.

SELECT last_name, job_id, salary,
CASE job_id WHEN 'IT_PROG' THEN 1.10*salary

WHEN 'ST_CLERK' THEN 1.15*salary
WHEN 'SA_REP' THEN 1.20*salary

ELSE salary END "REVISED_SALARY"
FROM employees;

Using the CASE Expression

Facilitates conditional inquiries by doing the work of
an IF-THEN-ELSE statement:

…

…

3-55 Copyright © Oracle Corporation, 2001. All rights reserved.

The DECODE Function

Facilitates conditional inquiries by doing the work of
a CASE or IF-THEN-ELSE statement:

DECODE(col|expression, search1, result1
[, search2, result2,...,]
[, default])

DECODE(col|expression, search1, result1
[, search2, result2,...,]
[, default])

3-56 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the DECODE Function

SELECT last_name, job_id, salary,
DECODE(job_id, 'IT_PROG', 1.10*salary,

'ST_CLERK', 1.15*salary,
'SA_REP', 1.20*salary,

salary)
REVISED_SALARY

FROM employees;

…

…

3-57 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the DECODE Function

SELECT last_name, salary,
DECODE (TRUNC(salary/2000, 0),

0, 0.00,
1, 0.09,
2, 0.20,
3, 0.30,
4, 0.40,
5, 0.42,
6, 0.44,

0.45) TAX_RATE
FROM employees
WHERE department_id = 80;

Display the applicable tax rate for each employee in
department 80.

3-58 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary

In this lesson, you should have learned how to:

• Perform calculations on data using functions

• Modify individual data items using functions

• Manipulate output for groups of rows using
functions

• Alter date formats for display using functions

• Convert column data types using functions

• Use NVL functions

• Use IF-THEN-ELSE logic

3-59 Copyright © Oracle Corporation, 2001. All rights reserved.

Practice 3, Part Two: Overview

This practice covers the following topics:

• Creating queries that require the use of numeric,
character, and date functions

• Using concatenation with functions

• Writing case-insensitive queries to test the
usefulness of character functions

• Performing calculations of years and months of
service for an employee

• Determining the review date for an employee

4
Copyright © Oracle Corporation, 2001. All rights reserved.

Displaying Data
From Multiple Tables

4-2 Copyright © Oracle Corporation, 2001. All rights reserved.

Objectives

After completing this lesson, you should be able to
do the following:

• Write SELECT statements to access data from
more than one table using equality and
nonequality joins

• View data that generally does not meet a join
condition by using outer joins

• Join a table to itself by using a self join

4-3 Copyright © Oracle Corporation, 2001. All rights reserved.

Obtaining Data from Multiple Tables
EMPLOYEES DEPARTMENTS

…

…

4-4 Copyright © Oracle Corporation, 2001. All rights reserved.

Cartesian Products

• A Cartesian product is formed when:
– A join condition is omitted

– A join condition is invalid

– All rows in the first table are joined to all rows in the
second table

• To avoid a Cartesian product, always include a
valid join condition in a WHERE clause.

4-5 Copyright © Oracle Corporation, 2001. All rights reserved.

Generating a Cartesian Product

Cartesian
product:

20x8=160 rows

EMPLOYEES (20 rows) DEPARTMENTS (8 rows)

…

…

4-6 Copyright © Oracle Corporation, 2001. All rights reserved.

• Equijoin

• Non-equijoin

• Outer join

• Self join

Types of Joins

• Cross joins

• Natural joins

• Using clause

• Full or two sided outer
joins

• Arbitrary join conditions
for outer joins

SQL: 1999
Compliant Joins:
SQL: 1999
Compliant Joins:

Oracle Proprietary
Joins (8i and prior):
Oracle Proprietary
Joins (8i and prior):

4-7 Copyright © Oracle Corporation, 2001. All rights reserved.

Joining Tables Using Oracle Syntax

Use a join to query data from more than one table.

• Write the join condition in the WHERE clause.

• Prefix the column name with the table name when
the same column name appears in more than one
table.

SELECT table1.column, table2.column
FROM table1, table2
WHERE table1.column1 = table2.column2;

SELECT table1.column, table2.column
FROM table1, table2
WHERE table1.column1 = table2.column2;

4-8 Copyright © Oracle Corporation, 2001. All rights reserved.

What is an Equijoin?

EMPLOYEES DEPARTMENTS

Foreign key Primary key

… …

4-9 Copyright © Oracle Corporation, 2001. All rights reserved.

SELECT employees.employee_id, employees.last_name,
employees.department_id, departments.department_id,
departments.location_id

FROM employees, departments
WHERE employees.department_id = departments.department_id;

Retrieving Records
with Equijoins

…

4-10 Copyright © Oracle Corporation, 2001. All rights reserved.

Additional Search Conditions
Using the AND Operator

EMPLOYEES DEPARTMENTS

… …

4-11 Copyright © Oracle Corporation, 2001. All rights reserved.

Qualifying Ambiguous
Column Names

• Use table prefixes to qualify column names that
are in multiple tables.

• Improve performance by using table prefixes.

• Distinguish columns that have identical names but
reside in different tables by using column aliases.

4-12 Copyright © Oracle Corporation, 2001. All rights reserved.

SELECT e.employee_id, e.last_name, e.department_id,
d.department_id, d.location_id

FROM employees e , departments d
WHERE e.department_id = d.department_id;

Using Table Aliases

• Simplify queries by using table aliases.

• Improve performance by using table prefixes.

4-13 Copyright © Oracle Corporation, 2001. All rights reserved.

Joining More than Two Tables

EMPLOYEES LOCATIONSDEPARTMENTS

To join n tables together, you need a minimum of n-1
join conditions. For example, to join three tables, a
minimum of two joins is required.

…

4-14 Copyright © Oracle Corporation, 2001. All rights reserved.

Non-Equijoins

EMPLOYEES JOB_GRADES

Salary in the EMPLOYEES
table must be between
lowest salary and highest
salary in the JOB_GRADES
table.

…

4-15 Copyright © Oracle Corporation, 2001. All rights reserved.

Retrieving Records
with Non-Equijoins

SELECT e.last_name, e.salary, j.grade_level
FROM employees e, job_grades j
WHERE e.salary

BETWEEN j.lowest_sal AND j.highest_sal;

…

4-16 Copyright © Oracle Corporation, 2001. All rights reserved.

Outer Joins

EMPLOYEESDEPARTMENTS

There are no employees in
department 190.

…

4-17 Copyright © Oracle Corporation, 2001. All rights reserved.

Outer Joins Syntax

• You use an outer join to also see rows that do not
meet the join condition.

• The Outer join operator is the plus sign (+).

SELECT table1.column, table2.column
FROM table1, table2
WHERE table1.column(+) = table2.column;

SELECT table1.column, table2.column
FROM table1, table2
WHERE table1.column(+) = table2.column;

SELECT table1.column, table2.column
FROM table1, table2
WHERE table1.column = table2.column(+);

SELECT table1.column, table2.column
FROM table1, table2
WHERE table1.column = table2.column(+);

4-18 Copyright © Oracle Corporation, 2001. All rights reserved.

SELECT e.last_name, e.department_id, d.department_name
FROM employees e, departments d
WHERE e.department_id(+) = d.department_id ;

Using Outer Joins

…

4-19 Copyright © Oracle Corporation, 2001. All rights reserved.

Self Joins

EMPLOYEES (WORKER) EMPLOYEES (MANAGER)

MANAGER_ID in the WORKER table is equal to
EMPLOYEE_ID in the MANAGER table.

… …

4-20 Copyright © Oracle Corporation, 2001. All rights reserved.

Joining a Table to Itself

SELECT worker.last_name || ' works for '
|| manager.last_name

FROM employees worker, employees manager
WHERE worker.manager_id = manager.employee_id ;

…

4-21 Copyright © Oracle Corporation, 2001. All rights reserved.

Practice 4, Part One: Overview

This practice covers writing queries to join tables
together using Oracle syntax.

4-22 Copyright © Oracle Corporation, 2001. All rights reserved.

Joining Tables Using SQL: 1999 Syntax

Use a join to query data from more than one table.

SELECT table1.column, table2.column
FROM table1
[CROSS JOIN table2] |
[NATURAL JOIN table2] |
[JOIN table2 USING (column_name)] |
[JOIN table2
ON(table1.column_name = table2.column_name)] |

[LEFT|RIGHT|FULL OUTER JOIN table2
ON (table1.column_name = table2.column_name)];

SELECT table1.column, table2.column
FROM table1
[CROSS JOIN table2] |
[NATURAL JOIN table2] |
[JOIN table2 USING (column_name)] |
[JOIN table2
ON(table1.column_name = table2.column_name)] |

[LEFT|RIGHT|FULL OUTER JOIN table2
ON (table1.column_name = table2.column_name)];

4-23 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating Cross Joins

• The CROSS JOIN clause produces the cross-
product of two tables.

• This is the same as a Cartesian product between
the two tables.

SELECT last_name, department_name
FROM employees
CROSS JOIN departments ;

…

4-24 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating Natural Joins

• The NATURAL JOIN clause is based on all columns
in the two tables that have the same name.

• It selects rows from the two tables that have equal
values in all matched columns.

• If the columns having the same names have
different data types, an error is returned.

4-25 Copyright © Oracle Corporation, 2001. All rights reserved.

SELECT department_id, department_name,
location_id, city

FROM departments
NATURAL JOIN locations ;

Retrieving Records with Natural Joins

4-26 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating Joins with the USING Clause

• If several columns have the same names but the
data types do not match, the NATURAL JOIN
clause can be modified with the USING clause to
specify the columns that should be used for an
equijoin.

• Use the USING clause to match only one column
when more than one column matches.

• Do not use a table name or alias in the referenced
columns.

• The NATURAL JOIN and USING clauses are
mutually exclusive.

4-27 Copyright © Oracle Corporation, 2001. All rights reserved.

SELECT e.employee_id, e.last_name, d.location_id
FROM employees e JOIN departments d
USING (department_id) ;

Retrieving Records with the USING Clause

…

4-28 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating Joins with the ON Clause

• The join condition for the natural join is basically
an equijoin of all columns with the same name.

• To specify arbitrary conditions or specify columns
to join, the ON clause is used.

• The join condition is separated from other search
conditions.

• The ON clause makes code easy to understand.

4-29 Copyright © Oracle Corporation, 2001. All rights reserved.

SELECT e.employee_id, e.last_name, e.department_id,
d.department_id, d.location_id

FROM employees e JOIN departments d
ON (e.department_id = d.department_id);

Retrieving Records with the ON Clause

…

4-30 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating Three-Way Joins with the ON
Clause

SELECT employee_id, city, department_name
FROM employees e
JOIN departments d
ON d.department_id = e.department_id
JOIN locations l
ON d.location_id = l.location_id;

…

4-31 Copyright © Oracle Corporation, 2001. All rights reserved.

INNER Versus OUTER Joins

• In SQL: 1999, the join of two tables returning only
matched rows is an inner join.

• A join between two tables that returns the results
of the inner join as well as unmatched rows left (or
right) tables is a left (or right) outer join.

• A join between two tables that returns the results
of an inner join as well as the results of a left and
right join is a full outer join.

4-32 Copyright © Oracle Corporation, 2001. All rights reserved.

SELECT e.last_name, e.department_id, d.department_name
FROM employees e
LEFT OUTER JOIN departments d
ON (e.department_id = d.department_id) ;

LEFT OUTER JOIN

…

4-33 Copyright © Oracle Corporation, 2001. All rights reserved.

SELECT e.last_name, e.department_id, d.department_name
FROM employees e
RIGHT OUTER JOIN departments d
ON (e.department_id = d.department_id) ;

RIGHT OUTER JOIN

…

4-34 Copyright © Oracle Corporation, 2001. All rights reserved.

SELECT e.last_name, e.department_id, d.department_name
FROM employees e
FULL OUTER JOIN departments d
ON (e.department_id = d.department_id) ;

FULL OUTER JOIN

…

4-35 Copyright © Oracle Corporation, 2001. All rights reserved.

SELECT e.employee_id, e.last_name, e.department_id,
d.department_id, d.location_id

FROM employees e JOIN departments d
ON (e.department_id = d.department_id)
AND e.manager_id = 149 ;

Additional Conditions

4-36 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary

In this lesson, you should have learned how to use
joins to display data from multiple tables in:

• Oracle proprietary syntax for versions 8i and
earlier

• SQL: 1999 compliant syntax for version 9i

4-37 Copyright © Oracle Corporation, 2001. All rights reserved.

Practice 4, Part Two: Overview

This practice covers the following topics:
• Joining tables using an equijoin
• Performing outer and self joins
• Adding conditions

5
Copyright © Oracle Corporation, 2001. All rights reserved.

Aggregating Data
Using Group Functions

5-2 Copyright © Oracle Corporation, 2001. All rights reserved.

Objectives

After completing this lesson, you should be able to
do the following:

• Identify the available group functions

• Describe the use of group functions

• Group data using the GROUP BY clause

• Include or exclude grouped rows by using the
HAVING clause

5-3 Copyright © Oracle Corporation, 2001. All rights reserved.

