Oracle Developer:
Build Forms |

Volume 2 « Student Guide

43112GC10
Production 1.0
April 1999
M08602

ORACLE’

Authors

Fergus Griffin
Ellen Gravina

Technical
Contributorsand
Reviewers

Grant Anderson
David Ball
Christian Bauwens
Ruth Delaney
Brian Fry

Tushar Gadhia
Danae Hadjioannou
Daniel Maas
Jayne Marlow
StellaMisiulis
Mark Sullivan

Publisher
Tommy Cheung

Copyright O Oracle Corporation, 1999. All rights reserved.

This documentation contains proprietary information of Oracle Corporation. It is
provided under a license agreement containing restrictions on use and disclosure
and is also protected by copyright law. Reverse engineering of the software is
prohibited. If this documentation is delivered to a U.S. Government Agency of the
Department of Defense, then it is delivered with Restricted Rights and the
following legend is applicable:

Restricted Rights Legend

Use, duplication or disclosure by the Government is subject to restrictions for
commercial computer software and shall be deemed to be Restricted Rights
software under Federal law, as set forth in subparagraph (c) (1) (i) of DFARS
252.227-7013, Rights in Technical Data and Computer Software (October 1988).

This material or any portion of it may not be copied in any form or by any means
without the express prior written permission of the Worldwide Education Services
group of Oracle Corporation. Any other copying is a violation of copyright law and
may result in civil and/or criminal penalties.

If this documentation is delivered to a U.S. Government Agency not within the
Department of Defense, then it is delivered with “Restricted Rights,” as defined in
FAR 52.227-14, Rights in Data-General, including Alternate Il (June 1987).

The information in this document is subject to change without notice. If you find
any problems in the documentation, please report them in writing to Education
Products, Oracle Corporation, 500 Oracle Parkway, Box 659806, Redwood
Shores, CA 94065. Oracle Corporation does not warrant that this document is
error-free.

Oracle Developer, Oracle Server, and PL/SQL are trademarks or registered
trademarks of Oracle Corporation.

All other products or company names are used for identification purposes only,
and may be trademarks of their respective owners.

Contents

Preface
Profile xvii
Related Publications xviii
Typographic Conventions Xix

Introduction
Overview 1-3
Course Objectives 1-5
Course Content 1-7

Lesson 1: Course Introduction
Introduction 1-3
What Is Oracle Developer? 1-5
Introducing the Oracle Developer Components 1-11
Common Builder Components 1-15
Getting Started in the Oracle Developer Interface 1-21
Navigating Around the Oracle Developer Main Menu 1-23
Customizing Y our Oracle Developer Session 1-25
Oracle Developer Environment Variables 1-29
Invoking Online Help Facilities 1-31
Introducing the Course Application 1-33
Summary 1-37
Practice 1 Overview 1-39
Practicel 1-40

Lesson 2: Running a Form Builder Application
Introduction 2-3
What You Seeat Run Time 2-5
Navigating a Form Builder Application 2-11
Modes of Operation 2-15
Retrieving Data 2-19
Inserting, Updating, and Deleting Records 2-27
Displaying Errors 2-31
Summary 2-33

Oracle Developer: Build Forms | iii

Contents

Practice 2 Overview 2-35
Practice2 2-36

Lesson 3: Working in the Form Builder Environment
Introduction 3-3
What Is Form Builder? 3-5
Form Builder Executables 3-7
Form Builder Module Types 3-9
Form Builder Components 3-11
Summary 3-23

Lesson 4: Creating a Basic Form Module
Introduction 4-3
Creating aNew Form Module 4-5
Creating aNew DataBlock 4-11
Modifying the Layout 4-23
Template Forms 4-25
Saving, Compiling, and Running aForm Module 4-27
Creating Data Blocks with Relationships 4-33
Creating a Relation Manually 4-39
Modifying aRelation 4-41
Running a Master-Detail Form Module 4-45
Summary 4-47
Practice4 Overview 4-49
Practice4 4-50

Lesson 5: Working with Data Blocks and Frames
Introduction 5-3
Managing Object Properties 5-5
Controlling the Behavior of DataBlocks 5-15
Controlling the Appearance of DataBlocks 5-21
Controlling Frame Properties 5-25
More About Object Properties 5-27
Creating Control Blocks 5-33

iv Oracle Developer: Build Forms |

Contents

Deleting DataBlocks 5-35
Summary 5-37

Practice 5 Overview 5-39
Practice5 5-40

Lesson 6: Working with Text Iltems
Introduction 6-3
What IsaText [tem? 6-5
Creating a Text Iltem 6-7
Modifying the Appearance of a Text Item 6-9
Associating Text with an I[tem Prompt 6-15
Controlling the Data of a Text Item 6-17
Altering the Navigational Behavior of a Text Item 6-23
Enhancing the Relationship Between Text Item and Database 6-25
Adding Functionality to aText Item 6-27
Including Helpful Messages 6-33
Summary 6-35
Practice 6 Overview 6-37
Practice6 6-38

Lesson 7: Creating LOVs and Editors
Introduction 7-3
What Are LOVsand Editors? 7-5
Definingan LOV 7-9
Creating an LOV by Using the LOV Wizard 7-19
Defining an Editor 7-25
Summary 7-29
Practice 7 Overview 7-31
Practice7 7-32

Lesson 8: Creating Additional Input Items
Introduction 8-3
What Are Input Items? 8-5
Creating a Check Box 8-7

Oracle Developer: Build Forms | %

Contents

CregtingalListltem 8-15
Creating a Radio Group 8-23
Summary 8-31

Practice 8 Overview 8-33
Practice8 8-34

Lesson 9: Creating Noninput Items
Introduction 9-3
What Are Noninput Items? 9-5
Creating aDisplay Item 9-7
Creating an Image Iltem 9-11
Creating a Sound Item 9-19
Creating a Push Button 9-25
Creating a Calculated Item 9-31
Creating aHierarchical Treeltem 9-39
Summary 9-41
Practice 9 Overview 9-43
Practice9 9-44

Lesson 10: Creating Windows and Content Canvases
Introduction 10-3
Windows and Content Canvases 10-5
Displaying a Form Module in Multiple Windows 10-9
Displaying a Form Module on Multiple Layouts 10-15
Summary 10-19
Practice 10 Overview 10-21
Practice10 10-22

Lesson 11: Working with Other Canvases
Introduction 11-3
Canvases Overview 11-5
Creating a Stacked Canvas 11-7
CreatingaToolbar 11-13
CreatingaTab Canvas 11-17

Vi Oracle Developer: Build Forms |

Contents

Summary 11-25
Practice 11 Overview 11-27
Practice11 11-28

Lesson 12: Introduction to Triggers
Introduction 12-3
What IsaTrigger? 12-5
Trigger Components 12-7
Summary 12-15

Lesson 13: Producing Triggers
Introduction 13-3
Defining Triggersin Form Builder 13-5
PL/SQL Editor Features 13-9
Database Trigger Editor 13-11
Writing the Trigger Code 13-13
Adding Functionality Using Built-in Subprograms 13-19
Using Triggers 13-27
Practice 13 Overview 13-32
Practice13 13-33

Lesson 14: Debugging Triggers
Introduction 14-3
Debugging Triggers 14-5
Summary 14-27
Practice 14 Overview 14-29
Practice14 14-30

Lesson 15: Adding Functionality to Items
Introduction 15-3
Item Interaction Triggers 15-5
Defining Functionality for Input Items 15-9
Defining Functionality for Noninput Items 15-13
Summary 15-27
Practice 15 Overview 15-29

Oracle Developer: Build Forms | vii

Contents

Practice15 15-30

Lesson 16: Runform Messages and Alerts
Introduction 16-3
Run-time Messages and Alerts Overview 16-5
Built-insand Handling Errors 16-7
Errorsand Built-Ins 16-9
Controlling System Messages 16-11
The FORM_TRIGGER_FAILURE Exception 16-15
Triggersfor Intercepting System Messages 16-17
Creating and Controlling Alerts 16-21
Summary 16-31
Practice 16 Overview 16-33
Practice16 16-34

Lesson 17: Query Triggers
Introduction 17-3
Query Triggers 17-5
SELECT Statements Issued During Query Processing 17-7
WHERE and ORDER BY Clauses 17-9
Writing Query Triggers 17-11
Query Array Processing 17-15
Coding Triggers for Enter Query Mode 17-17
Overriding Default Query Processing 17-21
Obtaining Query Information at Run Time 17-25
Summary 17-29
Practice 17 Overview 17-31
Practice17 17-32

Lesson 18: Validation
Introduction 18-3
Validation Process 18-5
Using Object Propertiesto Control Validation 18-7
Controlling Validation by Using Triggers 18-11

viii Oracle Developer: Build Forms |

Contents

Validating User Input 18-13
Tracking Validation Status 18-15
Built-insfor Vaidation 18-17
Summary 18-19

Practice 18 Overview 18-21
Practice18 18-22

Lesson 19: Navigation
Introduction 19-3
About Navigation 19-5
Controlling Navigation 19-7
Understanding Internal Navigation 19-11
Navigation Triggers 19-13
Using the When-New-“object™Instance Triggers 19-15
Using the Pre- and Post-Triggers 19-17
The Navigation Trap 19-19
Navigation in Triggers 19-21
Summary 19-23
Practice 19 Overview 19-25
Practice 19 19-26

