
...

43112GC10

Production 1.0

April 1999

M08602

Oracle Developer:
Build Forms I

Volume 2 • Student Guide

Authors

Fergus Griffin

Ellen Gravina

Technical
Contributors and
Reviewers

Grant Anderson

David Ball

Christian Bauwens

Ruth Delaney

Brian Fry

Tushar Gadhia

Danae Hadjioannou

Daniel Maas

Jayne Marlow

Stella Misiulis

Mark Sullivan

Publisher

Tommy Cheung

Copyright  Oracle Corporation, 1999. All rights reserved.

This documentation contains proprietary information of Oracle Corporation. It is
provided under a license agreement containing restrictions on use and disclosure
and is also protected by copyright law. Reverse engineering of the software is
prohibited. If this documentation is delivered to a U.S. Government Agency of the
Department of Defense, then it is delivered with Restricted Rights and the
following legend is applicable:

Restricted Rights Legend
Use, duplication or disclosure by the Government is subject to restrictions for
commercial computer software and shall be deemed to be Restricted Rights
software under Federal law, as set forth in subparagraph (c) (1) (ii) of DFARS
252.227-7013, Rights in Technical Data and Computer Software (October 1988).

This material or any portion of it may not be copied in any form or by any means
without the express prior written permission of the Worldwide Education Services
group of Oracle Corporation. Any other copying is a violation of copyright law and
may result in civil and/or criminal penalties.

If this documentation is delivered to a U.S. Government Agency not within the
Department of Defense, then it is delivered with “Restricted Rights,” as defined in
FAR 52.227-14, Rights in Data-General, including Alternate III (June 1987).

The information in this document is subject to change without notice. If you find
any problems in the documentation, please report them in writing to Education
Products, Oracle Corporation, 500 Oracle Parkway, Box 659806, Redwood
Shores, CA 94065. Oracle Corporation does not warrant that this document is
error-free.

Oracle Developer, Oracle Server, and PL/SQL are trademarks or registered
trademarks of Oracle Corporation.

All other products or company names are used for identification purposes only,
and may be trademarks of their respective owners.

...
Oracle Developer: Build Forms I iii

...
Contents

Preface
Profile xvii

Related Publications xviii

Typographic Conventions xix

Introduction
Overview I-3

Course Objectives I-5

Course Content I-7

Lesson 1: Course Introduction
Introduction 1-3

What Is Oracle Developer? 1-5

Introducing the Oracle Developer Components 1-11

Common Builder Components 1-15

Getting Started in the Oracle Developer Interface 1-21

Navigating Around the Oracle Developer Main Menu 1-23

Customizing Your Oracle Developer Session 1-25

Oracle Developer Environment Variables 1-29

Invoking Online Help Facilities 1-31

Introducing the Course Application 1-33

Summary 1-37

Practice 1 Overview 1-39

Practice 1 1-40

Lesson 2: Running a Form Builder Application
Introduction 2-3

What You See at Run Time 2-5

Navigating a Form Builder Application 2-11

Modes of Operation 2-15

Retrieving Data 2-19

Inserting, Updating, and Deleting Records 2-27

Displaying Errors 2-31

Summary 2-33

...
iv Oracle Developer: Build Forms I

...
Contents

Practice 2 Overview 2-35

Practice 2 2-36

Lesson 3: Working in the Form Builder Environment
Introduction 3-3

What Is Form Builder? 3-5

Form Builder Executables 3-7

Form Builder Module Types 3-9

Form Builder Components 3-11

Summary 3-23

Lesson 4: Creating a Basic Form Module
Introduction 4-3

Creating a New Form Module 4-5

Creating a New Data Block 4-11

Modifying the Layout 4-23

Template Forms 4-25

Saving, Compiling, and Running a Form Module 4-27

Creating Data Blocks with Relationships 4-33

Creating a Relation Manually 4-39

Modifying a Relation 4-41

Running a Master-Detail Form Module 4-45

Summary 4-47

Practice 4 Overview 4-49

Practice 4 4-50

Lesson 5: Working with Data Blocks and Frames
Introduction 5-3

Managing Object Properties 5-5

Controlling the Behavior of Data Blocks 5-15

Controlling the Appearance of Data Blocks 5-21

Controlling Frame Properties 5-25

More About Object Properties 5-27

Creating Control Blocks 5-33

...
Oracle Developer: Build Forms I v

...
Contents

Deleting Data Blocks 5-35

Summary 5-37

Practice 5 Overview 5-39

Practice 5 5-40

Lesson 6: Working with Text Items
Introduction 6-3

What Is a Text Item? 6-5

Creating a Text Item 6-7

Modifying the Appearance of a Text Item 6-9

Associating Text with an Item Prompt 6-15

Controlling the Data of a Text Item 6-17

Altering the Navigational Behavior of a Text Item 6-23

Enhancing the Relationship Between Text Item and Database 6-25

Adding Functionality to a Text Item 6-27

Including Helpful Messages 6-33

Summary 6-35

Practice 6 Overview 6-37

Practice 6 6-38

Lesson 7: Creating LOVs and Editors
Introduction 7-3

What Are LOVs and Editors? 7-5

Defining an LOV 7-9

Creating an LOV by Using the LOV Wizard 7-19

Defining an Editor 7-25

Summary 7-29

Practice 7 Overview 7-31

Practice 7 7-32

Lesson 8: Creating Additional Input Items
Introduction 8-3

What Are Input Items? 8-5

Creating a Check Box 8-7

...
vi Oracle Developer: Build Forms I

...
Contents

Creating a List Item 8-15

Creating a Radio Group 8-23

Summary 8-31

Practice 8 Overview 8-33

Practice 8 8-34

Lesson 9: Creating Noninput Items
Introduction 9-3

What Are Noninput Items? 9-5

Creating a Display Item 9-7

Creating an Image Item 9-11

Creating a Sound Item 9-19

Creating a Push Button 9-25

Creating a Calculated Item 9-31

Creating a Hierarchical Tree Item 9-39

Summary 9-41

Practice 9 Overview 9-43

Practice 9 9-44

Lesson 10: Creating Windows and Content Canvases
Introduction 10-3

Windows and Content Canvases 10-5

Displaying a Form Module in Multiple Windows 10-9

Displaying a Form Module on Multiple Layouts 10-15

Summary 10-19

Practice 10 Overview 10-21

Practice 10 10-22

Lesson 11: Working with Other Canvases
Introduction 11-3

Canvases Overview 11-5

Creating a Stacked Canvas 11-7

Creating a Toolbar 11-13

Creating a Tab Canvas 11-17

...
Oracle Developer: Build Forms I vii

...
Contents

Summary 11-25

Practice 11 Overview 11-27

Practice 11 11-28

Lesson 12: Introduction to Triggers
Introduction 12-3

What Is a Trigger? 12-5

Trigger Components 12-7

Summary 12-15

Lesson 13: Producing Triggers
Introduction 13-3

Defining Triggers in Form Builder 13-5

PL/SQL Editor Features 13-9

Database Trigger Editor 13-11

Writing the Trigger Code 13-13

Adding Functionality Using Built-in Subprograms 13-19

Using Triggers 13-27

Practice 13 Overview 13-32

Practice 13 13-33

Lesson 14: Debugging Triggers
Introduction 14-3

Debugging Triggers 14-5

Summary 14-27

Practice 14 Overview 14-29

Practice 14 14-30

Lesson 15: Adding Functionality to Items
Introduction 15-3

Item Interaction Triggers 15-5

Defining Functionality for Input Items 15-9

Defining Functionality for Noninput Items 15-13

Summary 15-27

Practice 15 Overview 15-29

...
viii Oracle Developer: Build Forms I

...
Contents

Practice 15 15-30

Lesson 16: Runform Messages and Alerts
Introduction 16-3

Run-time Messages and Alerts Overview 16-5

Built-ins and Handling Errors 16-7

Errors and Built-Ins 16-9

Controlling System Messages 16-11

The FORM_TRIGGER_FAILURE Exception 16-15

Triggers for Intercepting System Messages 16-17

Creating and Controlling Alerts 16-21

Summary 16-31

Practice 16 Overview 16-33

Practice 16 16-34

Lesson 17: Query Triggers
Introduction 17-3

Query Triggers 17-5

SELECT Statements Issued During Query Processing 17-7

WHERE and ORDER BY Clauses 17-9

Writing Query Triggers 17-11

Query Array Processing 17-15

Coding Triggers for Enter Query Mode 17-17

Overriding Default Query Processing 17-21

Obtaining Query Information at Run Time 17-25

Summary 17-29

Practice 17 Overview 17-31

Practice 17 17-32

Lesson 18: Validation
Introduction 18-3

Validation Process 18-5

Using Object Properties to Control Validation 18-7

Controlling Validation by Using Triggers 18-11

...
Oracle Developer: Build Forms I ix

...
Contents

Validating User Input 18-13

Tracking Validation Status 18-15

Built-ins for Validation 18-17

Summary 18-19

Practice 18 Overview 18-21

Practice 18 18-22

Lesson 19: Navigation
Introduction 19-3

About Navigation 19-5

Controlling Navigation 19-7

Understanding Internal Navigation 19-11

Navigation Triggers 19-13

Using the When-New-“object”-Instance Triggers 19-15

Using the Pre- and Post-Triggers 19-17

The Navigation Trap 19-19

Navigation in Triggers 19-21

Summary 19-23

Practice 19 Overview 19-25

Practice 19 19-26

Lesson 20: Transaction Processing
Introduction 20-3

Transaction Processing 20-5

The Commit Sequence of Events 20-9

Characteristics of Commit Triggers 20-11

Common Uses for Commit Triggers 20-13

DML Statements Issued During Commit Processing 20-25

Overriding Default Transaction Processing 20-27

Running Against Data Sources Other than Oracle 20-31

Getting and Setting the Commit Status 20-33

Array Processing 20-39

Summary 20-43

Practice 20 Overview 20-45

...
x Oracle Developer: Build Forms I

...
Contents

Practice 20 20-46

Lesson 21: Writing Flexible Code
Introduction 21-3

What Is Flexible Code? 21-5

Using System Variables for Flexible Coding 21-7

Using Built-in Subprograms for Flexible Coding 21-11

Referencing Objects by Internal ID 21-15

Referencing Items Indirectly 21-23

Summary 21-27

Practice 21 Overview 21-29

Practice 21 21-30

Lesson 22: Sharing Objects and Code
Introduction 22-3

Reusable Objects and Code Overview 22-5

Property Class 22-7

Creating a Property Class 22-9

Inheriting a Property Class 22-11

Creating an Object Group 22-13

Copying and Subclassing Objects and Code 22-17

What Is an Object Library? 22-23

Working with Object Libraries 22-25

What Is a SmartClass? 22-27

Reusing PL/SQL 22-29

PL/SQL Libraries 22-31

Working with PL/SQL Libraries 22-33

Summary 22-37

Practice 22 Overview 22-39

Practice 22 22-40

Lesson 23: Introducing Multiple Form Applications
Introduction 23-3

Multiple Form Applications 23-5

...
Oracle Developer: Build Forms I xi

...
Contents

How to Start Another Form Module 23-7

Defining Multiple Form Functionality 23-9

Task List 23-21

Summary 23-23

Practice 23 Overview 23-25

Practice 23 23-26

Appendix A: Practice Solutions
Practice 1 Solutions A-2

Practice 2 Solutions A-6

Practice 4 Solutions A-9

Practice 5 Solution A-14

Practice 6 Solutions A-18

Practice 7 Solution A-24

Practice 8 Solutions A-27

Practice 9 Solutions A-29

Practice 10 Solutions A-34

Practice 11 Solutions A-35

Practice 13 Solutions A-43

Practice 14 Solutions A-45

Practice 15 Solutions A-46

Practice 16 Solutions A-48

Practice 17 Solutions A-50

Practice 18 Solutions A-52

Practice 19 Solutions A-54

Practice 20 Solutions A-56

Practice 21 Solutions A-60

Practice 22 Solutions A-62

Practice 23 Solutions A-65

Appendix B: Table Descriptions and Data
Summit Sporting Goods Database Diagram B-2

S_CUSTOMER Description B-3

S_CUSTOMER Data B-4

...
xii Oracle Developer: Build Forms I

...
Contents

S_DEPT Description and Data B-8

S_EMP Description B-9

S_EMP Data B-10

S_ITEM Description B-13

S_ITEM Data B-14

S_ORD Description and Data B-16

S_PRODUCT Description B-17

S_PRODUCT Data B-18

S_REGION Description and Data B-22

S_TITLE Description and Data B-23

Oracle8 Objects: Types, Tables B-24

Appendix C: Frequently Asked Questions
Frequently Asked Questions C-2

Frequently Asked Questions and Answers C-4

Appendix D: Oracle Rdb Overview
What Is Oracle Rdb? D-2

Appendix E: Locking in Form Builder
Locking E-5

Default Locking in Forms E-7

Locking in Triggers E-13

Summary E-19

Appendix F: Oracle8 Object Features in Oracle Developer
Overview F-3

New Oracle8 Datatypes F-5

Creating Oracle8 Objects F-11

Referencing Objects F-19

Displaying Oracle8 Objects in the Object Navigator F-21

Summary F-29

...
Oracle Developer: Build Forms I xiii

...
Contents

Appendix G: Using the Layout Editor in Oracle Developer
Overview G-3

Why Use the Layout Editor? G-5

How to Access the Layout Editor G-7

Components of the Layout Editor G-9

Creating and Modifying Objects in the Layout G-11

Formatting Objects in the Layout G-19

Coloring Objects and Text G-21

Importing Images and Drawings G-25

Summary G-27

...
xiv Oracle Developer: Build Forms I

...
Contents

10

Creating Windows and
Content Canvases

10-2 Oracle Developer: Build Forms I
..

..Lesson 10: Creating Windows and Content Canvases

Copyright  Oracle Corporation, 1999. All rights reserved.

Objectives

After completing this lesson, you should be able to
do the following:

• Describe windows and content canvases

• Describe the relationship between windows and
content canvases

Copyright  Oracle Corporation, 1999. All rights reserved.

Objectives

• Identify window and content canvas properties

• Display a form module in multiple windows

• Display a form module on multiple layouts

Oracle Developer: Build Forms I 10-3
..

..Introduction

Introduction

Overview
With Oracle Developer you can take advantage of the GUI environment by displaying
a form module across several canvases and in multiple windows. This lesson
familiarizes you with the window object and the default canvas type, the content
canvas.

10-4 Oracle Developer: Build Forms I
..

..Lesson 10: Creating Windows and Content Canvases

Copyright  Oracle Corporation, 1999. All rights reserved.

Windows and Canvases

• Window: Container for Form Builder
visual objects

• Canvas: Surface on which you “paint”
visual objects

To see a canvas and its objects, display the
canvas in a window.

Copyright  Oracle Corporation, 1999. All rights reserved.

Window, Canvas, and Viewport

MDI
parent
window

Document
window

Canvas

Oracle Developer: Build Forms I 10-5
..

..Windows and Content Canvases

Windows and Content Canvases
With Form Builder you can display an application in multiple windows by using its
display objects—windows and canvases.

What Is a Window?
A window is a container for all visual objects that make up a Form Builder application.
It is similar to an empty picture frame. The window manager provides the controls for
the window that enable such functionality as scrolling, moving, and resizing. You can
minimize a window.

A single form may include several windows.

What Is a Canvas?
A canvas is a surface inside a window container on which you place visual objects
such as interface items and graphics. It is similar to the canvas upon which a picture is
painted. To see a canvas and its contents at run time, you must display it in a window.
A canvas always displays in the window to which it is assigned.

Note: Each item in a form must refer to no more than one canvas. An item displays on
the canvas to which it is assigned, through its Canvas property. Recall that if the
Canvas property for an item is left unspecified, that item is said to be a Null-canvas
item and will not display at runtime.

What Is a Viewport?
A viewport is an attribute of a canvas. It is effectively the visible portion of, or view
onto, the canvas.

10-6 Oracle Developer: Build Forms I
..

..Lesson 10: Creating Windows and Content Canvases

Note
At run time, only one content canvas can display in a window at a time. However, you
can assign multiple content canvases to a window.

Copyright  Oracle Corporation, 1999. All rights reserved.

Content Canvas

• “Base” canvas

• View occupies entire window

• Default canvas type

• Each window should have at least one content
canvas

Copyright  Oracle Corporation, 1999. All rights reserved.

Windows and Content Canvases

Canvas 2 Canvas 3

Canvas 1

Window

Oracle Developer: Build Forms I 10-7
..

..Windows and Content Canvases

What Is a Content Canvas?
Form Builder offers different types of canvases. A content canvas is the base canvas
that occupies the entire content pane of the window in which it displays. The content
canvas is the default canvas type. Most canvases are content canvases.

The Relationship Between Windows and Content Canvases
You must create at least one content canvas for each window in your application.
When you run a form, only one content canvas can display in a window at a time, even
though more than one content canvas can be assigned to the same window at design
time.

At run time, a content canvas always completely fills its window. As the user resizes
the window, Form Builder resizes the canvas automatically. If the window is too small
to show all items on the canvas, Form Builder automatically scrolls the canvas to bring
the current item into view.

10-8 Oracle Developer: Build Forms I
..

..Lesson 10: Creating Windows and Content Canvases

Copyright  Oracle Corporation, 1999. All rights reserved.

Windows

• WINDOW1:

– It is created by default with each new form
module.

– It is modeless.

– You can delete, rename, or change its
attributes.

Copyright  Oracle Corporation, 1999. All rights reserved.

Windows

• Use additional windows to:

– Display two or more content canvases at once

– Modularize form contents

– Switch between canvases without replacing
the initial one

– Take advantage of the window manager

• Two types of windows:

– Modal

– Modeless

Oracle Developer: Build Forms I 10-9
..

..Displaying a Form Module in Multiple Windows

Displaying a Form Module in Multiple Windows
When you create a new form module, Form Builder creates a new window implicitly.
Thus, each new form module has one predefined window, which is called WINDOW1.
You can delete or rename WINDOW1, or change its attributes.

Uses and Benefits of a New Window
You can create additional windows in which to display your form application. A new
or second window provides the ability to do the following:

• Display two or more content canvases at once.

• Modularize the form contents.

• Switch between canvases without replacing the initial one.

• Take advantage of window manager functionality such as minimizing.

Window Types
You can create two different window types: modal and modeless.

• A modal window is a restricted window that the user must respond to
before moving the input focus to another window. Modal windows:

- Must be dismissed before control can be returned to a modeless
window

- Become active as soon as they display

- Require a means of exit or dismissal

• A modeless window is an unrestricted window that the user can exit
freely. Modeless windows:

- Can display many at once

- Are not necessarily active when displayed

- Are the default window type

10-10 Oracle Developer: Build Forms I
..

..Lesson 10: Creating Windows and Content Canvases

1 MDI parent window

2 X/Y position

3 Title

4 Document window

5 Dialog window

6 Show vertical scroll bar

7 Show horizontal scroll bar

Copyright  Oracle Corporation, 1999. All rights reserved.

Window Properties

4

5

6

7

2

1 3

Oracle Developer: Build Forms I 10-11
..

..Displaying a Form Module in Multiple Windows

Window Properties

Note: If you do not specify a window title, Form Builder uses the window object name
specified in the Name property for the title.

The canvas you choose as the primary canvas must be a content canvas.

The X and Y Position (0,0) of a window is relative to the top left corner of the screen
when you set the Window Style to dialog. If you set the Window Style to document,
the X and Y Position (0,0) is relative to the top-left corner of the MDI window.

Physical Property Function
X Position Determines the X coordinate for the window
Y Position Determines the Y coordinate for the window
Width Determines the width of the window
Height Determines the height of the window
Bevel Determines how the window border displays
Show Horizontal Scrollbar Determines whether a horizontal scroll bar displays in

the window
Show Vertical Scrollbar Determines whether a vertical scroll bar displays in the window

Functional Property Function
Title Specifies a window title to appear in the title bar
Primary Canvas Specifies the name of the canvas to display in this window when

it is invoked programmatically
Window Style Determines whether the window style is Document or Dialog

(Document style windows are fixed and always remain within the
application window frame. Dialog style windows are free
floating and can be moved outside the application window
frame.)

Modal Determines whether the window is modal (requires user
response) or modeless (does not require user response)

Hide on Exit Specifies whether a modeless window is hidden automatically
when the end user navigates to an item in another window

Icon Filename Specifies the icon resource name that depicts the minimized
window

10-12 Oracle Developer: Build Forms I
..

..Lesson 10: Creating Windows and Content Canvases

Copyright  Oracle Corporation, 1999. All rights reserved.

GUI Hints

• GUI hints are recommendations to the window
manager about window appearance and
functionality.

• If the window manager supports a specific GUI
Hint and its property is set to Yes, it will be used.

• Functional properties for GUI Hints:

- Close Allowed - Maximize Allowed

- Move Allowed - Minimize Allowed

- Resize Allowed - Inherit Menu

Oracle Developer: Build Forms I 10-13
..

..Displaying a Form Module in Multiple Windows

What Are GUI Hints?
GUI Hints are recommendations to the window manager about the window
appearance and functionality. There are certain properties under the Functional group
that enable you to make these recommendations. If the current window manager
supports the specific GUI Hint property and it is set to Yes, then Form Builder uses it.
However if the window manager does not support the property, Form Builder ignores
it.

Note: The Minimize Allowed property must be set to Yes in order for Icon Filename
to be valid.

How to Create a New Window
1 Click the Windows node in the Object Navigator.

2 Click the Create icon.

A new window entry displays, with a default name of WINDOWXX.

3 If the Property Palette is not already displayed, double-click the window
icon to the left of the new window entry.

4 Set the window properties according to your requirements (as described
in the tables, earlier in this lesson).

Note: For your new window to display, you must specify its name in the Window
property of at least one canvas.

Functional Property
for GUI Hints Function
Close Allowed Enables the mechanism for closing the window, as provided by the

window manager-specific Close command (Form Builder responds
to user attempts to close the window by firing a
WHEN-WINDOW-CLOSED trigger to actually close it.)

Move Allowed Determines whether the user can move the window by using the
means provided by the window manager

Resize Allowed Determines whether the user can resize the window at run time
Maximize Allowed Determines whether the user can resize the window by using the

zooming capabilities of the window manager
Minimize Allowed Determines whether the user can iconify and minimize the window
Inherit Menu Determines whether the window displays the current form menu

10-14 Oracle Developer: Build Forms I
..

..Lesson 10: Creating Windows and Content Canvases

Copyright  Oracle Corporation, 1999. All rights reserved.

Creating a Content Canvas

• Implicitly:

– Using the Layout Wizard

– Using the Layout Editor

• Explicitly: Using the Create icon in the
Object Navigator

Oracle Developer: Build Forms I 10-15
..

..Displaying a Form Module on Multiple Layouts

Displaying a Form Module on Multiple Layouts
You can have more than one content canvas in your form application. However,
remember that only one content canvas can display in a window at one time. To
display more than one content canvas at the same time, you can assign each content
canvas to a different window.

Now you can display the form module on multiple layouts or surfaces.

Creating a New Content Canvas Implicitly
There are two ways of implicitly creating a new content canvas:

• Layout Wizard: When you use the Layout Wizard to arrange data block
items on a canvas, the wizard enables you to select a new canvas on its
Canvas page. In this case, the wizard creates a new canvas with a default
name of CANVASXX.

• Layout Editor: When there are no canvases in a form module and you
invoke the Layout Editor; Form Builder creates a default canvas on
which you can place items.

Creating a New Content Canvas Explicitly
You can create a new content canvas explicitly by using the Create icon in the Object
Navigator.

10-16 Oracle Developer: Build Forms I
..

..Lesson 10: Creating Windows and Content Canvases

Copyright  Oracle Corporation, 1999. All rights reserved.

Content Canvas Properties

Height

Width

Canvas

Viewport X/Y
Position
on canvas

Viewport

Oracle Developer: Build Forms I 10-17
..

..Displaying a Form Module on Multiple Layouts

Content Canvas Specific Properties

Note: For a canvas to display at run time, its Window property must
be specified.

How to Create a New Content Canvas
1 Click the Canvases node in the Object Navigator.

2 Click the Create icon.

A new canvas entry displays with a default name of CANVASXX.

3 If the Property Palette is not already displayed, click the new canvas
entry and select Tools—>Property Palette.

4 Set the canvas properties that are described in the above tables according
to your requirements.

Note: Double-clicking the icon for a canvas in the Object Navigator will invoke the
Layout Editor instead of the Property Palette.

General Property Function

Canvas Type Specifies the type of canvas (For a content canvas, this property
should be set to Content.)

Physical Property Function
Window Specifies the window in which the canvas will be displayed
Viewport X Position on
Canvas

Specifies the X coordinate of the top-left corner of the view relative
to the upper-left corner of the canvas

Viewport Y Position on
Canvas

Specifies the Y coordinate of the top-left corner of the view relative
to the upper-left corner of the canvas

Width Specifies the width of the canvas
Height Specifies the height of the canvas
Bevel Specifies a sculpted effect canvas border

Functional Property Function
Raise on Entry Determines whether the canvas is always brought to the front of the

window when the user navigates to an item on this canvas (Use this
property when the canvas is displayed in the same window with
other types of canvases.)

10-18 Oracle Developer: Build Forms I
..

..Lesson 10: Creating Windows and Content Canvases

Copyright  Oracle Corporation, 1999. All rights reserved.

Summary

• Describing windows and content canvases

• Creating a new window

• Creating a new content canvas

Oracle Developer: Build Forms I 10-19
..

..Summary

Summary
In this lesson, you should have learned:

• About the relationship between windows and content canvases

• How to create a new window

• How to create a new content canvas

10-20 Oracle Developer: Build Forms I
..

..Lesson 10: Creating Windows and Content Canvases

Note
For solutions to this practice, see Practice 10 in Appendix A, “Practice Solutions.”

Copyright  Oracle Corporation, 1999. All rights reserved.

Practice 10 Overview

This practice covers the following topics:

• Changing a window size, position, name, and title

• Creating a new window

• Displaying data block contents in the new window

Oracle Developer: Build Forms I 10-21
..

..Practice 10 Overview

Practice 10 Overview
In this practice session, you will customize windows in your form modules. You will
resize the windows to make them more suitable for presenting canvas contents. You
will also create a new window to display the contents of the S_INVENTORY block.

• Change the size and position of the window in the CUSTOMERS form.
Change its name and title. Save and run the form.

• Modify the name and title of the window in the ORDERS form.

• Create a new window in the ORDERS form. Make sure the contents of
the S_INVENTORY block display in this window. Save and run the
form.

10-22 Oracle Developer: Build Forms I
..

..Lesson 10: Creating Windows and Content Canvases

Practice 10
1 Modify the window in the CUSTGXX form. Change the name of the

window to WIN_CUSTOMER, and change its title to Customer
Information. Check that the size and position are suitable.

2 Save, compile, and run the form to test the changes.

3 Modify the window in the ORDGXX form. Ensure that the window is
called WIN_ORDER. Also change its title to Orders and Items.

4 In the ORDGXX form, create a new window called WIN_INVENTORY
suitable for displaying the CV_INVENTORY canvas. Use the rulers in
the Layout Editor to help you plan the height and width of the window.
Set the window title to Stock Levels and the Hide on Exit property to
Yes. Place the new window in a suitable position relative to
WIN_ORDER.

5 Associate the CV_INVENTORY canvas with the window
WIN_INVENTORY. Run the form to ensure that the S_INVENTORY
block displays in WIN_INVENTORY when you navigate to this block.

6 Save the form.

11

Working with Other
Canvases

11-2 Oracle Developer: Build Forms I
..

..Lesson 11: Working with Other Canvases

Copyright  Oracle Corporation, 1999. All rights reserved.

Objectives

After completing this lesson, you should be able to
do the following:

• Describe the different types of canvases and their
relationships to each other

• Identify the appropriate canvas type for different
scenarios

• Create an overlay effect by using stacked
canvases

• Create a toolbar

• Create a tabbed interface

Oracle Developer: Build Forms I 11-3
..

..Introduction

Introduction

Overview
In addition to the content canvas, the Oracle Developer forms component enables you
to create three other canvas types. This lesson introduces you to the stacked canvas,
which is ideal for creating overlays in your application. It also introduces you to the
toolbar canvas and the tabbed canvas, both of which enable you to provide a user-
friendly GUI application.

11-4 Oracle Developer: Build Forms I
..

..Lesson 11: Working with Other Canvases

Copyright  Oracle Corporation, 1999. All rights reserved.

Content canvas

Canvas Types

Stacked
canvas

Horizontal Toolbar

Vertical
Toolbar

x y zTab

Tab
page

Oracle Developer: Build Forms I 11-5
..

..Canvases Overview

Canvases Overview
Besides the content canvas, Form Builder provides three other types of canvases
which are:

• Stacked canvas

• Toolbar canvas

• Tab canvas

When you create a canvas, you specify its type by setting the Canvas Type property.
The type determines how the canvas is displayed in the window to which it is
assigned.

11-6 Oracle Developer: Build Forms I
..

..Lesson 11: Working with Other Canvases

Copyright  Oracle Corporation, 1999. All rights reserved.

Stacked Canvas

• Displayed on top of a content canvas

• Shares a window with a content canvas

• Size:

– Usually smaller than the content canvas in the
same window

– Determined by viewport size

• Created in:

– Object Navigator

– Layout Editor

Oracle Developer: Build Forms I 11-7
..

..Creating a Stacked Canvas

Creating a Stacked Canvas

What Is a Stacked Canvas?
A stacked canvas is displayed on top of, or stacked on the content canvas assigned to a
window. It shares a window with a content canvas and any number of other stacked
canvases. Stacked canvases are usually smaller than the window in which they display.

Determining the Size of a Stacked Canvas
Stacked canvases are typically smaller than the content canvas in the same window.
Determine the stacked canvas dimensions by setting Width and Height properties.
Determine the stacked canvas view dimensions by setting Viewport Width and
Viewport Height properties.