What Are Group Functions?
Group functions operate on sets of rows to give one
result per group.
EMPLOYEES

The maximum
salary in

the EMPLOYEES
table.

…

5-4 Copyright © Oracle Corporation, 2001. All rights reserved.

Types of Group Functions

• AVG
• COUNT
• MAX
• MIN
• STDDEV
• SUM
• VARIANCE

5-5 Copyright © Oracle Corporation, 2001. All rights reserved.

SELECT [column,] group_function(column), ...
FROM table
[WHERE condition]
[GROUP BY column]
[ORDER BY column];

Group Functions Syntax

5-6 Copyright © Oracle Corporation, 2001. All rights reserved.

SELECT AVG(salary), MAX(salary),
MIN(salary), SUM(salary)

FROM employees
WHERE job_id LIKE '%REP%';

Using the AVG and SUM Functions

You can use AVG and SUM for numeric data.

5-7 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the MIN and MAX Functions

You can use MIN and MAX for any data type.

SELECT MIN(hire_date), MAX(hire_date)
FROM employees;

5-8 Copyright © Oracle Corporation, 2001. All rights reserved.

SELECT COUNT(*)
FROM employees
WHERE department_id = 50;

Using the COUNT Function

COUNT(*) returns the number of rows in a table.

5-9 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the COUNT Function

• COUNT(expr) returns the number of rows with
non-null values for the expr.

• Display the number of department values in the
EMPLOYEES table, excluding the null values.

SELECT COUNT(commission_pct)
FROM employees
WHERE department_id = 80;

5-10 Copyright © Oracle Corporation, 2001. All rights reserved.

SELECT COUNT(DISTINCT department_id)
FROM employees;

Using the DISTINCT Keyword

• COUNT(DISTINCT expr) returns the number of
distinct non-null values of the expr.

• Display the number of distinct department values
in the EMPLOYEES table.

5-11 Copyright © Oracle Corporation, 2001. All rights reserved.

SELECT AVG(commission_pct)
FROM employees;

Group Functions and Null Values

Group functions ignore null values in the column.

5-12 Copyright © Oracle Corporation, 2001. All rights reserved.

SELECT AVG(NVL(commission_pct, 0))
FROM employees;

Using the NVL Function
with Group Functions

The NVL function forces group functions to include
null values.

5-13 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating Groups of Data

EMPLOYEES

The
average
salary

in
EMPLOYEES

table
for each

department.

4400

…

9500

3500

6400

10033

5-14 Copyright © Oracle Corporation, 2001. All rights reserved.

SELECT column, group_function(column)
FROM table
[WHERE condition]
[GROUP BY group_by_expression]
[ORDER BY column];

Creating Groups of Data:
The GROUP BY Clause Syntax

Divide rows in a table into smaller groups by using the
GROUP BY clause.

5-15 Copyright © Oracle Corporation, 2001. All rights reserved.

SELECT department_id, AVG(salary)
FROM employees
GROUP BY department_id ;

Using the GROUP BY Clause

All columns in the SELECT list that are not in group
functions must be in the GROUP BY clause.

5-16 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the GROUP BY Clause

The GROUP BY column does not have to be in the
SELECT list.

SELECT AVG(salary)
FROM employees
GROUP BY department_id ;

5-17 Copyright © Oracle Corporation, 2001. All rights reserved.

Grouping by More Than One Column

EMPLOYEES

“Add up the
salaries in

the EMPLOYEES
table

for each job,
grouped by
department.

…

5-18 Copyright © Oracle Corporation, 2001. All rights reserved.

SELECT department_id dept_id, job_id, SUM(salary)
FROM employees
GROUP BY department_id, job_id ;

Using the GROUP BY Clause
on Multiple Columns

5-19 Copyright © Oracle Corporation, 2001. All rights reserved.

Illegal Queries
Using Group Functions

Any column or expression in the SELECT list that is
not an aggregate function must be in the GROUP BY
clause.

SELECT department_id, COUNT(last_name)
FROM employees;
SELECT department_id, COUNT(last_name)
FROM employees;

SELECT department_id, COUNT(last_name)
*

ERROR at line 1:
ORA-00937: not a single-group group function

SELECT department_id, COUNT(last_name)
*

ERROR at line 1:
ORA-00937: not a single-group group function

Column missing in the GROUP BY clauseColumn missing in the GROUP BY clause

5-20 Copyright © Oracle Corporation, 2001. All rights reserved.

Illegal Queries
Using Group Functions

• You cannot use the WHERE clause to restrict groups.

• You use the HAVING clause to restrict groups.

• You cannot use group functions in the WHERE clause.

SELECT department_id, AVG(salary)
FROM employees
WHERE AVG(salary) > 8000
GROUP BY department_id;

SELECT department_id, AVG(salary)
FROM employees
WHERE AVG(salary) > 8000
GROUP BY department_id;

WHERE AVG(salary) > 8000
*

ERROR at line 3:
ORA-00934: group function is not allowed here

WHERE AVG(salary) > 8000
*

ERROR at line 3:
ORA-00934: group function is not allowed here

Cannot use the WHERE clause to restrict groupsCannot use the WHERE clause to restrict groups

5-21 Copyright © Oracle Corporation, 2001. All rights reserved.

Excluding Group Results

The maximum
salary

per department
when it is

greater than
$10,000

EMPLOYEES

…

5-22 Copyright © Oracle Corporation, 2001. All rights reserved.

SELECT column, group_function
FROM table
[WHERE condition]
[GROUP BY group_by_expression]
[HAVING group_condition]
[ORDER BY column];

Excluding Group Results: The HAVING
Clause

Use the HAVING clause to restrict groups:

1. Rows are grouped.

2. The group function is applied.

3. Groups matching the HAVING clause are
displayed.

5-23 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the HAVING Clause

SELECT department_id, MAX(salary)
FROM employees
GROUP BY department_id
HAVING MAX(salary)>10000 ;

5-24 Copyright © Oracle Corporation, 2001. All rights reserved.

SELECT job_id, SUM(salary) PAYROLL
FROM employees
WHERE job_id NOT LIKE '%REP%'
GROUP BY job_id
HAVING SUM(salary) > 13000
ORDER BY SUM(salary);

Using the HAVING Clause

5-25 Copyright © Oracle Corporation, 2001. All rights reserved.

Nesting Group Functions

Display the maximum average salary.

SELECT MAX(AVG(salary))
FROM employees
GROUP BY department_id;

5-26 Copyright © Oracle Corporation, 2001. All rights reserved.

SELECT column, group_function(column)
FROM table
[WHERE condition]
[GROUP BY group_by_expression]
[HAVING group_condition]
[ORDER BY column];

Summary

In this lesson, you should have learned how to:

• Use the group functions COUNT, MAX, MIN, AVG
• Write queries that use the GROUP BY clause

• Write queries that use the HAVING clause

5-27 Copyright © Oracle Corporation, 2001. All rights reserved.

Practice 5 Overview

This practice covers the following topics:

• Writing queries that use the group functions

• Grouping by rows to achieve more than one result

• Excluding groups by using the HAVING clause

6
Copyright © Oracle Corporation, 2001. All rights reserved.

Subqueries

6-2 Copyright © Oracle Corporation, 2001. All rights reserved.

Objectives

After completing this lesson, you should be able to
do the following:

• Describe the types of problem that subqueries can
solve

• Define subqueries

• List the types of subqueries

• Write single-row and multiple-row subqueries

6-3 Copyright © Oracle Corporation, 2001. All rights reserved.

Using a Subquery
to Solve a Problem

Who has a salary greater than Abel’s?

Which employees have salaries greater
than Abel’s salary?

Main Query:

??

What is Abel’s salary?
??

Subquery

6-4 Copyright © Oracle Corporation, 2001. All rights reserved.

Subquery Syntax

• The subquery (inner query) executes once before
the main query.

• The result of the subquery is used by the main
query (outer query).

SELECT select_list
FROM table
WHERE expr operator

(SELECT select_list
FROM table);

6-5 Copyright © Oracle Corporation, 2001. All rights reserved.

SELECT last_name
FROM employees
WHERE salary >

(SELECT salary
FROM employees
WHERE last_name = 'Abel');

Using a Subquery

11000

6-6 Copyright © Oracle Corporation, 2001. All rights reserved.

Guidelines for Using Subqueries

• Enclose subqueries in parentheses.

• Place subqueries on the right side of the
comparison condition.

• The ORDER BY clause in the subquery is not
needed unless you are performing Top-N analysis.

• Use single-row operators with single-row
subqueries and use multiple-row operators with
multiple-row subqueries.

6-7 Copyright © Oracle Corporation, 2001. All rights reserved.

Types of Subqueries

Main query

Subquery
returns

ST_CLERK

• Multiple-row subquery

ST_CLERK
SA_MAN

Main query

Subquery
returns

• Single-row subquery

6-8 Copyright © Oracle Corporation, 2001. All rights reserved.

Single-Row Subqueries

• Return only one row

• Use single-row comparison operators

Operator

=

>

>=

<

<=

<>

Meaning

Equal to

Greater than

Greater than or equal to

Less than

Less than or equal to

Not equal to

6-9 Copyright © Oracle Corporation, 2001. All rights reserved.

SELECT last_name, job_id, salary
FROM employees
WHERE job_id =

(SELECT job_id
FROM employees
WHERE employee_id = 141)

AND salary >
(SELECT salary
FROM employees
WHERE employee_id = 143);

Executing Single-Row Subqueries

ST_CLERK

2600

6-10 Copyright © Oracle Corporation, 2001. All rights reserved.

SELECT last_name, job_id, salary
FROM employees
WHERE salary =

(SELECT MIN(salary)
FROM employees);

Using Group Functions in a Subquery

2500

6-11 Copyright © Oracle Corporation, 2001. All rights reserved.

The HAVING Clause with Subqueries

• The Oracle server executes subqueries first.
• The Oracle server returns results into the HAVING

clause of the main query.

SELECT department_id, MIN(salary)
FROM employees
GROUP BY department_id
HAVING MIN(salary) >

(SELECT MIN(salary)
FROM employees
WHERE department_id = 50);

2500

6-12 Copyright © Oracle Corporation, 2001. All rights reserved.

SELECT employee_id, last_name
FROM employees
WHERE salary =

(SELECT MIN(salary)
FROM employees
GROUP BY department_id);

What is Wrong
with this Statement?

ERROR at line 4:
ORA-01427: single-row subquery returns more than
one row

ERROR at line 4:
ORA-01427: single-row subquery returns more than
one row

Single-row operator with multiple-row subquerySingle-row operator with multiple-row subquery

6-13 Copyright © Oracle Corporation, 2001. All rights reserved.

Will this Statement Return Rows?

no rows selectedno rows selected

SELECT last_name, job_id
FROM employees
WHERE job_id =

(SELECT job_id
FROM employees
WHERE last_name = 'Haas');

Subquery returns no valuesSubquery returns no values

6-14 Copyright © Oracle Corporation, 2001. All rights reserved.

Multiple-Row Subqueries

• Return more than one row

• Use multiple-row comparison operators

Operator

IN

ANY

ALL

Meaning

Equal to any member in the list

Compare value to each value returned by
the subquery

Compare value to every value returned
by the subquery

6-15 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the ANY Operator
in Multiple-Row Subqueries

9000, 6000, 4200

SELECT employee_id, last_name, job_id, salary
FROM employees
WHERE salary < ANY

(SELECT salary
FROM employees
WHERE job_id = 'IT_PROG')

AND job_id <> 'IT_PROG';

…

6-16 Copyright © Oracle Corporation, 2001. All rights reserved.

SELECT employee_id, last_name, job_id, salary
FROM employees
WHERE salary < ALL

(SELECT salary
FROM employees
WHERE job_id = 'IT_PROG')

AND job_id <> 'IT_PROG';

Using the ALL Operator
in Multiple-Row Subqueries

9000, 6000, 4200

6-17 Copyright © Oracle Corporation, 2001. All rights reserved.

Null Values in a Subquery

SELECT emp.last_name
FROM employees emp
WHERE emp.employee_id NOT IN

(SELECT mgr.manager_id
FROM employees mgr);

no rows selectedno rows selected

6-18 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary

In this lesson, you should have learned how to:
• Identify when a subquery can help solve a

question
• Write subqueries when a query is based on

unknown values
SELECT select_list
FROM table
WHERE expr operator

(SELECT select_list
FROM table);

6-19 Copyright © Oracle Corporation, 2001. All rights reserved.

Practice 6 Overview

This practice covers the following topics:

• Creating subqueries to query values based on
unknown criteria

• Using subqueries to find out which values exist in
one set of data and not in another

7
Copyright © Oracle Corporation, 2001. All rights reserved.

Producing Readable Output
with iSQL*Plus

7-2 Copyright © Oracle Corporation, 2001. All rights reserved.

Objectives

After completing this lesson, you should be able to
do the following:
• Produce queries that require a substitution

variable

• Customize the iSQL*Plus environment

• Produce more readable output

• Create and execute script files

7-3 Copyright © Oracle Corporation, 2001. All rights reserved.

Substitution Variables

I want to query
different values.... salary = ? …

… department_id = ? …
... last_name = ? ...