Lesson 20: Transaction Processing
Introduction 20-3
Transaction Processing 20-5
The Commit Sequence of Events 20-9
Characteristics of Commit Triggers 20-11
Common Uses for Commit Triggers 20-13
DML Statements Issued During Commit Processing 20-25
Overriding Default Transaction Processing 20-27
Running Against Data Sources Other than Oracle 20-31
Getting and Setting the Commit Status 20-33
Array Processing 20-39
Summary 20-43
Practice 20 Overview 20-45

Oracle Developer: Build Forms | ix

Contents

Practice20 20-46

Lesson 21: Writing Flexible Code
Introduction 21-3
What Is Flexible Code? 21-5
Using System Variables for Flexible Coding 21-7
Using Built-in Subprograms for Flexible Coding 21-11
Referencing Objects by Internal ID 21-15
Referencing Items Indirectly 21-23
Summary 21-27
Practice 21 Overview 21-29
Practice21 21-30

Lesson 22: Sharing Objects and Code
Introduction 22-3
Reusable Objects and Code Overview 22-5
Property Class 22-7
Creating a Property Class 22-9
Inheriting a Property Class 22-11
Creating an Object Group 22-13
Copying and Subclassing Objects and Code 22-17
What Isan Object Library? 22-23
Working with Object Libraries 22-25
What Isa SmartClass? 22-27
Reusing PL/SQL 22-29
PL/SQL Libraries 22-31
Working with PL/SQL Libraries 22-33
Summary 22-37
Practice 22 Overview 22-39
Practice22 22-40

Lesson 23: Introducing Multiple Form Applications
Introduction 23-3
Multiple Form Applications 23-5

X Oracle Developer: Build Forms |

Contents

How to Start Another Form Module 23-7
Defining Multiple Form Functionality 23-9
Task List 23-21

Summary 23-23

Practice 23 Overview 23-25

Practice23 23-26

Appendix A: Practice Solutions
Practice 1 Solutions A-2
Practice 2 Solutions A-6
Practice 4 Solutions A-9
Practice 5 Solution A-14
Practice 6 Solutions A-18
Practice 7 Solution A-24
Practice 8 Solutions A-27
Practice 9 Solutions A-29
Practice 10 Solutions A-34
Practice 11 Solutions A-35
Practice 13 Solutions A-43
Practice 14 Solutions A-45
Practice 15 Solutions A-46
Practice 16 Solutions A-48
Practice 17 Solutions A-50
Practice 18 Solutions A-52
Practice 19 Solutions A-54
Practice 20 Solutions A-56
Practice 21 Solutions A-60
Practice 22 Solutions A-62
Practice 23 Solutions A-65

Appendix B: Table Descriptions and Data
Summit Sporting Goods Database Diagram B-2
S CUSTOMER Description B-3
S CUSTOMER Data B-4

Oracle Developer: Build Forms | Xi

Contents

S DEPT Description and Data B-8
S EMP Description B-9

S EMPData B-10

S ITEM Description B-13

S ITEM Data B-14

S ORD Description and Data B-16
S PRODUCT Description B-17

S PRODUCT Data B-18

S REGION Description and Data B-22
S TITLE Description and Data B-23
Oracle8 Objects: Types, Tables B-24

Appendix C: Frequently Asked Questions
Frequently Asked Questions C-2
Frequently Asked Questions and Answers C-4

Appendix D: Oracle Rdb Overview
What Is Oracle Rdb? D-2

Appendix E: Locking in Form Builder
Locking E-5
Default Lockingin Forms E-7
Locking in Triggers E-13
Summary E-19

Appendix F: Oracle8 Object Features in Oracle Developer
Overview F-3
New Oracle8 Datatypes F-5
Cresating Oracle8 Objects F-11
Referencing Objects F-19
Displaying Oracle8 Objects in the Object Navigator F-21
Summary F-29

Xii Oracle Developer: Build Forms |

Contents

Appendix G: Using the Layout Editor in Oracle Developer
Overview G-3
Why Use the Layout Editor? G-5
How to Access the Layout Editor G-7
Components of the Layout Editor G-9
Creating and Modifying Objectsin the Layout G-11
Formatting Objectsin the Layout G-19
Coloring Objectsand Text G-21
Importing Images and Drawings G-25
Summary G-27

Oracle Developer: Build Forms | Xiii

Contents

Xiv Oracle Developer: Build Forms |

Creating Windows and
Content Canvases

Lesson 10: Creating Windows and Content Canvases

Objectives

After completing this lesson, you should be able to
do the following:

* Describe windows and content canvases

* Describe the relationship between windows and
content canvases

Copyright O Oracle Corporation, 1999. All rights reserved. ORACLE

Objectives

* |dentify window and content canvas properties
* Display aform module in multiple windows
* Display aform module on multiple layouts

Copyright O Oracle Corporation, 1999. All rights reserved. ORACLE

10-2 Oracle Developer: Build Forms |

Introduction

Introduction

Overview

With Oracle Developer you can take advantage of the GUI environment by displaying
aform module across several canvases and in multiple windows. This lesson
familiarizes you with the window object and the default canvas type, the content

canvas.

Oracle Developer: Build Forms | 10-3

Lesson 10: Creating Windows and Content Canvases

Windows and Canvases

* Window: Container for Form Builder
visual objects

® (Canvas: Surface on which you “paint”
visual objects

To see a canvas and its objects, display the
canvas in a window.

Copyright O Oracle Corporation, 1999. All rights reserved. OF\)ACLE

Window, Canvas, and Viewport

7 Oracle Developer Forms Runtime [_ O] x] MDI
Action Edit Query Block Hecord Field Window Help parent

- window
HEE |0 ¥EE oS5« r | FX

8 WINDOW1 Document
B window
Dept

Id

Fiegion Id I—
— Emp l

Id Last Name Dept Id Canvas

|Record: 141 [[

Copyright O Oracle Corporation, 1999. All rights reserved. OF\)ACLE

10-4 Oracle Developer: Build Forms |

Windows and Content Canvases

Windows and Content Canvases

With Form Builder you can display an application in multiple windows by using its
display objects—windows and canvases.

What Is a Window?

A window isacontainer for all visual objectsthat make up a Form Builder application.
Itis similar to an empty picture frame. The window manager provides the controls for
the window that enable such functionality as scrolling, moving, and resizing. You can
minimize a window.

A single form may include several windows.

What Is a Canvas?

A canvasisasurface inside awindow container on which you place visual objects
such as interface items and graphics. It issimilar to the canvas upon which apictureis
painted. To see acanvas and its contents at run time, you must display it in awindow.
A canvas always displays in the window to which it is assigned.

Note: Each item in aform must refer to no more than one canvas. An item displays on
the canvas to which it is assigned, through its Canvas property. Recall that if the
Canvas property for an item isleft unspecified, that item is said to be a Null-canvas
item and will not display at runtime.

What Is a Viewport?

A viewport is an attribute of a canvas. It is effectively the visible portion of, or view
onto, the canvas.

Oracle Developer: Build Forms | 10-5

Lesson 10: Creating Windows and Content Canvases

Content Canvas

* “Base” canvas
* View occupies entire window
* Default canvas type

* Each window should have at least one content
canvas

Copyright O Oracle Corporation, 1999. All rights reserved. OF\)ACLE

Windows and Content Canvases

Canvas 1
= MW
L) [\‘U‘) [Window
Canvas 2 Canvas 3
a, f
\\l\ \&z‘/

Copyright O Oracle Corporation, 1999. All rights reserved. OF\)ACLE

Note

At run time, only one content canvas can display in awindow at atime. However, you
can assign multiple content canvases to a window.

10-6 Oracle Developer: Build Forms |

Windows and Content Canvases

What Is a Content Canvas?

Form Builder offers different types of canvases. A content canvas is the base canvas
that occupies the entire content pane of the window in which it displays. The content
canvas is the default canvas type. Most canvases are content canvases.

The Relationship Between Windows and Content Canvases

You must cregate at |least one content canvas for each window in your application.
When you run aform, only one content canvas can display in awindow at atime, even
though more than one content canvas can be assigned to the same window at design
time.

At run time, a content canvas always completely fillsits window. As the user resizes
the window, Form Builder resizes the canvas automaticaly. If the window istoo small
to show all items on the canvas, Form Builder automatically scrolls the canvasto bring
the current item into view.

Oracle Developer: Build Forms | 10-7

Lesson 10: Creating Windows and Content Canvases

Windows
e WINDOW1:
— ltis created by default with each new form
module.

— It is modeless.

— You can delete, rename, or change its
attributes.

Copyright O Oracle Corporation, 1999. All rights reserved. ORACLE

Windows

* Use additional windows to:
— Display two or more content canvases at once
— Modularize form contents

— Switch between canvases without replacing
the initial one

— Take advantage of the window manager
* Two types of windows:

— Modal

— Modeless

Copyright O Oracle Corporation, 1999. All rights reserved. ORACLE

10-8 Oracle Developer: Build Forms |

Displaying a Form Module in Multiple Windows

Displaying a Form Module in Multiple Windows

When you create a new form module, Form Builder creates a new window implicitly.
Thus, each new form modul e has one predefined window, which iscalled WINDOW1.
You can delete or rename WINDOW1, or change its attributes.

Uses and Benefits of a New Window

You can create additional windows in which to display your form application. A new
or second window provides the ability to do the following:

» Display two or more content canvases at once.