Uses and Benefits of Stacked Canvases
• Scrolling views as generated by Oracle Designer

• Creating an overlay effect within a single window

• Displaying headers that display constant information, such as company
name

• Creating a cascading or a revealing effect within a single window

• Displaying additional information

• Displaying information conditionally

• Displaying context-sensitive help

• Hiding information

Note: If a data block contains more items than the window can display, Form Builder
scrolls the window to display items outside the window frame. This can cause
important items, such as primary key values, to scroll out of view. By placing
important items on a content canvas, and placing the items that can be scrolled out of
sight on a stacked canvas, the stacked canvas becomes the scrolling region, rather than
the window itself.

Creating a Stacked Canvas
You can create a stacked canvas in either of the following:

• Object Navigator

• Layout Editor

11-8 Oracle Developer: Build Forms I
..

..Lesson 11: Working with Other Canvases

1 Content canvas

2 Stacked canvas

3 Viewport X/Y position

4 Viewport height

5 Viewport width

Copyright  Oracle Corporation, 1999. All rights reserved.

Stacked Canvas Properties

1 2

3

5

4

Oracle Developer: Build Forms I 11-9
..

..Creating a Stacked Canvas

Stacked Canvas Specific Properties

How to Create a Stacked Canvas in the Object Navigator
1 Click the Canvases node in the Object Navigator.

2 Click the Create icon.

A new canvas entry displays with a default name of CANVASXX.

3 If the Property Palette is not already displayed, click the new canvas
entry and select Tools—>Property Palette.

4 Set the Canvas Type property to Stacked. Additionally, set the properties
that are described in the above table according to your requirements.

Note: To convert an existing content canvas to a stacked canvas, change its Canvas
Type property value from Content to Stacked.

In order for the stacked canvas to display properly, make sure that its position in the
stacking order places it in front of the content canvas assigned to the same window.
The stacking order of canvases is defined by the sequence in which they appear in the
Object Navigator.

Viewport Property Function
Viewport X Position Specifies the X coordinate of the stacked canvas viewport
Viewport Y Position Specifies the Y coordinate of the stacked canvas viewport
Viewport Width Specifies the width of the stacked canvas viewport
Viewport Height Specifies the height of the stacked canvas viewport

Physical Property Function

Show Horizontal
Scrollbar

Determines whether the stacked canvas displays a horizontal
scroll bar

Show Vertical Scroll-
bar

Determines whether the stacked canvas displays a vertical
scroll bar

11-10 Oracle Developer: Build Forms I
..

..Lesson 11: Working with Other Canvases

Copyright  Oracle Corporation, 1999. All rights reserved.

Creating a Stacked Canvas

Oracle Developer: Build Forms I 11-11
..

..Creating a Stacked Canvas

How to Create a Stacked Canvas in the Layout Editor
1 In the Object Navigator, double-click the object icon for the content

canvas on which you wish to create a stacked canvas.

The Layout Editor displays.

2 Click the Stacked Canvas tool in the toolbar.

3 Click and drag the mouse in the canvas where you want to position the
stacked canvas.

4 Open the Property Palette of the stacked canvas. Set the canvas
properties according to your requirements (described earlier in the
lesson).

Displaying Stacked Canvases in the Layout Editor
You can display a stacked canvas as it sits over the content canvas in the Layout
Editor. Check the display position of stacked canvases by doing the following:

1 Select View—>Stacked Views in the Layout Editor. The Stacked/Tab
Canvases dialog box is displayed, with a list of all the stacked canvases
assigned to the same window as the current content canvas.

2 Select the stacked canvases you want to display in the Layout Editor.

Note: [Control] + Click to clear a stacked canvas that was previously selected.

11-12 Oracle Developer: Build Forms I
..

..Lesson 11: Working with Other Canvases

Copyright  Oracle Corporation, 1999. All rights reserved.

Toolbars

• Special type of canvas for tool items

• Three types:

– Vertical toolbar

– Horizontal toolbar

– MDI toolbar

• Provide:

– Standard look and feel

– Alternative to menu or function key operation

Oracle Developer: Build Forms I 11-13
..

..Creating a Toolbar

Creating a Toolbar

What Is a Toolbar Canvas?
A toolbar canvas is a special type of canvas that you can create to hold buttons and
other frequently used GUI elements.

The Three Toolbar Types
• Vertical toolbar: Use a vertical toolbar to position all your tool items

down the left or right hand side of your window.

• Horizontal toolbar: Use a horizontal toolbar to position all your tool
items and controls across the top or bottom of your window.

• MDI toolbar: Use an MDI toolbar to avoid creating more than one
toolbar for a Form Builder application that uses multiple windows.

Uses and Benefits of Toolbars
• Provide a standard look and feel across canvases displayed in the same

window.

• Decrease form module maintenance time.

• Increase application usability.

• Create applications similar to others used in the same environment.

• Provide an alternative to menu or function-key driven applications.

Note: The MDI toolbar is only available for Microsoft Windows.

11-14 Oracle Developer: Build Forms I
..

..Lesson 11: Working with Other Canvases

Copyright  Oracle Corporation, 1999. All rights reserved.

Toolbar Related Properties

• Canvas properties:

– Canvas Type

– Window

– Width

– Height

Copyright  Oracle Corporation, 1999. All rights reserved.

Toolbar Related Properties

• Window properties:

– Horizontal Toolbar Canvas

– Vertical Toolbar Canvas

• Form Module properties:

– Form Horizontal Toolbar Canvas

– Form Vertical Toolbar Canvas

Oracle Developer: Build Forms I 11-15
..

..Creating a Toolbar

Toolbar Related Properties
Once you create a toolbar canvas, you must set its required properties as well as the
required properties of the associated window. For MDI toolbars, you must set the
required form module properties.

How to Create a Toolbar Canvas
1 Create a new canvas in the Object Navigator.

2 If the Property Palette is not already displayed, click the new canvas
entry and select Tools—>Property Palette.

3 Set the canvas properties that are described in the above table.

4 In the Object Navigator select one of the following:

- The window in which you want to display the toolbar (for a form
window toolbar)

- The Form module (for an MDI Toolbar)

5 Set the Horizontal/Vertical Toolbar Canvas properties.

6 Add GUI elements, boilerplate text, and graphics, as required.

Note: The width of a horizontal toolbar is set to the width of the window (for example,
content canvas). Likewise, the height of a vertical toolbar is set to the height of the
window.

Canvas Property Function
Canvas Type Specifies the type of canvas; for a toolbar can-

vas, set to Horizontal Toolbar or Vertical
Toolbar

Window Specifies which window the toolbar
displays in

Width Determines the width of the toolbar
Height Determines the height of the toolbar

Window Property Function
Horizontal Toolbar Canvas/
Vertical Toolbar Canvas

Identifies the horizontal/vertical toolbar to
display in this window

Form Module Property Function
Form Horizontal Toolbar Canvas/
Form Vertical Toolbar Canvas

Identifies the horizontal/vertical toolbar to
display in the MDI window

11-16 Oracle Developer: Build Forms I
..

..Lesson 11: Working with Other Canvases

Copyright  Oracle Corporation, 1999. All rights reserved.

Tab Canvas

• Enables you to organize and display related
information on separate tabs

• Consists of one or more tab pages

• Provides easy access to data

• Created in:

– Object Navigator

– Layout Editor

Oracle Developer: Build Forms I 11-17
..

..Creating a Tab Canvas

Creating a Tab Canvas

What Is a Tab Canvas?
A tab canvas is a a special type of canvas that enables you to organize and display
related information on separate tabs. Like stacked canvases, tab canvases are
displayed on top of a content canvas.

What Is a Tab Page?
A tab page is a subobject of a tab canvas. Each tab canvas is made up of one or more
tab pages. A tab page displays a subset of the information in the entire tab canvas.
Each tab page has a labeled tab that end users can click to access information on the
page.

Each tab page occupies an equal amount of space on the tab canvas.

Uses and Benefits of Tab Canvases
• Create an overlay effect within a single window.

• Display large amounts of information on a single canvas.

• Hide information.

• Easily access required information by clicking the tab.

Creating a Tab Canvas
• Create an empty tab canvas in either of the following:

- Object Navigator

- Layout Editor

• Define one or more tab pages for the tab canvas.

• Place items on the tab pages.

11-18 Oracle Developer: Build Forms I
..

..Lesson 11: Working with Other Canvases

1 Viewport X/Y position

2 Viewport width

3 Viewport height

4 Tab attachment edge

Copyright  Oracle Corporation, 1999. All rights reserved.

Tab Canvas Related Properties

1

2

3

4

Oracle Developer: Build Forms I 11-19
..

..Creating a Tab Canvas

Tab Canvas Related Properties
Once you create a tab canvas and its tab pages, you must set the required properties for
both of these objects. Place items on a tab page by setting the required item properties.

Tab Canvas Property Function

Viewport X Position Specifies the X coordinate of the tab canvas upper-left corner

Viewport Y Position Specifies the Y coordinate of the tab canvas upper-left corner

Viewport Width Specifies the width of the view for the tab canvas

Viewport Height Specifies the height of the view for the tab canvas

Corner Style Specifies the shape of the labelled tabs on the tab canvas (Select
from Chamfered, Square, and Rounded)

Tab Attachment Edge Specifies the location where tabs are attached to the tab canvas

Tab Page Property Function

Label Specifies the text label that appears on the tab page’s tab at
run time

Item Property Function

Canvas Specifies the tab canvas on which the item will be displayed

Tab Page Specifies the tab page on which the item will be displayed

11-20 Oracle Developer: Build Forms I
..

..Lesson 11: Working with Other Canvases

Copyright  Oracle Corporation, 1999. All rights reserved.

Creating a Tab Canvas

Oracle Developer: Build Forms I 11-21
..

..Creating a Tab Canvas

How to Create a Tab Canvas in the Object Navigator
1 Click the Canvases node in the Object Navigator.

2 Click the Create icon.

A new canvas entry displays.

3 If the Property Palette is not already displayed, click the new canvas
entry and select Tools—>Property Palette.

4 Set the Canvas Type property to Tab. Additionally, set the canvas
properties according to your requirements (described earlier in the
lesson).

5 Expand the canvas node in the Object Navigator.

The Tab Pages node displays.

6 Click the Create icon.

A tab page displays in the Object Navigator, with a default name of PAGEXX. The
Property Palette takes on its context.

7 Set the tab page properties according to your requirements (described
earlier in the lesson).

8 Create additional tab pages by repeating steps 6 and 7.

How to Create a Tab Canvas in the Layout Editor
1 In the Object Navigator, double-click the object icon for the content

canvas on which you want to create a tab canvas.

The Layout Editor displays.

2 Click the Tab Canvas tool in the toolbar.

3 Click and drag the mouse in the canvas where you want to position the
tab canvas.

Form Builder creates a tab canvas with two tab pages by default.

4 Open the Property Palette of the tab canvas. Set the canvas properties
according to your requirements (described earlier in the lesson).

5 Create additional tab pages, if required, in the Object Navigator.

6 Set the tab page properties according to your requirements (described
earlier in the lesson).

11-22 Oracle Developer: Build Forms I
..

..Lesson 11: Working with Other Canvases

Copyright  Oracle Corporation, 1999. All rights reserved.

Placing Items on a Tab Canvas

• Place items on each tab page for user interaction.

• Set the item properties:

– Canvas

– Tab Page

Oracle Developer: Build Forms I 11-23
..

..Creating a Tab Canvas

Placing Items on a Tab Page
Once you create a tab canvas and related tab pages, you must place individual items on
the tab pages that the end users can interact with at run time. To accomplish this, do
the following:

• Open the Property Palette of the item.

• Set the item’s Canvas and Tab Page properties of the item to the desired
tab canvas and tab page.

Note: Display the tab canvas as it sits on top of the content canvas, by selecting
View—>Stacked View in the Layout Editor.

11-24 Oracle Developer: Build Forms I
..

..Lesson 11: Working with Other Canvases

Copyright  Oracle Corporation, 1999. All rights reserved.

Summary

• Creating an overlay effect with a stacked canvas

• Creating a toolbar

• Creating a tab canvas

Oracle Developer: Build Forms I 11-25
..

..Summary

Summary
In this lesson you should have learned how to:

• Create an overlay effect with a stacked canvas

• Create a toolbar

• Create a tabbed canvas

11-26 Oracle Developer: Build Forms I
..

..Lesson 11: Working with Other Canvases

Note
For solutions to this practice, see Practice 11 in Appendix A, “Practice Solutions.”

Copyright  Oracle Corporation, 1999. All rights reserved.

Practice 11 Overview

This practice covers the following topics:

• Creating a toolbar canvas

• Creating a stacked canvas

• Creating a tab canvas

• Adding tab pages to the tab canvas

Oracle Developer: Build Forms I 11-27
..

..Practice 11 Overview

Practice 11 Overview
In this practice session, you will create different types of canvases: stacked canvas,
toolbar canvas, and tab canvas.

• Create a horizontal toolbar canvas in the ORDERS form. Create new
buttons in the Control block, and place them on the horizontal toolbar.
Save and run the form.

• Create a stacked canvas in the ORDERS form to add some help text.
Position the canvas in the center of the window. Create a button in the
Control block. This button will be used later to display the stacked
canvas. Add help text on the stacked canvas. Save and run the form.

• Create a tab canvas in the CUSTOMERS form. Create three tab pages on
this canvas, and make sure that each tab page displays the appropriate
information. Save and run the form.

11-28 Oracle Developer: Build Forms I
..

..Lesson 11: Working with Other Canvases

Practice 11

Toolbar Canvases
1 In the ORDGXX form, create a horizontal toolbar canvas called Toolbar

in the WIN_ORDER window, make it the standard toolbar for that
window. Suggested height is 30.

2 Save, compile, and run the form to test.

Notice that the toolbar now uses part of the window’s space. Adjust the window
size accordingly.

Create three buttons in the CONTROL block, as detailed below, and place them on the
Toolbar canvas.

Suggested positions for the buttons are shown in the following illustration:

Button Name Details
Stock_Button Label: Stock

Mouse Navigate: No
Keyboard Navigable: No
Canvas: Toolbar

Show_Help_Button Label: Show Help
Mouse Navigate: No
Keyboard Navigable: No
Canvas: Toolbar

Exit_Button Label: Exit
Mouse Navigate: No
Keyboard Navigable: No
Canvas: Toolbar

Oracle Developer: Build Forms I 11-29
..

..Practice 11

Stacked Canvases
1 Create a stacked canvas named CV_HELP to display help in the

WIN_ORDER window of the ORDGXX form. Suggested visible size is
Viewport Width 270, Viewport Height 215 (points). Place some
application help text on this canvas.

2 Position the view of the stacked canvas so that it appears in the center of
WIN_ORDER. Make sure it will not obscure the first enterable item.

Do this by planning the view’s top-left position in the Layout Editor, while
showing CV_ORDER. Define the Viewport X and Viewport Y Positions in the
Property Palette. Do not move the view in the Layout Editor.

3 Organize CV_HELP so that it is the last canvas in sequence.

Do this in the Object Navigator. (This ensures the correct stacking order at run
time.)

4 Save, compile, and run the form to test. Note that the stacked canvas
displays all the time, providing that it does not obscure the current item
in the form.

5 Switch off the Visible property of CV_HELP, then create a button in the
control block to hide the Help information when it is no longer needed.
We will add the code later. Display this button on the CV_HELP canvas.

Button Name Details
Hide_Help_Button Label: Hide Help,

Canvas: CV_HELP
Mouse Navigate: No

11-30 Oracle Developer: Build Forms I
..

..Lesson 11: Working with Other Canvases

Tab Canvases
Modify the CUSTGXX form in order to use a tab canvas:

1 In the Layout Editor, delete the frame object that covers S_CUSTOMER
block. Create a tab canvas. In the Layout Editor set the Background
Color property to gray, Tab style property to Square, and Bevel property
to None.

2 Rename this tab canvas TAB_CUSTOMER. Create three tab pages and
label them as Address, Billing, and Comments.

3 Design the tab pages according to the following screenshots. Set the item
properties to make them visible on the relevant tab pages.

Oracle Developer: Build Forms I 11-31
..

..Practice 11

11-32 Oracle Developer: Build Forms I
..

..Lesson 11: Working with Other Canvases

Oracle Developer: Build Forms I 11-33
..

..Practice 11

11-34 Oracle Developer: Build Forms I
..

..Lesson 11: Working with Other Canvases

Tab Canvases (continued)
4 Reorder the items according to the tab page sequence. Ensure that the

user does not move from one tab page to another when tabbing through
items. Set Next Navigation Item and Previous Navigation Item
properties according to the order of items in the tab pages.

5 Save, compile, and run the form.

12

Introduction to Triggers

12-2 Oracle Developer: Build Forms I
..

..Lesson 12: Introduction to Triggers

Copyright  Oracle Corporation, 1999. All rights reserved.

Objectives

After completing this lesson, you should be able to
do the following:

• Define triggers

• Identify the different trigger categories

• Plan the type and scope of triggers in a form

• Describe the properties that affect the behavior of
a trigger

Oracle Developer: Build Forms I 12-3
..

..Introduction

Introduction

Overview
Triggers are one of the most important mechanisms that you can use to modify or add
to the functionality of a form. In this lesson, you learn the essential rules and
properties of triggers so that you can use them throughout your application.

12-4 Oracle Developer: Build Forms I
..

..Lesson 12: Introduction to Triggers

Note

Events cause the activation, or firing, of certain trigger types.

Copyright  Oracle Corporation, 1999. All rights reserved.

Form Builder Triggers

Event

Trigger types

Queries

Validation

Navigation

Interaction

Internal event

Errors/Messages

Others

PL/SQL

Fire
PL/SQL

PL/SQL

Oracle Developer: Build Forms I 12-5
..

..What Is a Trigger?

What Is a Trigger?
A trigger is a program unit that is executed (fired) due to an event. You have already
seen that Form Builder enables you to build powerful facilities into applications
without writing a single line of code. You can use triggers to add or modify form
functionality in a procedural way. As a result, you can define the detailed processes of
your application.

Every trigger that you define is associated with a specific event. Form Builder defines
a vast range of events for which you can fire a trigger. These events include the
following:

• Query-related events

• Data entry and validation

• Logical navigation or physical mouse movement

• Operator interaction with items in the form

• Internal events in the form

• Errors and messages

Trigger Characteristics
As with other Oracle Developer components, you write Form Builder triggers in

PL/SQL. These triggers are mostly fired by events within a form module. (Menu
modules can initiate an event in a form, but the form module owns the trigger that
fires.)

Note: Database events that occur on behalf of a form can fire certain Form Builder
triggers, but these database triggers are different from Form Builder triggers.

Trigger Components
There are three main components to consider when you design a trigger in Form
Builder:

Component Description
Trigger type Defines the specific event that will cause the trigger to fire
Trigger code The body of PL/SQL that defines the actions of the trigger
Trigger scope The level in a form module at which the trigger is defined—

determining the scope of events that will be detected by the trigger

12-6 Oracle Developer: Build Forms I
..

..Lesson 12: Introduction to Triggers

Copyright  Oracle Corporation, 1999. All rights reserved.

Trigger Scope Component

Type

CodeLevels

• Form

• Block

• Item

Scope

Copyright  Oracle Corporation, 1999. All rights reserved.

Trigger Scope

EventEvent

Event

Oracle Developer: Build Forms I 12-7
..

..Trigger Components

Trigger Components

Trigger Scope
The scope of a trigger is determined by its position in the form object hierarchy, that is,
the type of object under which you create the trigger.

There are three possible levels:

Some triggers cannot be defined below a certain level. For example,
Post-Query triggers cannot be defined at item level, because they fire due to a global
or restricted query on a block.

By default, only the trigger that is most specific to the current location of the cursor
fires.

Consider the example in the diagram, opposite:

• When the cursor is in the Date_Shipped item, a message fires the
On-Message trigger of the Date_Shipped item, because this is more
specific than the other triggers of this type.

• When the cursor is elsewhere in the ORDERS block, a message causes
the block-level On-Message trigger to fire, because its scope is more
specific than the form-level trigger. (You are outside the scope of the
item-level trigger.)

• When the cursor is in the ITEMS block, a message causes the form-level
On-Message trigger to fire, because the cursor is outside the scope of the
other two On-Message triggers.

Note: The On-Message trigger fires whenever Form Builder displays a message.

Scope Description
Form level The trigger belongs to the form and can fire due to events across the

entire form
Block level The trigger belongs to a block and can only fire when this block is the

current block
Item level The trigger belongs to an individual item and can only fire when this

item is the current item

12-8 Oracle Developer: Build Forms I
..

..Lesson 12: Introduction to Triggers

Copyright  Oracle Corporation, 1999. All rights reserved.

Trigger Type Component

Type
Scope

Code

• Pre-

• Post-

• When-

• On-

• Key-

Oracle Developer: Build Forms I 12-9
..

..Trigger Components

Trigger Type
The trigger type determines which type of event fires it. There are more than 100 built-
in triggers, each identified by a specific name.

The name of a trigger identifies its type. All built-in trigger types are associated with
an event, and their names always contain a hyphen (-). For example:

• When-Validate-Item fires when Form Builder validates an item.

• Pre-Query fires before Form Builder issues a query for a block.

The first part of a trigger name (before the first hyphen) follows a standard
convention; this helps you to understand the general nature of the trigger type, and
plan the types to use.

Trigger Prefix Description
Key- Fires in place of the standard action of a function key
On- Fires in place of standard processing (used to replace or bypass a

process)
Pre- Fires on an event that occurs just before an action (for example, before

a query is executed)
Post- Fires just after an action (for example, after a query is executed)
When- Fires in addition to standard processing (used to augment functionality)

12-10 Oracle Developer: Build Forms I
..

..Lesson 12: Introduction to Triggers

Copyright  Oracle Corporation, 1999. All rights reserved.

Trigger Code Component

Type
Scope

Code

• Statements

• PL/SQL

• User subprograms

• Built-in subprograms

Oracle Developer: Build Forms I 12-11
..

..Trigger Components

Trigger Code
The code of the trigger defines the actions for the trigger to perform when it fires.
Write this code as an anonymous PL/SQL block by using the PL/SQL Editor.

Note: You only need to enter the BEGIN. . . END structure in your trigger text if you
start your block with a DECLARE statement or if you need to code subblocks for
other reasons.

Statements that you write in a trigger can be constructed as follows:

• Standard PL/SQL constructs (assignments, control statements, and so
on).

• SQL statements that are legal in a PL/SQL block; these are passed to the
server for execution.

• Calls to user-named subprograms (procedures and functions) in the
form, a library, or the database.

• Calls to built-in subprograms and package subprograms; these are
procedures and functions that are part of Oracle Developer.

Although you can include SQL statements in a trigger, keep in mind the following
rules about their use:

• INSERT, UPDATE, and DELETE statements must be placed only in
transactional triggers. These triggers fire during the commit process.

• Transaction control statements (COMMIT, ROLLBACK, SAVEPOINT)
cannot be included directly as SQL trigger statements. These actions are
carried out by Form Builder as a result of either commands or built-in
procedures that you issue.

12-12 Oracle Developer: Build Forms I
..

..Lesson 12: Introduction to Triggers

Note
Broken lines indicate the analysis path before firing. EH stands for execution
hierarchy.

1 Fires first

2 Fires second

3 Viewport height

4 Fires independently

Copyright  Oracle Corporation, 1999. All rights reserved.

Execution Hierarchy

Form
level

Block
level

Item
level

Event

On-Message

On-Message

On-Message

 On-Error

 On-Error

EH = After

EH = After

EH = Before

EH = Override

1

2

3

Event 4

Oracle Developer: Build Forms I 12-13
..

..Trigger Components

Trigger Scope and Execution Hierarchy
As already stated, when there is more than one trigger of the same type Form Builder
normally fires the trigger most specific to the cursor location. You can alter the firing
sequence of a trigger by setting the execution hierarchy (EH) trigger property.

Execution hierarchy is a trigger property that controls what happens when there are
triggers of the same type at different levels, but each trigger is within the scope of an
event. The default setting is Override.

Settings for execution hierarchy are:

In the cases of Before and After, you can fire more than one trigger of the same type
due to a single event. However, you must define each trigger at a different level.

Setting Description
Override Only the trigger most specific to the cursor location fires
After The trigger fires after firing the same trigger at the next highest

level (if a trigger exists)
Before The trigger fires before firing the same trigger at the next highest

level (if one exists)

12-14 Oracle Developer: Build Forms I
..

..Lesson 12: Introduction to Triggers

Copyright  Oracle Corporation, 1999. All rights reserved.

Summary

• Trigger: Event-activated program units

• Type: Defines the event that fires it

• Prefixes:

– Key-

– On-

– Pre-

– Post-

– When-

• Code: PL/SQL anonymous block

• Scope: Form, block, or item level

Oracle Developer: Build Forms I 12-15
..

..Summary

Summary
In this lesson you should have learned the essential rules and properties for triggers.

• Triggers are event-activated program units.

• The trigger type defines the event that fires the trigger.

• Prefixes for trigger names are:

- Key-

- On-

- Pre-

- Post-

- When-

Each has a specific meaning.

• Trigger code consists of a PL/SQL anonymous block.

• The trigger scope determines which events will be detected by the
trigger. The three possible levels for a trigger are form, block, and item.

• When an event occurs, the most specific trigger overrides the triggers at
a more general level. This can be affected by execution hierarchy.

12-16 Oracle Developer: Build Forms I
..

..Lesson 12: Introduction to Triggers

13

Producing Triggers

13-2 Oracle Developer: Build Forms I
..

..Lesson 13: Producing Triggers

Copyright  Oracle Corporation, 1999. All rights reserved.

Objectives

After completing this lesson, you should be able to
do the following:

• Write trigger code

• Explain the use of built-in subprograms in Oracle
Developer applications

• Describe the When-Button-Pressed trigger

• Describe the When-Window-Closed trigger

Oracle Developer: Build Forms I 13-3
..

..Introduction

Introduction

Overview
This lesson shows you how to create triggers. You specifically learn how to use built-
in subprograms in Oracle Developer applications.

13-4 Oracle Developer: Build Forms I
..

..Lesson 13: Producing Triggers

Copyright  Oracle Corporation, 1999. All rights reserved.

Creating a Trigger

Smart Triggers

Oracle Developer: Build Forms I 13-5
..

..Defining Triggers in Form Builder

Defining Triggers in Form Builder

Using Smart Triggers
When you click an object in the Object Navigator or Layout Editor by using the right
mouse button, a pop-up menu displays that includes the item Smart Triggers. The
Smart Triggers item expands to a list of common triggers that are appropriate for the
selected object. When you click one of these triggers, the Form Builder automatically
creates the trigger.

Creating a New Trigger
Using Smart Triggers is the easiest way to create a new trigger, but you can also do it
from the Object Navigator, from the Layout Editor, or from the PL/SQL Editor if it is
already open:

• In the Object Navigator, select the Triggers node of the form, block, or
item that will own the trigger. Select Navigator—>Create from the menu,
or click Create in the toolbar. This invokes the Trigger LOV.

• If the PL/SQL Editor is open, click New to create a new trigger. This
invokes the Trigger LOV.

• In the Layout Editor, select the object, and click the right mouse button
to display the pop-up menu. Select PL/SQL Editor, if there is already a
trigger attached to the item; its name and code appear in the editor. Click
the New button to invoke the Triggers LOV.

• Select the trigger type from the Triggers LOV. The trigger type and
scope are now set in the PL/SQL Editor. You can enter the code for the
trigger in the source pane of the editor.

Using the PL/SQL Editor
You are already familiar with the PL/SQL Editor, which is common in each Oracle
Developer component. In the Form Builder, the PL/SQL Editor has the following
specific trigger components:

Component Description
Type Set to trigger
Object Enables you to set the scope to either Form Level or a specific block
Item Enables you to change between specific items (at item level) to access

other triggers
Name Trigger name; enables you to switch to another existing trigger
Source pane Where trigger code is entered or modified

13-6 Oracle Developer: Build Forms I
..

..Lesson 13: Producing Triggers

Copyright  Oracle Corporation, 1999. All rights reserved.

Trigger Properties

General

Functional

Help

Oracle Developer: Build Forms I 13-7
..

..Defining Triggers in Form Builder

Trigger Properties
In the property palette, you can set the following trigger properties:

General

Functional

Help

Property Description
Name Specifies the internal name of the trigger

Property Description
Trigger Style PL/SQL: Trigger code is a PL/SQL block (default)

V2: Trigger is inherited from version 2.3 or earlier
Fire in Enter Query Mode Yes: Trigger can fire when an event occurs in Enter Query

as well as Normal mode
No: Trigger can fire only in Normal mode

Execution Hierarchy Override, Before, or After

Property Description
Display in “Keyboard Help” Set to Yes if you want the name or the description to

appear in the Show Keys window; the default is No
“Keyboard Help” text Set to Yes if you want to specify the trigger description;

this property is valid for Key- triggers

13-8 Oracle Developer: Build Forms I
..

..Lesson 13: Producing Triggers

Copyright  Oracle Corporation, 1999. All rights reserved.

Enhanced PL/SQL Editor

Split view

Copyright  Oracle Corporation, 1999. All rights reserved.

Enhanced PL/SQL Editor Syntax Palette

Oracle Developer: Build Forms I 13-9
..

..PL/SQL Editor Features

PL/SQL Editor Features

Automatic Formatting and Coloring of PL/SQL Code
• Automatic Indenting and Color Syntax highlighting

• Drag and Drop text Manipulation

• Unlimited Undo/Redo

Multiple Split Views
You can create up to four separate views of the current program unit in the PL/SQL
Editor by using split bars.

Syntax Palette
The Syntax Palette enables you to display and copy the constructs of PL/SQL
language elements and build packages into an editor. To invoke the Syntax Palette,
select Program—>Syntax Palette from the menu system.

Global Search and Replace
The Find and Replace in Program Units dialog box enables you to search for text
across multiple program units without opening individual instances of the Program
Unit Editor. Choose to replace every occurrence of the search text string found or in
selected occurrences only.

Invoke the Find and Replace in Program Units dialog box by selecting

Program—>Find and Replace PL/SQL from the menu system.

Things to Remember About the PL/SQL Editor
• New or changed text in triggers remains uncompiled until you click

Compile. (If you select File—>Compile from the menu, it will compile
all uncompiled code in the document.)

• Compiling triggers that contain SQL require connection to the database.

• All uncompiled triggers are compiled when the form module is
compiled.