User

7-4 Copyright © Oracle Corporation, 2001. All rights reserved.

Substitution Variables

Use iSQL*Plus substitution variables to:

• Temporarily store values
– Single ampersand (&)

– Double ampersand (&&)

– DEFINE command

• Pass variable values between SQL statements

• Dynamically alter headers and footers

7-5 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the & Substitution VariableUsing the & Substitution Variable

Use a variable prefixed with an ampersand (&) to
prompt the user for a value.
Use a variable prefixed with an ampersand (&) to
prompt the user for a value.

SELECT employee_id, last_name, salary, department_id
FROM employees
WHERE employee_id = &employee_num ;

7-6 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the & Substitution VariableUsing the & Substitution Variable

1

2
101

7-7 Copyright © Oracle Corporation, 2001. All rights reserved.

SELECT last_name, department_id, salary*12
FROM employees
WHERE job_id = '&job_title' ;

Character and Date Values
with Substitution Variables

Use single quotation marks for date and character
values.

7-8 Copyright © Oracle Corporation, 2001. All rights reserved.

Specifying Column Names,
Expressions, and Text

Use substitution variables to supplement the
following:
• WHERE conditions

• ORDER BY clauses

• Column expressions

• Table names
• Entire SELECT statements

7-9 Copyright © Oracle Corporation, 2001. All rights reserved.

SELECT employee_id, last_name, job_id,
&column_name

FROM employees
WHERE &condition
ORDER BY &order_column ;

Specifying Column Names,
Expressions, and Text

7-10 Copyright © Oracle Corporation, 2001. All rights reserved.

Defining Substitution Variables

• You can predefine variables using the iSQL*Plus
DEFINE command.

DEFINE variable = value creates a user
variable with the CHAR data type.

• If you need to predefine a variable that includes
spaces, you must enclose the value within single
quotation marks when using the DEFINE
command.

• A defined variable is available for the session

7-11 Copyright © Oracle Corporation, 2001. All rights reserved.

DEFINE and UNDEFINE Commands

• A variable remains defined until you either:
– Use the UNDEFINE command to clear it

– Exit iSQL*Plus

• You can verify your changes with the DEFINE
command.

DEFINE job_title = IT_PROG
DEFINE job_title
DEFINE JOB_TITLE = "IT_PROG" (CHAR)

UNDEFINE job_title
DEFINE job_title
SP2-0135: symbol job_title is UNDEFINED

7-12 Copyright © Oracle Corporation, 2001. All rights reserved.

SELECT employee_id, last_name, salary, department_id
FROM employees
WHERE employee_id = &employee_num ;

Using the DEFINE Command with
& Substitution Variable

• Create the substitution variable using the DEFINE
command.

• Use a variable prefixed with an ampersand (&) to
substitute the value in the SQL statement.

DEFINE employee_num = 200

7-13 Copyright © Oracle Corporation, 2001. All rights reserved.

SELECT employee_id, last_name, job_id, &&column_name
FROM employees
ORDER BY &column_name;

Use the double-ampersand (&&) if you want to reuse
the variable value without prompting the user each
time.

…

Using the && Substitution Variable

7-14 Copyright © Oracle Corporation, 2001. All rights reserved.

old 3: WHERE employee_id = &employee_num
new 3: WHERE employee_id = 200

Using the VERIFY Command

Use the VERIFY command to toggle the display of the
substitution variable, before and after iSQL*Plus
replaces substitution variables with values.

SET VERIFY ON
SELECT employee_id, last_name, salary, department_id
FROM employees
WHERE employee_id = &employee_num;

7-15 Copyright © Oracle Corporation, 2001. All rights reserved.

Customizing the iSQL*Plus Environment

• Use SETSET commands to control current session.

• Verify what you have set by using the SHOWSHOW
command.

SET ECHO ONSET ECHO ON

SHOW ECHO
echo ON
SHOW ECHO
echo ONecho ON

SET system_variable valueSET system_variable value

7-16 Copyright © Oracle Corporation, 2001. All rights reserved.

SET Command Variables

• ARRAYSIZE {20 | n}
• FEEDBACK {6 | n |OFF | ON}
• HEADING {OFF | ON}
• LONG {80 | n}| ON | text}

SET HEADING OFFSET HEADING OFF

SHOW HEADING
HEADING OFF
SHOW HEADING
HEADING OFFHEADING OFF

7-17 Copyright © Oracle Corporation, 2001. All rights reserved.

iSQL*Plus Format Commands

• COLUMN [column option]
• TTITLE [text | OFF | ON]
• BTITLE [text | OFF | ON]
• BREAK [ON report_element]

7-18 Copyright © Oracle Corporation, 2001. All rights reserved.

The COLUMN Command

Controls display of a column:

• CLE[AR]: Clears any column formats

• HEA[DING] text: Sets the column heading

• FOR[MAT] format: Changes the display of the
column using a format model

• NOPRINT | PRINT
• NULL

COL[UMN] [{column|alias} [option]]COL[UMN] [{column|alias} [option]]

7-19 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the COLUMN Command

• Create column headings.

COLUMN last_name HEADING 'Employee|Name'
COLUMN salary JUSTIFY LEFT FORMAT $99,990.00
COLUMN manager FORMAT 999999999 NULL 'No manager'

COLUMN last_name HEADING 'Employee|Name'
COLUMN salary JUSTIFY LEFT FORMAT $99,990.00
COLUMN manager FORMAT 999999999 NULL 'No manager'

COLUMN last_nameCOLUMN last_name

COLUMN last_name CLEARCOLUMN last_name CLEAR

• Display the current setting for the LAST_NAME
column.

• Clear settings for the LAST_NAME column.

7-20 Copyright © Oracle Corporation, 2001. All rights reserved.

COLUMN Format Models

Result

1234

001234

$1234

L1234

1234.00

1,234

Example

999999

099999

$9999

L9999

9999.99

9,999

Element

9

0

$

L

.

,

Description

Single zero-suppression
digit

Enforces leading zero

Floating dollar sign

Local currency

Position of decimal point

Thousand separator

7-21 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the BREAK Command

Use the BREAK command to suppress duplicates.

BREAK ON job_idBREAK ON job_id

7-22 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the TTITLE and BTITLE Commands

• Display headers and footers.

• Set the report header.

• Set the report footer.

TTI[TLE] [text|OFF|ON]TTI[TLE] [text|OFF|ON]

TTITLE 'Salary|Report'TTITLE 'Salary|Report'

BTITLE 'Confidential'BTITLE 'Confidential'

7-23 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the TTITLE and BTITLE Commands

• Display headers and footers.

• Set the report header.

• Set the report footer.

TTI[TLE] [text|OFF|ON]TTI[TLE] [text|OFF|ON]

TTITLE 'Salary|Report'TTITLE 'Salary|Report'

BTITLE 'Confidential'BTITLE 'Confidential'

7-24 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating a Script File
to Run a Report

1. Create and test the SQL SELECT statement.

2. Save the SELECT statement into a script file.

3. Load the script file into an editor.

4. Add formatting commands before the SELECT
statement.

5. Verify that the termination character follows
the SELECT statement.

7-25 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating a Script File
to Run a Report

6. Clear formatting commands after the SELECT
statement.

7. Save the script file.

8. Load the script file into the iSQL*Plus text
window, and click the Execute button.

7-26 Copyright © Oracle Corporation, 2001. All rights reserved.

Sample Report

…

7-27 Copyright © Oracle Corporation, 2001. All rights reserved.

Sample Report

…

7-28 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary

In this lesson, you should have learned how to:

• Use iSQL*Plus substitution variables to store
values temporarily

• Use SET commands to control the current
iSQL*Plus environment

• Use the COLUMN command to control the display of
a column

• Use the BREAK command to suppress duplicates
and divide rows into sections

• Use the TTITLE and BTITLE commands to display
headers and footers

7-29 Copyright © Oracle Corporation, 2001. All rights reserved.

Practice 7 Overview

This practice covers the following topics:

• Creating a query to display values using
substitution variables

• Starting a command file containing variables

8
Copyright © Oracle Corporation, 2001. All rights reserved.

Manipulating Data

8-2 Copyright © Oracle Corporation, 2001. All rights reserved.

Objectives

After completing this lesson, you should be able to
do the following:

• Describe each DML statement

• Insert rows into a table

• Update rows in a table

• Delete rows from a table

• Merge rows in a table

• Control transactions

8-3 Copyright © Oracle Corporation, 2001. All rights reserved.

Data Manipulation Language

• A DML statement is executed when you:
– Add new rows to a table

– Modify existing rows in a table

– Remove existing rows from a table

• A transaction consists of a collection of DML
statements that form a logical unit of work.

8-4 Copyright © Oracle Corporation, 2001. All rights reserved.

Adding a New Row to a Table

DEPARTMENTS
New
row

……insert a new row
into the

DEPARMENTS
table…

8-5 Copyright © Oracle Corporation, 2001. All rights reserved.

The INSERT Statement Syntax

• Add new rows to a table by using the INSERT
statement.

• Only one row is inserted at a time with this syntax.

INSERT INTO table [(column [, column...])]
VALUES (value [, value...]);
INSERT INTO table [(column [, column...])]
VALUES (value [, value...]);

8-6 Copyright © Oracle Corporation, 2001. All rights reserved.

Inserting New Rows

• Insert a new row containing values for each
column.

• List values in the default order of the columns in
the table.

• Optionally, list the columns in the INSERT clause.

• Enclose character and date values within single
quotation marks.

INSERT INTO departments(department_id, department_name,
manager_id, location_id)

VALUES (70, 'Public Relations', 100, 1700);
1 row created.

8-7 Copyright © Oracle Corporation, 2001. All rights reserved.

INSERT INTO departments
VALUES (100, 'Finance', NULL, NULL);
1 row created.1 row created.

INSERT INTO departments (department_id,
department_name)

VALUES (30, 'Purchasing');
1 row created.1 row created.

Inserting Rows with Null Values

• Implicit method: Omit the column from the
column list.

• Explicit method: Specify the NULL keyword in the
VALUES clause.

8-8 Copyright © Oracle Corporation, 2001. All rights reserved.

INSERT INTO employees (employee_id,
first_name, last_name,
email, phone_number,
hire_date, job_id, salary,
commission_pct, manager_id,
department_id)

VALUES (113,
'Louis', 'Popp',
'LPOPP', '515.124.4567',
SYSDATE, 'AC_ACCOUNT', 6900,
NULL, 205, 100);

1 row created.1 row created.

Inserting Special Values

The SYSDATE function records the current date
and time.

8-9 Copyright © Oracle Corporation, 2001. All rights reserved.

INSERT INTO employees
VALUES (114,

'Den', 'Raphealy',
'DRAPHEAL', '515.127.4561',
TO_DATE('FEB 3, 1999', 'MON DD, YYYY'),
'AC_ACCOUNT', 11000, NULL, 100, 30);

1 row created.1 row created.

Inserting Specific Date Values

• Add a new employee.

• Verify your addition.

8-10 Copyright © Oracle Corporation, 2001. All rights reserved.

INSERT INTO departments
(department_id, department_name, location_id)

VALUES (&department_id, '&department_name',&location);

Creating a Script

• Use & substitution in a SQL statement to prompt
for values.

• & is a placeholder for the variable value.

1 row created.1 row created.

8-11 Copyright © Oracle Corporation, 2001. All rights reserved.

• Write your INSERT statement with a subquery.

• Do not use the VALUES clause.

• Match the number of columns in the INSERT
clause to those in the subquery.

INSERT INTO sales_reps(id, name, salary, commission_pct)
SELECT employee_id, last_name, salary, commission_pct
FROM employees
WHERE job_id LIKE '%REP%';

4 rows created.4 rows created.

Copying Rows
from Another Table

8-12 Copyright © Oracle Corporation, 2001. All rights reserved.

Changing Data in a Table

EMPLOYEES

Update rows in the EMPLOYEES table.

8-13 Copyright © Oracle Corporation, 2001. All rights reserved.

The UPDATE Statement Syntax

• Modify existing rows with the UPDATE statement.

• Update more than one row at a time, if required.

UPDATE table
SET column = value [, column = value, ...]
[WHERE condition];

UPDATE table
SET column = value [, column = value, ...]
[WHERE condition];

8-14 Copyright © Oracle Corporation, 2001. All rights reserved.

UPDATE employees
SET department_id = 70
WHERE employee_id = 113;
1 row updated.1 row updated.

• Specific row or rows are modified if you specify
the WHERE clause.

• All rows in the table are modified if you omit the
WHERE clause.

Updating Rows in a Table

UPDATE copy_emp
SET department_id = 110;
22 rows updated.

UPDATE copy_emp
SET department_id = 110;
22 rows updated.22 rows updated.

8-15 Copyright © Oracle Corporation, 2001. All rights reserved.

UPDATE employees
SET job_id = (SELECT job_id

FROM employees
WHERE employee_id = 205),

salary = (SELECT salary
FROM employees
WHERE employee_id = 205)

WHERE employee_id = 114;
1 row updated.1 row updated.