* Modularize the form contents.

» Switch between canvases without replacing the initial one.

» Take advantage of window manager functionality such as minimizing.

Window Types
You can create two different window types: modal and modeless.

* A modal window is a restricted window that the user must respond to
before moving the input focus to another window. Modal windows:

- Must be dismissed before control can be returned to a modeless
window

- Become active as soon as they display
- Require a means of exit or dismissal

A modelesswindow is an unrestricted window that the user can exit
freely. Modeless windows:

- Can display many at once
- Are not necessarily active when displayed
- Are the default window type

Oracle Developer: Build Forms | 10-9

Lesson 10: Creating Windows and Content Canvases

¥ Dept_Emp Window
— Dept
Id |41 MName [Operations ‘
Region |d |1
Forms @
— Emp & Do you want to save the changes vou have made?
Id
2 Mg HNo | Cancel
E Oi "@
16 M adura Stock Clerk 41
17 Srriith Stock Clerk 41 -
'@
Press Ciil+Tab to move between choices, Enter to select
|Recod: 0/4 | [[

Copyright O Oracle Corporation, 1999. All rights reserved. OR’AC'_E

Show vertical scroll bar

1 | MDI parent window
2 | X/Y position

3 | Title

4 | Document window
5 | Dialog window

6

7

Show horizontal scroll bar

10-10 Oracle Developer: Build Forms |

Displaying a Form Module in Multiple Windows

Window Properties

Physical Property Function

X Position Determines the X coordinate for the window

Y Position Determinesthe Y coordinate for the window

Width Determines the width of the window

Height Determines the height of the window

Bevel Determines how the window border displays

Show Horizontal Scrollbar | Determines whether a horizontal scroll bar displaysin
the window

Show Vertical Scrollbar | Determines whether a vertical scroll bar displaysin the window

Functional Property Function

Title Specifies awindow title to appear in the title bar

Primary Canvas Specifies the name of the canvas to display in this window when
itisinvoked programmatically

Window Style Determines whether the window style is Document or Dialog

(Document style windows are fixed and always remain within the
application window frame. Dialog style windows are free
floating and can be moved outside the application window
frame.)

M odal Determines whether the window is modal (requires user
response) or modeless (does not require user response)

Hide on Exit Specifies whether a model ess window is hidden automatically
when the end user navigates to an item in another window

I con Filename Specifies the icon resource name that depicts the minimized
window

Note: If you do not specify awindow title, Form Builder uses the window object name
specified in the Name property for theftitle.

The canvas you choose as the primary canvas must be a content canvas.

The X and Y Position (0,0) of awindow is relative to the top left corner of the screen

when you set the Window Style to dialog. If you set the Window Style to document,
the X and Y Position (0,0) isrelative to the top-left corner of the MDI window.

Oracle Developer: Build Forms | 10-11

Lesson 10: Creating Windows and Content Canvases

GUI Hints

®* GUI hints are recommendations to the window
manager about window appearance and
functionality.

* |f the window manager supports a specific GUI
Hint and its property is set to Yes, it will be used.

* Functional properties for GUI Hints:

- Close Allowed - Maximize Allowed
- Move Allowed - Minimize Allowed
- Resize Allowed - Inherit Menu

Copyright O Oracle Corporation, 1999. All rights reserved. ORACLE

10-12 Oracle Developer: Build Forms |

Displaying a Form Module in Multiple Windows

What Are GUI Hints?

GUI Hints are recommendations to the window manager about the window
appearance and functionality. There are certain properties under the Functional group
that enable you to make these recommendations. If the current window manager
supports the specific GUI Hint property and it is set to Yes, then Form Builder usesit.
However if the window manager does not support the property, Form Builder ignores
it.

Functional Property
for GUI Hints Function

Close Allowed Enables the mechanism for closing the window, as provided by the
window manager-specific Close command (Form Builder responds
to user attempts to close the window by firing a
WHEN-WINDOW-CLOSED trigger to actually closeit.)

Move Allowed Determines whether the user can move the window by using the
means provided by the window manager
Resize Allowed Determines whether the user can resize the window at run time

Maximize Allowed Determines whether the user can resize the window by using the
zooming capabilities of the window manager

Minimize Allowed Determines whether the user can iconify and minimize the window
Inherit Menu Determines whether the window displays the current form menu

Note: The Minimize Allowed property must be set to Yesin order for Icon Filename
to bevalid.

How to Create a New Window
1 Click the Windows node in the Object Navigator.
2 Click the Createicon.
A new window entry displays, with a default name of WINDOWXX.

3 If the Property Palette is not already displayed, double-click the window
icon to the left of the new window entry.

4 Set the window properties according to your requirements (as described
in the tables, earlier in thislesson).

Note: For your new window to display, you must specify its name in the Window
property of at least one canvas.

Oracle Developer: Build Forms | 10-13

Lesson 10: Creating Windows and Content Canvases

Creating a Content Canvas

* Implicitly:
— Using the Layout Wizard
— Using the Layout Editor

* Explicitly: Using the Create icon in the
Object Navigator

Copyright O Oracle Corporation, 1999. All rights reserved. ORACLE

10-14 Oracle Developer: Build Forms |

Displaying a Form Module on Multiple Layouts

Displaying a Form Module on Multiple Layouts

You can have more than one content canvas in your form application. However,
remember that only one content canvas can display in awindow at one time. To
display more than one content canvas at the same time, you can assign each content
canvasto adifferent window.

Now you can display the form module on multiple layouts or surfaces.

Creating a New Content Canvas Implicitly

There are two ways of implicitly creating a new content canvas:

» Layout Wizard: When you use the Layout Wizard to arrange data block
items on a canvas, the wizard enables you to select a new canvas on its

Canvas page. In this case, the wizard creates a new canvas with a default
name of CANVAXX.

» Layout Editor: When there are no canvases in a form module and you
invoke the Layout Editor; Form Builder creates a default canvas on
which you can place items.

Creating a New Content Canvas Explicitly

You can create a new content canvas explicitly by using the Create icon in the Object
Navigator.

Oracle Developer: Build Forms | 10-15

Lesson 10: Creating Windows and Content Canvases

Content Canvas Properties

Viewport

- - -T-T T - - -=-=-=-=-=-=-=-==-=-= h]

I 1 e A
Viewport X/Y|1 !
Position ! |
oncanvas |, |
1 1
1 1

: : Height

1 1
1 1
1 1
1 1
L e e e e e e e e e - 1

Canvas m—t— v

Copyright O Oracle Corporation, 1999. All rights reserved. ORACLE

10-16 Oracle Developer: Build Forms |

Displaying a Form Module on Multiple Layouts

Content Canvas Specific Properties

General Property

Function

Canvas Type

Specifiesthe type of canvas (For a content canvas, this property
should be set to Content.)

Physical Property

Function

Window

Specifies the window in which the canvas will be displayed

Viewport X Positionon
Canvas

Specifiesthe X coordinate of the top-left corner of the view relative
to the upper-left corner of the canvas

Viewport Y Positionon
Canvas

Specifiesthe Y coordinate of the top-left corner of the view relative
to the upper-left corner of the canvas

Width Specifies the width of the canvas
Height Specifies the height of the canvas
Bevel Specifies a scul pted effect canvas border

Functional Property

Function

Raise on Entry

Determines whether the canvas is always brought to the front of the
window when the user navigates to an item on this canvas (Use this
property when the canvasis displayed in the same window with
other types of canvases.)

Note: For acanvasto display at run time, its Window property must

be specified.

How to Create a New Content Canvas
1 Click the Canvases node in the Object Navigator.
2 Click the Createicon.
A new canvas entry displays with a default name of CANVASXX.

3 If the Property Paletteis not already displayed, click the new canvas
entry and select Tools—>Property Palette.

4 Setthe canvas properties that are described in the above tables according
to your requirements.

Note: Double-clicking the icon for a canvas in the Object Navigator will invoke the

Layout Editor instead of the Property Palette.

Oracle Developer: Build Forms |

Lesson 10: Creating Windows and Content Canvases

Summary

* Describing windows and content canvases
* (Creating a new window
* Creating a new content canvas

Copyright O Oracle Corporation, 1999. All rights reserved. ORACLE

10-18 Oracle Developer: Build Forms |

Summary

Summary

In this lesson, you should have learned:

» About the relationship between windows and content canvases
* How to create a new window

* How to create a new content canvas

Oracle Developer: Build Forms | 10-19

Lesson 10: Creating Windows and Content Canvases

Practice 10 Overview

This practice covers the following topics:

* Changing awindow size, position, name, and title
* Creating a new window

* Displaying data block contents in the new window

Copyright O Oracle Corporation, 1999. All rights reserved. ORACLE

Note
For solutions to this practice, see Practice 10 in Appendix A, “Practice Solutions.”

10-20 Oracle Developer: Build Forms |

Practice 10 Overview

Practice 10 Overview

In this practice session, you will customize windows in your form modules. You will
resize the windows to make them more suitable for presenting canvas contents. You
will also create a new window to display the contents of the S INVENTORY block.
» Change the size and position of the window in the CUSTOMERS form.
Change its name and title. Save and run the form.
* Modify the name and title of the window in the ORDERS form.
» Create a new window in the ORDERS form. Make sure the contents of
the S_INVENTORY block display in this window. Save and run the
form.