The Block and Item pop-up lists do not change the current trigger scope. They enable
you to switch to another trigger.

13-10 Oracle Developer: Build Forms I
..

..Lesson 13: Producing Triggers

Copyright  Oracle Corporation, 1999. All rights reserved.

Database Trigger Editor

Oracle Developer: Build Forms I 13-11
..

..Database Trigger Editor

Database Trigger Editor
The logical grouping of items within the Database Trigger Editor enables developers
to create row and statement triggers easily. An error message box displays an error
when you try to retrieve, store, or drop an invalid trigger. To create a database trigger
by using the Database Trigger Editor, perform the following steps:

1 In the Object Navigator, expand the Database Objects node to display
the schema nodes.

2 Expand a schema node to display the database objects.

3 Expand the Tables node to display the schema’s database tables.

4 Select and expand the desired table.

5 Select the Triggers node and choose Navigator-Create. The Database
Trigger Editor appears.

6 In the Database Trigger Editor, define and save the desired program
units.

13-12 Oracle Developer: Build Forms I
..

..Lesson 13: Producing Triggers

Copyright  Oracle Corporation, 1999. All rights reserved.

Trigger PL/SQL Blocks

.
BEGIN

.
END;

Oracle Developer: Build Forms I 13-13
..

..Writing the Trigger Code

Writing the Trigger Code

Trigger PL/SQL Blocks
The code text of a Form Builder trigger is a PL/SQL block that consists of three
sections:

• A declaration section for variables, constants, and exceptions (optional)

• An executable statements section (required)

• An exception handlers section (optional)

If your trigger code does not require defined variables, you do not need to include the
BEGIN and END keywords; they are added implicitly.

Example
If the trigger does not require declarative statements, the BEGIN and END keywords
are optional. When-Validate_Item trigger:

IF :S_ITEM.price IS NULL THEN
:S_ITEM.price := :S_ITEM.stdprice;

END IF;
calculate_total; -- User-named procedure

Example
If the trigger requires declarative statements, the BEGIN and END keywords are
required. When-Button-Pressed trigger:

DECLARE
vn_discount NUMBER;

BEGIN
vn_discount:=calculate_discount(:S_ITEM.product_id,:S_ITEM.quantity);
MESSAGE(’Discount: ’||TO_CHAR(vn_discount));

END;

Example
To handle exceptions, include EXCEPTION section in trigger. Post-Insert trigger:

INSERT INTO LOG_TAB (LOG_VAL, LOG_USER)
VALUES(:S_DEPT.id,:GLOBAL.username);
EXCEPTION

WHEN OTHERS THEN
MESSAGE(’Error! ’,||SQLERRM);

13-14 Oracle Developer: Build Forms I
..

..Lesson 13: Producing Triggers

Copyright  Oracle Corporation, 1999. All rights reserved.

Variables in Form Builder

• PL/SQL variables must be declared in a trigger or
defined in a package

• Form Builder variables

– Are not formally declared in PL/SQL

– Need a colon prefix in reference

Copyright  Oracle Corporation, 1999. All rights reserved.

Form Builder Variables

• Items

For presentation and user interaction

• Global variables

Session-wide character variable

• System variables

Form status and control

• Parameters

Passing values in and out of module

Oracle Developer: Build Forms I 13-15
..

..Writing the Trigger Code

Using Variables in Form Builder
In triggers and subprograms, Form Builder generally accepts two types of variables for
storing values:

• PL/SQL variables: These must be declared in a DECLARE section, and
remain available until the end of the declaring block. They are not
prefixed by a colon. If declared in a PL/SQL package, a variable is
accessible across all triggers that access this package.

• Form Builder variables: Variable types maintained by the Form Builder.
These are seen by PL/SQL as external variables, and require a colon (:)
prefix to distinguish them from PL/SQL objects (except when their
name is passed as a character string to a subprogram). Form Builder
variables are not formally declared in a DECLARE section, and can
exist outside the scope of a PL/SQL block.

Form Builder Variables
The following variables are available for the storage and manipulation of values:

Initializing Global Variables with Default Value
You can use the DEFAULT_VALUE built-in to assign a value to a global variable.
Form Builder creates the global variable if it does not exist. If the value of the
indicated variable is not null, DEFAULT_VALUE does nothing. The following
example creates a global variable named country and initializes it with the value
TURKEY:

Default_Value(’TURKEY’,’GLOBAL.country’);

Form Builder Variable Type Description
Item (text, list, check box, and so on) Scope: Current form and attached menu

Use: Presentation and interaction with user
Global variable Scope: All modules in current session

Use: Session-wide storage of character data
System variable Scope: Current form and attached menu

Use: Form status and control
Parameter Scope: Current module

Use: Passing values in and out of module

13-16 Oracle Developer: Build Forms I
..

..Lesson 13: Producing Triggers

Copyright  Oracle Corporation, 1999. All rights reserved.

Syntax of Variables

• :block_name.item_name

• :GLOBAL.variable_name

• :SYSTEM.variable_name

• :PARAMETER.name

Oracle Developer: Build Forms I 13-17
..

..Writing the Trigger Code

Examples of Form Builder Variables
In each of the following examples, note that a colon (:) prefixes Form Builder
variables, and a period (.) separates the components of their name. The examples are
not complete triggers.

Example
References to items should be prefixed by the name of the owning Form Builder
block, which prevents ambiguity when items of the same name exist in different
blocks. This is also more efficient than the item name alone:

:BLOCK3.product_id := :BLOCK2.product_id;

Example
References to global variables must be prefixed by the word global. They may be
created as the result of an assignment:

:GLOBAL.customer_id := :BLOCK1.id;

Example
References to system variables must be prefixed by the word system:

IF :SYSTEM.MODE = ’NORMAL’ THEN
ok_to_leave_block := TRUE;

END IF;

Example
Parameters defined at design-time have the prefix parameter:

IF :PARAMETER.starting_point = 2 THEN
GO_BLOCK(’BLOCK2’); -- built-in procedure

END IF;

Removing Global Variables
You can use the ERASE built-in to remove a global variable. Globals always allocate
255 bytes of storage. To ensure that performance is not impacted more than necessary,
always erase any global variable when it is no longer needed.

13-18 Oracle Developer: Build Forms I
..

..Lesson 13: Producing Triggers

Copyright  Oracle Corporation, 1999. All rights reserved.

Form Builder Built-in
Subprograms

Built-ins belong to either:

• The Standard Extensions package where no prefix
is required

• Another Form Builder package where a prefix is
required

Oracle Developer: Build Forms I 13-19
..

..Adding Functionality Using Built-in Subprograms

Adding Functionality Using Built-in Subprograms

The Form Builder Built-in Subprograms
Form Builder provides a set of predefined subprograms as part of the product. These
subprograms are defined within built-in packages as either a procedure or function.

The Form Builder built-in subprograms belong to one of the following:

• Standard Extensions packages: These built-ins are integrated into the
Standard PL/SQL command set in Form Builder. You can call them
directly, without any package prefix. You can use more than one hundred
standard built-ins.

• Other Form Builder packages: Subprograms in other built-in packages
provide functionality related to a particular supported feature. These
require the package name as a prefix when called.

All the built-in subprograms used in this lesson are part of the Standard Extensions
package.

Package Description
DDE Provides Dynamic Data Exchange support
DEBUG Provides built-ins for debugging PL/SQL program units
EXEC_SQL Provides built-ins for executing dynamic SQL within PL/SQL procedures
FTREE Provides built-ins for manipulating hierarchical tree items

OLE2 Provides a PL/SQL API for creating, manipulating, and accessing attributes
of OLE2 automation objects

ORA_FFI Provides built-ins for calling out to foreign (C) functions from PL/SQL

ORA_NLS Enables you to extract high-level information about your current language
environment

ORA_PROF Provides built-ins for tuning PL/SQL program units

TEXT_IO Provides built-ins to read and write information from and to files
PECS Provides built-ins for the Performance Event Collection Services; provided

for backward compatibility
TOOL_ENV Enables you to interact with Oracle environment variables

TOOL_ERR Enables you to access and manipulate the error stack created by other
built-in packages such as Debug

TOOL_RES Provides built-ins to manipulate resource files

VBX Provides built-ins for controlling and interacting with VBX controls; this
package works only in a 16-bit environment and is provided for backward
compatibility

WEB Provides built-ins for the Web environment

13-20 Oracle Developer: Build Forms I
..

..Lesson 13: Producing Triggers

Copyright  Oracle Corporation, 1999. All rights reserved.

Limits of Use

• Unrestricted built-ins are allowed in any trigger or
subprogram.

• Restricted built-ins are allowed only in certain
triggers and subprograms called from such
triggers.

• Consult the Help system.

Oracle Developer: Build Forms I 13-21
..

..Adding Functionality Using Built-in Subprograms

Where Can Built-in Subprograms Be Used?
You can call built-ins in any trigger or user-named subprogram in which you use

PL/SQL. However, some built-ins provide functionality that is not allowed in certain
trigger types. Built-ins are therefore divided into two groups:

• Unrestricted built-ins: Unrestricted built-ins do not affect logical or
physical navigation and can be called from any trigger, or from any
subprogram.

• Restricted built-ins: Restricted built-ins affect navigation in your form,
either external screen navigation, or internal navigation. You can call
these built-ins only from triggers while no internal navigation is
occurring. The online Help specifies which groups of built-ins can be
used in each trigger.

13-22 Oracle Developer: Build Forms I
..

..Lesson 13: Producing Triggers

1 Open PL/SQL code

2 Select built-in

3 Paste names or arguments

4 Modify pasted code

Copyright  Oracle Corporation, 1999. All rights reserved.

1

Using Built-in Definitions

2

3

4

Oracle Developer: Build Forms I 13-23
..

..Adding Functionality Using Built-in Subprograms

Using Built-in Definitions in the Form Builder
When you are writing a trigger or program unit, the Form Builder enables you to look
up built-in definitions, and optionally copy their names and argument prototypes into
your code.

1 Place the cursor at the point in your PL/SQL code (in the PL/SQL
Editor) where a built-in subprogram is to be called.

2 Expand the Built-in Packages node in the Navigator, and select the
procedure or function that you need to use (usually from Standard
Extensions).

3 If you want to copy the built-in prototype arguments or name, or both,
select Navigator—>Paste Name or Navigator—>Paste Arguments from
the menus (Paste Arguments includes the built-in name also).

4 The definition of the built-in is copied to the cursor position in the
PL/SQL Editor, where you can insert your own values for arguments, as
required.

Note: A subprogram can be either a procedure or a function. Built-in subprograms are
therefore called in two distinct ways:

• Built-in procedures: Called as a complete statement in a trigger or
program unit with mandatory arguments.

• Built-in functions: Called as part of a statement, in a trigger or program
unit, at a position where the function’s return value will be used. Again,
the function call must include any mandatory arguments.

Example
The SHOW_LOV built-in is a function that returns a Boolean value (indicating
whether the user has chosen a value from the LOV). It might be called as part of an
assignment to a boolean variable. This is not a complete trigger.

DECLARE
customer_chosen BOOLEAN;

BEGIN
customer_chosen := SHOW_LOV(’customer_list’);

. . .

13-24 Oracle Developer: Build Forms I
..

..Lesson 13: Producing Triggers

Copyright  Oracle Corporation, 1999. All rights reserved.

Useful Built-ins

• EDIT_TEXTITEM

• ENTER_QUERY, EXECUTE_QUERY

• EXIT_FORM

• GO_BLOCK, GO_ ITEM

• GET_ITEM_PROPERTY, SET_ITEM_PROPERTY

• MESSAGE

• SHOW_ALERT, SHOW_ EDITOR, SHOW_ LOV

• SHOW_VIEW, HIDE_VIEW

Oracle Developer: Build Forms I 13-25
..

..Adding Functionality Using Built-in Subprograms

Useful Built-ins for Adding Functionality to Items
Here are just a few built-ins that you can use in triggers to add functionality to items.
They are discussed in later lessons.

Built-in Subprogram Description
EDIT_TEXTITEM procedure Invokes the Form Runtime item editor for the current

text item
ENTER_QUERY procedure Clears the current block, and creates a sample record

(Operators can then specify query conditions before
executing the query with a menu or button command.
If there are changes to commit, the Form Builder
prompts the operator to commit them before
continuing ENTER_QUERY processing.)

EXECUTE_QUERY procedure Clears the current block, opens a query, and fetches a
number of selected records (If there are changes to
commit, Form Builder prompts the operator to
commit them before continuing EXECUTE_QUERY
processing.)

EXIT_FORM procedure Exits current form (or cancels query, if in
ENTER-QUERY mode)

GET_ITEM_PROPERTY function Returns specified property values for the specified
item

GO_BLOCK procedure Navigates to the specified block
GO_ITEM procedure Navigates to the specified item
HIDE_VIEW procedure Hides the indicated canvas
LIST_VALUES procedure Invokes the LOV attached to the current item
MESSAGE procedure Displays specified text on the message line
SET_ITEM_PROPERTY procedure Changes setting of specified property for an item

SHOW_ALERT function Displays the given alert, and returns a numeric value
when the operator selects one of three alert buttons

SHOW_EDITOR procedure Displays the specified editor at the given coordinates
and passes a string to the editor, or retrieves an
existing string from the editor

SHOW_LOV function Invokes a specified LOV and returns a Boolean value,
indicating whether user selected a value from the list

SHOW_VIEW procedure Displays the indicated canvas at the coordinates
specified by the X Position and Y Position of the
canvas property settings (If the view is already dis-
played, SHOW_VIEW raises it in front of any other
views in the same window.)

13-26 Oracle Developer: Build Forms I
..

..Lesson 13: Producing Triggers

Copyright  Oracle Corporation, 1999. All rights reserved.

When-Button-Pressed
Trigger

• Fires when the operator clicks a button.

• Accepts restricted and unrestricted
built-ins.

• Use to provide convenient navigation, to display
LOVs and many other frequently used functions.

Example
GO_BLOCK(‘Stock’);
EXECUTE_QUERY;

Oracle Developer: Build Forms I 13-27
..

..Using Triggers

Using Triggers

When-Button-Pressed Trigger
This trigger fires when the user selects a button. You can define the trigger on an
individual item or at higher levels if required.

When-Button-Pressed accepts both restricted and unrestricted built-ins. You can use
buttons to provide a wide range of functions for users. These functions include:

• Navigation

• Displaying LOVs

• Invoking calculations and other functions

Example
The Stock_Button in the CONTROL block is situated on the CV_INVENTORY
canvas of the ORDERS form. When pressed, the button activates the
When-Button-Pressed trigger. The trigger code results in navigation to the
S_INVENTORY block and execution of a query on the S_INVENTORY block.

GO_BLOCK(’S_INVENTORY’);
EXECUTE_QUERY;

13-28 Oracle Developer: Build Forms I
..

..Lesson 13: Producing Triggers

Copyright  Oracle Corporation, 1999. All rights reserved.

When-Window-Closed
Trigger

• Fires when the operator closes a window by using
a window manager-specific close command.

• Accepts restricted and unrestricted built-ins.

• Used to programmatically close a window when
the operator issues a window manager-specific
close command. You can close a window by using
built-ins.

Oracle Developer: Build Forms I 13-29
..

..Using Triggers

When-Window-Closed Trigger
This trigger fires when you close a window by using a window manager-specific close
command. You define this trigger at the form level.

The When-Window-Closed trigger accepts both restricted and unrestricted built-ins.

Use this trigger to close a window programmatically when the operator issues the
window manager Close command. Form Builder does not close the window when the
operator issues a window manager-specific close command; it only fires
When-Window-Closed trigger. It is the developer’s responsibility to write the required
functionality in this trigger. You can close a window with the HIDE_WINDOW,
SET_WINDOW_PROPERTY, and EXIT_FORM built-in subprograms. You cannot
hide the window that contains the current item.

Example
When the operator issues the window manager-specific Close command, the following
code in a When-Window-Closed trigger closes the W_INVENTORY window by
setting the VISIBLE property to FALSE.

GO_ITEM(’S_ORD.ID’):
SET_WINDOW_PROPERTY(’W_INVENTORY’, VISIBLE, PROPERTY_FALSE);

13-30 Oracle Developer: Build Forms I
..

..Lesson 13: Producing Triggers

Copyright  Oracle Corporation, 1999. All rights reserved.

Summary

To produce a trigger:

1. Select a scope in the Object Navigator.

2. Create a trigger and select a Name from the LOV,
or use the SmartTriggers menu option.

3. Define code in the PL/SQL Editor.

4. Compile.

Copyright  Oracle Corporation, 1999. All rights reserved.

Summary

• Find built-ins in the Navigator under Built-in
Packages:

– Paste built-in name and arguments to your
code by using the Paste Name and Arguments
option.

– Refer to online Help.

• The When-Button-Pressed trigger provides a wide
range of functionality to users.

• Use the When-Window-Closed trigger to provide
functionality when the user issues a window
manager-specific close command.

Oracle Developer: Build Forms I 13-31
..

..Using Triggers

Note
For solutions to this practice, see Practice 13 in Appendix A, “Practice Solutions.”

Copyright  Oracle Corporation, 1999. All rights reserved.

Practice 13 Overview

This practice covers the following topics:

• Using built-ins to display LOVs

• Using the When-Button-Pressed and
When-Window-Closed triggers to add functionality
to items

• Using built-ins to display and hide the Help stack
canvas

13-32 Oracle Developer: Build Forms I
..

..Lesson 13: Producing Triggers

Practice 13 Overview
This practice focuses on how to use When-Button-Pressed and When-Window-Closed
triggers.

• Using built-ins to display LOVs

• Using When-Button-Pressed and When-Window-Closed triggers to add
functionality to items

• Using built-ins to display and hide the Help stacked canvas

Oracle Developer: Build Forms I 13-33
..

..Practice 13

Practice 13
1 In the CUSTGXX form, write a trigger to display the Sales_Rep_Lov

when the Sales_Rep_Lov_Button is pressed. To create the
When-Button-Pressed trigger, use the Smart Triggers feature. Find the
relevant built-in in the Object Navigator under built-in packages, and
use the “Paste Name and Arguments” feature.

2 Create a When-Window-Closed trigger at the form level in order to exit
form.

3 Save, compile, and run the form.

4 In the ORDGXX form, write a trigger to display the Products_LOV
when the Products_LOV_Button is selected.

5 Write a trigger that exits the form when the Exit_Button is selected.

6 Save, compile, and run the form.

7 Create a When-Button-Pressed trigger on the
CONTROL.Show_Help_Button that uses the SHOW_VIEW built-in to
display the CV_HELP.

SHOW_VIEW(’CV_HELP’);

8 Create a When-Button-Pressed trigger on
CONTROL.Hide_Help_Button that hides the CV_HELP. Use the
HIDE_VIEW built-in to achieve this.

HIDE_VIEW(’CV_HELP’);

9 Save, compile, and run the ORDGXX form to test.

Note: The stacked canvas, CV_HELP, displays only if the current item will not be
obscured. Ensure, at least, that the first entered item in the form is one that will not
be obscured by CV_HELP.

You might decide to advertise Help only while the cursor is in certain items, or
move the stacked canvas to a position that does not overlay enterable items. The
CV_HELP canvas, of course, could also be shown in its own window, if
appropriate.

10 Create a When-Button-Pressed trigger on CONTROL.Stock_Button
that uses the GO_BLOCK built-in to display the S_INVENTORY
block.

13-34 Oracle Developer: Build Forms I
..

..Lesson 13: Producing Triggers

14

Debugging Triggers

14-2 Oracle Developer: Build Forms I
..

..Lesson 14: Debugging Triggers

Copyright  Oracle Corporation, 1999. All rights reserved.

Objectives

After completing this lesson, you should be able to
do the following:

• Describe the components of the Debugger

• Run a form module in debug mode

• Debug PL/SQL code

Oracle Developer: Build Forms I 14-3
..

..Introduction

Introduction

Overview
This lesson shows you how to debug triggers by using the PL/SQL Debugger to
execute code one line at a time. This lesson also shows you how to view and change
variables while using the Debugger.

14-4 Oracle Developer: Build Forms I
..

..Lesson 14: Debugging Triggers

Copyright  Oracle Corporation, 1999. All rights reserved.

Debugging Triggers

Monitor and debug triggers by:

• Compiling correct errors in the PL/SQL Editor

• Displaying debug messages at run time

• Invoking the PL/SQL Debugger

Copyright  Oracle Corporation, 1999. All rights reserved.

Debugging Tips

• Connect to the database for SQL compilation.

• The line that fails is not always responsible.

• Watch for missing semicolons and quotation
marks.

• Define triggers at the correct level.

• Place triggers where the event will happen.

Oracle Developer: Build Forms I 14-5
..

..Debugging Triggers

Debugging Triggers

How to Debug Triggers in the Form Builder
With the Form Builder you can monitor and debug triggers in a number of ways:

• Compiling: Syntax errors and object reference errors (including
references to database objects) are reported when you compile a trigger
or generate the form module. This enables you to correct these problems
in the PL/SQL Editor before run time.

• Running a form with run time parameter debug_messages=Yes:

In Debug mode, you can request messages to be displayed to indicate when
triggers fire. This helps you see whether certain triggers are firing, their origin and
level, and the time at which they fire.

• Invoking the PL/SQL Debugger: With the Debugger you can monitor
the execution of code within a trigger (and other program units). You can
step through the code on a line-by-line basis, and you can monitor called
subprograms and variables as you do so. You can also submit arbitrary
PL/SQL statements while the form is running, and modify variables.

General Tips to Solve Trigger Problems
• Make sure you are connected to the (correct) database when you compile

triggers that contain SQL. Error messages can be deceiving.

• The PL/SQL Editor reports the line that fails, but the error may be due to
a dependency on an earlier line of code.

• Missing semicolons (;) and mismatched quotes are a common cause of
compile errors. Check for this if a compile error does not give an
obvious indication to the problem.

• If a trigger seems to fire too often, or on the wrong block or item in the
form, check whether it is defined at the required level. For example, a
form-level When-Validate-Item trigger fires for every changed item in
the form. To check this, you can run the form with Debug Messages on.

• For triggers that populate other items, make sure the trigger belongs to
the object where the firing event will occur, not on the items to be
populated.

14-6 Oracle Developer: Build Forms I
..

..Lesson 14: Debugging Triggers

Copyright  Oracle Corporation, 1999. All rights reserved.

Running a Form in Debug Mode

Run Form
Debug

Contains source
code and
executable runfile

.FMX

(Compiles automatically)

(Runs automatically)

Run Form in
Debug Mode

Oracle Developer: Build Forms I 14-7
..

..Debugging Triggers

Running a Form Module in Debug Mode
In Debug mode, you can monitor triggers that fire and use the PL/SQL Debugger. To
interact with code in the Debugger, the run time module (.fmx) must be rebuilt to
include source versions of the form code.

To run a form in Debug mode, follow these steps:

1 Click the Run Form Debug button in the Navigator, or select

Program—>Run Form—>Debug from the menu.

The form module is built and runs automatically.

2 When the form module is started, the PL/SQL Debugger is initially
displayed so that you can enter Debug actions before the form begins
running. When you dismiss the Debugger, the form is entered for
running.

Displaying Messages When Triggers Fire
You can display messages that wait for acknowledgment before execution continues
each time a trigger fires. These are displayed on the message line, and include the
trigger’s type and scope.

To display messages, run the form from the command line, specifying the
Debug_Messages option.

For example in Microsoft Windows:
ifrun60 myform scott/tiger debug_messages = YES

Each message is displayed just before the execution of the trigger, enabling you to see
the current state of the form before the effects of the trigger.

14-8 Oracle Developer: Build Forms I
..

..Lesson 14: Debugging Triggers

Copyright  Oracle Corporation, 1999. All rights reserved.

PL/SQL Debugger

1

2

3

4

Copyright  Oracle Corporation, 1999. All rights reserved.

PL/SQL Debugger

6 7 8 9 105

Oracle Developer: Build Forms I 14-9
..

..Debugging Triggers

The PL/SQL Debugger
The PL/SQL Debugger enables you to perform the following tasks:

• Step through program units and examine the units as they progress.

• Examine or modify the state of variables during execution.

• Set breakpoints to suspend execution, so that you can analyze the status
of the application at a given point.

• Define debug actions that will execute on certain events (Debug
triggers).

• Add PL/SQL statements during execution.

The Debugger contains the following components (see slides on opposite page):

1 Navigator
controls

Help, Create, Delete, Expand, Collapse, Expand All,
Collapse All, Find (Control the Navigator pane as you
do in the main Object Navigator.)

2 Source pane A read-only copy of current program unit (You can
select lines of code and set breakpoints in this pane.)

3 Navigator pane Hierarchical list of programmatic objects (Functions the
same as it does in main Object Navigator.)

4 Interpreter pane Command line area where you enter PL/SQL and
Debugger commands

5 Step Into
(button)

Executes the STEP INTO command

6 Step Over
(button)

Executes the STEP OVER command

7 Step Out
(button)

Executes the STEP OUT command

8 Go (button) Executes the GO command

9 Reset (button) Executes the RESET command

10 Close (button) Closes the Debugger

14-10 Oracle Developer: Build Forms I
..

..Lesson 14: Debugging Triggers

1 Select trigger

2 Set breakpoint

Copyright  Oracle Corporation, 1999. All rights reserved.

Invoking the Debugger and Breakpoints

Debug
Mode

1

2Form
Startup

Oracle Developer: Build Forms I 14-11
..

..Debugging Triggers

Invoking the Debugger and Breakpoints
You can invoke the Debugger at any time while a form is running in Debug mode by
selecting Help—>Debug from the Runform menu.

Menus and the Debugger
When control is passed to the Debugger, the Main menu includes View, Debug, and
Navigator options, each providing additional submenus for controlling the Debugger.

Setting Breakpoints in a Trigger
Breakpoints invoke the Debugger during code execution, and you can analyze and
interact with triggers and other program units when specific points in the code are
reached. A breakpoint invokes the Debugger just before execution of the line where
the breakpoint is set. You can define a breakpoint in two ways.

Method 1
1 Select the desired trigger in the Navigator pane. The Debugger displays

its source in the Source pane.

2 Double-click the line in the Source pane where the breakpoint is to be
set. You can now dismiss the Debugger, and it will reappear when the
specified line is reached during trigger execution.

Method 2 Other debug actions can be attached alternatively as follows:

1 Select the desired trigger, as in the first step of Method 1, and then select
Debug—>Break from the menu. This invokes the PL/SQL Breakpoint
dialog box.

2 In the trigger area of the Breakpoint dialog box, enter:
RAISE DEBUG.BREAK. This raises an exception from the Debug
package, which passes control to the Debugger when this line is
subsequently reached during execution. With this method, you have set
up a Breakpoint trigger from the Breakpoint dialog box, which fires
each time the breakpoint is reached in the normal trigger.

Note: Breakpoints must be attached to an executable statement in the body of the
code. Comment lines or NULL commands are not valid for this purpose.

14-12 Oracle Developer: Build Forms I
..

..Lesson 14: Debugging Triggers

Copyright  Oracle Corporation, 1999. All rights reserved.

Breakpoint and Debug Triggers

Every
Statement

Debugger

Program Unit

Statement

Statement

Statement

Debug
trigger

Breakpoint
trigger

Fire

Fire

Fire

Breakpoint

Copyright  Oracle Corporation, 1999. All rights reserved.

Debug Triggers

Oracle Developer: Build Forms I 14-13
..

..Debugging Triggers

Breakpoint Triggers and Debug Triggers
You may sometimes want to define debug actions that occur automatically, either on a
breakpoint, or when certain program units and triggers are executed. Define debug
actions as follows:

• Breakpoint triggers: A trigger that fires on a breakpoint, and contains
PL/SQL and DEBUG functions and procedures.

- Select a line of code in the Source pane, where a breakpoint is to be
set.

- Select Debug—>Break from the menu, which invokes the
Breakpoint dialog box.

- Enter your debug code in the Trigger area, then click OK.

• Debug triggers: Like Breakpoint triggers, you can define Debug triggers
to fire when a breakpoint occurs. Debug triggers, however, can be
attached to a program unit, or fired when each line of code is executed in
that program unit.

Note: Debug triggers only cause a breakpoint if you raise the DEBUG.BREAK
exception within them. Otherwise, they perform their actions in the background.

1 Select a program unit or line of source code in the Debugger.

2 Select Debug—>Trigger from the menu. This opens the PL/SQL Trigger
dialog box.

3 Enter your debug code in the Trigger body area, and then click OK.

Disabling Debug Actions
To disable debug actions during run time, you clear the Enabled check box in the
PL/SQL trigger or Breakpoint dialog box. You can redisplay these dialogs by locating
the debug action below the Debug Actions node in the Navigator, then double-clicking
on the listed action you want to display. After selecting the listed action, you can use
the pop-up menu to disable or enable the selected action by clicking the right mouse
button.

14-14 Oracle Developer: Build Forms I
..

..Lesson 14: Debugging Triggers

Note
Your trigger code is often nested in the single PL/SQL block that Form Builder
provides.

1 Trigger

2 Subprograms

Copyright  Oracle Corporation, 1999. All rights reserved.

Debug Commands

Step over

Step
out

Reset

GO

1

2 Step
into

Oracle Developer: Build Forms I 14-15
..

..Debugging Triggers

Useful Commands in the Debugger
You can enter following commands in the Interpreter pane. Those marked with
asterisks (*) have an equivalent toolbar button:

The following subprograms from the DEBUG package can be entered on the
command line of the Debugger (in the Interpreter pane), or included in Debug and
Breakpoint triggers. When you use them, you can display and set values for variables
and parameters in the current trigger or subprogram scope:

Command Description
.STEP INTO* Advances execution into the next subprogram called by this

line
.STEP OVER* Executes the subprogram without stepping into it; stops at the

next line

.STEP OUT* Resume to end of current level (subprogram)

.GO* Resumes execution indefinitely

.RESET* Exits current subprogram now

.SHOW LOCALS Displays all local variables (PL/SQL variables declared
locally) and parameters

Subprogram Description
DEBUG.INTERPRET(string) A procedure that lets you nest an Interpreter command

(like those above) as a string, and then execute from
debug triggers

DEBUG.GETx(varname) A function that returns the value of variable varname.
(x represents datatype (n for NUMBER, d for DATE,
c for CHAR or VARCHAR2, i for PLS_INTEGER).)