Updating Two Columns with a Subquery

Update employee 114’s job and salary to match that of
employee 205.

8-16 Copyright © Oracle Corporation, 2001. All rights reserved.

UPDATE copy_emp
SET department_id = (SELECT department_id

FROM employees
WHERE employee_id = 100)

WHERE job_id = (SELECT job_id
FROM employees
WHERE employee_id = 200);

1 row updated.1 row updated.

Updating Rows Based
on Another Table

Use subqueries in UPDATE statements to update
rows in a table based on values from another table.

8-17 Copyright © Oracle Corporation, 2001. All rights reserved.

UPDATE employees
*

ERROR at line 1:
ORA-02291: integrity constraint (HR.EMP_DEPT_FK)
violated - parent key not found

UPDATE employees
*

ERROR at line 1:
ORA-02291: integrity constraint (HR.EMP_DEPT_FK)
violated - parent key not found

UPDATE employees
SET department_id = 55
WHERE department_id = 110;

UPDATE employees
SET department_id = 55
WHERE department_id = 110;

Updating Rows:
Integrity Constraint Error

Department number 55 does not exist

8-18 Copyright © Oracle Corporation, 2001. All rights reserved.

Delete a row from the DEPARTMENTS table.

Removing a Row from a Table
DEPARTMENTS

8-19 Copyright © Oracle Corporation, 2001. All rights reserved.

The DELETE Statement

You can remove existing rows from a table by using
the DELETE statement.

DELETE [FROM] table
[WHERE condition];
DELETE [FROM] table
[WHERE condition];

8-20 Copyright © Oracle Corporation, 2001. All rights reserved.

• Specific rows are deleted if you specify the WHERE
clause.

• All rows in the table are deleted if you omit the
WHERE clause.

Deleting Rows from a Table

DELETE FROM departments
WHERE department_name = 'Finance';
1 row deleted.

DELETE FROM departments
WHERE department_name = 'Finance';
1 row deleted.1 row deleted.

DELETE FROM copy_emp;
22 rows deleted.
DELETE FROM copy_emp;
22 rows deleted.22 rows deleted.

8-21 Copyright © Oracle Corporation, 2001. All rights reserved.

DELETE FROM employees
WHERE department_id =

(SELECT department_id
FROM departments
WHERE department_name LIKE '%Public%');

1 row deleted.1 row deleted.

Deleting Rows Based
on Another Table

Use subqueries in DELETE statements to remove
rows from a table based on values from another table.

8-22 Copyright © Oracle Corporation, 2001. All rights reserved.

Deleting Rows:
Integrity Constraint Error

DELETE FROM departments
WHERE department_id = 60;
DELETE FROM departments
WHERE department_id = 60;

DELETE FROM departments
*

ERROR at line 1:
ORA-02292: integrity constraint (HR.EMP_DEPT_FK)
violated - child record found

DELETE FROM departments
*

ERROR at line 1:
ORA-02292: integrity constraint (HR.EMP_DEPT_FK)
violated - child record found

You cannot delete a row that contains a primary
key that is used as a foreign key in another table.

8-23 Copyright © Oracle Corporation, 2001. All rights reserved.

Using a Subquery in an INSERT Statement

INSERT INTO
(SELECT employee_id, last_name,

email, hire_date, job_id, salary,
department_id

FROM employees
WHERE department_id = 50)

VALUES (99999, 'Taylor', 'DTAYLOR',
TO_DATE('07-JUN-99', 'DD-MON-RR'),
'ST_CLERK', 5000, 50);

1 row created.

INSERT INTO
(SELECT employee_id, last_name,

email, hire_date, job_id, salary,
department_id

FROM employees
WHERE department_id = 50)

VALUES (99999, 'Taylor', 'DTAYLOR',
TO_DATE('07-JUN-99', 'DD-MON-RR'),
'ST_CLERK', 5000, 50);

1 row created.

8-24 Copyright © Oracle Corporation, 2001. All rights reserved.

Using a Subquery in an INSERT Statement

• Verify the resultsSELECT employee_id, last_name, email, hire_date,
job_id, salary, department_id

FROM employees
WHERE department_id = 50;

SELECT employee_id, last_name, email, hire_date,
job_id, salary, department_id

FROM employees
WHERE department_id = 50;

8-25 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the WITH CHECK OPTION Keyword
on DML Statements

• A subquery is used to identify the table and
columns of the DML statement.

• The WITH CHECK OPTION keyword prohibits you
from changing rows that are not in the subquery.

INSERT INTO (SELECT employee_id, last_name, email,
hire_date, job_id, salary

FROM employees
WHERE department_id = 50 WITH CHECK OPTION)

VALUES (99998, 'Smith', 'JSMITH',
TO_DATE('07-JUN-99', 'DD-MON-RR'),
'ST_CLERK', 5000);

INSERT INTO
*

ERROR at line 1:
ORA-01402: view WITH CHECK OPTION where-clause violation

INSERT INTO (SELECT employee_id, last_name, email,
hire_date, job_id, salary

FROM employees
WHERE department_id = 50 WITH CHECK OPTION)

VALUES (99998, 'Smith', 'JSMITH',
TO_DATE('07-JUN-99', 'DD-MON-RR'),
'ST_CLERK', 5000);

INSERT INTO
*

ERROR at line 1:
ORA-01402: view WITH CHECK OPTION where-clause violation

8-26 Copyright © Oracle Corporation, 2001. All rights reserved.

Overview of the Explicit Default Feature

• With the explicit default feature, you can use the
DEFAULT keyword as a column value where the
column default is desired.

• The addition of this feature is for compliance with
the SQL: 1999 Standard.

• This allows the user to control where and when
the default value should be applied to data.

• Explicit defaults can be used in INSERT and
UPDATE statements.

8-27 Copyright © Oracle Corporation, 2001. All rights reserved.

Using Explicit Default Values

INSERT INTO departments
(department_id, department_name, manager_id)

VALUES (300, 'Engineering', DEFAULT);

INSERT INTO departments
(department_id, department_name, manager_id)

VALUES (300, 'Engineering', DEFAULT);

UPDATE departments
SET manager_id = DEFAULT WHERE department_id = 10;
UPDATE departments
SET manager_id = DEFAULT WHERE department_id = 10;

• DEFAULT with INSERT:

• DEFAULT with UPDATE:

8-28 Copyright © Oracle Corporation, 2001. All rights reserved.

The MERGE Statement

• Provides the ability to conditionally update or
insert data into a database table

• Performs an UPDATE if the row exists, and an
INSERT if it is a new row:

– Avoids separate updates

– Increases performance and ease of use

– Is useful in data warehousing applications

8-29 Copyright © Oracle Corporation, 2001. All rights reserved.

The MERGE Statement Syntax

You can conditionally insert or update rows in a
table by using the MERGE statement.

MERGE INTO table_name table_alias
USING (table|view|sub_query) alias
ON (join condition)
WHEN MATCHED THEN

UPDATE SET
col1 = col_val1,
col2 = col2_val

WHEN NOT MATCHED THEN
INSERT (column_list)
VALUES (column_values);

MERGE INTO table_name table_alias
USING (table|view|sub_query) alias
ON (join condition)
WHEN MATCHED THEN

UPDATE SET
col1 = col_val1,
col2 = col2_val

WHEN NOT MATCHED THEN
INSERT (column_list)
VALUES (column_values);

8-30 Copyright © Oracle Corporation, 2001. All rights reserved.

MERGE INTO copy_emp c
USING employees e
ON (c.employee_id = e.employee_id)

WHEN MATCHED THEN
UPDATE SET

c.first_name = e.first_name,
c.last_name = e.last_name,
...
c.department_id = e.department_id

WHEN NOT MATCHED THEN
INSERT VALUES(e.employee_id, e.first_name, e.last_name,

e.email, e.phone_number, e.hire_date, e.job_id,
e.salary, e.commission_pct, e.manager_id,
e.department_id);

Merging Rows

Insert or update rows in the COPY_EMP table to match
the EMPLOYEES table.

8-31 Copyright © Oracle Corporation, 2001. All rights reserved.

Merging Rows

MERGE INTO copy_emp c
USING employees e
ON (c.employee_id = e.employee_id)

WHEN MATCHED THEN
UPDATE SET

...
WHEN NOT MATCHED THEN
INSERT VALUES...;

MERGE INTO copy_emp c
USING employees e
ON (c.employee_id = e.employee_id)

WHEN MATCHED THEN
UPDATE SET

...
WHEN NOT MATCHED THEN
INSERT VALUES...;

SELECT *
FROM COPY_EMP;

no rows selected

SELECT *
FROM COPY_EMP;

no rows selected

SELECT *
FROM COPY_EMP;

20 rows selected.

SELECT *
FROM COPY_EMP;

20 rows selected.

8-32 Copyright © Oracle Corporation, 2001. All rights reserved.

Database Transactions

A database transaction consists of one of the
following:

• DML statements which constitute one consistent
change to the data

• One DDL statement

• One DCL statement

8-33 Copyright © Oracle Corporation, 2001. All rights reserved.

Database Transactions

• Begin when the first DML SQL statement is
executed

• End with one of the following events:
– A COMMIT or ROLLBACK statement is issued

– A DDL or DCL statement executes (automatic
commit)

– The user exits iSQL*Plus

– The system crashes

8-34 Copyright © Oracle Corporation, 2001. All rights reserved.

Advantages of COMMIT
and ROLLBACK Statements

With COMMIT and ROLLBACK statements, you can:

• Ensure data consistency

• Preview data changes before making changes
permanent

• Group logically related operations

8-35 Copyright © Oracle Corporation, 2001. All rights reserved.

Controlling Transactions

SAVEPOINT B

SAVEPOINT A

DELETE

INSERT

UPDATE

INSERT

COMMITTime

Transaction

ROLLBACK
to SAVEPOINT B

ROLLBACK
to SAVEPOINT A

ROLLBACK

8-36 Copyright © Oracle Corporation, 2001. All rights reserved.

UPDATE...
SAVEPOINT update_done;
Savepoint created.Savepoint created.
INSERT...
ROLLBACK TO update_done;
Rollback complete.Rollback complete.

Rolling Back Changes
to a Marker

• Create a marker in a current transaction by using
the SAVEPOINT statement.

• Roll back to that marker by using the ROLLBACK
TO SAVEPOINT statement.

8-37 Copyright © Oracle Corporation, 2001. All rights reserved.

• An automatic commit occurs under the following
circumstances:
– DDL statement is issued

– DCL statement is issued

– Normal exit from iSQL*Plus, without explicitly
issuing COMMIT or ROLLBACK statements

• An automatic rollback occurs under an abnormal
termination of iSQL*Plus or a system failure.

Implicit Transaction Processing

8-38 Copyright © Oracle Corporation, 2001. All rights reserved.

State of the Data
Before COMMIT or ROLLBACK

• The previous state of the data can be recovered.

• The current user can review the results of the DML
operations by using the SELECT statement.

• Other users cannot view the results of the DML
statements by the current user.

• The affected rows are locked; other users cannot change
the data within the affected rows.

8-39 Copyright © Oracle Corporation, 2001. All rights reserved.

State of the Data after COMMIT

• Data changes are made permanent in the database.

• The previous state of the data is permanently lost.

• All users can view the results.

• Locks on the affected rows are released; those rows
are available for other users to manipulate.

• All savepoints are erased.

8-40 Copyright © Oracle Corporation, 2001. All rights reserved.

COMMIT;
Commit complete.Commit complete.

• Make the changes.

• Commit the changes.

DELETE FROM employees
WHERE employee_id = 99999;
1 row deleted.

INSERT INTO departments
VALUES (290, 'Corporate Tax', NULL, 1700);
1 row inserted.

DELETE FROM employees
WHERE employee_id = 99999;WHERE employee_id = 99999;
1 row deleted.1 row deleted.

INSERT INTO departments
VALUES (290, 'Corporate Tax', NULL, 1700);
1 row inserted.1 row inserted.

Committing Data

8-41 Copyright © Oracle Corporation, 2001. All rights reserved.

State of the Data After ROLLBACK

Discard all pending changes by using the ROLLBACK
statement:

• Data changes are undone.

• Previous state of the data is restored.

• Locks on the affected rows are released.

DELETE FROM copy_emp;
22 rows deleted.22 rows deleted.
ROLLBACK;
Rollback complete.Rollback complete.

8-42 Copyright © Oracle Corporation, 2001. All rights reserved.

Statement-Level Rollback

• If a single DML statement fails during execution,
only that statement is rolled back.

• The Oracle server implements an implicit
savepoint.

• All other changes are retained.

• The user should terminate transactions explicitly
by executing a COMMIT or ROLLBACK statement.

8-43 Copyright © Oracle Corporation, 2001. All rights reserved.

Read Consistency

• Read consistency guarantees a consistent view of
the data at all times.

• Changes made by one user do not conflict with
changes made by another user.

• Read consistency ensures that on the same data:
– Readers do not wait for writers.

– Writers do not wait for readers.

8-44 Copyright © Oracle Corporation, 2001. All rights reserved.