Oracle Developer: Build Forms | 10-21

Lesson 10: Creating Windows and Content Canvases

Practice 10

1 Modify the window in the CUST GXX form. Change the name of the
window to WIN_CUSTOMER, and change its title to Customer
Information. Check that the size and position are suitable.

2 Save, compile, and run the form to test the changes.

3 Modify the window in the ORDGXX form. Ensure that the window is
caled WIN_ORDER. Also change itstitle to Orders and Items.

4 Inthe ORDGXX form, create a new window called WIN_INVENTORY
suitable for displaying the CV_INVENTORY canvas. Use therulersin
the Layout Editor to help you plan the height and width of the window.
Set the window title to Stock Levels and the Hide on Exit property to
Yes. Place the new window in a suitable position relative to
WIN_ORDER.

5 Associate the CV_INVENTORY canvas with the window
WIN_INVENTORY. Run the form to ensure that the S INVENTORY
block displaysin WIN_INVENTORY when you navigate to this block.

6 Savetheform.

10-22 Oracle Developer: Build Forms |

Working with Other
Canvases

Lesson 11: Working with Other Canvases

Objectives

After completing this lesson, you should be able to
do the following:

* Describe the different types of canvases and their
relationships to each other

* Identify the appropriate canvas type for different
scenarios

* Create an overlay effect by using stacked
canvases

* Create atoolbar
* Create atabbed interface

Copyright O Oracle Corporation, 1999. All rights reserved. ORACLE

11-2 Oracle Developer: Build Forms |

Introduction

Introduction

Overview

In addition to the content canvas, the Oracle Developer forms component enables you
to create three other canvas types. This lesson introduces you to the stacked canvas,
which isideal for creating overlaysin your application. It also introduces you to the
toolbar canvas and the tabbed canvas, both of which enable you to provide a user-
friendly GUI application.

Oracle Developer: Build Forms |

Lesson 11: Working with Other Canvases

Canvas Types

Content canvas Horizontal Toolbar

=l
—

| —
_

™ L
=

i o] [e

P \/ertical
Stacked Toolbar
canvas
Tab
TahD e—
page

Copyright [Oracle Corporation, 1999. All rights reserved. OR’ACLE

11-4 Oracle Developer: Build Forms |

Canvases Overview

Canvases Overview

Besides the content canvas, Form Builder provides three other types of canvases
which are:

e Stacked canvas

* Toolbar canvas

* Tab canvas

When you create a canvas, you specify its type by setting the Canvas Type property.
The type determines how the canvas is displayed in the window to which it is
assigned.

Oracle Developer: Build Forms | 11-5

Lesson 11: Working with Other Canvases

Stacked Canvas

* Displayed on top of a content canvas
* Shares awindow with a content canvas
* Sjze:

— Usually smaller than the content canvas in the
same window

— Determined by viewport size
* Created in:

— Object Navigator

— Layout Editor

Copyright [Oracle Corporation, 1999. All rights reserved. OF\)ACLE

11-6 Oracle Developer: Build Forms |

Creating a Stacked Canvas

Creating a Stacked Canvas

What Is a Stacked Canvas?

A stacked canvasisdisplayed on top of, or stacked on the content canvas assigned to a
window. It shares awindow with a content canvas and any number of other stacked
canvases. Stacked canvases are usually smaller than the window in which they display.

Determining the Size of a Stacked Canvas

Stacked canvases are typically smaller than the content canvas in the same window.
Determine the stacked canvas dimensions by setting Width and Height properties.
Determine the stacked canvas view dimensions by setting Viewport Width and
Viewport Height properties.

Uses and Benefits of Stacked Canvases
» Scrolling views as generated by Oracle Designer
» Creating an overlay effect within a single window

» Displaying headers that display constant information, such as company
name

» Creating a cascading or a revealing effect within a single window

» Displaying additional information

» Displaying information conditionally

» Displaying context-sensitive help

» Hiding information

Note: If a data block contains more items than the window can display, Form Builder
scrolls the window to display items outside the window frame. This can cause
important items, such as primary key values, to scroll out of view. By placing
important items on a content canvas, and placing the items that can be scrolled out of

sight on a stacked canvas, the stacked canvas becomes the scrolling region, rather than
the window itself.

Creating a Stacked Canvas

You can create a stacked canvas in either of the following:
* Object Navigator

* Layout Editor

Oracle Developer: Build Forms | 11-7

Lesson 11: Working with Other Canvases

Stacked Canvas Properties

£8 Oracle Developer Forms Runtime oI
Action Edit Query Block Record Field Window Help

B2 0 ¥2B 2h% warn|[FXa?

8 Diders and ltems

Stock | Show Help| Ext |

oeris 8 Order Information

Date Dicered elp Information

31-4UG-1932

The Orders Form lets you insert, update,
delete and query orders for a customer.

The Orders section (top) lets you display or
define the order.
The Items section (bottom) lets you display

Date Shipped or define the lineitems for the order.
10-5EFP-1992 The Stock section shows the existing stock

for the product of the current lineitem.
(Click on the Stock button to see the stock)

You can use the Record menu for inserting

and deleting records.
Hide Help

|Frecord: 1/7

Copyright [Oracle Corporation, 1999. All rights reserved. OF\)ACLE

Content canvas

Stacked canvas

Viewport X/Y position

Viewport height

a |~ W |IN|PF

Viewport width

11-8 Oracle Developer: Build Forms |

Creating a Stacked Canvas

Stacked Canvas Specific Properties

Viewport Property Function

Viewport X Position | Specifies the X coordinate of the stacked canvas viewport
Viewport Y Position | SpecifiestheY coordinate of the stacked canvas viewport
Viewport Width Specifies the width of the stacked canvas viewport
Viewport Height Specifies the height of the stacked canvas viewport

Physical Property Function

Show Horizontal Determines whether the stacked canvas displays a horizontal
Scrollbar scroll bar

Show Vertical Scroll- | Determines whether the stacked canvas displays a vertical
bar scroll bar

How to Create a Stacked Canvas in the Object Navigator
1 Click the Canvases node in the Object Navigator.
2 Click the Create icon.
A new canvas entry displays with a default name of CANVASXX.

3 If the Property Paletteis not already displayed, click the new canvas
entry and select Tools—>Property Palette.

4 Setthe Canvas Type property to Stacked. Additionally, set the properties
that are described in the above table according to your requirements.

Note: To convert an existing content canvas to a stacked canvas, change its Canvas
Type property value from Content to Stacked.

In order for the stacked canvas to display properly, make sure that its position in the
stacking order places it in front of the content canvas assigned to the same window.
The stacking order of canvases is defined by the sequence in which they appear in the
Object Navigator.

Oracle Developer: Build Forms | 11-9

Lesson 11: Working with Other Canvases

Creating a Stacked Canvas

& Oracle Developer Form Builder - C-\FormsI\R2class\lab_so\ORDWK10.fmb (=] B3
Fle Edt View Fomat Amange Progiam Tools Window Help

D6 8%F XaE| | @ 7 W comes| O =] e [5-0RD

FF =lezu|@al| g P e

| M5 Sans Serit

Order Information

MAGE: PRODUCT _IMAGE
= i -

Orderld [0

Dote Onderesd ~ Cusstome.

[DATE_ORDERE | JCUSTOI

Sales Re

SALES_

1 i
....... ‘_ﬂ'» _
i 04 Shipped <

[DATE_SHIFFED| € £ DESCRIPTION

PP [FRODLC [DESCAIPTION | PHICE Y ERED ITEM TOTAL

PRODUC [DESCRIPTION | PRICE’ FT\TY PPED! ITEM_TOTAL

Froduct |d Description j

of

Copyright [Oracle Corporation, 1999. All rights reserved. OF\)ACLE

11-10 Oracle Developer: Build Forms |

Creating a Stacked Canvas

How to Create a Stacked Canvas in the Layout Editor

1 In the Object Navigator, double-click the object icon for the content
canvas on which you wish to create a stacked canvas.

The Layout Editor displays.
2 Click the Stacked Canvas tool in the toolbar.

3 Click and drag the mouse in the canvas where you want to position the
stacked canvas.

4 Open the Property Palette of the stacked canvas. Set the canvas
properties according to your requirements (described earlier in the
lesson).

Displaying Stacked Canvases in the Layout Editor

You can display a stacked canvas asiit Sits over the content canvas in the Layout
Editor. Check the display position of stacked canvases by doing the following:

1 Select View—>Stacked Views in the Layout Editor. The Stacked/Tab
Canvases dialog box is displayed, with a list of all the stacked canvases
assigned to the same window as the current content canvas.

2 Select the stacked canvases you want to display in the Layout Editor.
Note: [Control] + Click to clear a stacked canvas that was previously selected.

Oracle Developer: Build Forms | 11-11

Lesson 11: Working with Other Canvases

Toolbars

* Special type of canvas for tool items
* Three types:
— Vertical toolbar
— Horizontal toolbar
— MDI toolbar
* Provide:
— Standard look and feel
— Alternative to menu or function key operation

Copyright [Oracle Corporation, 1999. All rights reserved. OF\)ACLE

11-12 Oracle Developer: Build Forms |

Creating a Toolbar

Creating a Toolbar

What Is a Toolbar Canvas?

A toolbar canvasis a special type of canvas that you can create to hold buttons and
other frequently used GUI elements.