DEBUG.SETx(varname,value) A procedure that sets a specified value for a variable.
(x represents datatype (n for NUMBER, d for DATE,
c for CHAR or VARCHAR2, i for PLS_INTEGER).)

14-16 Oracle Developer: Build Forms I
..

..Lesson 14: Debugging Triggers

Copyright  Oracle Corporation, 1999. All rights reserved.

Debug Example

…calls...

Debug Example

The results are: ??WHEN-BUTTON-
DEPRESSED

1

Procedure XYZ;

Function ABC;

2

3

4

5

Oracle Developer: Build Forms I 14-17
..

..Debugging Triggers

Example
This simple example demonstrates some of the basic features available in the
debugger. The example form consists of a single button with trigger code for the
When-Button-Pressed event. The code works as follows:

1 The trigger calls the XYZ procedure, passing it a value for the
xyz_param input parameter.

2 The XYZ procedure calls the ABC function passing it a value for the
abc_param input parameter.
PROCEDURE xyz(xyz_param IN NUMBER) IS
v_results NUMBER;
BEGIN

v_results := ABC(10);
v_results := v_results + xyz_param;
MESSAGE(‘The results are: ‘ || TO_CHAR(v_results));

END xyz;

3 The ABC function multiplies two variables and adds the result to the
abc_param input parameter.

4 The ABC function returns the result to the XYZ procedure.

5 The XYZ procedure adds the result to the xyz_param and displays it in
the console at the bottom of the form window.
FUNCTION abc (abc_param IN NUMBER) RETURN NUMBER IS
v_total NUMBER := 0;
v_num2 NUMBER := 3;

v_num6 NUMBER := 8;

/*-- wrong value should be 6 */

BEGIN
v_total := v_num3 * v_num6;
v_total := v_total + abc_param;
RETURN v_total;

END abc;

14-18 Oracle Developer: Build Forms I
..

..Lesson 14: Debugging Triggers

Copyright  Oracle Corporation, 1999. All rights reserved.

Debugger: Setting a Breakpoint

Oracle Developer: Build Forms I 14-19
..

..Debugging Triggers

Debugger: Setting a Breakpoint
When you click the Debug Example button in the form, “134” displays at the bottom
of the screen (console). However, the expected results were “128.” The syntax must be
correct because everything compiled correctly. So, there must be something wrong in
the logic of the application code within the form. The developer needs to debug the
code to find why it produced the wrong results.

1 Run the ORDERS form in Debug mode (use the Run Form Debug
button), and locate the When-Button-Pressed trigger in Block1 in the
Debugger. Set a breakpoint on the executable line (Source pane) that
calls the procedure:

00001 BEGIN
B(01) xyz(100); -- ’B(01)’ indicates the break
00003 END;

2 Dismiss the Debugger and the forms runs.

3 Click the Debug Example button in the form. The program stops at the
breakpoint.

14-20 Oracle Developer: Build Forms I
..

..Lesson 14: Debugging Triggers

Copyright  Oracle Corporation, 1999. All rights reserved.

Debugger: Stepping into Code

Oracle Developer: Build Forms I 14-21
..

..Debugging Triggers

Debugger: Stepping into Code
4 The XYZ procedure now displays in the Source pane, with “=>” to mark

current position at the beginning of the executable code.
00001 BEGIN

5 Click the Step Into button in the Debugger to advance into the XYZ
procedure.

00001 PROCEDURE xyz (xyz_param IN NUMBER)IS

v_results NUMBER;
00002 BEGIN
=>003 v_results := ABC(10);
00004 v_results := v_results + xyz_param;

00005 MESSAGE(‘The results are: ‘ || TO_CHAR(v_results));

00006 END xyz;

6 Examine the Stack values for the xyz_param and v_results parameters
(as well as system variables). Everything looks normal in the xyz
procedure.
-Stack

-[1]Procedure Body XYZ Line 3

|- XYZ_PARAM (NUMBER)= 100

|- V_RESULTS (NUMBER)=

14-22 Oracle Developer: Build Forms I
..

..Lesson 14: Debugging Triggers

Copyright  Oracle Corporation, 1999. All rights reserved.

Debugger: Checking Variables

Oracle Developer: Build Forms I 14-23
..

..Debugging Triggers

Debugger: Stepping into Code (continued)
7 Click the Step Into button to enter the ABC function. Step through each

of the opening assignment statement. Find the problem in the code
(v_num6 is incorrectly set to 8 instead of 6).

00001 FUNCTION abc (abc_param IN NUMBER) RETURN NUMBER IS

00002 v_total NUMBER := 0;

00003 v_num3 NUMBER := 3;

=>004 v_num6 NUMBER :=8;

00005 /*-- wrong value should be 6

00006 */

8 Check the stack values of the v_total, v_num3, and v_num6 variables.
--

-Stack

-[2]Function Body ABC Line 3

|- ABC_PARAM (NUMBER)= 10

|- V_TOTAL (NUMBER)=

|- V_NUM3 (NUMBER)=

|- V_NUM6 (NUMBER)=

--

Change the stack value of v_num6 to its correct value.
|- V_NUM6 (NUMBER)=6

9 Continue to step through the ABC function using the Step Into button.
Verify the stack values for the v_total variable. At the end of the ABC
function, use the Step Into button to return to the XYZ procedure.
00003 v_results :=ABC(10)

=>004 v_results := v_results + xyz_param;

00005 MESSAGE(’The results are:’||TO_CHAR(v_results));

14-24 Oracle Developer: Build Forms I
..

..Lesson 14: Debugging Triggers

Copyright  Oracle Corporation, 1999. All rights reserved.

Corrected Code

FUNCTION abc (abc_param IN NUMBER) RETURN NUMBER

IS

v_total NUMBER := 0;

v_num3 NUMBER := 3;

v_num6 NUMBER := 6;

/*-- changed value to 6

*/

BEGIN

v_total := v_num3 * v_num6;

v_total := v_total + abc_param;

RETURN v_total;

END abc;

Oracle Developer: Build Forms I 14-25
..

..Debugging Triggers

Debugger: Changing the Code and Rerunning
10 Go back into the ABC function in Form Builder. Change the value

assigned to v_num6 from 8 to 6. Rerun the form without the Debugger
on. The correct result is displayed.

FUNCTION abc (abc_param IN NUMBER) RETURN NUMBER IS

v_total NUMBER := 0;

v_num3 NUMBER := 3;

v_num6 NUMBER := 6;

/*-- corrected value is 6

*/

BEGIN

v_total := v_num3 * v_num6;

v_total := v_total + abc_param;

RETURN v_total;

END abc;

14-26 Oracle Developer: Build Forms I
..

..Lesson 14: Debugging Triggers

Copyright  Oracle Corporation, 1999. All rights reserved.

Summary

• To debug a form: Use the Run Form Debug button,
and set breakpoints.

• Debug commands can be entered in the Interpreter
pane or by using buttons.

• Set breakpoints to invoke the Debugger.

• Break and Debug triggers are available to program
Debug Actions on events in the form.

Oracle Developer: Build Forms I 14-27
..

..Summary

Summary
• To debug a form, follow these steps:

a Use the Run Form Debug button (compiles and runs form
automatically).

b Set breakpoints.

• Debug commands can be entered in the Interpreter pane or by using
buttons.

• Set breakpoints to invoke the Debugger.

• Break and Debug triggers are available to program Debug Actions on
events in the form.

14-28 Oracle Developer: Build Forms I
..

..Lesson 14: Debugging Triggers

Note
For solutions to this practice, see Practice 14 in Appendix A, “Practice Solutions.”

Copyright  Oracle Corporation, 1999. All rights reserved.

Practice 14 Overview

This practice covers using the Debugger to help
solve problems at run time.

Oracle Developer: Build Forms I 14-29
..

..Practice 14 Overview

Practice 14 Overview
In this practice, you will create a generic procedure for the LOV in the CUSTGXX
form, and you will run this module in Debug mode and step through the code to
monitor its progress.

Use the Debugger to help solve problems at run time.

14-30 Oracle Developer: Build Forms I
..

..Lesson 14: Debugging Triggers

Practice 14
1 Open your CUSTGXX.FMB file. In this form, create a procedure that is

called List_Of_Values. Import code from the pr14_1.txt file:
PROCEDURE list_of_values(p_lov in VARCHAR2,p_text in VARCHAR2)
IS

v_lov BOOLEAN;
BEGIN

v_lov:= SHOW_LOV(p_lov);
IF v_lov THEN

MESSAGE(’You have just selected a ’||p_text);
ELSE

MESSAGE(’You have just cancelled the List of Values’);
END IF;

END;

2 Modify the When-Button-Pressed trigger for
CONTROL.Sales_Lov_Button in order to call this procedure.

When-Button-Pressed on CONTROL.Sales_Lov_Button
LIST_OF_VALUES(’SALES_REP_LOV’, ’Sales Representative’);

3 Compile and run your form in Debug mode. Set a breakpoint in one of
your triggers, and investigate the call stack. Try stepping through the
code to monitor its progress.

15

Adding Functionality
to Items

15-2 Oracle Developer: Build Forms I
..

..Lesson 15: Adding Functionality to Items

Copyright  Oracle Corporation, 1999. All rights reserved.

Objectives

After completing this lesson, you should be able to
do the following:

• Supplement the functionality of input items by
using triggers and built-ins

• Supplement the functionality of
noninput items by using triggers and built-ins

Oracle Developer: Build Forms I 15-3
..

..Introduction

Introduction

Overview
In this lesson, you will learn how to use triggers to provide additional functionality to
GUI items in form applications.

15-4 Oracle Developer: Build Forms I
..

..Lesson 15: Adding Functionality to Items

Copyright  Oracle Corporation, 1999. All rights reserved.

Item Interaction Triggers

When-Button-Pressed

When-Checkbox-Changed

When-Radio-Changed

When-Image-Pressed

When-Image-Activated

When-List-Changed

When-List-Activated

Oracle Developer: Build Forms I 15-5
..

..Item Interaction Triggers

Item Interaction Triggers
There are several types of GUI items that the user can interact with by using the mouse
or by pressing a function key. Most of these items have default functionality. For
example, by selecting a radio button, the user can change the value of the radio group
item.

You will often want to add triggers to provide customized functionality when these
events occur. For example:

• Performing tests and appropriate actions as soon as the user clicks a
radio button, a list, or a check box

• Conveniently displaying an image when the user clicks an image item

• Defining the functionality of a push-button (which has none until you
define it)

The following triggers fire due to user interaction with an item, as previously
described. They can be defined at any scope.

Trigger Firing Event
When-Button-Pressed User single-clicks with mouse or uses

function key to select
When-Checkbox-Changed User changes check box state, by

single-click or function key
When-Radio-Changed User selects different button, or deselects

current button, in a radio group
When-Image-Pressed User single-clicks image item
When-Image-Activated User double-clicks image item
When-List-Changed User changes value of a list item
When-List-Activated User double-clicks element in a T-list

15-6 Oracle Developer: Build Forms I
..

..Lesson 15: Adding Functionality to Items

Copyright  Oracle Corporation, 1999. All rights reserved.

Coding Item Interaction Triggers

• Valid commands:

– SELECT statements

– Standard PL/SQL constructs

– All built-in subprograms

• Use When-Validate-” object” to trap the operator
during validation.

Oracle Developer: Build Forms I 15-7
..

..Item Interaction Triggers

Example of When-Radio-Changed
When-Radio-Changed trigger on :S_ORD.Payment_Type. When the user selects
credit as the payment type for an order, this trigger immediately confirms whether the
customer has a good or excellent credit rating. If not, then the payment type is set to
cash.

DECLARE
v_credit_rating S_CUSTOMER.credit_rating%TYPE;

BEGIN
IF :S_ORD.payment_type = ’CREDIT’ THEN

SELECT credit_rating INTO v_credit_rating
FROM S_CUSTOMER
WHERE id = :S_ORD.customer_id;
IF v_credit_rating NOT IN(’GOOD’,’EXCELLENT’) THEN

:S_ORD.payment_type := ’CASH’;
MESSAGE(’Warning-customer must pay cash’);

END IF;
END IF;

END;

Note: During an unhandled exception, the trigger terminates and sends the Unhandled
Exception message to the operator. The item interaction triggers do not fire on
navigation or validation events.

Command Types in Item Interaction Triggers
You can use standard SQL and PL/SQL statements in these triggers, like the example
above. However, you will often want to add functionality to items by calling built-in
subprograms, which provide a wide variety of mechanisms.

15-8 Oracle Developer: Build Forms I
..

..Lesson 15: Adding Functionality to Items

Copyright  Oracle Corporation, 1999. All rights reserved.

When-Checkbox-Changed

Interacting with Check Boxes

IF CHECKBOX_CHECKED(’S_ORD.order_filled’) THEN

 SET_ITEM_PROPERTY(’S_ORD.date_shipped’,

 UPDATE_ALLOWED, PROPERTY_FALSE);

ELSE

 SET_ITEM_PROPERTY(’S_ORD.date_shipped’,

 UPDATE_ALLOWED, PROPERTY_TRUE);

END IF;

Oracle Developer: Build Forms I 15-9
..

..Defining Functionality for Input Items

Defining Functionality for Input Items
You have already seen an example of adding functionality to radio groups; we now
look at adding functionality to other items that accept user input.

Check Boxes
When the user selects or clears a check box, the associated value for the state is set.
You may want to perform trigger actions based on this change. Note that the
CHECKBOX_CHECKED function enables you to test the state of a check box
without needing to know the associated values for the item.

Example
This When-Checkbox-Changed trigger on the :S_ORD.Order_Filled item prevents the
Date_Shipped item from being updated if the user marks the order as filled (checked
on). If the check box is set to off, then the Date_Shipped is enabled.

IF CHECKBOX_CHECKED(’S_ORD.order_filled’) THEN
SET_ITEM_PROPERTY(’S_ORD.date_shipped’,

UPDATE_ALLOWED,PROPERTY_FALSE);
ELSE

SET_ITEM_PROPERTY(’S_ORD.date_shipped’,
UPDATE_ALLOWED, PROPERTY_TRUE);

END IF;

15-10 Oracle Developer: Build Forms I
..

..Lesson 15: Adding Functionality to Items

Copyright  Oracle Corporation, 1999. All rights reserved.

Changing List Items at Run Time

ADD_LIST_ELEMENT

DELETE_LIST_ELEMENT

Excellent

Excellent

Good

Poor

Index

1

2

3

Oracle Developer: Build Forms I 15-11
..

..Defining Functionality for Input Items

List Items
You can use the When-List-Changed trigger to trap user selection of a list value. For

T-lists, you can trap double-clicks with When-List-Activated.

With Form Builder, you can also change the selectable elements in a list as follows:

• Periodically update the list from a two-column record group.

• Add or remove individual list elements through the
ADD_ LIST_ELEMENT and DELETE_LIST_ELEMENT built-ins,
respectively.

ADD_LIST_ELEMENT(’list_item_name’,index,’label’,’value’)
DELETE_LIST_ELEMENT(’list_item_name’,index)

Note: You can eliminate the Null list element of a list by setting the required property
to Yes.

Parameter Description

Index A number identifying the element position in the list (top=1)

Label The name of the element

Value The new value for this element

15-12 Oracle Developer: Build Forms I
..

..Lesson 15: Adding Functionality to Items

Copyright  Oracle Corporation, 1999. All rights reserved.

Displaying LOVs from Buttons

• Uses:

– Convenient alternative for accessing LOVs

– Can display independently of text items

• Needs:

– When-Button-Pressed trigger

– LIST_VALUES or SHOW_LOV built-in

Oracle Developer: Build Forms I 15-13
..

..Defining Functionality for Noninput Items

Defining Functionality for Noninput Items

Displaying LOVs from Buttons
If you have attached a LOV to a text item, then the user can invoke the LOV from the
text item by selecting Edit—>Display List or pressing the [List Values] key.

However, it is always useful if a button is available to display a LOV. The button has
two advantages:

• It is convenient alternative for accessing the LOV.

• It displays a LOV independently of a text item (using SHOW_LOV).

There are two built-ins that you can call to invoke a LOV from a trigger. These are
LIST_VALUES and SHOW_LOV.

LIST_VALUES Procedure
This built-in procedure invokes the LOV that is attached to the current text item in the
form. It has an optional argument, which may be set to RESTRICT, meaning that the
current value of the text item is used as the initial search string on the LOV. The
default for this argument is NO_RESTRICT.

SHOW_LOV Function
This built-in function, without arguments, invokes the LOV of the current item.
However, there are arguments that let you define which LOV is to be displayed, and
what the x and y coordinates are where its window should appear:

SHOW_LOV(’lov_name’, x, y)

SHOW_LOV(lov_id, x, y)

Notice that either the LOV name (in quotes) or the LOV ID (without quotes) can be
supplied in the first argument.

Note: The lov_id is a PL/SQL variable where the internal ID of the object is stored.
Internal IDs are a more efficient way of identifying an object.

15-14 Oracle Developer: Build Forms I
..

..Lesson 15: Adding Functionality to Items

Copyright  Oracle Corporation, 1999. All rights reserved.

LOVs and Buttons

Employee_IdLOV button

IF SHOW_LOV(’myLov’)

THEN...

IF SHOW_LOV(’myLov’)

THEN...

When-Button-Pressed

Name
Sundar
Jayne
Louise
Pascal
Bulent
Tushar
Ursula

ID
101
102
103
104
105
106
107

105

Employees (LOV)

105

Oracle Developer: Build Forms I 15-15
..

..Defining Functionality for Noninput Items

Using the SHOW_LOV Function
The SHOW_LOV function returns a Boolean value:

• TRUE indicates that the user selected a record from the LOV.

• FALSE indicates that the user dismissed the LOV without choosing a
record, or that the LOV returned 0 records from its Record Group.

Note
• You can use the FORM_SUCCESS function to differentiate between the

two causes of SHOW_LOV returning FALSE.

Create the LOV button with a suitable label, such as “Pick,” and arrange it on the
canvas where the user intuitively associates it with the items that the LOV supports
(even though the button has no direct connection with text items). This is usually
adjacent to the main text item that the LOV returns a value to.

You can use the SHOW_LOV function to display a LOV that is not even attached
to a text item, providing that you identify the LOV in the first argument of the
function. When called from a button, this invokes the LOV to be independent of
cursor location.

• Switch off the button’s Mouse Navigate property of the button. When
using LIST_VALUES, the cursor needs to reside in the text item that is
attached to the LOV. With SHOW_LOV, this also maintains the cursor to
in its original location after the LOV is closed, wherever that may be.

Example
This When-Button-Pressed trigger on the Customer_Lov_Button invokes an LOV in a
PL/SQL loop, until the function returns TRUE. Because SHOW_LOV returns TRUE
when the user selects a record, the LOV redisplays until they do so.

LOOP
EXIT WHEN SHOW_LOV(’customer_lov’);
MESSAGE(’You must select a value from list’);

END LOOP;

15-16 Oracle Developer: Build Forms I
..

..Lesson 15: Adding Functionality to Items

Copyright  Oracle Corporation, 1999. All rights reserved.

v

^

Populating Image Items

Database

Fetch on query

Image file in the
file system

WRITE_IMAGE_FILE

READ_IMAGE_FILE

Oracle Developer: Build Forms I 15-17
..

..Defining Functionality for Noninput Items

Image Items
Image items that have the Database Item property set to Yes automatically populate in
response to a query in the owning block (from a LONG RAW column in the base
table).

Nonbase table image items, however, need to be populated by other means. For
example, from an image file in the file system:
READ_IMAGE_FILE built-in procedure

You might decide to populate an image item from a button trigger, using When-
Button-Pressed, but there are two triggers that fire when the user interacts with an
image item directly:

• When-Image-Pressed (fires for a single click on image item)

• When-Image-Activated (fires for a double-click on image item)

READ_IMAGE_FILE Procedure
This built-in procedure lets you load an image file, in a variety of formats, into an
image item.

READ_IMAGE_FILE(’filename’,’filetype’,’item_name’);

Note
• The filetype parameter is optional in READ_IMAGE_FILE. If you omit

filetype, you must explicitly identify the item_name parameter.

• The reverse procedure, WRITE_IMAGE_FILE, is also available. You
can use GET_FILE_NAME built-in to display the standard open file
dialog box where the user can select an existing file or specify a new file.

Parameter Description

filename The image file name (Without a specified path, the default path is
assumed.)

filetype The file type of the image (You can use ANY as a value, but it is recom-
mended to set a specific file type for better performance. Refer to the online
Help system for file types.)

item_name The name of the image item (a variable holding the Item_id is also valid for
this argument) (This parameter is optional.)

15-18 Oracle Developer: Build Forms I
..

..Lesson 15: Adding Functionality to Items

Copyright  Oracle Corporation, 1999. All rights reserved.

Loading the Right Image

READ_IMAGE_FILE(

 ’F_’||TO_CHAR(:S_ITEM.product_id)||’.BMP’,

 ’BMP’,

 ’S_ITEM.product_image’);

Oracle Developer: Build Forms I 15-19
..

..Defining Functionality for Noninput Items

Example of Image Items
The following When-Image-Pressed trigger on the Product_Image item displays a
picture of the current product (in the ITEM block) when the user clicks the image item.
This example assumes that the related filenames have the format:
F_<product id>.BMP

READ_IMAGE_FILE(’F_’||TO_CHAR(:S_ITEM.product_id)||’.BMP’,
’BMP’,’S_ITEM.product_image’);

Notice that as the first argument to this built-in is datatype CHAR, the concatenated
NUMBER item, product_id, must first be converted by using the TO_CHAR function.

Note: If you load an image into a base table image item by using
READ_IMAGE_FILE, then its contents will be committed to the database LONG
RAW column when you save changes in the form. You can use this technique to
populate a table with images.

15-20 Oracle Developer: Build Forms I
..

..Lesson 15: Adding Functionality to Items

Copyright  Oracle Corporation, 1999. All rights reserved.

Interacting with Sound Items

GET_ITEM_PROPERTY and SET_ITEM_PROPERTY:

• SHOW_FAST_FORWARD_BUTTON

• SHOW_PLAY_BUTTON

• SHOW_RECORD_BUTTON

• SHOW_REWIND_BUTTON

• SHOW_SLIDER

• SHOW_TIME_INDICATOR

• SHOW_VOLUME_CONTROL

Oracle Developer: Build Forms I 15-21
..

..Defining Functionality for Noninput Items

Interacting with Sound Items
When you create a sound item, Form Builder automatically represents the item in the
layout with the sound item control.

You can hide or display or get information about each component of a sound item
control programmatically by using SET_ITEM_PROPERTY and
GET_ITEM_PROPERTY built-ins (however, you must always have either the Play or
Record button displayed for a sound item).

You can use the following properties with these two built-ins:

• SHOW_FAST_FORWARD_BUTTON

• SHOW_PLAY_BUTTON

• SHOW_RECORD_BUTTON

• SHOW_REWIND_BUTTON

• SHOW_SLIDER

• SHOW_TIME_INDICATOR

• SHOW_VOLUME_CONTROL

Use the PROPERTY_TRUE or PROPERTY_FALSE parameters with the
SET_ITEM_PROPERTY built-in. The GET_ITEM_PROPERTY built-in returns
TRUE or FALSE as data type VARCHAR2.

15-22 Oracle Developer: Build Forms I
..

..Lesson 15: Adding Functionality to Items

Copyright  Oracle Corporation, 1999. All rights reserved.

Populating Hierarchy Trees

SET_TREE_PROPERTY

Database

When-New-Form-Instance

CREATE_GROUP_FROM_QUERY

Record Group

Car
Ford
Volvo
VW
Toyota

-

Oracle Developer: Build Forms I 15-23
..

..Defining Functionality for Noninput Items

Populating Hierarchical Trees
The hierarchical tree displays data in the form of a standard navigator, similar to the
Object Navigator used in Oracle Developer.

You can populate a hierarchical tree with values contained in a Record Group or Query
Text. At run time, you can programmatically add, remove, modify, or evaluate
elements in a hierarchical tree. You can also use the property palette to populate the
hierarchical tree.

Note: All built-ins are located in the FTREE built-in package.

SET_TREE_PROPERTY Procedure
This built-in procedure can be used to change certain properties for the indicated
hierarchical tree item It can also be used to populate the indicated hierarchical tree
item from a record group.

Ftree.Set_Tree_Property(item_name, Ftree.property, value);

Parameter Description

item_name Specifies the name of the object created at design time. The data type of the
name is VARCHAR2.

property Specifies one of the following properties:

RECORD_GROUP: Replaces the data set of the hierarchical tree with a
record group and causes it to display

QUERY_TEXT: Replaces the data set of the hierarchical tree with an SQL
query and causes it to display

ALLOW_EMPTY_BRANCHES: Possible values are PROPERTY_TRUE
and PROPERTY_FALSE

value Specifies the value appropriate to the property you are setting:

PROPERTY_TRUE: The property is set to the TRUE state.

PROPERTY_FALSE: The property is set to the FALSE state.

15-24 Oracle Developer: Build Forms I
..

..Lesson 15: Adding Functionality to Items

Copyright  Oracle Corporation, 1999. All rights reserved.

Displaying Hierarchy Trees

WHEN-NEW-FORM-INSTANCE

rg_emps := create_group_from_query(‘rg_emps’

‘select 1, level, last_name, NULL,

to_char(id) ‘ ||

‘from s_emp ‘ ||

‘connect by prior id= manager_id ‘||

‘start with title = ‘‘President’’’);

v_ignore := populate_group(rg_emps);

ftree.set_tree_property(‘block4.tree5’,

ftree.record_group, rg_emps);

create_group_from_query(‘rg_emps’

‘select 1, level, last_name, NULL,

to_char(id) ‘ ||

‘from s_emp ‘ ||

‘connect by prior id= manager_id ‘||

‘start with title = ‘‘President’’’);

set_tree_property

Oracle Developer: Build Forms I 15-25
..

..Defining Functionality for Noninput Items

Populating Hierarchical Trees (continued)
You can add data to a tree view by:

• Populating a tree with values contained in a record group or query by
using the POPULATE_TREE built-in

• Adding data to a tree under a specific node by using the
ADD_TREE_DATA built-in

• Modifying elements in a tree at run time by using built-in subprograms

• Adding or deleting nodes and the data elements under the nodes

Example
This code could be used in a WHEN-NEW-FORM-INSTANCE trigger to initially
populate the hierarchical tree with data. The example locates the hierarchical tree first.
Then, a record group is created and the hierarchical tree is populated.

DECLARE

htree ITEM;

v_ignore NUMBER;

rg_emps RECORDGROUP;

BEGIN

htree := Find_Item('tree_block.htree3');

rg_emps := Create_Group_From_Query('rg_emps',
’select 1, level, ename, NULL, to_char(empno) ’ ||

' from emp ' ||
'connect by prior empno = mgr ' ||
’start with job = ’’PRESIDENT’’’);

v_ignore := Populate_Group(rg_emps);

Ftree.Set_Tree_Property(htree, Ftree.RECORD_GROUP, rg_emps);

END;

15-26 Oracle Developer: Build Forms I
..

..Lesson 15: Adding Functionality to Items

Copyright  Oracle Corporation, 1999. All rights reserved.

Summary

• Item interaction triggers accept SELECT
statements and other standard PL/SQL constructs.

• You use built-ins for check boxes, LOV control, list
item control, image file reading, hierarchical tree,
and sound item control.

Oracle Developer: Build Forms I 15-27
..

..Summary

Summary
In this lesson, you learned to use triggers to provide functionality to the GUI items in
form applications.

• The item interaction triggers accept SELECT statements and other
standard PL/SQL constructs.

• There are built-ins for LOV control, list item control, image file reading,
sound item control, hierarchical tree, and so on.

15-28 Oracle Developer: Build Forms I
..

..Lesson 15: Adding Functionality to Items

Note
For solutions to this practice, see Practice 15 in Appendix A, “Practice Solutions.”

Copyright  Oracle Corporation, 1999. All rights reserved.

Practice 15 Overview

This practice covers the following topics:

• Writing a trigger to check whether the customer’s
credit rating forces him to pay cash

• Creating a toolbar button to display and hide
product images

Oracle Developer: Build Forms I 15-29
..

..Practice 15 Overview

Practice 15 Overview
In this practice, you add some triggers that enable interaction with buttons. You also
create some additional functionality for a radio group.

• Writing a trigger to check whether the customer’s credit rating forces
him to pay cash

• Creating a toolbar button to display and hide product images

15-30 Oracle Developer: Build Forms I
..

..Lesson 15: Adding Functionality to Items

Practice 15
1 In the ORDGXX form write a trigger that fires when the Payment Type

changes, allowing only those customers with a good or excellent Credit
Rating to pay for orders on credit. You can import the pr15_1.txt
file.

2 In the CONTROL block, create a new button called Image_Button and
position it on the Toolbar. Set Label property to Image Off.

3 Import the file pr15_3.txt into a trigger that fires when the
Image_Button is clicked. The file contains code that determines the
current value of the visible property of the Product Image item. If the
current value is True, the visible property toggles to False for both the
Product Image item and the Image Description item. Finally the label
changes on the Image_Button to reflect its next toggle state. However, if
the visible property is currently False, the visible property toggles to
True for both the Product Image item and the Image Description item.

When-Button-Pressed on CONTROL.Image_Button

IF GET_ITEM_PROPERTY(’S_ITEM.product_image’,VISIBLE)=’TRUE’ THEN
SET_ITEM_PROPERTY(’S_ITEM.product_image’, VISIBLE,
PROPERTY_FALSE);
SET_ITEM_PROPERTY(’S_ITEM.image_description’, VISIBLE,
PROPERTY_FALSE);
SET_ITEM_PROPERTY(’CONTROL.image_button’,LABEL,’Image On’);

ELSE
SET_ITEM_PROPERTY(’S_ITEM.product_image’, VISIBLE,
PROPERTY_TRUE);
SET_ITEM_PROPERTY(’S_ITEM.image_description’, VISIBLE,
PROPERTY_TRUE);
SET_ITEM_PROPERTY(’CONTROL.image_button’,LABEL,

’Image Off’);
END IF;

4 Save, compile, and run the form.

16

Runform Messages
and Alerts

16-2 Oracle Developer: Build Forms I
..