SELECT *
FROM userA.employees;

Implementation of Read Consistency

UPDATE employees
SET salary = 7000
WHERE last_name = 'Goyal';

Data
blocks

Rollback
segments

changed
and
unchanged
data
before
change
“old” data

User A

User B

Read
consistent
image

8-45 Copyright © Oracle Corporation, 2001. All rights reserved.

Locking

In an Oracle database, locks:

• Prevent destructive interaction between
concurrent transactions

• Require no user action

• Automatically use the lowest level of
restrictiveness

• Are held for the duration of the transaction

• Are of two types: explicit locking and implicit
locking

8-46 Copyright © Oracle Corporation, 2001. All rights reserved.

Implicit Locking

• Two lock modes:
– Exclusive: Locks out other users

– Share: Allows other users to access

• High level of data concurrency:
– DML: Table share, row exclusive

– Queries: No locks required

– DDL: Protects object definitions

• Locks held until commit or rollback

8-47 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary

Description

Adds a new row to the table

Modifies existing rows in the table

Removes existing rows from the table

Conditionally inserts or updates data in a table

Makes all pending changes permanent

Is used to rollback to the savepoint marker

Discards all pending data changes

Statement

INSERT

UPDATE

DELETE

MERGE

COMMIT

SAVEPOINT

ROLLBACK

In this lesson, you should have learned how to use DML
statements and control transactions.

8-48 Copyright © Oracle Corporation, 2001. All rights reserved.

Practice 8 Overview

This practice covers the following topics:

• Inserting rows into the tables

• Updating and deleting rows in the table

• Controlling transactions

9
Copyright © Oracle Corporation, 2001. All rights reserved.

Creating and Managing Tables

9-2 Copyright © Oracle Corporation, 2001. All rights reserved.

Objectives

After completing this lesson, you should be able to
do the following:
• Describe the main database objects

• Create tables

• Describe the data types that can be used when
specifying column definition

• Alter table definitions

• Drop, rename, and truncate tables

9-3 Copyright © Oracle Corporation, 2001. All rights reserved.

Database Objects

Object Description
Table Basic unit of storage; composed of rows

and columns

View Logically represents subsets of data from
one or more tables

Sequence Numeric value generator

Index Improves the performance of some queries

Synonym Gives alternative names to objects

9-4 Copyright © Oracle Corporation, 2001. All rights reserved.

Naming Rules

Table names and column names:

• Must begin with a letter

• Must be 1–30 characters long

• Must contain only A–Z, a–z, 0–9, _, $, and #

• Must not duplicate the name of another object
owned by the same user

• Must not be an Oracle server reserved word

9-5 Copyright © Oracle Corporation, 2001. All rights reserved.

The CREATE TABLE Statement

• You must have:
– CREATE TABLE privilege

– A storage area

• You specify:
– Table name

– Column name, column data type, and column size

CREATE TABLE [schema.]table
(column datatype [DEFAULT expr][, ...]);

9-6 Copyright © Oracle Corporation, 2001. All rights reserved.

Referencing Another User’s Tables

• Tables belonging to other users are not in the
user’s schema.

• You should use the owner’s name as a prefix to
those tables.

9-7 Copyright © Oracle Corporation, 2001. All rights reserved.

The DEFAULT Option

• Specify a default value for a column during an
insert.

• Literal values, expressions, or SQL functions are
legal values.

• Another column’s name or a pseudocolumn are
illegal values.

• The default data type must match the column data
type.

... hire_date DATE DEFAULT SYSDATE, ...

9-8 Copyright © Oracle Corporation, 2001. All rights reserved.

• Create the table.

• Confirm table creation.

Creating Tables

CREATE TABLE dept
(deptno NUMBER(2),
dname VARCHAR2(14),
loc VARCHAR2(13));

Table created.Table created.

DESCRIBE dept

9-9 Copyright © Oracle Corporation, 2001. All rights reserved.

Tables in the Oracle Database

• User Tables:
– Are a collection of tables created and maintained by

the user

– Contain user information

• Data Dictionary:
– Is a collection of tables created and maintained by

the Oracle Server

– Contain database information

9-10 Copyright © Oracle Corporation, 2001. All rights reserved.

SELECT table_name
FROM user_tables ;

SELECT *
FROM user_catalog ;

Querying the Data Dictionary

• View distinct object types owned by the user.• View distinct object types owned by the user.

• View tables, views, synonyms, and sequences owned by
the user.

• View tables, views, synonyms, and sequences owned by
the user.

SELECT DISTINCT object_type
FROM user_objects ;

• See the names of tables owned by the user.• See the names of tables owned by the user.

9-11 Copyright © Oracle Corporation, 2001. All rights reserved.

Data Types
Data Type Description

VARCHAR2(size) Variable-length character data

CHAR(size) Fixed-length character data

NUMBER(p,s) Variable-length numeric data

DATE Date and time values

LONG Variable-length character data
up to 2 gigabytes

CLOB Character data up to 4
gigabytes

RAW and LONG RAW Raw binary data

BLOB Binary data up to 4 gigabytes

BFILE Binary data stored in an external
file; up to 4 gigabytes

ROWID A 64 base number system representing
the unique address of a row in its table.

9-13 Copyright © Oracle Corporation, 2001. All rights reserved.

DateTime Data Types

Data Type Description
TIMESTAMP Date with fractional seconds
INTERVAL YEAR TO MONTH Stored as an interval of years

and months
INTERVAL DAY TO SECOND Stored as an interval of days to

hours minutes and seconds

Datetime enhancements with Oracle9i:

• New Datetime data types have been introduced.

• New data type storage is available.

• Enhancements have been made to time zones
and local time zone.

9-14 Copyright © Oracle Corporation, 2001. All rights reserved.

DateTime Data Types

• The TIMESTAMP data type is an extension of the
DATE data type.

• It stores the year, month, and day of the DATE
data type, plus hour, minute, and second values as
well as the fractional second value.

• The TIMESTAMP data type is specified as follows:

TIMESTAMP[(fractional_seconds_precision)]

9-15 Copyright © Oracle Corporation, 2001. All rights reserved.

TIMESTAMP WITH TIME ZONE Data Type

• TIMESTAMP WITH TIME ZONE is a variant of
TIMESTAMP that includes a time zone
displacement in its value.

• The time zone displacement is the difference, in
hours and minutes, between local time and UTC.

TIMESTAMP[(fractional_seconds_precision)]
WITH TIME ZONE

9-16 Copyright © Oracle Corporation, 2001. All rights reserved.

TIMESTAMP WITH LOCAL TIME Data Type

• TIMESTAMP WITH LOCAL TIME ZONE is another
variant of TIMESTAMP that includes a time zone
displacement in its value.

• Data stored in the database is normalized to the
database time zone.

• The time zone displacement is not stored as part
of the column data; Oracle returns the data in the
users' local session time zone.

• TIMESTAMP WITH LOCAL TIME ZONE data type is
specified as follows:
TIMESTAMP[(fractional_seconds_precision)]
WITH LOCAL TIME ZONE

9-17 Copyright © Oracle Corporation, 2001. All rights reserved.

INTERVAL YEAR TO MONTH Data Type

• INTERVAL YEAR TO MONTH stores a period of time
using the YEAR and MONTH datetime fields.

INTERVAL YEAR [(year_precision)] TO MONTH

INTERVAL '123-2' YEAR(3) TO MONTH
Indicates an interval of 123 years, 2 months.

INTERVAL '123' YEAR(3)
Indicates an interval of 123 years 0 months.

INTERVAL '300' MONTH(3)
Indicates an interval of 300 months.

INTERVAL '123' YEAR
Returns an error, because the default precision is 2,
and '123' has 3 digits.

9-18 Copyright © Oracle Corporation, 2001. All rights reserved.

INTERVAL DAY TO SECOND Data Type

• INTERVAL DAY TO SECOND stores a period of time
in terms of days, hours, minutes, and seconds.

INTERVAL DAY [(day_precision)]
TO SECOND [(fractional_seconds_precision)]

INTERVAL '4 5:12:10.222' DAY TO SECOND(3)
Indicates 4 days, 5 hours, 12 minutes, 10 seconds,
and 222 thousandths of a second.INTERVAL '123' YEAR(3).

INTERVAL '7' DAY
Indicates 7 days.

INTERVAL '180' DAY(3)
Indicates 180 days.

9-19 Copyright © Oracle Corporation, 2001. All rights reserved.

INTERVAL DAY TO SECOND Data Type

• INTERVAL DAY TO SECOND stores a period of time
in terms of days, hours, minutes, and seconds.

INTERVAL '4 5:12:10.222' DAY TO SECOND(3)
Indicates 4 days, 5 hours, 12 minutes, 10 seconds,
and 222 thousandths of a second.

INTERVAL '4 5:12' DAY TO MINUTE
Indicates 4 days, 5 hours and 12 minutes.

INTERVAL '400 5' DAY(3) TO HOUR
Indicates 400 days 5 hours.

INTERVAL '11:12:10.2222222' HOUR TO SECOND(7)
indicates 11 hours, 12 minutes, and 10.2222222 seconds.

9-20 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating a Table
by Using a Subquery Syntax

• Create a table and insert rows by combining the
CREATE TABLE statement and the AS subquery
option.

• Match the number of specified columns to the
number of subquery columns.

• Define columns with column names and
default values.

CREATE TABLE table
[(column, column...)]

AS subquery;

9-21 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating a Table by Using a Subquery

DESCRIBE dept80

CREATE TABLE dept80
AS

SELECT employee_id, last_name,
salary*12 ANNSAL,
hire_date

FROM employees
WHERE department_id = 80;

Table created.Table created.

9-22 Copyright © Oracle Corporation, 2001. All rights reserved.

The ALTER TABLE Statement

Use the ALTER TABLE statement to:

• Add a new column

• Modify an existing column

• Define a default value for the new column

• Drop a column

9-23 Copyright © Oracle Corporation, 2001. All rights reserved.

The ALTER TABLE Statement

Use the ALTER TABLE statement to add, modify, or
drop columns.

ALTER TABLE table
ADD (column datatype [DEFAULT expr]

[, column datatype]...);

ALTER TABLE table
MODIFY (column datatype [DEFAULT expr]

[, column datatype]...);

ALTER TABLE table
DROP (column);

9-24 Copyright © Oracle Corporation, 2001. All rights reserved.

Adding a Column

DEPT80

“Add a new
column to
the DEPT80
table.”

DEPT80

New column

9-25 Copyright © Oracle Corporation, 2001. All rights reserved.

Adding a Column

• You use the ADD clause to add columns.

• The new column becomes the last column.

ALTER TABLE dept80
ADD (job_id VARCHAR2(9));
Table altered.Table altered.

9-26 Copyright © Oracle Corporation, 2001. All rights reserved.

Modifying a Column

• You can change a column’s data type, size, and
default value.

• A change to the default value affects only
subsequent insertions to the table.

ALTER TABLE dept80
MODIFY (last_name VARCHAR2(30));
Table altered.Table altered.

9-27 Copyright © Oracle Corporation, 2001. All rights reserved.

Dropping a Column

Use the DROP COLUMN clause to drop columns you no
longer need from the table.

ALTER TABLE dept80
DROP COLUMN job_id;
Table altered.Table altered.

9-28 Copyright © Oracle Corporation, 2001. All rights reserved.

ALTER TABLE table
SET UNUSED (column);

ALTER TABLE table
SET UNUSED COLUMN column;

ALTER TABLE table
SET UNUSED (column);

ALTER TABLE table
SET UNUSED COLUMN column;

The SET UNUSED Option

• You use the SET UNUSED option to mark one or
more columns as unused.

• You use the DROP UNUSED COLUMNS option to
remove the columns that are marked as unused.

OR

ALTER TABLE table
DROP UNUSED COLUMNS;
ALTER TABLE table
DROP UNUSED COLUMNS;

9-29 Copyright © Oracle Corporation, 2001. All rights reserved.

Dropping a Table

• All data and structure in the table is deleted.

• Any pending transactions are committed.

• All indexes are dropped.

• You cannot roll back the DROP TABLE statement.

DROP TABLE dept80;
Table dropped.Table dropped.

9-30 Copyright © Oracle Corporation, 2001. All rights reserved.

Changing the Name of an Object

• To change the name of a table, view, sequence, or
synonym, you execute the RENAME statement.

• You must be the owner of the object.

RENAME dept TO detail_dept;
Table renamed.Table renamed.

9-31 Copyright © Oracle Corporation, 2001. All rights reserved.

Truncating a Table

• The TRUNCATE TABLE statement:

– Removes all rows from a table

– Releases the storage space used by that table

• You cannot roll back row removal when using
TRUNCATE.

• Alternatively, you can remove rows by using the
DELETE statement.

TRUNCATE TABLE detail_dept;
Table truncated.Table truncated.

9-32 Copyright © Oracle Corporation, 2001. All rights reserved.

Adding Comments to a Table

• You can add comments to a table or column by using
the COMMENT statement.

• Comments can be viewed through the data dictionary
views:
– ALL_COL_COMMENTS
– USER_COL_COMMENTS
– ALL_TAB_COMMENTS
– USER_TAB_COMMENTS

COMMENT ON TABLE employees
IS 'Employee Information';
Comment created.Comment created.