The Three Toolbar Types

» Vertical toolbar: Use a vertical toolbar to position all your tool items
down the left or right hand side of your window.

» Horizontal toolbar: Use a horizontal toolbar to position all your tool
items and controls across the top or bottom of your window.

* MDI toolbar: Use an MDI toolbar to avoid creating more than one
toolbar for a Form Builder application that uses multiple windows.

Uses and Benefits of Toolbars

* Provide a standard look and feel across canvases displayed in the same
window.

» Decrease form module maintenance time.

* Increase application usability.

» Create applications similar to others used in the same environment.
* Provide an alternative to menu or function-key driven applications.
Note: The MDI toolbar is only available for Microsoft Windows.

Oracle Developer: Build Forms | 11-13

Lesson 11: Working with Other Canvases

Toolbar Related Properties

* Canvas properties:

Canvas Type
Window
Width

Height

Copyright [Oracle Corporation, 1999. All rights reserved. OF\)ACLE

Toolbar Related Properties

* Window properties:
— Horizontal Toolbar Canvas
— Vertical Toolbar Canvas
* Form Module properties:
— Form Horizontal Toolbar Canvas
— Form Vertical Toolbar Canvas

Copyright [Oracle Corporation, 1999. All rights reserved. OF\)ACLE

11-14 Oracle Developer: Build Forms |

Creating a Toolbar

Toolbar Related Properties

Once you create atoolbar canvas, you must set its required properties as well asthe
required properties of the associated window. For MDI toolbars, you must set the
required form module properties.

Canvas Property Function

Canvas Type Specifiesthe type of canvas; for atoolbar can-
vas, set to Horizontal Toolbar or Vertical
Toolbar

Window Specifies which window the toolbar
displaysin

Width Determines the width of the toolbar

Height Determines the height of the toolbar

Window Property Function

Horizontal Toolbar Canvas/ Identifies the horizontal/vertical toolbar to

Vertical Toolbar Canvas display in this window

Form Module Property Function

Form Horizontal Toolbar Canvas/ Identifies the horizontal/vertical toolbar to

Form Vertical Toolbar Canvas display in the MDI window

How to Create a Toolbar Canvas
1 Create anew canvas in the Object Navigator.

2 If the Property Paletteis not already displayed, click the new canvas
entry and select Tools—>Property Palette.

3 Set the canvas properties that are described in the above table.
4 In the Object Navigator select one of the following:

- The window in which you want to display the toolbar (for a form
window toolbar)

- The Form module (for an MDI Toolbar)
5 Set the Horizontal/\Vertical Toolbar Canvas properties.
6 Add GUI elements, boilerplate text, and graphics, as required.

Note: The width of a horizontal toolbar is set to the width of the window (for example,
content canvas). Likewise, the height of a vertical toolbar is set to the height of the
window.

Oracle Developer: Build Forms | 11-15

Lesson 11: Working with Other Canvases

Tab Canvas

* Enables you to organize and display related
information on separate tabs

* Consists of one or more tab pages
* Provides easy access to data
* Created in:

— Object Navigator

— Layout Editor

Copyright [Oracle Corporation, 1999. All rights reserved. OF\)ACLE

11-16 Oracle Developer: Build Forms |

Creating a Tab Canvas

Creating a Tab Canvas

What Is a Tab Canvas?

A tab canvas is aa special type of canvas that enables you to organize and display
related information on separate tabs. Like stacked canvases, tab canvases are
displayed on top of acontent canvas.

What Is a Tab Page?

A tab pageis a subobject of atab canvas. Each tab canvasis made up of one or more
tab pages. A tab page displays a subset of the information in the entire tab canvas.
Each tab page has alabeled tab that end users can click to access information on the

page.
Each tab page occupies an equal amount of space on the tab canvas.

Uses and Benefits of Tab Canvases

» Create an overlay effect within a single window.

» Display large amounts of information on a single canvas.
* Hide information.

» Easily access required information by clicking the tab.

Creating a Tab Canvas

* Create an empty tab canvas in either of the following:
- Object Navigator
- Layout Editor

» Define one or more tab pages for the tab canvas.

* Place items on the tab pages.

Oracle Developer: Build Forms | 11-17

Lesson 11: Working with Other Canvases

Tab Canvas Related Properties

78 Diacle Developer Forms Runtime M= E |
g Blick Record Fisld Window Help

WER HEE| ey | Fxg | ?

WEE| |

£ Employee Infoi ation J[=] S |
o

Personnel | Payroll | Comment | Deparlmenll A
ManagerId [3 DeptId [31
Salaw [1200 Commission Pct [T

— 2) =)

Copyright [Oracle Corporation, 1999. All rights reserved. OF\)ACLE

Viewport X/Y position

Viewport width

Viewport height

AW [IN|PF

Tab attachment edge

11-18 Oracle Developer: Build Forms |

Creating a Tab Canvas

Tab Canvas Related Properties

Onceyou create atab canvas and its tab pages, you must set the required properties for
both of these objects. Place items on a tab page by setting the required item properties.

Tab Canvas Property

Function

Viewport X Position

Specifies the X coordinate of the tab canvas upper-left corner

Viewport Y Position

Specifiesthe Y coordinate of the tab canvas upper-left corner

Viewport Width

Specifies the width of the view for the tab canvas

Viewport Height

Specifies the height of the view for the tab canvas

Corner Style

Specifies the shape of the labelled tabs on the tab canvas (Select
from Chamfered, Square, and Rounded)

Tab Attachment Edge

Specifies the location where tabs are attached to the tab canvas

Tab Page Property

Function

Label

Specifies the text label that appears on the tab page’s tab g
run time

Item Property Function
Canvas Specifies the tab canvas on which the item will be display
Tab Page Specifies the tab page on which the item will be displayeq

Oracle Developer: Build Forms |

Lesson 11: Working with Other Canvases

Creating a Tab Canvas

& Oracle Developer Form Builder - C:\FormsI\R2class\lab_soN\ORDWK11.fmb [_ (O] =]
File Edit View Format Arange Program Tools “indow Help
i : : f _ — 2 =
I M5 Sans Serf j| G - ‘ B I U |@Q| = £ S0ithm ‘ 5‘41‘5‘ \g|
ITEJD |1E ‘32 |4E |E4 ‘ED |SE |112‘123'144'150‘175'192'ZDE|224'24D|255|272'255'304'320'335'352'353'334‘4DD|41E|432‘44E
e[]® [| pasear | PacEas |
O~ E
2
[T
BE)
(])6} o
ik
e
be| |
ol o= o
ol
== e
= |jsd \ﬁ _
TR IS g ===y e (IR ML) e L
[ITE [PROCUC [DESCRIFTION [PRICE RTITY [FPED! \TEM_TIDTALH‘ _'ﬂ
3

Copyright [Oracle Corporation, 1999. All rights reserved. OF\)ACLE

11-20 Oracle Developer: Build Forms |

Creating a Tab Canvas

How to Create a Tab Canvas in the Object Navigator

1
2

8

Click the Canvases node in the Object Navigator.
Click the Create icon.
A new canvas entry displays.

If the Property Palette is not already displayed, click the new canvas
entry and select Tools—>Property Palette.

Set the Canvas Type property to Tab. Additionally, set the canvas
properties according to your requirements (described earlier in the
lesson).

Expand the canvas node in the Object Navigator.
The Tab Pages node displays.
Click the Create icon.

A tab page displays in the Object Navigator, with a default name of RXGEhe
Property Palette takes on its context.

Set the tab page properties according to your requirements (described
earlier in the lesson).

Create additional tab pages by repeating steps 6 and 7.

How to Create a Tab Canvas in the Layout Editor

1

In the Object Navigator, double-click the object icon for the content
canvas on which you want to create a tab canvas.

The Layout Editor displays.
Click the Tab Canvas tool in the toolbar.

Click and drag the mouse in the canvas where you want to position the
tab canvas.

Form Builder creates a tab canvas with two tab pages by default.

Open the Property Palette of the tab canvas. Set the canvas properties
according to your requirements (described earlier in the lesson).

Create additional tab pages, if required, in the Object Navigator.

Set the tab page properties according to your requirements (described
earlier in the lesson).

Oracle Developer: Build Forms | 11-21

Lesson 11: Working with Other Canvases

Placing Items on a Tab Canvas

* Placeitems on each tab page for user interaction.
* Set the item properties:

— Canvas

— Tab Page

Copyright [Oracle Corporation, 1999. All rights reserved. OF\)ACLE

11-22 Oracle Developer: Build Forms |

Creating a Tab Canvas

Placing Items on a Tab Page

Onceyou create atab canvas and related tab pages, you must place individual itemson

the tab pages that the end users can interact with at run time. To accomplish this, do

the following:

* Open the Property Palette of the item.

* Set the item’s Canvas and Tab Page properties of the item to the desired
tab canvas and tab page.

Note: Display the tab canvas as it sits on top of the content canvas, by selecting

View—>Stacked View in the Layout Editor.