..Lesson 16: Runform Messages and Alerts

Copyright  Oracle Corporation, 1999. All rights reserved.

Objectives

After completing this lesson, you should be able to
do the following:

• Describe the default messaging

• Handle errors using built-in subprograms

• Identify the different types of Form Builder
messages

• Control system messages

• Create and control alerts

Oracle Developer: Build Forms I 16-3
..

..Introduction

Introduction

Overview
This lesson shows you how to intercept system messages, and if desired, replace them
with ones that are more suitable for your application. You will also learn how to
handle errors by using built-in subprograms, and how to build customized alerts for
communicating with users.

16-4 Oracle Developer: Build Forms I
..

..Lesson 16: Runform Messages and Alerts

Copyright  Oracle Corporation, 1999. All rights reserved.

Communicating with the Operator

System
 Application

Alerts

Messages

Informative
Error

Working
Application

Oracle Developer: Build Forms I 16-5
..

..Run-time Messages and Alerts Overview

Run-time Messages and Alerts Overview
The Form Builder displays messages at run time to inform the operator of events that
occur in the session. As the designer, you may want to either suppress or modify some
of these messages, depending on the nature of the application.

The Form Builder can communicate with the user in the following ways:

• Informative message: A message tells the user the current state of
processing, or gives context-sensitive information. The default display is
on the message line. You can suppress its appearance with an
On-Message trigger.

• Error message: This informs the user of an error that prevents the current
action. The default display is on the message line. You can suppress
message line errors with an On-Error trigger.

• Working message: This tells the operator that the form is currently
processing (for example: Working...). This is shown on the message line.
This type of message can be suppressed by setting the system variable
SUPPRESS_WORKING to True.

• System alert: Alerts give information to the operator that require either
an acknowledgment or an answer to a question before processing can
continue. This is displayed as a modal window. When more than one
message is waiting to show on the message line, the current message
also displays as an alert.

You can also build messages and alerts into your application:

• Application message: These are messages that you build into your
application by using the MESSAGE built-in. The default display is on
the message line.

• Application alert: These are alerts that you design as part of your
application, and issue to the operator for a response by using the
SHOW_ALERT built-in.

16-6 Oracle Developer: Build Forms I
..

..Lesson 16: Runform Messages and Alerts

Copyright  Oracle Corporation, 1999. All rights reserved.

Detecting Run Time Errors

• FORM_SUCCESS

– TRUE: Action successful

– FALSE: Error/Fatal error occurred

• FORM_FAILURE

– TRUE: A nonfatal error occurred

– FALSE: No error/No fatal error

• FORM_FATAL

– TRUE: A fatal error occurred

– FALSE: No error/No nonfatal error

Oracle Developer: Build Forms I 16-7
..

..Built-ins and Handling Errors

Built-ins and Handling Errors
When a built-in subprogram fails, it does not directly cause an exception in the calling
trigger or program unit. This means that subsequent code continues after a built-in
fails, unless you take action to detect a failure.

Example
A button in the CONTROL block called Stock_Button is situated on the Toolbar
canvas of the ORDERS form. When clicked, this When-Button-Pressed trigger
navigates to the S_INVENTORY block, and performs a query there.

GO_BLOCK(’S_INVENTORY’);
EXECUTE_QUERY;

If the GO_BLOCK built-in procedure fails because the S_INVENTORY block does
not exist, or because it is nonenterable, then the EXECUTE_QUERY procedure still
executes, and attempts a query in the wrong block.

Built-in Functions for Detecting Success and Failure
The Form Builder supplies some functions that indicate whether the latest action in
the form was successful:

Note: These built-in functions return success or failure of the latest action in the form.
The failing action may occur in a trigger that fired as a result of a built-in from the first
trigger. For example, the EXECUTE_QUERY procedure, can cause a Pre-Query
trigger to fire, which may itself fail.

Built-in Function Description of Returned Value
FORM_SUCCESS TRUE: Action successful

FALSE: Error or fatal error occurred
FORM_FAILURE TRUE: A nonfatal error occurred

FALSE: Either no error, or a fatal error
FORM_FATAL TRUE: A fatal error occurred

FALSE: Either no error, or a nonfatal error

16-8 Oracle Developer: Build Forms I
..

..Lesson 16: Runform Messages and Alerts

Copyright  Oracle Corporation, 1999. All rights reserved.

Errors and Built-Ins

• Built-in failure does not cause an exception.

• Test built-in success with FORM_SUCCESS
function.

IF FORM_SUCCESS THEN . . .

• What went wrong?

– ERROR_CODE, ERROR_TEXT, ERROR_TYPE

– MESSAGE _CODE, MESSAGE _TEXT,
MESSAGE _TYPE

Oracle Developer: Build Forms I 16-9
..

..Errors and Built-Ins

Errors and Built-Ins
It is usually most practical to use FORM_SUCCESS, because this returns FALSE if
either a fatal or a nonfatal error occurs. You can then code the trigger to take
appropriate action.

Example of FORM_SUCCESS
Here is the same trigger again. This time, the FORM_SUCCESS function is used in a
condition to decide if the query should be performed, depending on the success of the
GO_BLOCK action.

GO_BLOCK(’S_INVENTORY’);
IF FORM_SUCCESS THEN

EXECUTE_QUERY;
ELSE

MESSAGE(’An error occurred while navigating to Stock’);
END IF;

Triggers fail only if there is an unhandled exception or you raise the
FORM_TRIGGER_FAILURE exception to fail the trigger in a controlled manner.

Note: Look at the program unit CHECK_PACKAGE_FAILURE, which is written for
you as part of Relation management, when you build master-detail blocks. This
procedure may be called to fail a trigger if the last action was unsuccessful.

Built-in Functions to Determine the Error
When you detect an error, you may need to identify it to take a specific action. Three
more built-in functions provide this information:

We will look at these built-ins again when we discuss controlling messages.

Built-in Function Description of Returned Value
ERROR_CODE Error number (datatype NUMBER)
ERROR_TEXT Error description (datatype CHAR)
ERROR_TYPE FRM=Form Builder error, ORA=Oracle error

(datatype CHAR)

16-10 Oracle Developer: Build Forms I
..

..Lesson 16: Runform Messages and Alerts

Copyright  Oracle Corporation, 1999. All rights reserved.

Message Severity Levels

>25

20

15

10

5

0

25

All (default)

More critical

Define by:

:SYSTEM.MESSAGE_LEVEL

Oracle Developer: Build Forms I 16-11
..

..Controlling System Messages

Controlling System Messages

Suppressing Messages According to Their Severity
You can prevent system messages from being issued, based on their severity level.
Form Builder classifies every message with a severity level that indicates how critical
or trivial the information is; the higher the numbers, the more critical the message.
There are six levels that you can affect.

In a trigger, you can specify that only messages above a specified severity level are to
be issued by the form. You do this by assigning a value to the system variable
MESSAGE_LEVEL. Form Builder then only issues messages that are above the
severity level defined in this variable.

The default value for MESSAGE_LEVEL (at form startup) is 0. This means that
messages of all severities are displayed.

Severity Level Description
0 All messages
5 Reaffirms an obvious condition
10 User has made a procedural mistake
15 User attempting action for which the form is not designed
20 Cannot continue intended action due to a trigger problem or some other

outstanding condition
25 A condition that could result in the form performing incorrectly
>25 Messages that the designer cannot suppress

16-12 Oracle Developer: Build Forms I
..

..Lesson 16: Runform Messages and Alerts

Copyright  Oracle Corporation, 1999. All rights reserved.

Suppressing Messages

:SYSTEM.MESSAGE_LEVEL := ’5’;

UP;

IF NOT FORM_SUCCESS THEN

 MESSAGE(’Already at the first

 Order’);

END IF;

:SYSTEM.MESSAGE_LEVEL := ’0’;

:SYSTEM.SUPPRESS_WORKING := ’TRUE’;:SYSTEM.SUPPRESS_WORKING := ’TRUE’;

Oracle Developer: Build Forms I 16-13
..

..Controlling System Messages

Example of Suppressing Messages
The following When-Button-Pressed trigger moves up one record, using the built-in
procedure UP. If the cursor is already on the first record, the built-in fails and the
following message usually displays: FRM-40100: At first record.

This is a severity level 5 message. However the trigger suppresses this, and outputs its
own application message instead. The trigger resets the message level to normal (0)
afterwards.

:SYSTEM.MESSAGE_LEVEL := ’5’;
UP;
IF NOT FORM_SUCCESS THEN

MESSAGE(’Already at the first Order’);
END IF;
:SYSTEM.MESSAGE_LEVEL := ’0’;

Suppressing Working Messages
Working messages are displayed when the Form Builder is busy processing an action.
For example, while querying you receive: Working... message. You can suppress
this message by setting the system variable SUPPRESS_WORKING to True.

:SYSTEM.SUPPRESS_WORKING := ’TRUE’;

Note: You can set these system variables as soon as the form starts up, if required, by
performing the assignments in a When-New-Form-Instance trigger.

16-14 Oracle Developer: Build Forms I
..

..Lesson 16: Runform Messages and Alerts

Copyright  Oracle Corporation, 1999. All rights reserved.

FORM_TRIGGER_FAILURE

BEGINBEGIN

-
-

 RAISE form_trigger_failure;
-
-

-
-

 RAISE form_trigger_failure;
-
-

EXCEPTIONEXCEPTION

-
-

 WHEN <exception> THEN
 RAISE form_trigger_failure;
-
-

-
-

 WHEN <exception> THEN
 RAISE form_trigger_failure;
-
-

Fail trigger

END;

Oracle Developer: Build Forms I 16-15
..

..The FORM_TRIGGER_FAILURE Exception

The FORM_TRIGGER_FAILURE Exception
Triggers only fail when one of the following occurs:

• During an Unhandled Exception

• When you request Form Builder to fail the trigger by raising the built-in
exception FORM_TRIGGER_FAILURE

This exception is defined and handled by Form Builder, beyond the visible trigger text
that you write. You can raise this exception:

• In the executable part of a trigger, to skip remaining actions and fail the
trigger

• In an exception handler, to fail the trigger after your own exception
handling actions have been obeyed

In either case, Form Builder has its own exception handler for
FORM_TRIGGER_ FAILURE, which fails the trigger but does not cause an
unhandled exception. This means that you can fail the trigger in a controlled manner.

Example
This example adds an action to the trigger exception handler, raising an exception to
fail the trigger when the message is sent, and therefore trapping the user in the
Customer_ID item:

SELECT name, phone
INTO :S_ORD.customer_name, :S_ORD.customer_phone
FROM S_CUSTOMER WHERE id = :S_ORD.customer_id;
EXCEPTION
WHEN no_data_found THEN

MESSAGE(’Customer with this ID not found’);
RAISE form_trigger_failure;

16-16 Oracle Developer: Build Forms I
..

..Lesson 16: Runform Messages and Alerts

Copyright  Oracle Corporation, 1999. All rights reserved.

Error Triggers

• On-Error:

– Fires when a system error message is issued

– Is used to trap Form Builder and Oracle Server
errors, and to customize error messages

• On-Message:

– Fires when an informative system message is
issued

– Is used to suppress or customize specific
messages

Oracle Developer: Build Forms I 16-17
..

..Triggers for Intercepting System Messages

Triggers for Intercepting System Messages
By writing triggers that fire on message events you can intercept system messages
before they are displayed on the screen. These triggers are:

• On-Error: Fires on display of a system error message

• On-Message: Fires on display of an informative system message

These triggers replace the display of a message, so that no message is seen by the
operator unless you issue one from the trigger itself.

You can define these triggers at any level. For example, an On-Error trigger at item
level only intercepts error messages that occur while control is in that item. However,
if you define one or both of these triggers at form level, all messages that cause them
to fire will be intercepted regardless of which object in the current form causes the
error or message.

On-Error Trigger
Use this trigger to:

• Detect Form Builder and Oracle Server errors. This trigger can perform
corrective actions based on the error that occurred.

• Replace the default error message with a customized message for this
application.

Remember that you can use the built-in functions ERROR_CODE, ERROR_ TEXT,
and ERROR_TYPE to identify the details of the error, and possibly use this
information in your own message.

Example of an On-Error Trigger
This On-Error trigger sends a customized message for error 40202 (field must be
entered), but reconstructs the standard system message for all other errors.

IF ERROR_CODE = 40202 THEN
MESSAGE(’You must fill in this field for an Order’);

ELSE
MESSAGE(ERROR_TYPE || ’-’ || TO_CHAR(ERROR_CODE) || ’: ’ ||
ERROR_TEXT);

END IF;
RAISE FORM_TRIGGER_FAILURE;

16-18 Oracle Developer: Build Forms I
..

..Lesson 16: Runform Messages and Alerts

Copyright  Oracle Corporation, 1999. All rights reserved.

Handling Informative Messages

• On-Message trigger

• Built-in functions:

– MESSAGE_CODE

– MESSAGE_TEXT

– MESSAGE_TYPE

Oracle Developer: Build Forms I 16-19
..

..Triggers for Intercepting System Messages

On-Message Trigger
Use this trigger to suppress informative messages, replacing them with customized
application messages, as appropriate.

You can handle messages in On-Message in a similar way to On-Error. However,
because this trigger fires due to informative messages, you will use different built-ins
to determine the nature of the current message.

Note: These functions return information about the most recent message that was
issued. If your applications must be supported in more than one national language,
then use MESSAGE_CODE in preference to MESSAGE_TEXT when checking a
message.

Example of an On-Message Trigger
This On-Message trigger modifies the “Query caused no records to be retrieved”
message (40350).

IF MESSAGE_CODE = 40350 THEN
MESSAGE(’No Orders found-check your search values’);

ELSE
MESSAGE(MESSAGE_TYPE || ’-’ || TO_CHAR(MESSAGE_CODE) ||
’: ’|| MESSAGE_TEXT);

END IF;

Built-in Function Description of Returned Value
MESSAGE_CODE Number of informative message that would have

displayed (datatype NUMBER)
MESSAGE_TEXT Text of informative message that would have displayed

(datatype CHAR)
MESSAGE_TYPE FRM=Form Builder message

ORA= Oracle server message
NULL=No message issued yet in this session
(datatype CHAR)

16-20 Oracle Developer: Build Forms I
..

..Lesson 16: Runform Messages and Alerts

Alert Example
This is a generic example of an alert, showing all three icons and buttons that can be
defined.

1 Title

2 Message

3 Alert style (stop,
caution, note)

4 Button1 label

5 Button2 label

6 Button3 label

Copyright  Oracle Corporation, 1999. All rights reserved.

Alert Properties

654

21

3

Oracle Developer: Build Forms I 16-21
..

..Creating and Controlling Alerts

Creating and Controlling Alerts
Alerts are an alternative method for communicating with the operator. Because they
display in a modal window, alerts provide an effective way of drawing attention and
forcing the operator to answer the message before processing can continue.

Use alerts when you need to do the following:

• Display a message that the operator cannot ignore, and must
acknowledge.

• Ask the operator a question where up to three answers are appropriate
(typically Yes, No, or Cancel).

You handle the display and responses to an alert by using built-in subprograms. Alerts
are therefore managed in two stages:

• Create the alert at design-time, and define its properties in the Property
palette.

• Activate the alert at run time by using built-ins, and take action based on
the operator’s returned response.

How to Create an Alert
Like other objects you create at design-time, alerts are created from the Object
Navigator.

1 Select the Alerts node in the Navigator, and then select Create.

2 Define the properties of the alert in the Property Palette.

Here are the properties that are specific to an alert. This is an abridged list.

Property Description
Name Name for this object
Title Alert title
Alert Style Defines the symbol that accompanies message:

Stop, Caution, or Note
Button1, Button2, Button3 Labels for each of the three possible buttons (Null

indicates that the button is not required.)
Default Alert Button Button 1, Button 2, or Button 3
Message Message that will appear in the alert

(maximum 200 characters)

16-22 Oracle Developer: Build Forms I
..

..Lesson 16: Runform Messages and Alerts

Copyright  Oracle Corporation, 1999. All rights reserved.

Planning Alerts

Yes/No
questions

Yes/No/Cancel
questions

Caution
messages

Informative
messages

Oracle Developer: Build Forms I 16-23
..

..Creating and Controlling Alerts

Planning Alerts: How Many Do You Need?
Potentially, you can create an alert for every separate alert message that you need to
display, but this is usually unnecessary.

You can define a message for an alert at run time, before it is displayed to the operator.
This means that a single alert can be used for displaying many messages, providing
that the available buttons are suitable for responding to each of these messages.

Create an alert for each combination of:

• Alert style required

• Set of available buttons (and labels) for operator response

For example, an application might require one Note-style alert with a single button
(OK) for acknowledgment, one Caution alert with a similar button, and two Stop alerts
that each provide a different combination of buttons for a reply. You can then assign a
message to the appropriate alert before its display, through the
SET_ ALERT_PROPERTY built-in procedure.

16-24 Oracle Developer: Build Forms I
..

..Lesson 16: Runform Messages and Alerts

Copyright  Oracle Corporation, 1999. All rights reserved.

Controlling Alerts

SET_ALERT_PROPERTY

SET_ALERT_BUTTON_PROPERTY

Oracle Developer: Build Forms I 16-25
..

..Creating and Controlling Alerts

Controlling Alerts at Run Time
There are built-in subprograms to change an alert message, to change alert button
labels, and to display the alert, which returns the operator’s response to the calling
trigger.

SET_ALERT_PROPERTY Procedure
Use this built-in to change the message that is currently assigned to an alert. At form
startup, the default message (as defined in the Property palette) is initially assigned:

SET_ALERT_PROPERTY(’alert_name’,property,’message’)

SET_ALERT_BUTTON_PROPERTY Procedure
Use this built-in to change the label on one of the alert buttons:

SET_ALERT_BUTTON_PROPERTY(’alert_name’, button, property,
’value’)

Parameter Description

Alert_name The name of the alert, as defined in the Designer (You can
alternatively specify an alert_id (unquoted) for this argument.)

Property The property being set (Use ALERT_MESSAGE_TEXT when
defining a new message for the alert.)

Message The character string that defines the message (You can give a character
expression instead of a simple quoted string, if required.)

Parameter Description

Alert_name The name of the alert, as defined in the Designer (You can
alternatively specify an alert_id (unquoted) for this argument.)

Button The number that specifies the alert button (Use ALERT_BUTTON1,
ALERT_BUTTON2, ALERT_BUTTON3 constants.)

Property The property being set; use LABEL

Value The character string that defines the label

16-26 Oracle Developer: Build Forms I
..

..Lesson 16: Runform Messages and Alerts

Copyright  Oracle Corporation, 1999. All rights reserved.

SHOW_ALERT Function

•IF SHOW_ALERT(’del_Check’)=ALERT_BUTTON1 THEN

. . .

•IF SHOW_ALERT(’del_Check’)=ALERT_BUTTON1 THEN

. . .

Alert_Button1

Alert_Button2
Alert_Button3

Oracle Developer: Build Forms I 16-27
..

..Creating and Controlling Alerts

SHOW_ALERT Function
SHOW_ALERT is how you display an alert at run time, and return the operator’s
response to the calling trigger:

selected_button := SHOW_ALERT(’alert_name’);
. . .

Alert_Name is the name of the alert, as defined in the builder. You can alternatively
specify an Alert_Id (unquoted) for this argument.

SHOW_ALERT returns a NUMBER constant, that indicates which of the three
possible buttons the user pressed in response to the alert. These numbers correspond to
the values of three PL/SQL constants, which are predefined by the Form Builder:

After displaying an alert that has more than one button, you can determine which
button the operator pressed by comparing the returned value against the corresponding
constants.

Example
A trigger that fires when the user attempts to delete a record might invoke the alert,
shown opposite, to obtain confirmation. If the operator selects Yes, then the
DELETE_RECORD built-in is called to delete the current record from the block.

IF SHOW_ALERT(’del_check’) = ALERT_BUTTON1 THEN
DELETE_RECORD;

END IF;

If the number equals... The Operator selected is...
ALERT_BUTTON1 Button 1
ALERT_BUTTON2 Button 2
ALERT_BUTTON3 Button 3

16-28 Oracle Developer: Build Forms I
..

..Lesson 16: Runform Messages and Alerts

Copyright  Oracle Corporation, 1999. All rights reserved.

Directing Errors to an Alert

PROCEDURE Alert_On_Failure IS

 n NUMBER;

BEGIN

 SET_ALERT_PROPERTY(’error_alert’,

ALERT_MESSAGE_TEXT,ERROR_TYPE||

’-’||TO_CHAR(ERROR_CODE)||

 ’: ’||ERROR_TEXT);

 n := SHOW_ALERT(’error_alert’);

END;

Oracle Developer: Build Forms I 16-29
..

..Creating and Controlling Alerts

Directing Errors to an Alert
You may want to display errors automatically in an alert, through an
On-Error trigger. The built-in functions that return error information, such as
ERROR_TEXT, can be used in the SET_ALERT_PROPERTY procedure, to construct
the alert message for display.

Example
The following user-named procedure can be called when the last form action was
unsuccessful. The procedure fails the calling trigger and displays Error_Alert
containing the error information.

PROCEDURE alert_on_failure IS
n NUMBER;

BEGIN
SET_ALERT_PROPERTY(

’error_alert’,
ALERT_MESSAGE_TEXT,
ERROR_TYPE||’-’||TO_CHAR(ERROR_CODE)||’: ’ ||
ERROR_TEXT);

n := SHOW_ALERT(’error_alert’);
END;

16-30 Oracle Developer: Build Forms I
..

..Lesson 16: Runform Messages and Alerts

Copyright  Oracle Corporation, 1999. All rights reserved.

Summary

• Application and system messages appear on
message line.

• Test for built-in failure by using FORM_SUCCESS
or other built-in functions.

• Set system variables to suppress system
messages: MESSAGE_LEVEL and
SUPPRESS_WORKING.

Copyright  Oracle Corporation, 1999. All rights reserved.

Summary

• On-Error trigger intercepts system error
messages.

• On-Message trigger intercepts system error
messages.

• Alert types: Stop, Caution, and Note

• Up to three buttons are available for operator
response.

• Display alerts with SHOW_ALERT.

• Change alert message with
SET_ALERT_PROPERTY.

Oracle Developer: Build Forms I 16-31
..

..Summary

Summary
In this lesson, you saw how to intercept system messages, and how to replace them
with ones that are more suitable for your application. You also learned how to build
customized alerts for communicating with operators.

• The application and system messages appear on the Message line.

• Test for failure of built-ins by using the FORM_SUCCESS built-in
function or other built-in functions.

• Set system variables to suppress system messages:

- Assign a value to MESSAGE_LEVEL to specify that only messages
above a specific severity level are to be used by the form.

- Assign a value of True to SUPPRESS_WORKING to suppress all
working messages.

• On-Error trigger intercepts system error messages.

• On-Message trigger intercepts informative system messages.

• Alert types: Stop, Caution, and Note.

• Up to three buttons are available for operator response (NULL indicates
that the button is not required.).

• Display alerts at run time with SHOW_ALERT.

• Change alert messages with SET_ALERT_PROPERTY.

16-32 Oracle Developer: Build Forms I
..

..Lesson 16: Runform Messages and Alerts

Note
For solutions to this practice, see Practice 16 in Appendix A, “Practice Solutions.”

Copyright  Oracle Corporation, 1999. All rights reserved.

Practice 16 Overview

This practice covers the following topics:

• Using an alert to inform the operator that the
customer must pay cash

• Using a generic alert to ask the operator to confirm
that the form should terminate

Oracle Developer: Build Forms I 16-33
..

..Practice 16 Overview

Practice 16 Overview
In this practice, you create some alerts in the ORDGXX form. These include a general
alert for questions and a specific alert that is customized for payment type.

• Using an alert to inform the operator that the customer must pay cash

• Using a generic alert to ask the operator to confirm that the form should
terminate

16-34 Oracle Developer: Build Forms I
..

..Lesson 16: Runform Messages and Alerts

Practice 16
1 Create an alert in ORDGXX called Payment_Type_Alert with a single

OK button. The message should read “This customer must pay cash!”

Suggested Title: Payment Type. Style: Caution.

2 Alter the When-Radio-Changed trigger on Payment_Type to show the
Payment_Type_Alert instead of the message when a customer must pay
cash.

3 Create a generic alert called Question_Alert that allows Yes and No
replies.

Leave the Message property blank for this alert. Select the Stop style, and define
two buttons in the alert: Yes and No.

4 Alter the When-Button-Pressed trigger on CONTROL.Exit_Button that
uses Question_Alert to ask the operator to confirm that the form should
terminate.

Call the SET_ALERT_PROPERTY built-in to define the message:

“Do you really want to leave the form?”

Test the returned value of SHOW_ALERT, and call the EXIT_FORM built-in if
the operator replied Yes.

5 Save, compile, and run the form to test.

17

Query Triggers

17-2 Oracle Developer: Build Forms I
..

..Lesson 17: Query Triggers

Copyright  Oracle Corporation, 1999. All rights reserved.

Objectives

After completing this lesson, you should be able to
do the following:

• Explain the processes involved in querying a data
block

• Describe query triggers and their scope

• Write triggers to supplement query results and
screen query conditions

• Control trigger action based on the form query
status

Oracle Developer: Build Forms I 17-3
..

..Introduction

Introduction

Overview
In this lesson, you learn how to control events associated with queries on base table
data blocks. You can customize the query process as necessary, and supplement the
results returned by a query.

17-4 Oracle Developer: Build Forms I
..

..Lesson 17: Query Triggers

Copyright  Oracle Corporation, 1999. All rights reserved.

Construct SELECT...Construct SELECT...

Perform queryPerform query

Fetch a row into a new record

Mark record as validMark record as valid

Fire Post-Query triggerFire Post-Query trigger

Validate any record changesValidate any record changes

Abort query
on failure

Query Processing

Flush
record

on failure

Fire Pre-Query triggerFire Pre-Query trigger

Oracle Developer: Build Forms I 17-5
..

..Query Triggers

Query Triggers
Generally, triggers are associated with a query in one of two ways:

• A trigger fires due to the query process itself

For example: Pre-Query and Post-Query

• An event can fire a trigger in Enter Query mode, if the Fire in Enter
Query Mode property of the associated trigger is enabled

The query triggers, Pre-Query and Post-Query, fire due to the query process itself, and
are usually defined on the block where the query takes place.

With these triggers you can add to the normal Form Builder processing of records, or
possibly abandon a query before it is even executed, if the required conditions are not
suitable.

Form Builder Query Processing
When a query is initiated on a data block, either by the operator or by a built-in
subprogram, the following major events take place:

1 In Enter Query mode, Form Builder fires the Pre-Query trigger if
defined.

2 If the Pre-Query succeeds, Form Builder constructs the query SELECT
statement, based on any existing criteria in the block (either entered by
the operator or by the Pre-Query).

3 The query is performed.

4 Form Builder fetches the column values of a row into the base table
items of a new record in the block.

5 The record is marked Valid.

6 Form Builder fires the Post-Query trigger. If it fails, this record is
flushed from the block.

7 Form Builder performs item and record validation if the record has
changed (due to a trigger).

8 Step 4 is repeated for any remaining records of this query.

17-6 Oracle Developer: Build Forms I
..

..Lesson 17: Query Triggers

Copyright  Oracle Corporation, 1999. All rights reserved.

SELECT Statements Issued

SELECT base_column, ..., ROWID

INTO :base_item, ..., :ROWID

FROM base_table

WHERE default_where_clause

 AND (example_record_conditions)

 AND (query_where_conditions)

ORDER BY default_order_by_clause |

 query_where_order_by

Slightly different for COUNT

Oracle Developer: Build Forms I 17-7
..

..SELECT Statements Issued During Query Processing

SELECT Statements Issued During Query Processing
If you have not altered default query processing, Form Builder issues a SELECT
statement when you want to retrieve or count records.

SELECT base_column, base_column, ... , ROWID
INTO :base_item,:base_item, ... , :ROWID
FROM base_table
WHERE default_where_clause
AND (example_record_conditions)
AND (query_where_conditions)
ORDER BY default_order_by_clause | query_where_order_by

SELECT COUNT(*)
FROM base_table
WHERE default_where_clause
AND (example_record_conditions)
AND (query_where_conditions)
ORDER BY default_order_by_clause | query_where_order_by

Note: The vertical bar (|) in the ORDER BY clause indicates that either of the two
possibilities can be present. Form Builder retrieves the ROWID only when the Key
Mode block property is set to Unique (the default). The entire WHERE clause is
optional. The ORDER BY clause is also optional.

If you want to count records that satisfy criteria specified in the Query/Where dialog
box, enter one or more variables and press [Count Query] in the Example Record.

17-8 Oracle Developer: Build Forms I
..

..Lesson 17: Query Triggers

Copyright  Oracle Corporation, 1999. All rights reserved.

WHERE Clause

• Three sources for the WHERE clause:

– WHERE clause block property

– Example Record

– Query/Where dialog box

• WHERE clauses are combined by the AND
operator

Copyright  Oracle Corporation, 1999. All rights reserved.

ORDER BY Clause

• Two sources for the ORDER BY clause:

– ORDER BY clause block property

– Query/Where dialog box

• Second source for ORDER BY clause overrides the
first one

Oracle Developer: Build Forms I 17-9
..

..WHERE and ORDER BY Clauses

WHERE and ORDER BY Clauses
The WHERE and ORDER BY clauses of a default base table SELECT statement are
derived from several sources. It is important to know how different sources interact.

Three Sources for the WHERE Clause
• WHERE clause block property

• Example Record

• Query/Where dialog box

If more than one source is present, the different conditions will all be used and linked
with an AND operator.

Two Sources for the ORDER BY Clause
• ORDER BY clause block property

• Query/Where dialog box

An ORDER BY clause specified in the Query/Where dialog box overrides the value of
the ORDER BY clause block property.

Note: You can change the WHERE clause and ORDER BY clause block properties at
run time by using the SET_BLOCK_PROPERTY built-in.

17-10 Oracle Developer: Build Forms I
..

..Lesson 17: Query Triggers

Copyright  Oracle Corporation, 1999. All rights reserved.