9-33 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary

Statement Description

CREATE TABLE Creates a table

ALTER TABLE Modifies table structures

DROP TABLE Removes the rows and table structure

RENAME Changes the name of a table, view,
sequence, or synonym

TRUNCATE Removes all rows from a table and
releases the storage space

COMMENT Adds comments to a table or view

In this lesson, you should have learned how to use DDL
statements to create, alter, drop, and rename tables.

9-34 Copyright © Oracle Corporation, 2001. All rights reserved.

Practice 9 Overview

This practice covers the following topics:

• Creating new tables

• Creating a new table by using the CREATE TABLE
AS syntax

• Modifying column definitions

• Verifying that the tables exist

• Adding comments to tables

• Dropping tables

• Altering tables

10
Copyright © Oracle Corporation, 2001. All rights reserved.

Including Constraints

10-2 Copyright © Oracle Corporation, 2001. All rights reserved.

Objectives

After completing this lesson, you should be able to
do the following:

• Describe constraints

• Create and maintain constraints

10-3 Copyright © Oracle Corporation, 2001. All rights reserved.

What Are Constraints?

• Constraints enforce rules at the table level.

• Constraints prevent the deletion of a table if there are
dependencies.

• The following constraint types are valid:
– NOT NULL
– UNIQUE
– PRIMARY KEY
– FOREIGN KEY
– CHECK

10-4 Copyright © Oracle Corporation, 2001. All rights reserved.

Constraint Guidelines

• Name a constraint or the Oracle server generates a
name by using the SYS_Cn format.

• Create a constraint either:
– At the same time as the table is created, or

– After the table has been created

• Define a constraint at the column or table level.

• View a constraint in the data dictionary.

10-5 Copyright © Oracle Corporation, 2001. All rights reserved.

Defining Constraints

CREATE TABLE [schema.]table
(column datatype [DEFAULT expr]
[column_constraint],
...
[table_constraint][,...]);

CREATE TABLE employees(
employee_id NUMBER(6),
first_name VARCHAR2(20),
...
job_id VARCHAR2(10) NOT NULL,
CONSTRAINT emp_emp_id_pk

PRIMARY KEY (EMPLOYEE_ID));

10-6 Copyright © Oracle Corporation, 2001. All rights reserved.

Defining Constraints

• Column constraint level

• Table constraint level

column [CONSTRAINT constraint_name] constraint_type,column [CONSTRAINT constraint_name] constraint_type,

column,...
[CONSTRAINT constraint_name] constraint_type
(column, ...),

column,...
[CONSTRAINT constraint_name] constraint_type
(column, ...),

10-7 Copyright © Oracle Corporation, 2001. All rights reserved.

The NOT NULL Constraint

Ensures that null values are not permitted for the
column:

NOT NULL constraint
(No row can contain
a null value for
this column.)

Absence of NOT NULL
constraint
(Any row can contain
null for this column.)

NOT NULL
constraint

…

10-8 Copyright © Oracle Corporation, 2001. All rights reserved.

CREATE TABLE employees(
employee_id NUMBER(6),
last_name VARCHAR2(25) NOT NULL,
salary NUMBER(8,2),
commission_pct NUMBER(2,2),
hire_date DATE

CONSTRAINT emp_hire_date_nn
NOT NULL,

...

The NOT NULL Constraint

Is defined at the column level:

System
named

User
named

10-9 Copyright © Oracle Corporation, 2001. All rights reserved.

The UNIQUE Constraint

EMPLOYEES
UNIQUE constraint

INSERT INTO

Not allowed:
already exists

Allowed

…

10-10 Copyright © Oracle Corporation, 2001. All rights reserved.

The UNIQUE Constraint

Defined at either the table level or the column level:

CREATE TABLE employees(
employee_id NUMBER(6),
last_name VARCHAR2(25) NOT NULL,
email VARCHAR2(25),
salary NUMBER(8,2),
commission_pct NUMBER(2,2),
hire_date DATE NOT NULL,

...
CONSTRAINT emp_email_uk UNIQUE(email));

10-11 Copyright © Oracle Corporation, 2001. All rights reserved.

The PRIMARY KEY Constraint

DEPARTMENTS
PRIMARY KEY

INSERT INTONot allowed
(Null value)

Not allowed
(50 already exists)

…

10-12 Copyright © Oracle Corporation, 2001. All rights reserved.

CREATE TABLE departments(
department_id NUMBER(4),
department_name VARCHAR2(30)
CONSTRAINT dept_name_nn NOT NULL,

manager_id NUMBER(6),
location_id NUMBER(4),
CONSTRAINT dept_id_pk PRIMARY KEY(department_id));

The PRIMARY KEY Constraint

Defined at either the table level or the column level:

10-13 Copyright © Oracle Corporation, 2001. All rights reserved.

The FOREIGN KEY Constraint
DEPARTMENTS

EMPLOYEES
FOREIGN
KEY

INSERT INTO Not allowed
(9 does not

exist)

AllowedAllowed

PRIMARY
KEY

…

…

10-14 Copyright © Oracle Corporation, 2001. All rights reserved.

The FOREIGN KEY Constraint

Defined at either the table level or the column level:

CREATE TABLE employees(
employee_id NUMBER(6),
last_name VARCHAR2(25) NOT NULL,
email VARCHAR2(25),
salary NUMBER(8,2),
commission_pct NUMBER(2,2),
hire_date DATE NOT NULL,

...
department_id NUMBER(4),
CONSTRAINT emp_dept_fk FOREIGN KEY (department_id)
REFERENCES departments(department_id),

CONSTRAINT emp_email_uk UNIQUE(email));

10-15 Copyright © Oracle Corporation, 2001. All rights reserved.

FOREIGN KEY Constraint
Keywords

• FOREIGN KEY: Defines the column in the child
table at the table constraint level

• REFERENCES: Identifies the table and column in the
parent table

• ON DELETE CASCADE: Deletes the dependent rows
in the child table when a row in the parent table is
deleted.

• ON DELETE SET NULL: Converts dependent
foreign key values to null

10-16 Copyright © Oracle Corporation, 2001. All rights reserved.

The CHECK Constraint

• Defines a condition that each row must satisfy

• The following expressions are not allowed:
– References to CURRVAL, NEXTVAL, LEVEL, and ROWNUM

pseudocolumns
– Calls to SYSDATE, UID, USER, and USERENV functions

– Queries that refer to other values in other rows

..., salary NUMBER(2)
CONSTRAINT emp_salary_min

CHECK (salary > 0),...

10-17 Copyright © Oracle Corporation, 2001. All rights reserved.

Adding a Constraint Syntax

Use the ALTER TABLE statement to:

• Add or drop a constraint, but not modify its
structure

• Enable or disable constraints
• Add a NOT NULL constraint by using the MODIFY

clause

ALTER TABLE table
ADD [CONSTRAINT constraint] type (column);
ALTER TABLE table
ADD [CONSTRAINT constraint] type (column);

10-18 Copyright © Oracle Corporation, 2001. All rights reserved.

Adding a Constraint

Add a FOREIGN KEY constraint to the EMPLOYEES
table indicating that a manager must already exist as
a valid employee in the EMPLOYEES table.

ALTER TABLE employees
ADD CONSTRAINT emp_manager_fk
FOREIGN KEY(manager_id)
REFERENCES employees(employee_id);

Table altered.Table altered.

10-19 Copyright © Oracle Corporation, 2001. All rights reserved.

Dropping a Constraint

• Remove the manager constraint from the
EMPLOYEES table.

• Remove the PRIMARY KEY constraint on the
DEPARTMENTS table and drop the associated
FOREIGN KEY constraint on the
EMPLOYEES.DEPARTMENT_ID column.

ALTER TABLE employees
DROP CONSTRAINT emp_manager_fk;
Table altered.

ALTER TABLE employees
DROP CONSTRAINT emp_manager_fk;
Table altered.Table altered.

ALTER TABLE departments
DROP PRIMARY KEY CASCADE;
Table altered.

ALTER TABLE departments
DROP PRIMARY KEY CASCADE;
Table altered.Table altered.

10-20 Copyright © Oracle Corporation, 2001. All rights reserved.

Disabling Constraints

• Execute the DISABLE clause of the ALTER TABLE
statement to deactivate an integrity constraint.

• Apply the CASCADE option to disable dependent
integrity constraints.

ALTER TABLE employees
DISABLE CONSTRAINT emp_emp_id_pk CASCADE;
Table altered.

ALTER TABLE employees
DISABLE CONSTRAINT emp_emp_id_pk CASCADE;
Table altered.Table altered.

10-21 Copyright © Oracle Corporation, 2001. All rights reserved.

Enabling Constraints

• Activate an integrity constraint currently disabled
in the table definition by using the ENABLE clause.

• A UNIQUE or PRIMARY KEY index is automatically
created if you enable a UNIQUE key or PRIMARY
KEY constraint.

ALTER TABLE employees
ENABLE CONSTRAINT emp_emp_id_pk;
Table altered.

ALTER TABLE employees
ENABLE CONSTRAINT emp_emp_id_pk;
Table altered.Table altered.

10-22 Copyright © Oracle Corporation, 2001. All rights reserved.

Cascading Constraints

• The CASCADE CONSTRAINTS clause is used along
with the DROP COLUMN clause.

•• TThe CASCADE CONSTRAINTS clause drops all
referential integrity constraints that refer to the
primary and unique keys defined on the dropped
columns.

• The CASCADE CONSTRAINTS clause also drops all
multicolumn constraints defined on the dropped
columns.

10-23 Copyright © Oracle Corporation, 2001. All rights reserved.

Cascading Constraints

Example:

ALTER TABLE test1
DROP (pk) CASCADE CONSTRAINTS;
Table altered.

ALTER TABLE test1
DROP (pk) CASCADE CONSTRAINTS;
Table altered.Table altered.

ALTER TABLE test1
DROP (pk, fk, col1) CASCADE CONSTRAINTS;
Table altered.

ALTER TABLE test1
DROP (pk, fk, col1) CASCADE CONSTRAINTS;
Table altered.Table altered.

10-24 Copyright © Oracle Corporation, 2001. All rights reserved.

SELECT constraint_name, constraint_type,
search_condition

FROM user_constraints
WHERE table_name = 'EMPLOYEES';

Viewing Constraints

Query the USER_CONSTRAINTS table to view all
constraint definitions and names.

…

10-25 Copyright © Oracle Corporation, 2001. All rights reserved.

SELECT constraint_name, column_name
FROM user_cons_columns
WHERE table_name = 'EMPLOYEES';

Viewing the Columns Associated with
Constraints

View the columns associated with the constraint
names in the USER_CONS_COLUMNS view.

…

10-26 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary

In this lesson, you should have learned how to create
constraints.

• Types of constraints:
– NOT NULL
– UNIQUE
– PRIMARY KEY
– FOREIGN KEY
– CHECK

• You can query the USER_CONSTRAINTS table to view all
constraint definitions and names.

10-27 Copyright © Oracle Corporation, 2001. All rights reserved.

Practice 10 Overview

This practice covers the following topics:

• Adding constraints to existing tables

• Adding more columns to a table

• Displaying information in data dictionary views

11
Copyright © Oracle Corporation, 2001. All rights reserved.

Creating ViewsCreating Views

11-2 Copyright © Oracle Corporation, 2001. All rights reserved.

ObjectivesObjectives

After completing this lesson, you should be able
to do the following:

• Describe a view

• Create, alter the definition of, and drop a view

• Retrieve data through a view

• Insert, update, and delete data through
a view

• Create and use an inline view

• Perform “Top-N” analysis

After completing this lesson, you should be able
to do the following:

• Describe a view

• Create, alter the definition of, and drop a view

• Retrieve data through a view

• Insert, update, and delete data through
a view

• Create and use an inline view

• Perform “Top-N” analysis

11-3 Copyright © Oracle Corporation, 2001. All rights reserved.

Database ObjectsDatabase Objects

Description

Basic unit of storage; composed of rows
and columns

Logically represents subsets of data from
one or more tables

Generates primary key values

Improves the performance of some queries

Alternative name for an object

Object

Table

View

Sequence

Index

Synonym

11-4 Copyright © Oracle Corporation, 2001. All rights reserved.

What Is a View?What Is a View?

EMPLOYEES Table:

11-5 Copyright © Oracle Corporation, 2001. All rights reserved.

Why Use Views?Why Use Views?

• To restrict data access

• To make complex queries easy

• To provide data independence

• To present different views of the same data

• To restrict data access

• To make complex queries easy

• To provide data independence

• To present different views of the same data

11-6 Copyright © Oracle Corporation, 2001. All rights reserved.

Simple Views
and Complex Views

Simple Views
and Complex Views

Feature Simple Views Complex Views

Number of tables One One or more

Contain functions No Yes

Contain groups of data No Yes

DML operations
through a view Yes Not always

11-7 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating a View

• You embed a subquery within the CREATE VIEW
statement.

• The subquery can contain complex SELECT
syntax.