Oracle Developer: Build Forms | 11-23

Lesson 11: Working with Other Canvases

Summary

* Creating an overlay effect with a stacked canvas
* Creating a toolbar
* Creating a tab canvas

Copyright [Oracle Corporation, 1999. All rights reserved. OF\)ACLE

11-24 Oracle Developer: Build Forms |

Summary

Summary

In this lesson you should have learned how to:

» Create an overlay effect with a stacked canvas
* Create a toolbar

» Create a tabbed canvas

Oracle Developer: Build Forms | 11-25

Lesson 11: Working with Other Canvases

Practice 11 Overview

This practice covers the following topics:
* Creating a toolbar canvas

* Creating a stacked canvas

* Creating a tab canvas

* Adding tab pages to the tab canvas

Copyright [Oracle Corporation, 1999. All rights reserved. OF\)ACLE

Note
For solutions to this practice, see Practice 11 in Appendix A, “Practice Solutions.”

11-26 Oracle Developer: Build Forms |

Practice 11 Overview

Practice 11 Overview

In this practice session, you will create different types of canvases: stacked canvas,
toolbar canvas, and tab canvas.

» Create a horizontal toolbar canvas in the ORDERS form. Create new
buttons in the Control block, and place them on the horizontal toolbar.
Save and run the form.

» Create a stacked canvas in the ORDERS form to add some help text.
Position the canvas in the center of the window. Create a button in the
Control block. This button will be used later to display the stacked
canvas. Add help text on the stacked canvas. Save and run the form.

» Create atab canvas in the CUSTOMERS form. Create three tab pages on
this canvas, and make sure that each tab page displays the appropriate
information. Save and run the form.

Oracle Developer: Build Forms | 11-27

Lesson 11: Working with Other Canvases

Practice 11

Toolbar Canvases
1 Inthe ORDGXX form, create a horizontal toolbar canvas called Tool bar
in the WIN_ORDER window, make it the standard toolbar for that
window. Suggested height is 30.
2 Save, compile, and run the form to test.
Notice that the toolbar now uses part of the window’s space. Adjust the window
size accordingly.
Create three buttons in the CONTROL block, as detailed below, and place them on the
Toolbar canvas.

Button Name Details

Stock Button Label: Stock

Mouse Navigate: No
Keyboard Navigable: No
Canvas: Toolbar
Show_Help_Button Label: Show Help
Mouse Navigate: No
Keyboard Navigable: No
Canvas: Toolbar
Exit_Button Label: Exit

Mouse Navigate: No
Keyboard Navigable: No
Canvas: Toolbar

Suggested positions for the buttons are shown in the following illustration:

1] |'IE |32 |48 |E4 |BEI |SE |'I'|2|128|'I44|'IEEI|1?E|'I9:1320|335|352|358|384|4EID|41E|432|448|454|4§

Stock| Show Help| Exit|

11-28 Oracle Developer: Build Forms |

Practice 11

Stacked Canvases

1 Create astacked canvas named CV_HELP to display help in the
WIN_ORDER window of the ORDGXX form. Suggested visible size is
Viewport Width 270, Viewport Height 215 (points). Place some
application help text on this canvas.

2 Position the view of the stacked canvas so that it appearsin the center of
WIN_ORDER. Make sure it will not obscure the first enterable item.
Do this by planning the view’s top-left position in the Layout Editor, while
showing CV_ORDER. Define the Viewport X and Viewport Y Positions in the
Property PalettdDo not move the view in the Layout Editor.

3 Organize CV_HELP so that it is the last canvas in sequence.

Do this in the Object Navigator. (This ensures the correct stacking order at run
time.)

4 Save, compile, and run the form to test. Note that the stacked canvas
displays all the time, providing that it does not obscure the current item
in the form.

5 Switch off the Visible property of CV_HELP, then create a button in the
control block to hide the Help information when it is no longer needed.
We will add the code later. Display this button on the CV_HELP canvas.

Button Name Details

Hide Help_Button Label: Hide Help,
Canvas: CV_HELP
Mouse Navigate: No

0 |'|E |32 |4E |E4 |ElEI |EIE |1'I2|128|144|'|EEI|1?E|182|2DE|224|24D|255|

Help Information

The Orders Form lets you insert, update.
delete and query orders for a customer.

The Orders section (top) lets you display or
define the order.

The ltems section (bottom) lets you display
or define the lineitems for the order.

The Stock section shows the existing stock
for the product of the current lineitem.

{Click on the Stock button to see the stock)

w20 Oy By Ll =4 O
M s e I I

—
—]
[

..
| & &
S OOl

=
o
=

You can use the Record menu for inserting

and deleting records.
Hide Helpl

—_
| =
o

=
[dn)
(R

i
=
fa]

Oracle Developer: Build Forms | 11-29

Lesson 11: Working with Other Canvases

Tab Canvases
Modify the CUSTGXX form in order to use atab canvas:

1 Inthe Layout Editor, delete the frame object that coversS CUSTOMER
block. Create atab canvas. In the Layout Editor set the Background
Color property to gray, Tab style property to Square, and Bevel property
to None.

2 Rename thistab canvas TAB_ CUSTOMER. Create three tab pages and
label them as Addr ess, Bi |l | ing,and Comments.

3 Design thetab pages according to the following screenshots. Set the item
properties to make them visible on the relevant tab pages.

11-30 Oracle Developer: Build Forms |

Practice 11

Oracle Developer: Build Forms | 11-31

Lesson 11: Working with Other Canvases

11-32 Oracle Developer: Build Forms |

Practice 11

Oracle Developer: Build Forms | 11-33

Lesson 11: Working with Other Canvases

Tab Canvases (continued)

4 Reorder the items according to the tab page sequence. Ensure that the
user does not move from one tab page to another when tabbing through
items. Set Next Navigation Item and Previous Navigation Item
properties according to the order of itemsin the tab pages.

5 Save, compile, and run the form.

11-34 Oracle Developer: Build Forms |

Introduction to Triggers

Lesson 12: Introduction to Triggers

Objectives

After completing this lesson, you should be able to
do the following:

* Define triggers
* Identify the different trigger categories
* Plan the type and scope of triggers in a form

* Describe the properties that affect the behavior of
atrigger

Copyright [Oracle Corporation, 1999. All rights reserved. OF\)ACLE

12-2 Oracle Developer: Build Forms |

Introduction

Introduction

Overview

Triggers are one of the most important mechanisms that you can use to modify or add
to the functionality of aform. In thislesson, you learn the essential rules and
properties of triggers so that you can use them throughout your application.

Oracle Developer: Build Forms |

Lesson 12: Introduction to Triggers

Form Builder Triggers

Queries /‘\& —-| PL/SQL
Validation

Navigation Event Fire

Interaction —>/.\\ —3| PL/SQL
Internal event

Errors/Messages

Others /‘\\ —| PL/SQL

Trigger types

Copyright [Oracle Corporation, 1999. All rights reserved. OF\)ACLE

Note

Events cause the activation, or firing, of certain trigger types.

12-4 Oracle Developer: Build Forms |

What Is a Trigger?

What Is a Trigger?

A trigger isaprogram unit that is executed (fired) due to an event. You have aready
seen that Form Builder enables you to build powerful facilities into applications
without writing a single line of code. You can use triggers to add or modify form
functionality in aprocedural way. As aresult, you can define the detailed processes of
your application.

Every trigger that you define is associated with a specific event. Form Builder defines
avast range of events for which you can fire atrigger. These eventsinclude the
following:

* Query-related events

» Data entry and validation

» Logical navigation or physical mouse movement
» Operator interaction with items in the form

* Internal events in the form

* Errors and messages

Trigger Characteristics
As with other Oracle Developer components, you write Form Builder triggers in

PL/SQL. These triggers are mostly fired by events within a form module. (Menu
modules can initiate an event in a form, but the form module owns the trigger that
fires.)

Note: Database events that occur on behalf of a form can fire certain Form Builder

triggers, but these databasggers are different from Form Builder triggers.

Trigger Components

There are three main components to consider when you design a trigger in Form
Builder:

Component |Description
Trigger type | Definesthe specific event that will cause thetrigger to fire
Trigger code |The body of PL/SQL that defines the actions of the trigger

Trigger scope |Thelevel in aform module at which the trigger is defined—
determining the scope of events that will be detected by the trigger

Oracle Developer: Build Forms | 12-5

Lesson 12: Introduction to Triggers

Levels
* Form
* Block
* [tem

Copyright O Oracle Corporation, 1999. All rights reserved. ORACLE

Trigger Scope

Form Level [ON-MESSAGE)

Block Level (ON-MESSAGE] |

Orders

Item Level [ON-MESSAGE]
em eve\\h\ F //]

\\ 1/
Da_te Orde Cust
N|
Shipped / I\\ - ~ Id

/ AN
Items
Item Id Description Product Id
\\ \ /,
=~ (Evenp
/I | \ N

Copyright [Oracle Corporation, 1999. All rights reserved. OF\)ACLE

12-6 Oracle Developer: Build Forms |

Trigger Components

Trigger Components

Trigger Scope

The scope of atrigger is determined by its position in the form object hierarchy, that is,
the type of object under which you create the trigger.

There are three possible levels:

Scope Description

Form level The trigger belongs to the form and can fire due to events across the
entire form

Block level The trigger belongs to ablock and can only fire when this block is the
current block

Item level The trigger belongs to an individual item and can only fire when this
item isthe current item

Some triggers cannot be defined below a certain level. For example,
Post-Query triggers cannot be defined at item level, because they fire due to a global
or restricted query on a block.

By default, only the trigger that is most specific to the current location of the cursor
fires.

Consider the example in the diagram, opposite:

* When the cursor is in the Date_Shipped item, a message fires the
On-Message trigger of the Date_Shipped item, because this is more
specific than the other triggers of this type.