Pre-Query Trigger

IF TO_CHAR(:S_ORD.ID)||

TO_CHAR(:S_ORD.DATE_ORDERED)||

TO_CHAR(:S_ORD.DATE_SHIPPED)

IS NULL THEN

MESSAGE(’You must query by

Order ID or Date’);

RAISE form_trigger_failure;

END IF;

• Defined at block level

• Fires once, before query is performed

Oracle Developer: Build Forms I 17-11
..

..Writing Query Triggers

Writing Query Triggers

Pre-Query Trigger
You must define this trigger at block level or above. It fires for either a global or
restricted query, while the form is in Enter Query mode (that is, before Form Builder
executes the query).

If the operator has initiated the query, the trigger fires after the query criteria is
entered.

This means you can use Pre-Query as follows:

• To test the operator’s query conditions, and to fail the query process if
the conditions are not satisfactory for the application

• To add criteria for the query by assigning values to base table items

Example
This Pre-Query trigger on the S_ORD block only permits queries if there is a
restriction on either the Order ID, Date Ordered, or Date Shipped. This prevents
attempts at very large queries.

IF TO_CHAR(:S_ORD.id)||
TO_CHAR(:S_ORD.date_ordered)||
TO_CHAR(:S_ORD.date_shipped) IS NULL THEN

MESSAGE(’You must query by Order ID or Date’);
RAISE form_trigger_failure;

END IF;

Note: Pre-Query is useful for assigning values passed from other Oracle Developer
modules, so that the query is related to data elsewhere in the session. We will look at
doing this later.

17-12 Oracle Developer: Build Forms I
..

..Lesson 17: Query Triggers

Copyright  Oracle Corporation, 1999. All rights reserved.

Post-Query Trigger

SELECT COUNT(ord_id)

INTO :S_ORD.lineitem_count

FROM S_ITEM

WHERE ord_id = :S_ORD.id;

• Fires for each fetched record (except during array
processing)

• Use to populate nondatabase items and calculate
statistics

Copyright  Oracle Corporation, 1999. All rights reserved.

Using SELECT Statements in Triggers

• Form Builder variables are preceded by a colon.

• The query must return one row for success.

• Code exception handlers.

• The INTO clause is mandatory, with a variable for
each selected column or expression.

• ORDER BY is not relevant.

Oracle Developer: Build Forms I 17-13
..

..Writing Query Triggers

Post-Query Trigger
This trigger is defined at block level or above. Post-Query fires for each record that is
fetched into the block as a result of a query. Note that the trigger only fires on the
initial fetch of a record, not when a record is subsequently scrolled back into view a
second or third time.

Use Post-Query as follows:

• To populate nondatabase items as records are returned from a query

• To calculate statistics

Example
This Post-Query trigger on the S_ORD block selects the total count of line items for
the current Order, and displays this number as a summary value in the nonbase table
item :Lineitem_count.

SELECT COUNT(ord_id)
INTO :S_ORD.lineitem_count
FROM S_ITEM
WHERE ord_id = :S_ORD.id;

Using SELECT Statements in Triggers
The previous trigger example, populates the Lineitem_Count item through the INTO
clause. Again, colons are required in front of Form Builder variables to distinguish
them from PL/SQL variables and database columns.

Here is a reminder of some other rules regarding SELECT statements in PL/SQL:

• A single row must be returned from the query, or else an exception is
raised that terminates the normal executable part of the block. You
usually want to match a form value with a unique column value in your
restriction.

• Code exception handlers in your PL/SQL block to deal with possible
exceptions raised by SELECT statements.

• The INTO clause is mandatory, and must define a receiving variable for
each selected column or expression. You can use PL/SQL variables,
form items or global variables in the INTO clause.

• ORDER BY and other clauses that control multiple-row queries are not
relevant (unless they are part of an Explicit Cursor definition).

17-14 Oracle Developer: Build Forms I
..

..Lesson 17: Query Triggers

Copyright  Oracle Corporation, 1999. All rights reserved.

Query Array Processing

• Reduces network traffic

• Enables Query Array processing:

– Enable Array Processing option

– Set Query Array Size property

• Query Array Size property

• Query All Records property

Oracle Developer: Build Forms I 17-15
..

..Query Array Processing

Query Array Processing
The default behavior of Form Builder is to process records one at a time. With array
processing, a structure (array) containing multiple records is sent to or returned from
the server for processing.

Form Builder supports both array fetch processing and array DML processing. For
both querying and DML operations, you can determine the array size to optimize
performance for your needs. This lesson focuses on array query processing.

Enabling Array Processing for Queries
1 Setting preferences:

- Select Tools—>Preferences.

- Click the Runtime tab.

- Select the Array Processing check box.

2 Setting properties:

- In the Object Navigator, select the Data Blocks node.

- Double-click the Data Blocks icon to display the Property Palette.

- Under the Records category, set the Query Array Size property to a
number that represents the number of records in the array for array
processing.

Query Array Size Property This property specifies the maximum number of
records that Form Builder should fetch from the database at one time.

A size of 1 provides the fastest perceived response time, because Form Builder fetches
and displays only one record at a time. By contrast, a size of 10 fetches up to ten
records before displaying any of them, however, the larger size reduces overall
processing time by making fewer calls to the database for records.

Query All Records Property Specifies whether all the records matching the query
criteria should be fetched into the data block when a query is executed.

• Yes: Fetches all records from query.

• No: Fetches the number of records specified by the Query Array Size
block property.

17-16 Oracle Developer: Build Forms I
..

..Lesson 17: Query Triggers

Copyright  Oracle Corporation, 1999. All rights reserved.

Coding for
ENTER-QUERY Mode

• Some triggers may fire in Enter-Query mode.

• Set to fire in Enter-Query Mode property.

• Test mode during execution with :SYSTEM.MODE

– NORMAL

– ENTER-QUERY

– QUERY

Oracle Developer: Build Forms I 17-17
..

..Coding Triggers for Enter Query Mode

Coding Triggers for Enter Query Mode
Some triggers that fire when the form is in Normal mode (during data entry and
saving) may also be fired in Enter Query mode. You need to consider the trigger type
and actions in these cases.

Fire in Enter Query Mode Property
This property determines whether Form Builder fires a trigger if the associated event
occurs in Enter Query mode. Not all triggers can do this; consult the Form Builder
online Help, which lists each trigger and whether this property can be set.

By default, the Fire in Enter Query Mode property is set to Yes for triggers that accept
this. Set it to No in the Property Palette if you only want the trigger to fire in Normal
mode.

Example
If you provide a button for the operator to invoke an LOV, and the LOV is required to
help with query criteria as well as data entry, then the When-Button-Pressed trigger
needs to fire in both modes. This trigger has Fire in Enter Query Mode set to Yes
(default for this trigger type):

IF SHOW_LOV(’Customers’) THEN
MESSAGE(’Selection successful’);

END IF;

17-18 Oracle Developer: Build Forms I
..

..Lesson 17: Query Triggers

Copyright  Oracle Corporation, 1999. All rights reserved.

Coding for
ENTER-QUERY Mode

• Example

• Some built-ins are illegal.

• Consult online Help.

• You cannot navigate to another record in the
current form.

IF :SYSTEM.MODE = ’NORMAL’

THEN ENTER_QUERY;

ELSE EXECUTE_QUERY;

END IF;

Oracle Developer: Build Forms I 17-19
..

..Coding Triggers for Enter Query Mode

Finding Out the Current Mode
When a trigger will fire in both Enter Query mode and Normal modes, you may need
to know the current mode at execution time for the following reasons:

• Your trigger needs to perform different actions depending on the mode.

• Some built-in subprograms cannot be used in Enter Query mode.

The read-only system variable, MODE, stores the current mode of the form. Its value
(always upper case) is one of the following:

Example
Consider the following When-Button-Pressed trigger for the Query button.

If the operator clicks the button in Normal mode, then the trigger places the form in
Enter Query mode (using the ENTER_QUERY built-in). Otherwise, if already in
Enter Query mode, the button executes the query (using the EXECUTE_QUERY
built-in).

IF :SYSTEM.MODE = ’NORMAL’ THEN
ENTER_QUERY;

ELSE
EXECUTE_QUERY;

END IF;

Using Built-ins in Enter Query Mode
Some built-in subprograms are illegal if a trigger is executed in Enter Query mode.
Again, consult the Form Builder online Help which specifies whether an individual
built-in can be used in this mode.

One general restriction is that in Enter Query mode you can not navigate to another
record in the current form. So any built-in that would potentially enable this is illegal.
These include GO_BLOCK, NEXT_BLOCK, PREVIOUS_BLOCK, GO_RECORD,
NEXT_RECORD, PREVIOUS_RECORD, UP, DOWN, OPEN_FORM, and others.

Value of SYSTEM.MODE Definition
NORMAL Form is in Normal processing mode.
ENTER-QUERY Form is in Enter Query mode.
QUERY Form is in Fetch-processing mode, meaning that Form Builder

is currently doing a fetch. (For example, this value always
occurs in a Post-Query trigger.)

17-20 Oracle Developer: Build Forms I
..

..Lesson 17: Query Triggers

Copyright  Oracle Corporation, 1999. All rights reserved.

Overriding Default Query Processing

Do-the-Right-Thing Built-in

COUNT_QUERY

FETCH_RECORDS

SELECT_RECORDS

Trigger

On-Close

On-Count

On-Fetch

Pre-Select

On-Select

Post-Select

Oracle Developer: Build Forms I 17-21
..

..Overriding Default Query Processing

Overriding Default Query Processing
You can use certain transactional triggers to replace default commit processing. Some
of the transactional triggers can also be used to replace default query processing. You
can use “Do-the-right-thing” built-ins to augment default query processing; do not use
“Do-the-right-thing” to replace default processing.

Additional Transactional Triggers for Query Processing

Trigger Do-the-Right-Thing Built-in
On-Close
On-Count COUNT_QUERY
On-Fetch FETCH_RECORDS
Pre-Select
On-Select SELECT_RECORDS
Post-Select

17-22 Oracle Developer: Build Forms I
..

..Lesson 17: Query Triggers

Copyright  Oracle Corporation, 1999. All rights reserved.

Overriding Default Query Processing

• On-Fetch continues to fire until:

– It fires without executing
CREATE_QUERIED_RECORD.

– The query is closed by the user or by
ABORT_QUERY.

– It raises FORM_TRIGGER_FAILURE.

• On-Select replaces open cursor, parse, and
execute phases.

Oracle Developer: Build Forms I 17-23
..

..Overriding Default Query Processing

Characteristics of Transactional Triggers for Query Processing

Uses for Transactional Triggers for Query Processing
Transactional triggers for query processing are primarily intended to access certain
data sources other than Oracle. However, you can also use these triggers to implement
special functionality by augmenting default query processing against an Oracle
database.

Trigger Characteristic
On-Close Fires when Form Builder closes a query (It augments, rather than

replaces, default processing.)
On-Count Fires when Form Builder would usually perform default Count Query

processing to determine the number of rows that match the query
conditions

On-Fetch Fires when Form Builder performs a fetch for a set of rows (You can
use the CREATE_QUERIED_RECORD built-in to create queried
records if you want to replace default fetch processing.) The trigger
continues to fire until:

• No queried records are created during a single execution
of the trigger

• The query is closed by the user or by the
ABORT_QUERY built-in is executed from another
trigger

• The trigger raises FORM_TRIGGER_FAILURE
Pre-Select Fires after Form Builder has constructed the block SELECT statement

based on the query conditions, but before it issues this statement
On-Select Fires when Form Builder would usually issue the block SELECT

statement (The trigger replaces the open cursor, parse, and execute
phases of a query.)

Post-Select Fires after Form Builder has constructed and issued the block SELECT
statement, but before it fetches the records

17-24 Oracle Developer: Build Forms I
..

..Lesson 17: Query Triggers

Copyright  Oracle Corporation, 1999. All rights reserved.

Obtaining Query Information at Run Time

• SYSTEM.MODE

• SYSTEM.LAST_QUERY

– Contains bind variables (ORD_ID = :1) before
SELECT_RECORDS

– Contains actual values (ORD_ID = 102) after
SELECT_RECORDS

Oracle Developer: Build Forms I 17-25
..

..Obtaining Query Information at Run Time

Obtaining Query Information at Run Time
If you want to exercise more control over your queries, use system variables and built-
ins to obtain information about queries.

Using SYSTEM.MODE
Use the SYSTEM.MODE system variable to obtain the form mode. The three values
are NORMAL, ENTER_QUERY, and QUERY. We discussed this system variable in
the section “Finding Out the Current Mode” in this lesson.

Using SYSTEM.LAST_QUERY
Use SYSTEM.LAST_QUERY to obtain the text of the base-table SELECT statement
that was last executed by Form Builder. If a user has entered query conditions in the
Example Record, the exact form of the SELECT statement depends on when this
system variable is used.

If the system variable is used before Form Builder has implicitly executed the
SELECT_RECORDS built-in, the SELECT statement contains bind variables (for
example, ORD_ID = :1).

If the system variable is used after Form Builder has implicitly executed
the SELECT_RECORDS built-in, the SELECT statement contains the actual search
values (for example, ORD_ID = 102). For example, the system variable contains bind
variables during the Pre-Select trigger and actual search values during the Post-Select
trigger.

17-26 Oracle Developer: Build Forms I
..

..Lesson 17: Query Triggers

Copyright  Oracle Corporation, 1999. All rights reserved.

Obtaining Query Information at Run Time

• GET_BLOCK_PROPERTY
SET_BLOCK_PROPERTY

– Get and set:
DEFAULT_WHERE
ORDER_BY
QUERY_ALLOWED
QUERY_HITS

– Get only:
QUERY_OPTIONS
RECORDS_TO_FETCH

Copyright  Oracle Corporation, 1999. All rights reserved.

Obtaining Query Information at Run Time

• GET_ITEM_PROPERTY
SET_ITEM_PROPERTY

– Get and set:
CASE_INSENSITIVE_QUERY
QUERYABLE
QUERY_ONLY

– Get only:
QUERY_LENGTH

Oracle Developer: Build Forms I 17-27
..

..Obtaining Query Information at Run Time

Using GET_BLOCK_PROPERTY and SET_BLOCK_PROPERTY
The following block properties may be useful for obtaining query information. Only
the properties marked with an asterisk can be set.

• DEFAULT_WHERE (*)

• ORDER_BY (*)

• QUERY_ALLOWED (*)

• QUERY_HITS (*)

• QUERY_OPTIONS

• RECORDS_TO_FETCH

Using GET_ITEM_PROPERTY and SET_ITEM_PROPERTY
The following item properties may be useful for getting query information. Only the
properties marked with an asterisk can be set.

• CASE_INSENSITIVE_QUERY (*)

• QUERYABLE (*)

• QUERY_ONLY (*)

• QUERY_LENGTH

17-28 Oracle Developer: Build Forms I
..

..Lesson 17: Query Triggers

Copyright  Oracle Corporation, 1999. All rights reserved.

Summary

• A Pre-Query trigger fires before a query executes.
Use it to check or modify query conditions.

• A Post-Query trigger fires as each record is
fetched (except array processing). Use it to
perform calculations and populate additional
items.

Copyright  Oracle Corporation, 1999. All rights reserved.

Summary

• Some triggers can fire in both Normal and Enter
Query modes:

– Test the current mode with SYSTEM.MODE.

– Some built-ins are illegal in Enter Query mode.

• Obtain query information at run time:

– SYSTEM.MODE

– SYSTEM.LAST_QUERY

Oracle Developer: Build Forms I 17-29
..

..Summary

Summary
In this lesson, you learned how to control the events associated with queries on base
table blocks.

• The Pre-Query trigger fires before the query executes. This trigger is
defined at the block level or above. Use the Pre-Query trigger to check
or modify query conditions.

• The Post-Query trigger fires as each record is fetched (except array
processing). This trigger is defined at the block level or above. Use the
Post-Query trigger to perform calculations and populate additional
items.

• Some triggers can fire in both Normal and Enter Query modes.

- Use SYSTEM.MODE to test the current mode.

- Some built-ins are illegal in Enter Query mode.

• Override default query processing by using “Do-the-right-thing”

built-ins.

• Obtain query information at runtime by using:

- SYSTEM.MODE, SYSTEM.LAST_QUERY

- Some properties of GET/SET_BLOCK_PROPERTY and
GET/SET_ITEM_PROPERTY

17-30 Oracle Developer: Build Forms I
..

..Lesson 17: Query Triggers

Note
For solutions to this practice, see Practice 17 in Appendix A, “Practice Solutions.”

Copyright  Oracle Corporation, 1999. All rights reserved.

Practice 17 Overview

This practice covers the following topics:

• Populating customer names and sales
representative names for each row of the S_ORD
block

• Populating descriptions for each row of the
S_ITEM block

• Disabling the effect of the Exit button in Enter
Query mode

• Adding two check boxes to enable case-sensitive
and exact match query

Oracle Developer: Build Forms I 17-31
..

..Practice 17 Overview

Practice 17 Overview
In this practice, you create two query triggers to populate nonbase table items. You
will also change the default query interface to enable case sensitive and exact match
query.

• Populating customer names and sales representative names for each row
of the S_ORD block

• Populating descriptions for each row of the S_ITEM block

• Disabling the effect of the Exit button in Enter Query mode

• Adding two check boxes to enable case sensitive and exact match query

17-32 Oracle Developer: Build Forms I
..

..Lesson 17: Query Triggers

Practice 17
1 In the ORDGXX form, write a trigger that populates the

Customer_Name and the Sales_Rep_Name for every row fetched by a
query on the S_ORD block.

2 Write a trigger that populates the Description for every row fetched by a
query on the S_ITEM block.

3 Ensure that the Exit_Button has no effect in Enter Query mode.

4 Adjust the default query interface. Open the CUSTOMERS form
module. Add a check box called CONTROL.Case_Sensitive to the form
so that the user can specify whether or not a query for a customer name
should be case sensitive. You can import the pr17_4.txt file into the
When-Checkbox-Changed trigger. Set the initial value property to “Y.”

In the CONTROL block, add a check box (called CONTROL.Case_Sensitive as
shown below) to it, and create the following trigger. Set the “Mouse Navigate”
property to No.

When-Checkbox-Changed Trigger on the CONTROL.Case_Sensitive Item
(Checkbox)

IF NVL(:CONTROL.case_sensitive, ’Y’) = ’Y’ THEN
SET_ITEM_PROPERTY(’S_CUSTOMER.name’, CASE_INSENSITIVE_QUERY,

 PROPERTY_FALSE);
ELSE

SET_ITEM_PROPERTY(’S_CUSTOMER.name’,CASE_INSENSITIVE_QUERY,
 PROPERTY_TRUE);

END IF;

5 Add a check box called CONTROL.Exact_Match to the form so that the
user can specify whether or not a query condition for a customer name
should exactly match the table value. (If a nonexact match is allowed,
the search value can be part of the table value.) You can import the
pr17_5.txt file into the Pre-Query Trigger. Set the initial value
property to “Y.” Add another check box (called
CONTROL.Exact_Match as shown below) to the CONTROL block and
create the following trigger. Set the Mouse Navigate property to No.

Pre-Query Trigger on the S_CUSTOMER Block
IF NVL(:CONTROL.exact_match, ’Y’) = ’N’ THEN

:S_CUSTOMER.name := ’%’ || :S_CUSTOMER.name || ’%’;
END IF;

18

Validation

18-2 Oracle Developer: Build Forms I
..

..Lesson 18: Validation

Copyright  Oracle Corporation, 1999. All rights reserved.

Objectives

After completing this lesson, you should be able to
do the following:

• Explain the effects of the validation unit upon a
form

• List Form Builder validation properties

• Control validation by using triggers

Oracle Developer: Build Forms I 18-3
..

..Introduction

Introduction

Overview
In this lesson, you will learn how to supplement item validation by using both object
properties and triggers. You will also learn to control when validation occurs.

18-4 Oracle Developer: Build Forms I
..

..Lesson 18: Validation

Copyright  Oracle Corporation, 1999. All rights reserved.

Validation

• Form Builder validates at the following levels:

Form level

Block level

Record level
Item level

Copyright  Oracle Corporation, 1999. All rights reserved.

Validation

• Validation occurs when:

– [Enter] key or ENTER Built-in is
obeyed

– Operator or trigger leaves the validation unit
(includes a Commit)

Oracle Developer: Build Forms I 18-5
..

..Validation Process

Validation Process
Form Builder performs a validation process at several levels to ensure that records and
individual values follow appropriate rules. If validation fails, then control is passed
back to the appropriate level, so that the operator can make corrections. Validation
occurs at:

• Item level: Form Builder records a status for each item to determine
whether it is currently valid. If an item has been changed and is not yet
marked as valid, then Form Builder first performs standard validation
checks to ensure that the value conforms to the item’s properties. These
checks are carried out before firing any When-Validate-Item triggers that
you have defined. Standard checks include the following:

- Format mask

- Required (if so, then is the item null?)

- Data type

- Range (Lowest-Highest Allowed Value)

- Validate from List (see later in this lesson)

• Record level: After leaving a record, Form Builder checks to see
whether the record is valid. If not, then the status of each item in the
record is checked, and a When-Validate-Record trigger is then fired, if
present. When the record passes these checks, it is set to valid.

• Block and form level: At block or form level, all records below that level
are validated. For example, if you commit (save) changes in the form,
then all records in the form are validated, unless you have suppressed
this action.

When Does Validation Occur?
Form Builder carries out validation for the validation unit under the following
conditions:

• The [Enter] key is (ENTER command is not necessary mapped to the
key that is physically labeled Enter) pressed or the ENTER built-in
procedure is run (whose purpose is to force validation immediately).

• The operator or a trigger navigates out of the validation unit. This
includes when changes are committed. The default validation unit is
item, but can also be set to record, block, or form by the designer. The
validation unit is discussed in the next section.

18-6 Oracle Developer: Build Forms I
..

..Lesson 18: Validation

Copyright  Oracle Corporation, 1999. All rights reserved.

Validation Unit Property

Oracle Developer: Build Forms I 18-7
..

..Using Object Properties to Control Validation

Using Object Properties to Control Validation
You can control when and how validation occurs in a form, even without triggers. Do
this by setting properties for the form and for individual items within it.

The Validation Unit
The validation unit defines the maximum amount of data an operator can enter in the
form before Form Builder initiates validation. Validation unit is a property of the form
module, and it can be set in the Property Palette to any of the following:

• Default

• Item

• Record

• Block

• Form

The default setting is item level. The default setting is usually chosen.

In practice, an item-level validation unit means that Form Builder validates changes
when an operator navigates out of a changed item. This way, standard validation
checks and firing the When-Validate-Item trigger of that item can be done
immediately. As a result, operators are aware of validation failure as soon as they
attempt to leave the item.

At higher validation units (record, block, or form level), the above checks are
postponed until navigation moves out of that unit. All outstanding items and records
are validated together, including the firing of When-Validate-Item and
When-Validate-Record triggers.

You might set a validation unit above item level under one of the following conditions:

• Validation involves database references, and you want to postpone
traffic until the operator has completed a record (record level).

• The application runs in a block-mode environment (block level).

18-8 Oracle Developer: Build Forms I
..

..Lesson 18: Validation

Copyright  Oracle Corporation, 1999. All rights reserved.

LOV for Validation

LOV

TERRY
Full list

MART
Partial list

WARD
Valid

Auto
complete

AL

ALAN

HDATE

20-FEB-81

22-FEB-81

06-MAR-96

06-FEB-95

08-SEP-81

ENAME

MARTIN

MARTINEZ

SEDAT

WARD

ALAN

Oracle Developer: Build Forms I 18-9
..

..Using Object Properties to Control Validation

Using LOVs for Validation
When you attach an LOV to a text item by setting the LOV property of the item, you
can optionally use the LOV contents to validate data entered in the item.

Do this by setting the Validate from List property to Yes for the item. At validation
time, Form Builder then automatically uses the item value as a non case-sensitive
search string on the LOV contents. The following events then occur, depending on the
circumstances:

• If the value in the text item matches one of the values in the first column
of the LOV, validation succeeds, the LOV is not displayed, and
processing continues normally.

• If the item’s value causes a single record to be found in the LOV, but is a
partial value of the LOV value, then the full LOV column value is
returned to the item (providing that the item is defined as the return item
in the LOV). The item then passes this validation phase.

• If the item value causes multiple records to be found in the LOV, Form
Builder displays the LOV and uses the text item value as the search
criteria to automatically reduce the list, so that the operator must choose.

• If no match is found, then the full LOV contents are displayed to the
operator.

Note: Make sure that LOVs you create for validation purposes have the validation
column defined first, with a display width greater than 0. You also need to define the
Return Item for the LOV column as the item being validated.

For performance reasons, do not use the LOV for Validation property for large LOVs.

18-10 Oracle Developer: Build Forms I
..

..Lesson 18: Validation

Copyright  Oracle Corporation, 1999. All rights reserved.

Validation Triggers

IF :S_ORD.date_shipped < :S_ORD.date_ordered THEN

 MESSAGE(’Ship Date is before Order Date!’);

 RAISE form_trigger_failure;

END IF;

IF :S_ORD.date_shipped < :S_ORD.date_ordered THEN

 MESSAGE(’Ship Date is before Order Date!’);

 RAISE form_trigger_failure;

END IF;

• Item level

When-Validate-Item

• Block level

When-Validate-Record

Oracle Developer: Build Forms I 18-11
..

..Controlling Validation by Using Triggers

Controlling Validation by Using Triggers
There are triggers that fire due to validation, which let you add your own customized
actions. There are also some built-in subprograms that you can call from triggers that
affect validation.

When-Validate-Item Trigger
You have already used this trigger to add item-level validation. The trigger fires after
standard item validation, and input focus is returned to the item if the trigger fails.

Example
This When-Validate-Item trigger on :S_ORD.date_ordered ensures that the Order Date
is not later than the current (database) date:

IF :S_ORD.date_ordered > SYSDATE THEN
MESSAGE(’Order Date is later than today!’);
RAISE form_trigger_failure;

END IF;

When-Validate-Record Trigger
This trigger fires after standard record-level validation, when the operator has left a
new or changed record. Because Form Builder has already checked that required items
for the record are valid, you can use this trigger to perform additional checks that may
involve more than one of the record’s items, in the order they were entered.

When-Validate-Record must be defined at block level or above.

Example
This When-Validate-Record trigger on block S_ORD ensures that orders cannot be
shipped before they are ordered.

IF :S_ORD.date_shipped < :S_ORD.date_ordered THEN
MESSAGE(’Ship Date is before Order Date!’);
RAISE form_trigger_failure;

END IF;

18-12 Oracle Developer: Build Forms I
..

..Lesson 18: Validation

Copyright  Oracle Corporation, 1999. All rights reserved.

Validating User Input

Trigger failure?

W-V-I

Customer ID

998

SELECT . . .

WHERE id = :S_ORD.customer_id

Oracle Developer: Build Forms I 18-13
..

..Validating User Input

Validating User Input
While populating other items, if the user enters an invalid value in the item, a
matching row will not be found, and the SELECT statement will cause an exception.
The success or failure of the query can, therefore, be used to validate user input.

The exceptions that can occur when a single row is not returned from a SELECT in a
trigger are:

• NO_DATA_FOUND
No rows are returned from the query.

• TOO_MANY_ROWS
More than one row is returned from the query.

Example
The following When-Validate-Item trigger is again placed on the Customer_ID item,
and returns both the Name and Phone Number that correspond to the Customer ID
entered by the user.

SELECT name, phone
INTO :S_ORD.customer_name, :S_ORD.customer_phone
FROM s_customer
WHERE id = :S_ORD.customer_id;

If the Customer_ID item contains a value that is not found in the table, the
NO_DATA_FOUND exception is raised, and the trigger will fail because there is no
exception handler to prevent the exception from propagating to the end of the trigger.

Note: A failing When-Validate-Item trigger prevents the cursor from leaving the item.

For an unhandled exception, as above, the user receives the message:
FRM-40735: <trigger type> trigger raised unhandled exception
<exception>

18-14 Oracle Developer: Build Forms I
..

..Lesson 18: Validation

Copyright  Oracle Corporation, 1999. All rights reserved.

Tracking Validation Status

• NEW

– When a record is created

– Also for Copy Value from Item or Initial Value

• CHANGED

– When changed by user or trigger

– When any item in new record is changed

Copyright  Oracle Corporation, 1999. All rights reserved.

Tracking Validation Status

• VALID

– When validation has been successful

– After records are fetched from database

– After a successful post or commit

– Duplicated record inherits status of source

Oracle Developer: Build Forms I 18-15
..

..Tracking Validation Status

Tracking Validation Status
When Form Builder leaves an object, it usually validates any changes that were made
to the contents of the object. To determine whether validation must be performed,
Form Builder tracks the validation status of items and records.

Item Validation Status

Record Validation Status

Status Definition

NEW When a record is created, Form Builder marks every item in that record as
new. This is true even if the item is populated by the Copy Value from Item
or Initial Value item properties, or by the When-Create-Record trigger.

CHANGED Form Builder marks an item as changed under the following conditions:

• When the item is changed by the user or a trigger

• When any item in a new record is changed, all of the items
in the record are marked as changed

VALID Form Builder marks an item as valid under the following conditions:

• All items in record that are fetched from the database are
marked as valid

• If validation of the item has been successful
• After successful post or commit

• Each item in a duplicated record inherits the status of its
source

Status Definition

NEW When a record is created, Form Builder marks that record as new. This is
true even if the item is populated by the Copy Value from Item or Initial
Value item properties, or by the When-Create-Record trigger.

CHANGED Whenever an item in a record is marked as changed, Form Builder marks
that record as changed.

VALID Form Builder marks a record as valid under the following conditions:

• After all items in the record have been successfully
validated

• All records that are fetched from the database are marked as
valid

• After successful post or commit
• A duplicated record inherits the status of its source

18-16 Oracle Developer: Build Forms I
..

..Lesson 18: Validation

Copyright  Oracle Corporation, 1999. All rights reserved.

Built-ins for Validation

• CLEAR_BLOCK, CLEAR_ FORM, EXIT_FORM

• ENTER

• SET_FORM_PROPERTY

– (..., VALIDATION)

– (..., VALIDATION_UNIT)

• ITEM_IS_VALID item property

• VALIDATE (VALIDATION_ UNIT)

Oracle Developer: Build Forms I 18-17
..