CREATE [OR REPLACE] [FORCE|NOFORCE] VIEW view
[(alias[, alias]...)]
AS subquery
[WITH CHECK OPTION [CONSTRAINT constraint]]
[WITH READ ONLY [CONSTRAINT constraint]];

CREATE [OR REPLACE] [FORCE|NOFORCE] VIEW view
[(alias[, alias]...)]
AS subquery
[WITH CHECK OPTION [CONSTRAINT constraint]]
[WITH READ ONLY [CONSTRAINT constraint]];

11-8 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating a View

• Create a view, EMPVU80, that contains details of
employees in department 80.

• Describe the structure of the view by using the
iSQL*Plus DESCRIBE command.

DESCRIBE empvu80DESCRIBE empvu80

CREATE VIEW empvu80
AS SELECT employee_id, last_name, salary

FROM employees
WHERE department_id = 80;

View created.View created.

11-9 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating a View

• Create a view by using column aliases in the
subquery.

• Select the columns from this view by the given
alias names.

CREATE VIEW salvu50
AS SELECT employee_id ID_NUMBER, last_name NAME,

salary*12 ANN_SALARY
FROM employees
WHERE department_id = 50;

View created.View created.

11-10 Copyright © Oracle Corporation, 2001. All rights reserved.

Retrieving Data from a ViewRetrieving Data from a View

SELECT *
FROM salvu50;

11-11 Copyright © Oracle Corporation, 2001. All rights reserved.

Querying a ViewQuerying a View

USER_VIEWSUSER_VIEWS
EMPVU80EMPVU80

SELECT employee_id,
last_name, salary

FROM employees
WHERE department_id=80;

iSQL*Plus

SELECT *
FROM empvu80;

EMPLOYEES

Oracle ServerOracle Server

11-12 Copyright © Oracle Corporation, 2001. All rights reserved.

Modifying a View

• Modify the EMPVU80 view by using CREATE OR
REPLACE VIEW clause. Add an alias for each
column name.

• Column aliases in the CREATE VIEW clause are
listed in the same order as the columns in the
subquery.

CREATE OR REPLACE VIEW empvu80
(id_number, name, sal, department_id)

AS SELECT employee_id, first_name || ' ' || last_name,
salary, department_id

FROM employees
WHERE department_id = 80;

View created.View created.

11-13 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating a Complex View

Create a complex view that contains group functions
to display values from two tables.

CREATE VIEW dept_sum_vu
(name, minsal, maxsal, avgsal)

AS SELECT d.department_name, MIN(e.salary),
MAX(e.salary),AVG(e.salary)

FROM employees e, departments d
WHERE e.department_id = d.department_id
GROUP BY d.department_name;

View created.View created.

11-14 Copyright © Oracle Corporation, 2001. All rights reserved.

Rules for Performing
DML Operations on a View

• You can perform DML operations on simple views.

• You cannot remove a row if the view contains the
following:
– Group functions
– A GROUP BY clause

– The DISTINCT keyword

– The pseudocolumn ROWNUM keyword

11-15 Copyright © Oracle Corporation, 2001. All rights reserved.

Rules for Performing
DML Operations on a View

You cannot modify data in a view if it contains:

• Group functions

• A GROUP BY clause

• The DISTINCT keyword

• The pseudocolumn ROWNUM keyword

• Columns defined by expressions

11-16 Copyright © Oracle Corporation, 2001. All rights reserved.

Rules for Performing
DML Operations on a View

You cannot add data through a view if the view
includes:

• Group functions

• A GROUP BY clause

• The DISTINCT keyword

• The pseudocolumn ROWNUM keyword

• Columns defined by expressions
• NOT NULL columns in the base tables that are not

selected by the view

11-17 Copyright © Oracle Corporation, 2001. All rights reserved.

• You can ensure that DML operations performed on
the view stay within the domain of the view by
using the WITH CHECK OPTION clause.

• Any attempt to change the department number for
any row in the view fails because it violates the
WITH CHECK OPTION constraint.

CREATE OR REPLACE VIEW empvu20
AS SELECT *

FROM employees
WHERE department_id = 20
WITH CHECK OPTION CONSTRAINT empvu20_ck ;

View created.View created.

Using the WITH CHECK OPTION Clause

11-18 Copyright © Oracle Corporation, 2001. All rights reserved.

Denying DML Operations

• You can ensure that no DML operations occur by
adding the WITH READ ONLY option to your view
definition.

• Any attempt to perform a DML on any row in the
view results in an Oracle server error.

11-19 Copyright © Oracle Corporation, 2001. All rights reserved.

Denying DML Operations

CREATE OR REPLACE VIEW empvu10
(employee_number, employee_name, job_title)

AS SELECT employee_id, last_name, job_id
FROM employees
WHERE department_id = 10
WITH READ ONLY;

View created.View created.

11-20 Copyright © Oracle Corporation, 2001. All rights reserved.

Removing a ViewRemoving a View

You can remove a view without losing data because a
view is based on underlying tables in the database.
You can remove a view without losing data because a
view is based on underlying tables in the database.

DROP VIEW empvu80;
View dropped.View dropped.

DROP VIEW view;DROP VIEW view;

11-21 Copyright © Oracle Corporation, 2001. All rights reserved.

Inline ViewsInline Views

• An inline view is a subquery with an alias (or
correlation name) that you can use within a SQL
statement.

• A named subquery in the FROM clause of the main
query is an example of an inline view.

• An inline view is not a schema object.

• An inline view is a subquery with an alias (or
correlation name) that you can use within a SQL
statement.

• A named subquery in the FROM clause of the main
query is an example of an inline view.

• An inline view is not a schema object.

11-22 Copyright © Oracle Corporation, 2001. All rights reserved.

Top-N AnalysisTop-N Analysis

• Top-N queries ask for the n largest or smallest
values of a column. For example:
– What are the ten best selling products?
– What are the ten worst selling products?

• Both largest values and smallest values sets are
considered Top-N queries.

• Top-N queries ask for the n largest or smallest
values of a column. For example:
– What are the ten best selling products?
– What are the ten worst selling products?

• Both largest values and smallest values sets are
considered Top-N queries.

11-23 Copyright © Oracle Corporation, 2001. All rights reserved.

Performing Top-N Analysis

The high-level structure of a Top-N analysis
query is:

SELECT [column_list], ROWNUM
FROM (SELECT [column_list]

FROM table
ORDER BY Top-N_column)

WHERE ROWNUM <= N;

SELECT [column_list], ROWNUM
FROM (SELECT [column_list]

FROM table
ORDER BY Top-N_column)

WHERE ROWNUM <= N;

11-24 Copyright © Oracle Corporation, 2001. All rights reserved.

Example of Top-N AnalysisExample of Top-N Analysis

To display the top three earner names and salaries
from the EMPLOYEES table:
To display the top three earner names and salaries
from the EMPLOYEES table:

SELECT ROWNUM as RANK, last_name, salary
FROM (SELECT last_name,salary FROM employees

ORDER BY salary DESC)
WHERE ROWNUM <= 3;

31 2

1 2 3

11-25 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary

In this lesson, you should have learned that a view is
derived from data in other tables or views and
provides the following advantages:
• Restricts database access
• Simplifies queries
• Provides data independence
• Provides multiple views of the same data
• Can be dropped without removing the underlying

data
• An inline view is a subquery with an alias name.
• Top-N analysis can be done using subqueries and

outer queries.

11-26 Copyright © Oracle Corporation, 2001. All rights reserved.

Practice 11 Overview

This practice covers the following topics:

• Creating a simple view

• Creating a complex view

• Creating a view with a check constraint

• Attempting to modify data in the view

• Displaying view definitions

• Removing views

12
Copyright © Oracle Corporation, 2001. All rights reserved.

Other Database Objects

12-2 Copyright © Oracle Corporation, 2001. All rights reserved.

Objectives

After completing this lesson, you should be able to
do the following:

• Create, maintain, and use sequences

• Create and maintain indexes

• Create private and public synonyms

12-3 Copyright © Oracle Corporation, 2001. All rights reserved.

Database ObjectsDatabase Objects

Description

Basic unit of storage; composed of rows
and columns

Logically represents subsets of data from
one or more tables

Generates primary key values

Improves the performance of some queries

Alternative name for an object

Object

Table

View

Sequence

Index

Synonym

12-4 Copyright © Oracle Corporation, 2001. All rights reserved.

What Is a Sequence?

A sequence:

• Automatically generates unique numbers

• Is a sharable object

• Is typically used to create a primary key value

• Replaces application code

• Speeds up the efficiency of accessing sequence
values when cached in memory

12-5 Copyright © Oracle Corporation, 2001. All rights reserved.

The CREATE SEQUENCE Statement Syntax

Define a sequence to generate sequential numbers
automatically:

CREATE SEQUENCE sequence
[INCREMENT BY n]
[START WITH n]
[{MAXVALUE n | NOMAXVALUE}]
[{MINVALUE n | NOMINVALUE}]
[{CYCLE | NOCYCLE}]
[{CACHE n | NOCACHE}];

CREATE SEQUENCE sequence
[INCREMENT BY n]
[START WITH n]
[{MAXVALUE n | NOMAXVALUE}]
[{MINVALUE n | NOMINVALUE}]
[{CYCLE | NOCYCLE}]
[{CACHE n | NOCACHE}];

12-6 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating a Sequence

• Create a sequence named DEPT_DEPTID_SEQ to
be used for the primary key of the DEPARTMENTS
table.

• Do not use the CYCLE option.

CREATE SEQUENCE dept_deptid_seq
INCREMENT BY 10
START WITH 120
MAXVALUE 9999
NOCACHE
NOCYCLE;

Sequence created.

CREATE SEQUENCE dept_deptid_seq
INCREMENT BY 10
START WITH 120
MAXVALUE 9999
NOCACHE
NOCYCLE;

Sequence created.Sequence created.

12-7 Copyright © Oracle Corporation, 2001. All rights reserved.

Confirming Sequences

• Verify your sequence values in the
USER_SEQUENCES data dictionary table.

• The LAST_NUMBER column displays the next
available sequence number if NOCACHE is
specified.

SELECT sequence_name, min_value, max_value,
increment_by, last_number

FROM user_sequences;

SELECT sequence_name, min_value, max_value,
increment_by, last_number

FROM user_sequences;

12-8 Copyright © Oracle Corporation, 2001. All rights reserved.

NEXTVAL and CURRVAL Pseudocolumns

• NEXTVAL returns the next available sequence
value. It returns a unique value every time it is
referenced, even for different users.

• CURRVAL obtains the current sequence value.

• NEXTVAL must be issued for that sequence before
CURRVAL contains a value.

12-10 Copyright © Oracle Corporation, 2001. All rights reserved.

Using a Sequence

• Insert a new department named “Support” in
location ID 2500.

• View the current value for the DEPT_DEPTID_SEQ
sequence.

INSERT INTO departments(department_id,
department_name, location_id)

VALUES (dept_deptid_seq.NEXTVAL,
'Support', 2500);

1 row created.

INSERT INTO departments(department_id,
department_name, location_id)

VALUES (dept_deptid_seq.NEXTVAL,
'Support', 2500);

1 row created.1 row created.

SELECT dept_deptid_seq.CURRVAL
FROM dual;
SELECT dept_deptid_seq.CURRVAL
FROM dual;

12-11 Copyright © Oracle Corporation, 2001. All rights reserved.

Using a Sequence

• Caching sequence values in memory gives faster
access to those values.

• Gaps in sequence values can occur when:
– A rollback occurs

– The system crashes

– A sequence is used in another table

• If the sequence was created with NOCACHE, view
the next available value, by querying the
USER_SEQUENCES table.

12-12 Copyright © Oracle Corporation, 2001. All rights reserved.

Modifying a Sequence

Change the increment value, maximum value,
minimum value, cycle option, or cache option.

ALTER SEQUENCE dept_deptid_seq
INCREMENT BY 20
MAXVALUE 999999
NOCACHE
NOCYCLE;

Sequence altered.

ALTER SEQUENCE dept_deptid_seq
INCREMENT BY 20
MAXVALUE 999999
NOCACHE
NOCYCLE;

Sequence altered.Sequence altered.

12-13 Copyright © Oracle Corporation, 2001. All rights reserved.

Guidelines for Modifying
a Sequence

• You must be the owner or have the ALTER
privilege for the sequence.

• Only future sequence numbers are affected.

• The sequence must be dropped and
re-created to restart the sequence at a different
number.

• Some validation is performed.

12-14 Copyright © Oracle Corporation, 2001. All rights reserved.

Removing a Sequence

• Remove a sequence from the data dictionary by
using the DROP SEQUENCE statement.

• Once removed, the sequence can no longer be
referenced.

DROP SEQUENCE dept_deptid_seq;
Sequence dropped.
DROP SEQUENCE dept_deptid_seq;
Sequence dropped.Sequence dropped.

12-15 Copyright © Oracle Corporation, 2001. All rights reserved.

What Is an Index?

An index:

• Is a schema object

• Is used by the Oracle server to speed up the
retrieval of rows by using a pointer

• Can reduce disk I/O by using a rapid path access
method to locate data quickly

• Is independent of the table it indexes

• Is used and maintained automatically by the
Oracle server

12-16 Copyright © Oracle Corporation, 2001. All rights reserved.

How Are Indexes Created?