* When the cursor is elsewhere in the ORDERS block, a message causes
the block-level On-Message trigger to fire, because its scope is more
specific than the form-level trigger. (You are outside the scope of the
item-level trigger.)

* When the cursor is in the ITEMS block, a message causes the form-level
On-Message trigger to fire, because the cursor is outside the scope of the
other two On-Message triggers.

Note: The On-Message trigger fires whenever Form Builder displays a message.

Oracle Developer: Build Forms | 12-7

Lesson 12: Introduction to Triggers

Pre-
Post-
When-
On-
Key-

Copyright [Oracle Corporation, 1999. All rights reserved. OF\)ACLE

12-8 Oracle Developer: Build Forms |

Trigger Components

Trigger Type

The trigger type determines which type of event firesit. There are more than 100 built-
in triggers, each identified by a specific name.

The name of atrigger identifiesitstype. All built-in trigger types are associated with
an event, and their names aways contain a hyphen (-). For example:

* When-Validate-ltem fires when Form Builder validates an item.

» Pre-Query fires before Form Builder issues a query for a block.

The first part of a trigger name (before the first hyphen) follows a standard
convention; this helps you to understand the general nature of the trigger type, and
plan the types to use.

Trigger Prefix Description

Key- Firesin place of the standard action of a function key

On- Firesin place of standard processing (used to replace or bypass a
process)

Pre- Fires on an event that occurs just before an action (for example, before
aquery is executed)

Post- Firesjust after an action (for example, after a query is executed)

When- Firesin addition to standard processing (used to augment functionality)

Oracle Developer: Build Forms | 12-9

Lesson 12: Introduction to Triggers

* Statements
e PL/SQL
* User subprograms

® Built-in subprograms
Copyright O Oracle Corporation, 1999. All rights reserved. OF\)ACI_E

12-10 Oracle Developer: Build Forms |

Trigger Components

Trigger Code

The code of the trigger defines the actions for the trigger to perform when it fires.
Write this code as an anonymous PL/SQL block by using the PL/SQL Editor.

Note: You only need to enter the BEGIN. . . END structure in your trigger text if you

start your block with a DECLARE statement or if you need to code subblocks for

other reasons.

Statements that you write in atrigger can be constructed as follows:

» Standard PL/SQL constructs (assignments, control statements, and so
on).

* SQL statements that are legal in a PL/SQL block; these are passed to the
server for execution.

» Calls to user-named subprograms (procedures and functions) in the
form, a library, or the database.

» Calls to built-in subprograms and package subprograms; these are
procedures and functions that are part of Oracle Developer.

Although you can include SQL statements in a trigger, keep in mind the following

rules about their use:

* INSERT, UPDATE, and DELETE statements must be placed only in
transactional triggers. These triggers fire during the commit process.

» Transaction control statements (COMMIT, ROLLBACK, SAVEPOINT)
cannot be included directly as SQL trigger statements. These actions are

carried out by Form Builder as a result of either commands or built-in
procedures that you issue.

Oracle Developer: Build Forms | 12-11

Lesson 12: Introduction to Triggers

Execution Hierarchy

Form On-Message On-Error

level
Do RS, o

—P EH = Before %

Block On-Message On-Error

o @ emy |94@

/Il\\

— EH = After t =P EH = Override
essa

Item On-M

level /\ @
N1/, .

- -

//II\\»EH:After

Copyright [Oracle Corporation, 1999. All rights reserved. OF\)ACLE

Note
Broken lines indicate the analysis path before firing. EH stands for execution
hierarchy.

Firesfirst

Fires second

1

2

3 |Viewport height

4 | Firesindependently

12-12 Oracle Developer: Build Forms |

Trigger Components

Trigger Scope and Execution Hierarchy

As already stated, when there is more than one trigger of the same type Form Builder
normally firesthe trigger most specific to the cursor location. You can ater the firing
sequence of atrigger by setting the execution hierarchy (EH) trigger property.

Execution hierarchy is atrigger property that controls what happens when there are
triggers of the same type at different levels, but each trigger is within the scope of an
event. The default setting is Override.

Settings for execution hierarchy are:

Setting Description

Override Only the trigger most specific to the cursor location fires

After The trigger fires after firing the same trigger at the next highest
level (if atrigger exists)

Before Thetrigger fires before firing the same trigger at the next highest
level (if one exists)

In the cases of Before and After, you can fire more than one trigger of the same type
dueto asingle event. However, you must define each trigger at adifferent level.

Oracle Developer: Build Forms | 12-13

Lesson 12: Introduction to Triggers

Summary

* Trigger: Event-activated program units
* Type: Defines the event that fires it
* Prefixes:
— Key-
— On-
— Pre-
— Post-
— When-
* Code: PL/SQL anonymous block
®* Scope: Form, block, or item level

Copyright [Oracle Corporation, 1999. All rights reserved. OF\)ACLE

12-14 Oracle Developer: Build Forms |

Summary

Summary

In this lesson you should have learned the essential rules and propertiesfor triggers.
» Triggers are event-activated program units.
» The trigger type defines the event that fires the trigger.
» Prefixes for trigger names are:

- Key-

- On-

- Pre-

- Post-

- When-

Each has a specific meaning.
» Trigger code consists of a PL/SQL anonymous block.

» The trigger scope determines which events will be detected by the
trigger. The three possible levels for a trigger are form, block, and item.

* When an event occurs, the most specific trigger overrides the triggers at
a more general level. This can be affected by execution hierarchy.

Oracle Developer: Build Forms | 12-15

Lesson 12: Introduction to Triggers

12-16 Oracle Developer: Build Forms |

Producing Triggers

Lesson 13: Producing Triggers

Objectives

After completing this lesson, you should be able to
do the following:

* Write trigger code

* Explain the use of built-in subprograms in Oracle
Developer applications

* Describe the When-Button-Pressed trigger
* Describe the When-Window-Closed trigger

Copyright [Oracle Corporation, 1999. All rights reserved. OF\)ACLE

13-2 Oracle Developer: Build Forms |

Introduction

Introduction

Overview
This lesson shows you how to create triggers. You specifically learn how to use built-

in subprograms in Oracle Developer applications.

Oracle Developer: Build Forms |

Lesson 13: Producing Triggers

B PL/SOL Editor (=]
Compile | fieverr || New | | Delete [Ciose
Type: [Trigger x| object [BfoCK3 =l [ITEMa =l
e =M= [KEY-CQUERY -
- [EE H
Ll 7|
Tiiggers | Find: b ODULES: CANVAS4 [BLOC. !Ell:{
e P ————— L o = —
5[toms =l DU 8GF | xon|d
~ | = 7 mMopuLEs
L - Triggers | M5 Sans Sori =l
d - Alerts
= [Attached Libraries 0 [16 32 |48 B4 A0 |96 [112)«
= E-Data Blocks B
8 3 BLOCK2 ITE Cut Cii
73 Triggers Copy CHIC
b= ms Paste Ciky
BB [TEM3 -
o [mE Triggers [l Property Palette
*® [~ Relations
E- Canvases
. & CamMvasd Data Block \Wizard
B L Editors Lapout Wizard
; E szslﬁ Chert Wizar
1 Object Groups
[Paiameters _'d Snla, d
al L malggers | »
Smart Triggers
Copyright O Oracle Corporation, 1999. All rights reserved. OR)ACI_E

Oracle Developer: Build Forms |

Defining Triggers in Form Builder

Defining Triggers in Form Builder

Using Smart Triggers

When you click an object in the Object Navigator or Layout Editor by using the right
mouse button, a pop-up menu displays that includes the item Smart Triggers. The
Smart Triggers item expands to alist of common triggers that are appropriate for the
selected object. When you click one of these triggers, the Form Builder automatically
creates the trigger.

Creating a New Trigger
Using Smart Triggersis the easiest way to create a new trigger, but you can also do it
from the Object Navigator, from the Layout Editor, or from the PL/SQL Editor if itis
already open:
* In the Object Navigator, select the Triggers node of the form, block, or
item that will own the trigger. Select NavigatorCreate from the menu,
or click Create in the toolbar. Thisinvokes the Trigger LOV.

» If the PL/SQL Editor is open, click New to create a new trigger. This
invokes the Trigger LOV.

* In the Layout Editor, select the object, and click the right mouse button
to display the pop-up menu. Select PL/SQL Editor, if there is already a
trigger attached to the item; its name and code appear in the editor. Click
the New button to invoke the Triggers LOV.

» Select the trigger type from the Triggers LOV. The trigger type and
scope are now set in the PL/SQL Editor. You can enter the code for the
trigger in the source pane of the editor.