..Built-ins for Validation

Built-ins for Validation
You can use the following built-in subprograms in triggers to affect validation.

CLEAR_BLOCK, CLEAR_FORM, and EXIT_FORM
The first parameter to these built-ins, COMMIT_MODE, controls what will be done
with unapplied changes when a block is cleared, the form is cleared, or the form is
exited respectively. When the parameter is set to NO_VALIDATE, changes are neither
validated nor committed (by default, the operator is prompted for the action).

ITEM_IS_VALID Item Property
You can use GET_ITEM_PROPERTY and SET_ITEM_PROPERTY
built-ins with the ITEM_IS_VALID parameter to get or set the validation status of an
item. You cannot directly get and set the validation status of a record. However, you
can get or set the validation status of all the items in a record.

ENTER
The ENTER built-in performs the same action as the [Enter] key. That is, it forces
validation of data in the current validation unit.

SET_FORM_PROPERTY
You can use this to disable Form Builder validation. For example, suppose you are
testing a form, and you need to bypass normal validation. Set the Validation property
to Property_False for this purpose:

SET_FORM_PROPERTY(’form_name’,VALIDATION, PROPERTY_FALSE);

You can also use this built-in to change the validation unit programmatically:
SET_FORM_PROPERTY(’form_name’,VALIDATION_UNIT, scope);

VALIDATE
VALIDATE forces Form Builder to immediately execute validation processing for the
indicated scope.

Note: Scope is one of DEFAULT_SCOPE, BLOCK_SCOPE, RECORD_SCOPE, or
ITEM_SCOPE.

18-18 Oracle Developer: Build Forms I
..

..Lesson 18: Validation

Copyright  Oracle Corporation, 1999. All rights reserved.

Summary

• Validation occurs at item, record, block, and form
levels.

• Validation happens when:

– [Enter] Key or ENTER built-in is activated

– Control leaves the validation unit due to
navigation or commit

Copyright  Oracle Corporation, 1999. All rights reserved.

Summary

• Standard validation occurs before trigger
validation.

• Default validation unit is item level.

• Validation status

– NEW

– CHANGED

– VALID

• When-Validate-“object” triggers to supplement
validation.

Oracle Developer: Build Forms I 18-19
..

..Summary

Summary
In this lesson, you learned to use additional validation features in Form Builder, and to
control when validation occurs.

• Validation occurs at three levels:

- Item level: To ensure that the value conforms to the item’s properties

- Record level: To ensure that the record is valid (If it is not, then the
status of each item in the record is checked.)

- Block and form level: To ensure that the all records below the level
are validated.

• Validation happens when:

- The [Enter] Key or the ENTER built-in procedure is run (to force
validation immediately.)

- Control leaves the validation unit due to navigation or Commit.

• Standard validation occurs before trigger validation.

• The Default validation unit is item level.

• Validation Status:

- NEW

- CHANGED

- VALID

• The When-Validate-“object” triggers supplement standard validation.

18-20 Oracle Developer: Build Forms I
..

..Lesson 18: Validation

Note
For solutions to this practice, see Practice 18 in Appendix A, “Practice Solutions.”

Copyright  Oracle Corporation, 1999. All rights reserved.

Practice 18 Overview

This practice covers the following topics:

• Validating the Sales Representative item value
using a LOV

• Writing a validation trigger to check that the
shipped date is not before the ordered date

• Populating customer names, sales representative
names, and IDs when a customer ID is changed

• Writing a validation trigger to populate the name
and the price of the product when the product ID is
changed

Oracle Developer: Build Forms I 18-21
..

..Practice 18 Overview

Practice 18 Overview
In this practice, you introduce additional validation to the CUSTGXX and ORDGXX
form modules.

• Validating sales representative item value using an LOV

• Writing a validation trigger to check that the shipped date is not before
the ordered date

• Populating customer names, sales representative names, and IDs when a
customer ID is changed

• Writing a validation trigger to populate the name and the price of the
product when the product ID is changed

18-22 Oracle Developer: Build Forms I
..

..Lesson 18: Validation

Practice 18
1 In the CUSTGXX form, cause the Sales_Rep_Lov to display whenever

the user enters a Sales_Rep_Id that does not exist in the database.

2 Save, compile, and run the form to test.

3 In the ORDGXX form, write a validation trigger to check that the
Date_Shipped is not before the Date_Ordered.

Write a When-Validate-record trigger to compare the values of the Date_Shipped
and Date_Ordered. If the Date_Shipped is before the Date_Ordered, fail the trigger
with a suitable message.

4 In the ORDGXX form, create a trigger to write the correct values to the
Customer_Name, Sales_Rep_Name, and Sales_Rep_Id items whenever
validation occurs on Customer_Id.

Fail the trigger if the customer is not found.

5 Create another validation trigger on S_ITEM.Product_Id to derive the
name of the product, and write it to the Description item.

Fail the trigger and display a message if the product is not found.

19

Navigation

19-2 Oracle Developer: Build Forms I
..

..Lesson 19: Navigation

Copyright  Oracle Corporation, 1999. All rights reserved.

Objectives

After completing this lesson, you should be able to
do the following:

• Distinguish between internal and external
navigation

• Describe and use navigation triggers

• Identify built-ins that cause navigation

Oracle Developer: Build Forms I 19-3
..

..Introduction

Introduction

Overview
The Oracle Developer Form Builder component offers a variety of ways to control
cursor movement. This lesson looks at the different methods of forcing navigation
both visibly and invisibly.

19-4 Oracle Developer: Build Forms I
..

..Lesson 19: Navigation

Copyright  Oracle Corporation, 1999. All rights reserved.

About Navigation

• What is the navigation unit?

– Outside the form

– Form

– Block

– Record

– Item

• Entering and leaving objects

• What happens if navigation fails?

Oracle Developer: Build Forms I 19-5
..

..About Navigation

About Navigation
The following sections introduce a number of navigational concepts to help you to
understand the navigation process.

What Is the Navigational Unit?
The navigational unit is an invisible, internal object that determines the navigational
state of a form. Form Builder uses the navigation unit to keep track of the object that is
currently the focus of a navigational process. The navigation unit can be one of the
objects in the following hierarchy:

• Outside the form

• Form

• Block

• Record

• Item

When Form Builder navigates, it changes the navigation unit moving through this
object hierarchy until the target item is reached.

Entering and Leaving Objects
During navigation, Form Builder leaves and enters objects. Entering an object means
changing the navigation unit from the object above in the hierarchy. Leaving an object
means changing the navigation unit to the object above.

The Cursor and How it Relates to the Navigation Unit
The cursor is a visible, external object that indicates the current input focus. Form
Builder will not move the cursor until the navigation unit has successfully become the
target item. In this sense, the navigation unit acts as a probe.

What Happens if Navigation Fails?
If navigation fails, Form Builder reverses the navigation path and attempts to move the
navigation unit back to its initial location. Note that the cursor is still at its initial
position. If Form Builder cannot move the navigation unit back to its initial location, it
exits the form.

19-6 Oracle Developer: Build Forms I
..

..Lesson 19: Navigation

Copyright  Oracle Corporation, 1999. All rights reserved.

Navigation Properties

• Form module

– Mouse navigation limit

– First navigation data block

• Block

– Navigation style

– Previous navigation data block

– Next navigation data block

Copyright  Oracle Corporation, 1999. All rights reserved.

Navigation Properties

• Item

– Enabled

– Keyboard navigable

– Mouse navigate

– Previous navigation item

– Next navigation item

Oracle Developer: Build Forms I 19-7
..

..Controlling Navigation

Controlling Navigation
You can control the path through an application by controlling the order in which the
user navigates to objects. You have seen navigation properties for blocks and items.
There are two other navigation properties that you can set for the form module: Mouse
Navigation Limit and First Navigation Block.

Note: In a bitmapped environment, you can use the mouse to navigate to any enabled
item regardless of its position in the navigational order.

Form Module Properties Function
Mouse Navigation Limit Determines how far outside the current item the user

can navigate with the mouse
First Navigation Block Specifies the name of the block to which Form

Builder should navigate on form startup (Setting
this property does not override the order used for
committing.)

Object Property
Block Navigation Style

Previous Navigation Block
Next Navigation Block

Item Enabled
Keyboard Navigable
Mouse Navigate
Previous Navigation Item
Next Navigation Item

19-8 Oracle Developer: Build Forms I
..

..Lesson 19: Navigation

Copyright  Oracle Corporation, 1999. All rights reserved.

Enter record

v

^

Mouse Navigate Property = Yes

x

Enter block

Exit block

Exit record

Exit item

Enter item

Oracle Developer: Build Forms I 19-9
..

..Controlling Navigation

Mouse Navigate Property
The Mouse Navigate property applies only to mouse-driven applications, and is valid
for the following items:

• Push Button

• Check box

• List item

• Radio group

• Hierarchical tree item

• Sound item

• Custom item

- ActiveX Control

- VBX Control

- OLE2 Container

- Bean Area

Note: The default setting for the Mouse Navigate property is Yes.

Setting Use to Ensure That
Yes Form Builder navigates to the new item which causes the relevant

navigational and validation triggers to fire

No Form Builder does not navigate to the new item or validate the existing item
when the user activates the new item with the mouse

19-10 Oracle Developer: Build Forms I
..

..Lesson 19: Navigation

Copyright  Oracle Corporation, 1999. All rights reserved.

Enter record

Exit record

v

^
x

Internal Navigation

Next Record

Exit item

Enter item

PRE-FORM

PRE-BLOCK

PRE-RECORD

PRE-TEXT-ITEM

POST-TEXT-ITEM

POST-RECORD

POST-BLOCK

Oracle Developer: Build Forms I 19-11
..

..Understanding Internal Navigation

Understanding Internal Navigation
Navigation occurs when the user or a trigger causes the input focus to move to another
object. You have seen that navigation involves changing the location of the input focus
on the screen. In addition to the visible navigation that occurs, some logical navigation
takes place. This logical navigation is also known as internal navigation.

Example
When you enter a form module, you see the input focus in the first enterable item of
the first navigation block. You do not see the internal navigation events that must
occur for the input focus to enter the first item. These internal navigation events are as
follows:

• Entry to form

• Entry to block

• Entry to record

• Entry to item

Example
When you commit your inserts, updates, and deletes to the database, you do not see the
input focus moving. However, internally the following navigation events must occur
before commit processing begins:

• Exit current item

• Exit current record

• Exit current block

19-12 Oracle Developer: Build Forms I
..

..Lesson 19: Navigation

Copyright  Oracle Corporation, 1999. All rights reserved.

v

^
x

Navigation Triggers

Pre- and Post-

When-New-“object” -Instance

Copyright  Oracle Corporation, 1999. All rights reserved.

Navigation Triggers

When-New-“object” -Instance

Fire after navigation

Does fire when validation unit is
larger than the trigger object

Allow restricted and
unrestricted built-ins

Are not affected by failure

Pre- and Post-

Fire during navigation

Does not fire if validation unit
is larger than trigger object

Allow unrestricted built-ins

Handle failure by returning to
initial object

Oracle Developer: Build Forms I 19-13
..

..Navigation Triggers

Navigation Triggers
The navigation triggers can be subdivided into two general groups:

• Pre- and Post- navigation triggers

• When-New-“object” -Instance triggers

When Do Pre- and Post-Navigation Triggers Fire?
The Pre- and Post- navigation triggers fire during navigation, that is just before entry
to or just after exit from the object specified as part of the trigger name.

Example
The Pre-Text-Item trigger fires just before entering a text item.

When Do When-New-“object” -Instance Triggers Fire?
The When-New-” object”-Instance triggers fire immediately after navigation to the
object specified as part of the trigger name.

Example
The When-New-Item-Instance trigger fires immediately after navigation to a new
instance of an item.

When Do Navigation Triggers Not Fire?
The Pre- and Post- navigation triggers do not fire if they belong to a unit that is smaller
than the current validation unit. For instance, if the validation unit is Record, Pre- and
Post-Text-Item triggers do not fire.

What Happens When a Navigation Trigger Fails?
If a Pre- or Post navigation trigger fails, the input focus returns to its initial location
(where it was prior to the trigger firing). To the user, it appears that the input focus has
not moved at all.

Note: Be sure that Pre- and Post- navigation triggers display a message on failure.
Failure of a navigation trigger can cause a fatal error to your form. For example,
failure of Pre-Form, Pre-Block, Pre-Record, or Pre-Text-Item on entry to the form will
cancel execution of the form.

19-14 Oracle Developer: Build Forms I
..

..Lesson 19: Navigation

Copyright  Oracle Corporation, 1999. All rights reserved.

When-New-“object” -Instance Triggers

• When-New-Form-Instance

• When-New-Block-Instance

• When-New-Record-Instance

• When-New-Item-Instance

Copyright  Oracle Corporation, 1999. All rights reserved.

SET_“object” _PROPERTY Examples

SET_FORM_PROPERTY(FIRST_NAVIGATION_BLOCK,

’S_ITEM’);

SET_FORM_PROPERTY(FIRST_NAVIGATION_BLOCK,

’S_ITEM’);

SET_BLOCK_PROPERTY(’S_ORD’, ORDER_BY,

’CUSTOMER_ID’);

SET_RECORD_PROPERTY(3, ’S_ITEM’, STATUS,

QUERY_STATUS);

SET_RECORD_PROPERTY(3, ’S_ITEM’, STATUS,

QUERY_STATUS);

SET_ITEM_PROPERTY(’CONTROL.stock_button’,

ICON_NAME, ’stock’);

SET_ITEM_PROPERTY(’CONTROL.stock_button’,

ICON_NAME, ’stock’);

Oracle Developer: Build Forms I 19-15
..

..Using the When-New-“object”-Instance Triggers

Using the When-New-“object” -Instance Triggers
If you include complex navigation paths through your application, you may want to
check or set initial conditions when the input focus arrives in a particular block,
record, or item. Use the following triggers to do this:

Initializing Form Builder Objects
Use the When-New-“object” -Instance triggers, along with the
SET_“object” _PROPERTY built-in subprograms to initialize Form Builder objects.
These triggers are particularly useful if you conditionally require a default setting.

Example
The following example of a When-New-Block-Instance trigger conditionally sets the
DELETE ALLOWED property to FALSE.

IF GET_APPLICATION_PROPERTY(username) = ’SCOTT’ THEN
SET_BLOCK_PROPERTY(’S_ITEM’,DELETE_ALLOWED, PROPERTY_FALSE);
END IF;

Example
Perform a query of all orders, when the ORDERS form is run, by including the
following code in your When-New-Form-Instance trigger:

EXECUTE_QUERY;

Trigger Fires
When-New-Form-Instance Whenever Form Builder runs a form, after

successful navigation into a form
When-New-Block-Instance After successful navigation into a block
When-New-Record-Instance After successful navigation into the record
When-New-Item-Instance After successful navigation to a new instance

of the item

19-16 Oracle Developer: Build Forms I
..

..Lesson 19: Navigation

Copyright  Oracle Corporation, 1999. All rights reserved.

The Pre- and Post-Triggers

• Pre/Post-Form

• Pre/Post-Block

• Pre/Post-Record

• Pre/Post-Text-Item

Copyright  Oracle Corporation, 1999. All rights reserved.

Post-Block Trigger Example

SET_ITEM_PROPERTY(’CONTROL.stock_button’, enabled,

property_false);

SET_ITEM_PROPERTY(’CONTROL.stock_button’, enabled,

property_false);

Disabling Stock_Button when leaving CONTROL
block:

Oracle Developer: Build Forms I 19-17
..

..Using the Pre- and Post-Triggers

Using the Pre- and Post-Triggers

Note: Define Pre- and Post-Text-Item triggers at item level, Pre- and Post-Block at
block level, and Pre- and Post-Form at form level. Pre- and Post-Text-Item triggers fire
only for text items.

Trigger Type Use to
Pre-Form • Validate

- User

- Time of day
• Initialize control blocks

Call another form to display messages
Post-Form • Perform housekeeping

Erase global variables

• Before exit
Display messages to user

Pre-Block • Authorize access to the block

• Set global variables
Post-Block • Validate the last record that had input focus

• Test a condition and prevent the user
from leaving

Pre-Record • Set global variables
Post-Record • Clear global variables

• Set a visual attribute for an item as the user
scrolls down through a set of records

• Perform cross field validation

Pre-Text-Item • Derive a complex default value
• Record the previous value of a text item

Post-Text-Item • Calculate or change item values

19-18 Oracle Developer: Build Forms I
..

..Lesson 19: Navigation

Copyright  Oracle Corporation, 1999. All rights reserved.

v

^

The Navigation Trap

A Post-Text-Item

Pre-Text-Item

Pre-Text-Item

B

Oracle Developer: Build Forms I 19-19
..

..The Navigation Trap

The Navigation Trap
You have seen that the Pre- and Post- navigation triggers fire during navigation, and
when they fail the internal cursor attempts to return to the current item
(SYSTEM.CURSOR_ITEM).

The diagram on the opposite page illustrates the navigation trap. This can occur when
a Pre- or Post- navigation trigger fails and attempts to return the logical cursor to its
initial item. However, if the initial item has a Pre-Text-Item trigger that also fails the
cursor has nowhere to go, and a fatal error occurs.

Note: Be sure to code against navigation trigger failure.

19-20 Oracle Developer: Build Forms I
..

..Lesson 19: Navigation

Copyright  Oracle Corporation, 1999. All rights reserved.

• When-New-Item-Instance

• Pre-Text-Item

IF CHECKBOX_CHECKED(’S_ORD.order_filled’)THEN

SET_ITEM_PROPERTY(’S_ORD.date_shipped’,

UPDATE_ALLOWED, property_true);

END IF;

Navigation in Triggers

IF CHECKBOX_CHECKED(’S_ORD.order_filled’) THEN

 SET_ITEM_PROPERTY(’S_ORD.date_shipped’,

 UPDATE_ALLOWED, property_true);

END IF;

IF CHECKBOX_CHECKED(’S_ORD.order_filled’) THEN

 SET_ITEM_PROPERTY(’S_ORD.date_shipped’,

 UPDATE_ALLOWED, property_true);

END IF;

GO_ITEM(’S_ORD.date_shipped’);

GO_ITEM(’S_ORD.date_shipped’);

Oracle Developer: Build Forms I 19-21
..

..Navigation in Triggers

Navigation in Triggers
You can initiate navigation programmatically by calling the built-in subprograms, such
as GO_ITEM and PREVIOUS_BLOCK from triggers.

Built-in Routines for Navigation Function
GO_FORM Navigates to an open form (in a multiple form

application)
GO_BLOCK Navigates to an indicated block
GO_ITEM Navigates to an indicated item
GO_RECORD Navigates to a specific record
NEXT_BLOCK Navigates to the next enterable block
NEXT_ITEM Navigates to the next enterable item
NEXT_KEY Navigates to the next enterable, primary key item
NEXT_RECORD Navigates to the first enterable item in the next

record
NEXT_SET Fetches another set of records from the database

and navigates to the first record that the fetch
retrieves

UP Navigates to the instance of the current item in the
previous record

DOWN Navigates to the instance of the current item in the
next record

PREVIOUS_BLOCK Navigates to the previous enterable block
PREVIOUS_ITEM Navigates to the previous enterable item
PREVIOUS_RECORD Navigates to the previous record
SCROLL_UP Scrolls the block so that the records above the top

visible one display
SCROLL_DOWN Scrolls the block so that the records below the

bottom visible one display

19-22 Oracle Developer: Build Forms I
..

..Lesson 19: Navigation

Copyright  Oracle Corporation, 1999. All rights reserved.

Summary

• Controlling navigation through properties

• Internal navigation

• Navigation triggers

– When-New- “ object” -Instance

– Pre-

– Post-

• Navigation trap

• Navigation in triggers

Oracle Developer: Build Forms I 19-23
..

..Summary

Summary
In this lesson, you learned at the different methods of forcing visible navigation and
also the invisible events.

• You can control navigation through the following properties:

- Form module properties

- Data block properties

- Item properties

• Internal navigation events also occur.

• Navigation triggers:

- When-New-“object” -Instance

- Pre- and Post-

• Avoid the navigation trap.

• Navigation built-ins are available.

19-24 Oracle Developer: Build Forms I
..

..Lesson 19: Navigation

Note
For solutions to this practice, see Practice 19 in Appendix A, “Practice Solutions.”

Copyright  Oracle Corporation, 1999. All rights reserved.

Practice 19 Overview

This practice covers the following topics:

• Executing a query at form startup

• Populating product images when cursor arrives on
each record of the S_ITEM block

Oracle Developer: Build Forms I 19-25
..

..Practice 19 Overview

Practice 19 Overview
In this practice, you use When-New-“object” -Instance triggers to populate the
Product_Image item as the operator navigates between records in the ORDGXX form.
Also, you provide a trigger to automatically perform query at form startup.

• Executing a query at form startup

• Populating product images when the cursor arrives on each record of the
S_ITEM block

19-26 Oracle Developer: Build Forms I
..

..Lesson 19: Navigation

Practice 19
1 Write a When-New-Form-Instance trigger on the ORDGXX form to

execute a query at form startup.

Use the EXECUTE_QUERY built-in.

2 Write a trigger that fires as the cursor arrives in each record of the
S_ITEM block, and populate the Product_Image item with a picture of
the product, if one exists. Use Get_Product_Image function for this
purpose.

Get_Product_Image function is already created for you. This function returns the
image file name for the given product number. If a file is not found, the function
returns “No file.”

FUNCTION get_product_image (product_number IN NUMBER) RETURN
VARCHAR2 IS
v_filename VARCHAR2(20);
BEGIN
SELECT s_image.filename INTO v_filename
FROM s_image, s_product
WHERE s_image.id = s_product.image_id
AND s_product.id = product_number;
IF v_filename is null THEN
v_filename := ’No file’;
END IF;
RETURN v_filename;
EXCEPTION
WHEN no_data_found THEN return(’No file’);
END;

If the function returns a usable filename, your trigger should pass this name to the
READ_IMAGE_FILE built-in.

3 Define the same trigger type and code on the S_ORD block.

This will display the image for the first line item’s product if the operator changes
the displayed order.

4 Is there another trigger where you might also want to place this code?

5 Save, compile, and run the form to test.

20

Transaction Processing

20-2 Oracle Developer: Build Forms I
..

..Lesson 20: Transaction Processing

Copyright  Oracle Corporation, 1999. All rights reserved.

Objectives

After completing this lesson, you should be able to
do the following:

• Describe details of commit processing and commit
triggers

• Supplement transaction processing by using
triggers

• Allocate sequence numbers to records as they are
applied to tables

• Implement array DML

Oracle Developer: Build Forms I 20-3
..

..Introduction

Introduction

Overview
While applying a user’s changes to the database, the Oracle Developer Form Builder
enables you to make triggers fire in order to alter or add to the default behavior. This
lesson shows you how to build triggers that can perform additional tasks during this
stage of a transaction.

20-4 Oracle Developer: Build Forms I
..

..Lesson 20: Transaction Processing

Copyright  Oracle Corporation, 1999. All rights reserved.

Transaction Processing

Save
Transaction (Begin)

FORM A

Action Edit

Block#1

Block#2

New Record

Updated Record

Deleted Record

Updated Record

Commit work;Commit work;

UPDATE Table1UPDATE Table1

INSERT INTO Table1INSERT INTO Table1

DELETE FROM Table2DELETE FROM Table2

UPDATE Table2UPDATE Table2

Transaction (End)

Oracle Developer: Build Forms I 20-5
..

..Transaction Processing

Transaction Processing
When Form Builder is asked to save the changes made in a form by the user, a process
takes place involving events in the current database transaction. This process includes:

• Default Form Builder transaction processing: Applies the user’s changes
to the base tables

• Firing transactional triggers: Needed to perform additional or modified
actions in the saving process defined by the designer

When all of these actions are successfully completed, Form Builder commits the
transaction, making the changes permanent.

What Happens in Transaction Processing?
The transaction process occurs as a result of either of the following actions:

• The user presses [Save] or selects Action—>Save from the menu, or
clicks on the Save button on the default Form toolbar.

• The COMMIT_FORM built-in procedure is called from a trigger.

In either case, the process involves two phases, posting and committing.

Post Posting writes the user’s changes to the base tables, using implicit INSERT,
UPDATE, and DELETE statements generated by Form Builder. The changes are
applied in block sequence order as they appear in the Object Navigator at design time.
For each block, deletes are performed first, followed by inserts and updates.
Transactional triggers fire during this cycle if defined by the designer.

The built-in procedure POST alone can invoke this posting process.

Commit This performs the database commit, making the applied changes permanent
and releasing locks.

20-6 Oracle Developer: Build Forms I
..

..Lesson 20: Transaction Processing

Copyright  Oracle Corporation, 1999. All rights reserved.

Transaction Processing

Transaction processing includes two phases:

• Post:

– Writes record changes to base tables

– Fires transactional triggers

• Commit: Performs database commit

Errors result in:

• Rollback of the database changes

• Error message

Oracle Developer: Build Forms I 20-7
..

..Transaction Processing

Rollbacks
Form Builder will roll back applied changes to a savepoint if an error occurs in its
default processing, or when a transactional trigger fails.

By default, the user is informed of the error through a message, and a failing insert or
update results in the record being redisplayed. The user can then attempt to correct the
error before trying to save again.

Savepoints
Form Builder issues savepoints in a transaction automatically, and will roll back to the
latest savepoint if certain events occur. Generally, these savepoints are for Form
Builder internal use, but certain built-ins, such as the EXIT_FORM built-in procedure,
can request a rollback to the latest savepoint by using the TO_SAVEPOINT option.

Locking
When you update or delete base table records in a form application, database locks are
automatically applied. Locks also apply during the posting phase of a transaction, and
for DML statements that you explicitly use in your code.

Note: The SQL statements COMMIT, ROLLBACK, and SAVEPOINT cannot be
called from a trigger directly. If encountered in a client-side program unit, Form
Builder treats COMMIT as the COMMIT_FORM built-in, and ROLLBACK as the
CLEAR_FORM built-in.

20-8 Oracle Developer: Build Forms I
..

..Lesson 20: Transaction Processing

Copyright  Oracle Corporation, 1999. All rights reserved.

1

The Commit Sequence of Events

Validate the form

Validate the block

Pre-Commit

Pre-Delete

On-Delete Delete row

Post-Delete

2

More
records?

Copyright  Oracle Corporation, 1999. All rights reserved.

The Commit Sequence of Events

Check uniquenessCheck uniqueness

Pre-Insert

Copy value from item

Pre-Update

On-Insert Insert row

Post-Insert

On-Update Update row

Post-Update

More
blocks?

Post-Database-Commit

Post-Forms-Commit

1
INSERT UPDATE

Stop

2

Commit changes

More
records?

Oracle Developer: Build Forms I 20-9
..

..The Commit Sequence of Events

The Commit Sequence of Events
The commit sequence of events (when the Array DML size is 1) is as follows:

1 Validate the form.

2 Process savepoint.

3 Fire the Pre-Commit trigger.

4 Validate the block (for all blocks in sequential order).

For all deleted records of the block (in reverse order of deletion):

- Fire the Pre-Delete trigger.

- Delete the row from the base table or fire the On-Delete trigger.

- Fire the Post-Delete trigger.

For all inserted or updated records of the block in sequential order:

If it is an inserted record:

- Copy Value From Item.

- Fire the Pre-Insert trigger.

- Check the record uniqueness.

- Insert the row into the base table or fire the On-Insert trigger.

- Fire the Post-Insert trigger.

If it is an updated record:

- Fire the Pre-Update trigger.

- Check the record uniqueness

- Update the row in the base table or fire the On-Update trigger.

- Fire the Post-Update trigger.

5 Fire the Post-Forms-Commit trigger.

If the current operation is COMMIT, then:

6 Issue an SQL-COMMIT statement.

7 Fire the Post-Database-Commit trigger.

20-10 Oracle Developer: Build Forms I
..

..Lesson 20: Transaction Processing

Copyright  Oracle Corporation, 1999. All rights reserved.

Characteristics of
Commit Triggers

• Pre-Commit: Fires once if form changes are made
or uncommitted changes are posted

• Pre- and Post-DML

• On-DML: Fires per record, replacing default DML
on row

Use DELETE_RECORD, INSERT_RECORD,
UPDATE_RECORD built-ins

Copyright  Oracle Corporation, 1999. All rights reserved.

Characteristics of
Commit Triggers

• Post-Forms-Commit: Fires once even if no
changes are made

• Post-Database-Commit: Fires once even if no
changes are made

Note: A commit-trigger failure causes a rollback to
the savepoint.

Oracle Developer: Build Forms I 20-11
..

..Characteristics of Commit Triggers

Characteristics of Commit Triggers
You have already seen when commit triggers fire during the normal flow of commit
processing. The following table gives more detailed information regarding the
conditions under which these triggers fire.

Note: If a commit trigger—except for the Post-Database-Commit trigger—fails, the
transaction is rolled back to the savepoint that was set at the beginning of the current
commit processing. This also means that earlier, not yet committed posts are not rolled
back.

Trigger Characteristic
Pre-Commit Fires once during commit processing, before base table

blocks are processed; fires if there are changes to base table
items in the form or if changes have been posted but not yet
committed (This trigger always fires in case of uncommitted
posts, even if there are no changes to post.)

Pre- and Post-DML Fire for each record that is marked for insert, update, or
delete, just before or after the row is inserted, updated, or
deleted in the database

On-DML Fires for each record that is marked for insert, update, or
delete when Forms would typically issue its INSERT,
UPDATE, or DELETE statement (These triggers replace the
DML statements. Include a call to the INSERT_RECORD,
UPDATE_RECORD, or DELETE_RECORD built-in to
perform the default processing for these triggers.)

Post-Forms-Commit Fires once during commit processing, after base table blocks
are processed but before the SQL-COMMIT statement is
issued; even fires if there are no changes to post or commit.

Post-Database-Commit Fires once during commit processing, after the
SQL-COMMIT statement is issued; even fires if there are no
changes to commit (This is also true for the SQL-COMMIT
statement itself.)

20-12 Oracle Developer: Build Forms I
..