• Automatically: A unique index is created
automatically when you define a PRIMARY KEY or
UNIQUE constraint in a table definition.

• Manually: Users can create nonunique indexes on
columns to speed up access to the rows.

12-17 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating an Index

• Create an index on one or more columns.

• Improve the speed of query access to the
LAST_NAME column in the EMPLOYEES table.

CREATE INDEX emp_last_name_idx
ON employees(last_name);
Index created.

CREATE INDEX emp_last_name_idx
ON employees(last_name);
Index created.Index created.

CREATE INDEX index
ON table (column[, column]...);
CREATE INDEX index
ON table (column[, column]...);

12-18 Copyright © Oracle Corporation, 2001. All rights reserved.

When to Create an Index

You should create an index if:

• A column contains a wide range of values

• A column contains a large number of null values

• One or more columns are frequently used together
in a WHERE clause or a join condition

• The table is large and most queries are expected
to retrieve less than 2 to 4 percent of the rows

12-19 Copyright © Oracle Corporation, 2001. All rights reserved.

When Not to Create an Index

It is usually not worth creating an index if:

• The table is small

• The columns are not often used as a condition in
the query

• Most queries are expected to retrieve more than 2
to 4 percent of the rows in the table

• The table is updated frequently

• The indexed columns are referenced as part of an
expression

12-20 Copyright © Oracle Corporation, 2001. All rights reserved.

SELECT ic.index_name, ic.column_name,
ic.column_position col_pos,ix.uniqueness

FROM user_indexes ix, user_ind_columns ic
WHERE ic.index_name = ix.index_name
AND ic.table_name = 'EMPLOYEES';

Confirming Indexes

• The USER_INDEXES data dictionary view contains
the name of the index and its uniqueness.

• The USER_IND_COLUMNS view contains the index
name, the table name, and the column name.

12-21 Copyright © Oracle Corporation, 2001. All rights reserved.

Function-Based Indexes

• A function-based index is an index based on
expressions.

• The index expression is built from table columns,
constants, SQL functions, and user-defined
functions.

CREATE INDEX upper_dept_name_idx
ON departments(UPPER(department_name));

Index created.

SELECT *
FROM departments
WHERE UPPER(department_name) = 'SALES';

12-23 Copyright © Oracle Corporation, 2001. All rights reserved.

Removing an Index

• Remove an index from the data dictionary by
using the DROP INDEX command.

• Remove the UPPER_LAST_NAME_IDX index from
the data dictionary.

• To drop an index, you must be the owner of the
index or have the DROP ANY INDEX privilege.

DROP INDEX upper_last_name_idx;
Index dropped.
DROP INDEX upper_last_name_idx;
Index dropped.Index dropped.

DROP INDEX index;DROP INDEX index;

12-24 Copyright © Oracle Corporation, 2001. All rights reserved.

Synonyms

Simplify access to objects by creating a synonym
(another name for an object). With synonyms, you can:

• Ease referring to a table owned by another user

• Shorten lengthy object names

CREATE [PUBLIC] SYNONYM synonym
FOR object;
CREATE [PUBLIC] SYNONYM synonym
FOR object;

12-25 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating and Removing Synonyms

• Create a shortened name for the
DEPT_SUM_VU view.

• Drop a synonym.

CREATE SYNONYM d_sum
FOR dept_sum_vu;
Synonym Created.

CREATE SYNONYM d_sum
FOR dept_sum_vu;
Synonym Created.Synonym Created.

DROP SYNONYM d_sum;
Synonym dropped.
DROP SYNONYM d_sum;
Synonym dropped.Synonym dropped.

12-26 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary

In this lesson, you should have learned how to:

• Automatically generate sequence numbers by
using a sequence generator

• View sequence information in the
USER_SEQUENCES data dictionary table

• Create indexes to improve query retrieval speed

• View index information in the USER_INDEXES
dictionary table

• Use synonyms to provide alternative names for
objects

12-27 Copyright © Oracle Corporation, 2001. All rights reserved.

Practice 12 Overview

This practice covers the following topics:

• Creating sequences

• Using sequences

• Creating nonunique indexes

• Displaying data dictionary information about
sequences and indexes

• Dropping indexes

13
Copyright © Oracle Corporation, 2001. All rights reserved.

Controlling User Access

13-2 Copyright © Oracle Corporation, 2001. All rights reserved.

Objectives

After completing this lesson, you should be able to
do the following:

• Create users

• Create roles to ease setup and maintenance of the
security model

• Use the GRANT and REVOKE statements to grant
and revoke object privileges

• Create and access database links

13-3 Copyright © Oracle Corporation, 2001. All rights reserved.

Controlling User AccessControlling User Access

Database
administrator

Users

Username and password
Privileges

13-4 Copyright © Oracle Corporation, 2001. All rights reserved.

Privileges

• Database security:
– System security

– Data security

• System privileges: Gaining access to the database

• Object privileges: Manipulating the content of the
database objects

• Schemas: Collections of objects, such as tables,
views, and sequences

13-5 Copyright © Oracle Corporation, 2001. All rights reserved.

System Privileges

• More than 100 privileges are available.

• The database administrator has high-level system
privileges for tasks such as:
– Creating new users

– Removing users

– Removing tables

– Backing up tables

13-6 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating Users

The DBA creates users by using the CREATE USER
statement.

CREATE USER scott
IDENTIFIED BY tiger;
User created.

CREATE USER scott
IDENTIFIED BY tiger;
User created.User created.

CREATE USER user
IDENTIFIED BY password;

13-7 Copyright © Oracle Corporation, 2001. All rights reserved.

User System Privileges

• Once a user is created, the DBA can grant specific
system privileges to a user.

• An application developer, for example, may have
the following system privileges:
– CREATE SESSION
– CREATE TABLE
– CREATE SEQUENCE
– CREATE VIEW
– CREATE PROCEDURE

GRANT privilege [, privilege...]
TO user [, user| role, PUBLIC...];
GRANT privilege [, privilege...]
TO user [, user| role, PUBLIC...];

13-8 Copyright © Oracle Corporation, 2001. All rights reserved.

Granting System Privileges

The DBA can grant a user specific system privileges.

GRANT create session, create table,
create sequence, create view

TO scott;
Grant succeeded.

GRANT create session, create table,
create sequence, create view

TO scott;
Grant succeeded.Grant succeeded.

13-9 Copyright © Oracle Corporation, 2001. All rights reserved.

What Is a Role?What Is a Role?

Allocating privileges
without a role

Allocating privileges
with a role

Privileges

Users

Manager

13-10 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating and Granting Privileges to a RoleCreating and Granting Privileges to a Role

CREATE ROLE manager;
Role created.
CREATE ROLE manager;
Role created.Role created.

GRANT create table, create view
TO manager;
Grant succeeded.

GRANT create table, create view
TO manager;
Grant succeeded.Grant succeeded.

GRANT manager TO DEHAAN, KOCHHAR;
Grant succeeded.
GRANT manager TO DEHAAN, KOCHHAR;
Grant succeeded.Grant succeeded.

• Create a role

• Grant privileges to a role

• Grant a role to users

13-11 Copyright © Oracle Corporation, 2001. All rights reserved.

Changing Your Password

• The DBA creates your user account and initializes
your password.

• You can change your password by using the
ALTER USER statement.

ALTER USER scott
IDENTIFIED BY lion;
User altered.User altered.

13-12 Copyright © Oracle Corporation, 2001. All rights reserved.

Object
Privilege Table View Sequence Procedure

ALTER √ √

DELETE √ √

EXECUTE √

INDEX √

INSERT √ √

REFERENCES √ √

SELECT √ √ √

UPDATE √ √

Object PrivilegesObject Privileges

13-13 Copyright © Oracle Corporation, 2001. All rights reserved.

Object Privileges

• Object privileges vary from object to object.

• An owner has all the privileges on the object.

• An owner can give specific privileges on that
owner’s object.

GRANT object_priv [(columns)]
ON object
TO {user|role|PUBLIC}
[WITH GRANT OPTION];

GRANT object_priv [(columns)]
ON object
TO {user|role|PUBLIC}
[WITH GRANT OPTION];

13-14 Copyright © Oracle Corporation, 2001. All rights reserved.

Granting Object Privileges

• Grant query privileges on the EMPLOYEES table.

• Grant privileges to update specific columns to
users and roles.

GRANT select
ON employees
TO sue, rich;
Grant succeeded.

GRANT select
ON employees
TO sue, rich;
Grant succeeded.Grant succeeded.

GRANT update (department_name, location_id)
ON departments
TO scott, manager;
Grant succeeded.

GRANT update (department_name, location_id)
ON departments
TO scott, manager;
Grant succeeded.Grant succeeded.

13-15 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the WITH GRANT OPTION and PUBLIC
Keywords

• Give a user authority to pass along privileges.

• Allow all users on the system to query data from
Alice’s DEPARTMENTS table.

GRANT select, insert
ON departments
TO scott
WITH GRANT OPTION;
Grant succeeded.

GRANT select, insert
ON departments
TO scott
WITH GRANT OPTION;
Grant succeeded.Grant succeeded.

GRANT select
ON alice.departments
TO PUBLIC;
Grant succeeded.

GRANT select
ON alice.departments
TO PUBLIC;
Grant succeeded.Grant succeeded.

13-16 Copyright © Oracle Corporation, 2001. All rights reserved.

Confirming Privileges Granted Confirming Privileges Granted

Data Dictionary View Description

ROLE_SYS_PRIVS System privileges granted to roles

ROLE_TAB_PRIVS Table privileges granted to roles

USER_ROLE_PRIVS Roles accessible by the user

USER_TAB_PRIVS_MADE Object privileges granted on the
user’s objects

USER_TAB_PRIVS_RECD Object privileges granted to the
user

USER_COL_PRIVS_MADE Object privileges granted on the
columns of the user’s objects

USER_COL_PRIVS_RECD Object privileges granted to the
user on specific columns

USER_SYS_PRIVS Lists system privileges granted to
the user

13-17 Copyright © Oracle Corporation, 2001. All rights reserved.

How to Revoke Object Privileges

• You use the REVOKE statement to revoke privileges
granted to other users.

• Privileges granted to others through the WITH
GRANT OPTION clause are also revoked.

REVOKE {privilege [, privilege...]|ALL}
ON object
FROM {user[, user...]|role|PUBLIC}
[CASCADE CONSTRAINTS];

REVOKE {privilege [, privilege...]|ALL}
ON object
FROM {user[, user...]|role|PUBLIC}
[CASCADE CONSTRAINTS];

13-18 Copyright © Oracle Corporation, 2001. All rights reserved.

Revoking Object Privileges

As user Alice, revoke the SELECT and INSERT
privileges given to user Scott on the DEPARTMENTS
table.

REVOKE select, insert
ON departments
FROM scott;
Revoke succeeded.

REVOKE select, insert
ON departments
FROM scott;
Revoke succeeded.Revoke succeeded.

13-19 Copyright © Oracle Corporation, 2001. All rights reserved.

Database Links

A database link connection allows local users to
access data on a remote database.

Local Remote

SELECT * FROM
emp@HQ_ACME.COM;

HQ_ACME.COM
database

EMP Table

13-20 Copyright © Oracle Corporation, 2001. All rights reserved.

Database Links

• Create the database link.

• Write SQL statements that use the database link.

CREATE PUBLIC DATABASE LINK hq.acme.com
USING 'sales';
Database link created.

CREATE PUBLIC DATABASE LINK hq.acme.com
USING 'sales';
Database link created.

SELECT *
FROM emp@HQ.ACME.COM;
SELECT *
FROM emp@HQ.ACME.COM;

13-21 Copyright © Oracle Corporation, 2001. All rights reserved.

SummarySummary

Statement Action
CREATE USER Creates a user (usually performed by

a DBA)
GRANT Gives other users privileges to

access the your objects
CREATE ROLE Creates a collection of privileges

(usually performed by a DBA)
ALTER USER Changes a user’s password
REVOKE Removes privileges on an object from

users

In this lesson, you should have learned about DCL
statements that control access to the database and
database objects.

13-22 Copyright © Oracle Corporation, 2001. All rights reserved.

Practice 13 Overview

This practice covers the following topics:

• Granting other users privileges to your table

• Modifying another user’s table through the
privileges granted to you

• Creating a synonym

• Querying the data dictionary views related to
privileges

14
Copyright © Oracle Corporation, 2001. All rights reserved.

SQL Workshop

14-2 Copyright © Oracle Corporation, 2001. All rights reserved.

Workshop Overview

This workshop covers:

• Creating tables and sequences

• Modifying data in the tables

• Modifying table definitions

• Creating views

• Writing scripts containing SQL and iSQL*Plus
commands

• Generating a simple report

	Introduction
	Writing Basic SQL SELECT Statements
	Restricking and Sorting Data
	Single-Row Functions
	Displaying Data From Multiple Tables
	Aggregating Data Using Group Functions
	Subqueries
	Producing Readable Output with iSQL*Plus
	Manipulating Data
	Creating and Managing Tables
	Including Constraints
	Creating Views
	Other Database Objects
	Controlling User Access
	SQL Workshop