..Lesson 20: Transaction Processing

Copyright  Oracle Corporation, 1999. All rights reserved.

Commit Triggers Uses

Pre-Commit

Pre-Delete

Pre-Insert

Pre-Update

Check user authorization; set up special locking

Journaling; implement foreign-key delete rule

Generate sequence numbers; journaling;
automatically generated columns; check
constraints

Journaling; implement foreign-key update rule;
auto-generated columns; check constraints

Copyright  Oracle Corporation, 1999. All rights reserved.

Commit Triggers Uses

On-Insert/Update/Delete

Post-Forms-Commit

Post-Database-Commit

Replace default block
DML statements

Check complex multirow
constraints

Test commit success;
test uncommitted posts

Oracle Developer: Build Forms I 20-13
..

..Common Uses for Commit Triggers

Common Uses for Commit Triggers
Once you know when a commit trigger fires, you should be able to choose the right
commit trigger for the functionality that you want. To help you with this, the most
common uses for commit triggers are mentioned below.

Where possible, implement functionality such as writing to a journal table,
automatically supplying column values, and checking constraints in the server.

Note: Locking is also needed for transaction processing. You can use the On-Lock
trigger if you want to amend the default locking of Form Builder.

Use DML statements in commit triggers only; otherwise the DML statements are not
included in the administration kept by Form Builder concerning commit processing.
This may lead to unexpected and unwanted results.

Trigger Common Use
Pre-Commit Checks user authorization; sets up special locking

requirements
Pre-Delete Writes to journal table; implements restricted or cascade

delete

Pre-Insert Writes to journal table; fills automatically generated columns;
generates sequence numbers; checks constraints

Pre-Update Writes to journal table; fills automatically generated columns;
checks constraints; implements restricted or cascade update

Post-Delete, Post-Insert,
Post-Update

Seldom used

On-Delete, On-Insert
On-Update

Replaces default block DML statements; for example, to
implement a pseudodelete or to update a join view

Post-Forms-Commit Checks complex multirow constraints
Post-Database-Commit Determines if commit was successful; determines if there are

posted, uncommitted changes

20-14 Oracle Developer: Build Forms I
..

..Lesson 20: Transaction Processing

Copyright  Oracle Corporation, 1999. All rights reserved.

ColumnItem
Life of an Update

Query
Rollback

Data20 20

Locked
Query

30 20Update record in form

[Save] 30 20[Save]

Pre-Update 30 20Pre-Update

Row Updated 30 30 20Row updated

Post-Update 30 30 20Post-Update

Commit 30 30

Oracle Developer: Build Forms I 20-15
..

..Common Uses for Commit Triggers

Life of an Update
To help you decide where certain trigger actions can be performed, consider an update
operation as an example.

The price of a product is being updated in a form. After the user queries the record, the
following events occur:

1 The user updates the Price item. This is now different from the
corresponding database column.

2 The user saves the change, initiating the transaction process.

3 The Pre-Update trigger fires (if present). At this stage, the item and
column are still different, because the update has not been applied to the
base table. The trigger could compare the two values, for example, to
make sure the new price is not lower than the existing one.

4 Form Builder applies the user’s change to the database row. The item
and column are now the same.

5 The Post-Update trigger fires (if present). It is too late to compare the
item against the column, because the update has already been applied.
However, the Oracle database retains the old column value as rollback
data, so that a failure of this trigger reinstates the original value.

6 Form Builder issues the database commit, thus discarding the rollback
data, releasing locks, and making the changes permanent. The user
receives the message “Transaction Completed...”.

20-16 Oracle Developer: Build Forms I
..

..Lesson 20: Transaction Processing

Copyright  Oracle Corporation, 1999. All rights reserved.

Delete Validation

DECLARE

CURSOR C1 IS

SELECT ’anything’ FROM S_ORD

WHERE customer_id = :S_CUSTOMER.id;

BEGIN

OPEN C1;

FETCH C1 INTO :GLOBAL.dummy;

IF C1%FOUND THEN

MESSAGE(’There are orders for this customer!’);

RAISE form_trigger_failure;

ELSE

CLOSE C1;

END IF;

END;

• Pre-Delete trigger

• Final checks before row deletion

Oracle Developer: Build Forms I 20-17
..

..Common Uses for Commit Triggers

Delete Validation
Master-detail blocks that are linked by a relation with the nonisolated deletion rule
automatically prevent master records from being deleted in the form if matching detail
rows exist.

You may, however, wish to implement a similar check, as follows, when a deletion is
applied to the database:

• A final check to ensure that no dependent detail rows have been inserted
by another user since the master record was marked for deletion in the
form (In an Oracle database, this is usually performed by a constraint or
a database trigger.)

• A final check against form data, or checks that involve actions within the
application

Note: If you select the “Enforce data integrity” check box in the Data Block Wizard,
Form Builder automatically creates the related triggers to implement constraints.

Example
This Pre-Delete trigger on the CUSTOMER block of the CUSTOMERS form prevents
deletion of rows if there are existing orders for the customer.

DECLARE
CURSOR C1 IS
SELECT ’anything’ FROM S_ORD
WHERE customer_id = :S_CUSTOMER.id;

BEGIN
OPEN C1;
FETCH C1 INTO :GLOBAL.dummy;
IF C1%FOUND THEN

CLOSE C1;
MESSAGE(’There are orders for this customer!’);
RAISE form_trigger_failure;

ELSE
CLOSE C1;

END IF;
END;

20-18 Oracle Developer: Build Forms I
..

..Lesson 20: Transaction Processing

Copyright  Oracle Corporation, 1999. All rights reserved.

Assigning Sequence Numbers

Pre-Insert
Insert

601

602

602

Database

601 Value Value

ID

Sequence

SELECT S_ORD_ID.nextval

INTO :S_ORD.id

FROM SYS.dual;

SELECT S_ORD_ID.nextval

INTO :S_ORD.id

FROM SYS.dual;

Oracle Developer: Build Forms I 20-19
..

..Common Uses for Commit Triggers

Assigning Sequence Numbers to Records
You will recall that you can assign default values for items from an Oracle sequence,
to automatically provide unique keys for records on their creation. However, if the
user does not complete a record, the assigned sequence number is “wasted.”

An alternative method is to assign unique keys to records from a Pre-Insert trigger, just
before their insertion in the base table, by which time the user has completed the
record and issued the Save.

Assigning unique keys in the posting phase can:

• Reduce gaps in the assigned numbers

• Reduce data traffic on record creation, especially if records are discarded
before saving

Example
This Pre-Insert trigger on the S_ORD block assigns an Order ID from the sequence
S_ORD_ID, which will be written to the ID column when the row is subsequently
inserted.

SELECT S_ORD_ID.nextval
INTO :S_ORD.id
FROM SYS.dual;

Note: The Insert Allowed and Keyboard Navigable properties on :S_ORD.id should
be No, so that the user does not enter an ID manually.

You can also assign sequence numbers from a table. If you use this method, then two
transactional triggers are usually involved:

• Use Pre-Insert to select the next available number from the sequence
table (locking the row to prevent other users from selecting the same
value) and increment the value by the required amount.

• Use Post-Insert to update the sequence table, recording the new upper
value for the sequence.

20-20 Oracle Developer: Build Forms I
..

..Lesson 20: Transaction Processing

Copyright  Oracle Corporation, 1999. All rights reserved.

Keeping an Audit Trail

:GLOBAL.insert_tot :=

 TO_CHAR(TO_NUMBER(:GLOBAL.insert_tot)+1);

:GLOBAL.insert_tot :=

 TO_CHAR(TO_NUMBER(:GLOBAL.insert_tot)+1);

• Write changes to nonbase tables.

• Gather statistics on applied changes.

Post-Insert example:

Oracle Developer: Build Forms I 20-21
..

..Common Uses for Commit Triggers

Keeping an Audit Trail
You may want to use the Post event transactional triggers to record audit information
about the changes applied to base tables. In some cases, this may involve duplicating
inserts or updates in backup history tables, or recording statistics each time a DML
operation occurs.

If the base table changes are committed at the end of the transaction, the audit
information will also be committed.

Example
This Post-Update trigger writes the current record ID to the UPDATE_AUDIT table,
along with a time stamp and the user who performed the update.

INSERT INTO update_audit (id, timestamp, who_did_it)
VALUES (:S_ORD.id, SYSDATE, USER);

Example
This Post-Insert trigger adds to a running total of Inserts for the transaction, which is
recorded in the global variable INSERT_TOT. (This global variable is initialized at the
start of posting, and recorded in a table at the end, as discussed later.)

:GLOBAL.insert_tot := TO_CHAR(TO_NUMBER(:GLOBAL.insert_tot)+1);

20-22 Oracle Developer: Build Forms I
..

..Lesson 20: Transaction Processing

Copyright  Oracle Corporation, 1999. All rights reserved.

Testing the Result
of Trigger DML

• SQL%FOUND

• SQL%NOTFOUND

• SQL%ROWCOUNT

UPDATE S_ORD

 SET date_shipped = SYSDATE

 WHERE id = :S_ORD.id;

IF SQL%NOTFOUND THEN

 MESSAGE(’Record not found in database’);

 RAISE form_trigger_failure;

END IF;

Oracle Developer: Build Forms I 20-23
..

..Common Uses for Commit Triggers

Obtaining Cursor Information in PL/SQL
When you perform DML in transactional triggers, you may need to test the results.

Unlike SELECT statements, DML statements do not raise exceptions when zero or
multiple rows are processed. PL/SQL provides some useful attributes for obtaining
results from the implicit cursor used to process the latest SQL statement (in this case,
DML).

Example
This When-Button-Pressed trigger records the date of posting as the date shipped for
the current Order record. If a row is not found by the UPDATE statement, an error is
reported.

UPDATE S_ORD
SET date_shipped = SYSDATE
WHERE id = :S_ORD.id;

IF SQL%NOTFOUND THEN
MESSAGE(’Record not found in database’);
RAISE form_trigger_failure;

END IF;

Note: Triggers containing base table DML can adversely affect the usual behavior of
your form, because DML statements can cause some of the rows in the database to
lock.

PL/SQL Cursor Attribute Values
SQL%FOUND TRUE: Indicates > 0 rows processed

FALSE: Indicates 0 rows processed
SQL%NOTFOUND TRUE: Indicates 0 rows processed

FALSE: Indicates > 0 rows processed
SQL%ROWCOUNT Integer indicating the number of rows processed

20-24 Oracle Developer: Build Forms I
..

..Lesson 20: Transaction Processing

Copyright  Oracle Corporation, 1999. All rights reserved.

DML Statements Issued
During Commit Processing

INSERT INTO base_table (base_column, base_column,...)

VALUES (:base_item, :base_item, ...)

UPDATE base_table

SET base_column = :base_item, base_column =

:base_item, ...

WHERE ROWID = :ROWID

DELETE FROM base_table

WHERE ROWID = :ROWID

Copyright  Oracle Corporation, 1999. All rights reserved.

DML Statements Issued During Commit
Processing

Rules:

• DML statements may fire database triggers.

• Form Builder uses and retrieves ROWID.

• The Update Changed Columns Only and Enforce
Column Security properties affect UPDATE
statements.

• Locking statements are not issued.

Oracle Developer: Build Forms I 20-25
..

..DML Statements Issued During Commit Processing

DML Statements Issued During Commit Processing
If you have not altered default commit processing, Form Builder issues DML
statements at commit time for each database record that is inserted, updated, or
deleted.

INSERT INTO base_table(base_column, base_column, ...)
VALUES (:base_item, :base_item, ...)

UPDATE base_table
SET base_column = :base_item, base_column = :base_item, ...
WHERE ROWID = :ROWID

DELETE FROM base_table
WHERE ROWID = :ROWID

Rules
• These DML statements may fire associated database triggers.

• Form Builder uses the ROWID construct only when the Key mode block
property is set to Automatic (the default).

• If Form Builder successfully inserts a row in the database, it also
retrieves the ROWID for that row.

• If the Update Changed Columns Only block property is set to Yes, only
base columns with changed values are included in the UPDATE
statement.

• If the Enforce Column Security block property is set to Yes, all base
columns for which the current user has no update privileges are excluded
from the UPDATE statement.

Locking statements are not issued by Form Builder during default commit processing;
they are issued as soon as a user updates or deletes a record in the form. If you set the
Locking mode block property to delayed, Form Builder waits to lock the
corresponding row until commit time.

20-26 Oracle Developer: Build Forms I
..

..Lesson 20: Transaction Processing

Copyright  Oracle Corporation, 1999. All rights reserved.

Overriding Default Transaction

Additional transactional triggers:

On-Check-Unique

On-Column-Security

On-Commit

On-Rollback

On-Savepoint

On-Sequence-Number

CHECK_RECORD_UNIQUENESS

ENFORCE_COLUMN_SECURITY

COMMIT_FORM

ISSUE_ROLLBACK

ISSUE_SAVEPOINT

GENERATE_SEQUENCE_NUMBER

Trigger Do-the-Right-Thing Built-in

Oracle Developer: Build Forms I 20-27
..

..Overriding Default Transaction Processing

Overriding Default Transaction Processing
You have already seen that some commit triggers can be used to replace the default
DML statements that Form Builder issues during commit processing. You can use
several other triggers to override the default transaction processing of Form Builder.

Transactional Triggers
All triggers that are related to accessing a data source are called transactional triggers.
Commit triggers form a subset of these triggers. Other examples include triggers that
fire during logon and logout or during queries performed on the data source.

Additional Transactional Triggers for Commit Processing

Trigger Do-the-Right-Thing Built-in
On-Check-Unique CHECK_RECORD_UNIQUENESS
On-Column-Security ENFORCE_COLUMN_SECURITY
On-Commit COMMIT_FORM
On-Rollback ISSUE_ROLLBACK
On-Savepoint ISSUE_SAVEPOINT
On-Sequence-Number GENERATE_SEQUENCE_NUMBER

20-28 Oracle Developer: Build Forms I
..

..Lesson 20: Transaction Processing

Copyright  Oracle Corporation, 1999. All rights reserved.

Overriding Default Transaction

Transactional triggers for logging on and off:

Pre-Logon

Pre-Logout

On-Logon

On-Logout

Post-Logon

Post-Logout

 -

 -

LOGON

LOGOUT

 -

 -

Trigger Do-the-Right-Thing Built-in

Oracle Developer: Build Forms I 20-29
..

..Overriding Default Transaction Processing

Transactional Triggers for Logging On and Off

Uses for Transactional Triggers
• Transactional triggers, except for the commit triggers, are primarily

intended to access certain data sources other than Oracle.

• The logon and logoff transactional triggers can also be used with Oracle
databases to change connections at run time.

Trigger Do-the-Right-Thing Built-in
Pre-Logon -
Pre-Logout -
On-Logon LOGON
On-Logout LOGOUT
Post-Logon -
Post-Logout -

20-30 Oracle Developer: Build Forms I
..

..Lesson 20: Transaction Processing

Copyright  Oracle Corporation, 1999. All rights reserved.

Running with Data Sources
Other than Oracle

• Three ways to run against data sources other than
Oracle

– Oracle Open Gateways

– Oracle Open Client Adapter for ODBC

– Write appropriate transactional triggers

Copyright  Oracle Corporation, 1999. All rights reserved.

Running with Data Sources
Other than Oracle

• Connecting with Open Gateway:

– Cursor and Savepoint mode form module
properties

– Key mode and Locking mode block properties

• Using transactional triggers:

– Call 3GL programs

– Database data block property

Oracle Developer: Build Forms I 20-31
..

..Running Against Data Sources Other than Oracle

Running Against Data Sources Other than Oracle

Three Ways to Run Against Data Sources Other than Oracle
• Use Oracle Open Gateway products.

• Use Oracle Open Client Adapter for ODBC.

• Write the appropriate set of Transactional triggers.

Connecting with Open Gateway
When you connect to a data source other than Oracle with an Open Gateway product,
you should be aware of these transactional properties:

• Cursor mode form module property

• Savepoint mode form module property

• Key mode block property

• Locking mode block property

You can set these properties to specify how Form Builder should interact with your
data source. The specific settings depend on the capabilities of the data source.

Using Transactional Triggers
If no Open Gateway or Open Client Adapter drivers exist for your data source, you
must define transactional triggers. From these triggers, you must call 3GL programs
that implement the access to the data source.

Database Data Block Property
This block property identifies a block as a transactional control block; that is, a control
block that should be treated as a base table block. Setting this property to Yes ensures
that transactional triggers will fire for the block, even though it is not a base table
block. If you set this property to Yes, you must define all On-Event transactional
triggers, otherwise you will get an error during form generation.

20-32 Oracle Developer: Build Forms I
..

..Lesson 20: Transaction Processing

Copyright  Oracle Corporation, 1999. All rights reserved.

Getting and Setting the
Commit Status

• What is commit status?

• SYSTEM.RECORD_STATUS:

– NEW

– INSERT (also caused by control items)

– QUERY

– CHANGED

Oracle Developer: Build Forms I 20-33
..

..Getting and Setting the Commit Status

Getting and Setting the Commit Status
If you want to process a record in your form, it is often useful to know if the record is
in the database or if it has been changed, and so on. You can use system variables and
built-ins to obtain this information.

What Is the Commit Status of a Record?
The commit status of a record of a base table block determines how the record will be
processed during the next commit process. For example, the record can be inserted,
updated, or not processed at all.

The Four Values of SYSTEM.RECORD_STATUS

Value Description
NEW Indicates that the record has been created, but that none of its items

have been changed yet (The record may have been populated by
default values.)

INSERT Indicates that one or more of the items in a newly created record have
been changed (The record will be processed as an insert during the
next commit process if its block has the CHANGED status; see
below. Note that when you change a control item of a NEW record,
the record status also becomes INSERT.)

QUERY Indicates that the record corresponds to a row in the database, but that
none of its base table items have been changed

CHANGED Indicates that one or more base table items in a database record have
been changed (The record will be processed as an update (or delete)
during the next commit process.)

20-34 Oracle Developer: Build Forms I
..

..Lesson 20: Transaction Processing

Copyright  Oracle Corporation, 1999. All rights reserved.

Getting and Setting the
Commit Status

• SYSTEM.BLOCK_STATUS:

– NEW (may contain records with status
INSERT)

– QUERY (also possible for control block)

– CHANGED (block will be committed)

Copyright  Oracle Corporation, 1999. All rights reserved.

Getting and Setting the
Commit Status

• SYSTEM.FORM_STATUS:

– NEW

– QUERY

– CHANGED

Oracle Developer: Build Forms I 20-35
..

..Getting and Setting the Commit Status

Three Values of SYSTEM.BLOCK_STATUS

Three Values of SYSTEM.FORM_STATUS

Value Description
NEW Indicates that all records of the block have the status NEW (Note that a base

table block with the status NEW may also contain records with the status
INSERT caused by changing control items).

QUERY Indicates that all records of the block have the status QUERY if the block is a
base table block (A control block has the status QUERY if it contains at least
one record with the status INSERT.)

CHANGED Indicates that the block contains at least one record with the status INSERT or
CHANGED if the block is a base table block (The block will be processed
during the next commit process. Note that a control block cannot have the sta-
tus CHANGED.)

Value Description
NEW Indicates that all blocks of the form have the status NEW
QUERY Indicates that at least one block of the form has status QUERY and all other

blocks have the status NEW
CHANGED Indicates that at least one block of the form has the status CHANGED

20-36 Oracle Developer: Build Forms I
..

..Lesson 20: Transaction Processing

Copyright  Oracle Corporation, 1999. All rights reserved.

Getting and Setting the
Commit Status

• System variables versus built-ins for commit
status

• Built-ins for getting and setting commit status:

– GET_BLOCK_PROPERTY

– GET_RECORD_PROPERTY

– SET_ RECORD _PROPERTY

Copyright  Oracle Corporation, 1999. All rights reserved.

Getting and Setting the
Commit Status

• Example: If the third record of block S_ORD is a
changed database record, set the status back to
QUERY.

• Warnings:

– Do not confuse commit status with validation
status.

– The commit status is updated during
validation.

Oracle Developer: Build Forms I 20-37
..

..Getting and Setting the Commit Status

Using Built-ins to Get the Commit Status
The system variables SYSTEM.RECORD_STATUS and
SYSTEM.BLOCK_STATUS apply to the record and block where the cursor is
located. You can use built-ins to obtain the status of other blocks and records.

Example
If the third record of the S_ORD block is a changed database record, set the status
back to QUERY.

BEGIN
IF GET_RECORD_PROPERTY(3, ’S_ORD’,status)= ’CHANGED’ THEN

SET_RECORD_PROPERTY(3, ’S_ORD’, status, query_status);
END IF;
END;

Built-in Description
GET_BLOCK_PROPERTY Use the STATUS property to obtain the block status of

the specified block.
GET_RECORD_PROPERTY Use the STATUS property to obtain the record status of

the specified record in the specified block.
SET_RECORD_PROPERTY Set the STATUS property of the specified record in the

specified block to one of the following constants:

• NEW_STATUS, INSERT_STATUS

• QUERY_STATUS
• CHANGED_STATUS

20-38 Oracle Developer: Build Forms I
..

..Lesson 20: Transaction Processing

Copyright  Oracle Corporation, 1999. All rights reserved.

Array DML

• Performs array inserts, updates, and deletes

• Vastly reduces network traffic

Fewer round trips
(exact number depends

on array size)

2 inserts

2 updates

1 delete
Database

Empno Ename Job Hiredate

1234 Jones Clerk 01-Jan-95

1235 Smith Clerk 01-Jan-95

1236 Adams Clerk 01-Jan-95

1237 Clark Clerk 01-Jan-95

Copyright  Oracle Corporation, 1999. All rights reserved.

Effect of Array DML
on Transactional Triggers

Array DML Size = 1 Array DML Size > 1

Fires
Fires for each
insert, update,
delete

Fires for each
insert, update,
delete

Repeated
for each
insert,
update,
delete

POST-

PRE-

DML

Fires

DML

POST-

PRE-

Oracle Developer: Build Forms I 20-39
..

..Array Processing

Array Processing

Overview
Array processing is an option in Form Builder that alters the way records are
processed. The default behavior of Form Builder is to process records one at a time.
By enabling array processing, you can process groups of records at a time, reducing
network traffic and thereby increasing performance. With array processing, a structure
(an array) containing multiple records is sent to or returned from the server for
processing.

Form Builder supports both array fetch processing and array DML processing. For
both querying and DML operations, you can determine the array size to optimize
performance for your needs. This lesson focuses on array DML processing.

Array processing is available for query and DML operations for blocks based on
tables, views, procedures, and subqueries; it is not supported for blocks based on
transactional triggers.

Effect of Array DML on Transactional Triggers
With DML Array Size set to 1, the Pre-Insert, Pre-Update, and Pre-Delete triggers fire
for each new, changed, and deleted record; the DML is issued, and the Post- trigger for
that record fires.

With DML Array Size set to greater than 1, the appropriate Pre- triggers fire for all of
the new, changed, and deleted rows; all of the DML statements are issued, and all of
the Post- triggers fire.

If you change 100 rows and DML Array Size is 20, you get 100 Pre- triggers, 5 arrays
of 20 DML statements, and 100 Post- triggers.

20-40 Oracle Developer: Build Forms I
..

..Lesson 20: Transaction Processing

Copyright  Oracle Corporation, 1999. All rights reserved.

Implementing Array DML

1. Enable the Array Processing option.

2. Specify a DML Array Size of greater than 1.

3. Specify block primary keys.

Oracle Developer: Build Forms I 20-41
..

..Array Processing

How to Implement Array DML
1 To set preferences:

- Select Tools—>Preferences.

- Click the Runtime tab.

- Select the Array Processing check box.

2 To set properties:

- In the Object Navigator, select the Data Blocks node.

- Double-click the Data Blocks icon to display the Property Palette.

- Under the Advanced Database category, set the DML Array Size
property to a number that represents the number of records in the
array for array processing. You can also set this property
programmatically.

Note: When the DML Array Size property is greater than 1, you must specify the
primary key. Key mode can still be unique.

The Oracle server uses the ROWID to identify the row, except after an array insert. If
you update a record in the same session that you inserted it, the server locks the record
by using the primary key.

20-42 Oracle Developer: Build Forms I
..

..Lesson 20: Transaction Processing

Copyright  Oracle Corporation, 1999. All rights reserved.

Summary

• Post and commit phases

• Flow of commit processing

• DML statements issued during commit
processing

• Characteristics and common uses of commit
triggers

• Overriding default transaction processing

• Getting and setting the commit status

• Implementing Array DML

Oracle Developer: Build Forms I 20-43
..

..Summary

Summary
This lesson showed you how to build triggers that can perform additional tasks during
the save stage of a current database transaction.

• Transactions are processed in two phases:

- Post: Applies form changes to the base tables and fires transactional
triggers

- Commit: Commits the database transaction

• Flow of commit processing

• DML statements issued during commit processing:

- Based on base table items

- UPDATE and DELETE statements use ROWID by default

• Characteristics of commit triggers:

- The Pre-Commit, Post-Forms-Commit, and Post-Database-Commit
triggers fire once per commit process, but consider uncommitted
changes or posts.

- The Pre-, On-, and Post-Insert, Update, and Delete triggers fire once
per processed record.

• Common uses for commit triggers: check authorization, set up special
locking requirements, generate sequence numbers, check complex
constraints, replace default DML statements issued by Form Builder.

• Overriding default transaction processing:

- Transactional On-Event triggers and “Do-the-Right-Thing” built-ins

- Data sources other than Oracle use Open Gateway, ODBC, or
transactional triggers

• Getting and setting the commit status:

- System variables

- Built-ins

• Array DML

20-44 Oracle Developer: Build Forms I
..

..Lesson 20: Transaction Processing

Note
For solutions to this practice, see Practice 20 in Appendix A, “Practice Solutions.”

Copyright  Oracle Corporation, 1999. All rights reserved.

Practice 20 Overview

This practice covers the following topics:

• Automatically populating order IDs by using a
sequence

• Automatically populating item IDs by adding the
current highest order ID

• Customizing the commit messages in the
CUSTOMERS form

• Customizing the login screen in the CUSTOMERS
form

Oracle Developer: Build Forms I 20-45
..

..Practice 20 Overview

Practice 20 Overview
In this practice, you add transactional triggers to the ORDGXX form to automatically
provide sequence numbers to records at save time. You also customize commit
messages and the login screen in the CUSTGXX form.

• Automatically populating order IDs by using a sequence

• Automatically populating item IDs by adding the current highest order
ID

• Customizing the commit messages in the CUSTOMERS form

• Customizing the login screen in the CUSTOMERS form

20-46 Oracle Developer: Build Forms I
..

..Lesson 20: Transaction Processing

Practice 20
1 In the ORDGXX form write a transactional trigger on the S_ORD block

that populates S_ORD.Id with the next value from the S_ORD_ID
sequence.

Create a Pre-Insert trigger that assigns a value from this sequence. If an exception
occurs in the trigger, fail the trigger with a message.

2 In the S_ORD block, set the Enabled property of the ID item to No.

3 Save, compile, and run the form to test.

Insert a new order. The unique ID for the order should appear when you save it.

4 Create a similar trigger on the S_ITEM block that assigns the Item_Id
when a new record is saved.

Derive this number by adding to the current highest Item_Id for the order. Perform
the action in a Pre-Insert trigger. Set the Required and Enabled properties to No for
Item_Id.

5 Save, compile, and run the form to test.

Insert a new line-item record in the S_ITEM block, then save it.

6 Open the CUSTGXX form module. Create three global variables called
GLOBAL.INSERT, GLOBAL.UPDATE, and GLOBAL.DELETE.
These variables indicate respectively the number of inserts, updates, and
deletes. You need to write Post-Insert, Post-Update, and Post-Delete
triggers to initialize and increment the value of each global variable.

Oracle Developer: Build Forms I 20-47
..

..Practice 20

Practice 20 (continued)
7 Create a procedure called HANDLE_MESSAGE. Import the
pr20_10.txt file. This procedure receives two arguments. The first
one is a message number, and the second is a Boolean error indicator.
This procedure uses the three global variables to display a customized
commit message and then erases the global variables.
PROCEDURE handle_message(message_number IN NUMBER, IS_ERROR IN
BOOLEAN) IS
BEGIN

IF message_number IN (40400, 40406, 40407) THEN
DEFAULT_VALUE(’0’, ’GLOBAL.insert’);
DEFAULT_VALUE(’0’, ’GLOBAL.update’);
DEFAULT_VALUE(’0’, ’GLOBAL.delete’);
MESSAGE('Save Ok: ' ||
:GLOBAL.insert || ’records inserted, ’||
:GLOBAL.update || ’records updated, ’||
:GLOBAL.delete || ’records deleted !!!’);

ELSIF is_error = TRUE THEN
MESSAGE(’ERROR: ’|| ERROR_TEXT);

ELSE
MESSAGE(MESSAGE_TEXT);

END IF;
END ;

Call the procedure when an error occurs. Pass the error code and TRUE. Call the
procedure when a message occurs. Pass the message code and FALSE.

8 Open the CUSTGXX form module. Write an On-Logon trigger to control
the number of connection tries. Use the LOGON_SCREEN built-in to
simulate the default login screen and LOGON to connect to the database.
You can import the pr20_11.txt file.

20-48 Oracle Developer: Build Forms I
..

..Lesson 20: Transaction Processing

On-Logon at Form Level
DECLARE

connected BOOLEAN := FALSE;
tries NUMBER := 3;
un VARCHAR2(30);
pw VARCHAR2(30);
cs VARCHAR2(30);

BEGIN
SET_APPLICATION_PROPERTY(CURSOR_STYLE, ’DEFAULT’);
WHILE connected = FALSE and tries > 0 LOOP

LOGON_SCREEN;
un := GET_APPLICATION_PROPERTY(USERNAME);
pw := GET_APPLICATION_PROPERTY(PASSWORD);
cs := GET_APPLICATION_PROPERTY(CONNECT_STRING);
LOGON(un, pw || ’@’ || cs, FALSE);
IF FORM_SUCCESS THEN

connected := TRUE ;
END IF;
tries := tries - 1;

END LOOP;
IF NOT CONNECTED THEN

MESSAGE(’Too many tries!’);
RAISE FORM_TRIGGER_FAILURE;

END IF;
END;