Using the PL/SQL Editor

You are already familiar with the PL/SQL Editor, which is common in each Oracle

Developer component. In the Form Builder, the PL/SQL Editor has the following
specific trigger components:

Component Description

Type Set to trigger

Object Enables you to set the scope to either Form Level or a specific block

Item Enables you to change between specific items (at item level) to access
other triggers

Name Trigger name; enables you to switch to another existing trigger

Source pane Where trigger code is entered or modified

Oracle Developer: Build Forms | 13-5

Lesson 13: Producing Triggers

Trigger Properties

-";l|ta)}; Ell»l|ﬂﬁ Find: %
Trigger: WHEM-ALIDATE-ITEM

General =g o0 =
@ Name WHEN-AALIDATETEM
« Subclass Infarmation

= Comments

Functional 9 = Functional

= Trigger Style PLASGL
@ Trigger Text
= Fire in Enter-Query Mode Yes
= Ewxecution Hierarchy Override
Help == | Help
= Display in Keyboard Help' Mo
= 'Keyboard Help' Text

Copyright [Oracle Corporation, 1999. All rights reserved. OF\)ACLE

Oracle Developer: Build Forms |

Trigger Properties

Defining Triggers in Form Builder

In the property palette, you can set the following trigger properties:

General

Property Description

Name Specifies the internal name of the trigger
Functional

Property Description

Trigger Style PL/SQL: Trigger codeisaPL/SQL block (default)

V2: Trigger isinherited from version 2.3 or earlier

Firein Enter Query Mode

Yes: Trigger can fire when an event occursin Enter Query
aswell as Normal mode
No: Trigger can fire only in Normal mode

Execution Hierarchy

Override, Before, or After

Help

Property

Description

Display in “Keyboard Help”

Set to Yes if you want the name or the description to
appear in the Show Keys window; the default is No

“Keyboard Help” text

Set to Yes if you want to specify the trigger description;

this property is valid for Key- triggers

Oracle Developer: Build Forms |

>

Lesson 13: Producing Triggers

Enhanced PL/SQL Editor

B PL/SQL Editor [_[O[x

fevert | Mew. | Detete | Close | Hew |
Type: [Program Unit =] abiect | = =

Mame: | RUNHNING_TOTALS™ fPracedure Rodul

 PL/SQOL Editor M=
PROCEDURE running_!
old itemtot NUESE fevert | New. | Detete | Close | Hem |
BEGIN =
Type: [Program Unit | Object 2 2
IF deleting = ‘71 o0 [Fioa 5 ez =l |
iz ord.total :: Name [RUNNING_TOTALS* (Procedure Body) =l
VL (:5_ord,
_— (:s_ex PROCEDURE running_totals (delefa]] PROCEDURE rumnning_totals (delet]
old itewrot NUMBER(S,Z); old itemcot NUMBER(S,2)
old itemtot := — —
= BEGIN BEGIN
is_item. iten to IF deleting = 'YES' THEN IF deleting = 'YES' THEN
NVL(:s iter gl gl
2 ord.total i :s_ord.total := :5_ord.total :=
T e mea MVL(:s_ord.total,n] - 1 VL (:s_ord.total,n] - b
J— -~ ELSE ELSE
END old_itemtot := NVL(:s item old_itemtot := NVL(:s_item.
il ’I i5_item.item rtotal : 13 _item.item rotal
VL (is_item.cuantity_s) VL (:5_item. quantity_sh
_|petHodiied i5_ord.tatal i= is_ord.total :-
NVL{:s_ord.total,0] + NVL{:s_ord.total,0] + :
END TF; END TF;
I t . I END: =|| mio:
Split view -

— P || sl

Mot Modified

Successhully Compiled

Copyright O Oracle Corporation, 1999. All rights reserved. OF\)ACI_E

Enhanced PL/SQL Editor Syntax Palette

1 Syntax Palette M= =
PL/SOL | Buitins |
IBIncks
Basic :
Bost e Compite | Revet | Mew.. | Deete [Close | Heb |
e Type: [Program Unit =] Object: | = =
Name: [MY_PROC* (Procedure Body) |
PROCEDURE my_proc IS =
BEGIN
SCLACEmEnts;
EXCEPTION
BEGIN exception handler:
statements; END; -
EXCEPTICON
exception_handler:
END; =
4 »
Modfied Nat Compled
L] b

insen | [Ciose | Help |

Copyright O Oracle Corporation, 1999. All rights reserved. ORACLE

Oracle Developer: Build Forms |

PL/SQL Editor Features

PL/SQL Editor Features

Automatic Formatting and Coloring of PL/SQL Code
» Automatic Indenting and Color Syntax highlighting

» Drag and Drop text Manipulation

* Unlimited Undo/Redo

Multiple Split Views

You can create up to four separate views of the current program unit in the PL/SQL
Editor by using split bars.

Syntax Palette

The Syntax Palette enables you to display and copy the constructs of PL/SQL
language elements and build packages into an editor. To invoke the Syntax Palette,
select Program—>Syntax Palette from the menu system.

Global Search and Replace

The Find and Replace in Program Units dialog box enables you to search for text
across multiple program units without opening individual instances of the Program
Unit Editor. Choose to replace every occurrence of the search text string found or in
selected occurrences only.

Invoke the Find and Replace in Program Units dialog box by selecting
Program—>Find and Replace PL/SQL from the menu system.

Things to Remember About the PL/SQL Editor
* New or changed text in triggers remains uncompiled until you click
Compile. (If you select File—>Compile from the menu, it will compile
all uncompiled code in the document.)
» Compiling triggers that contain SQL require connection to the database.
» All uncompiled triggers are compiled when the form module is
compiled.
The Block and Item pop-up lists dot change the current trigger scope. They enable
you to switch to another trigger.

Oracle Developer: Build Forms | 13-9

Lesson 13: Producing Triggers

Database Trigger Editor

{# Object Mavigator =] B
Triggers = || Find: Bl 3 Database Trigger -5
3 [= Foms Table Owner: Table: Name:
= " -7 OADERS [EGRAVINA =] [oePT =] [ie_oso |
%] g ::SSUSL Libraries - Triagering 9 Of Columns —————————
— | LI Obiect Libraries & Before [UPDATE
R e Dhon
= Database Dbiects Clate I INSERT Loc
B EaRa) fstead Of
= Stored Program U
PL/SQL Libraries -
Tables PDE-UTGOO7 Trigger contsifis an ertor:
4 pONL! [ForEach PL5-00103: Encountersd the symbal "END" when expesting
i 5 & Statement © Bow Q one of the folowing
CUSTOMER = =
< 6 DEPT Referencing OLD As: [BLD .
i The symbol "END" was igrored
Columns
+
S| [pePTZ Tiigger Body:
i [EMP BEGIN
— B o null
END; N
Hew Revert Diop Close Help

Copyright [Oracle Corporation, 1999. All rights reserved. OF\)ACLE

Oracle Developer: Build Forms |

Database Trigger Editor

Database Trigger Editor

Thelogical grouping of items within the Database Trigger Editor enables developers
to create row and statement triggers easily. An error message box displays an error
when you try to retrieve, store, or drop aninvalid trigger. To create a database trigger
by using the Database Trigger Editor, perform the following steps:

1 Inthe Object Navigator, expand the Database Objects node to display
the schema nodes.

Expand a schema node to display the database objects.
Expand the Tables node to display the schema’s database tables.
Select and expand the desired table.

Select the Triggers node and choose Navigator-Create. The Database
Trigger Editor appears.

6 In the Database Trigger Editor, define and save the desired program
units.

a b~ W N

Oracle Developer: Build Forms | 13-11

Lesson 13: Producing Triggers

BEGIN
|
& PL/SAL Editor IH[=] E3
Compile | Revet | Mew.. | Delete [Close | Hep |
Type: [Trigger =] obiect [5_oRD =] [(Data Block Leven) =]
Name: [WHEN-VALIDATE-RECORD =l
DECLARE =
—- Declarative Statements [Optional]
BEGIN
—— Executable Statements [Reguired]
EXCEPTION
—— Exception Handlers [Optional]
END; o
KN _>IJ
Modfied Not Compied
END;
Copyright O Oracle Corporation, 1999. All rights reserved. OR)ACI_E

13-12 Oracle Developer: Build Forms |

Writing the Trigger Code

Writing the Trigger Code

Trigger PL/SQL Blocks

The code text of a Form Builder trigger isa PL/SQL block that consists of three
sections:

» A declaration section for variables, constants, and exceptions (optional)
* An executable statements section (required)
* An exception handlers section (optional)

If your trigger code does not require defined variables, you do not need to include the
BEGIN and END keywords; they are added implicitly.

Example

If the trigger does not require declarative statements, the BEGIN and END keywords
are optional. When-Validate_Item trigger:

IF:S ITEMprice I'S NULL THEN

S ITEMprice :=:S I TEM stdprice;
END | F;
calculate total; -- User-naned procedure
Example

If the trigger requires declarative statements, the BEGIN and END keywords are
required. When-Button-Pressed trigger:

DECLARE
vn_di scount NUMBER

BEA N
vn_di scount : =cal cul at e_di scount (: S I TEMproduct _id,:S | TEM quantity);
MESSAGE('Discount:’||TO_CHAR(vn_discount));

END;

Example
To handle exceptions, include EXCEPTION section in trigger. Post-1nsert trigger:

INSERT INTOLOG_TAB (LOG_VAL, LOG_USER)
VALUES(:S_DEPT.id,:GLOBAL.username);
EXCEPTION
WHEN OTHERS THEN
MESSAGE(Error!’,||SQLERRM);

Oracle Developer: Build Forms | 13-13

Lesson 13: Producing Triggers

Variables in Form Builder

* PL/SQL variables must be declared in a trigger or
defined in a package

* Form Builder variables
— Are not formally declared in PL/SQL
— Need a colon prefix in reference

Copyright [Oracle Corporation, 1999. All rights reserved. OF\)ACLE

Form Builder Variables

* |tems
For presentation and user interaction
* Global variables
Session-wide character variable
* System variables
Form status and control
* Parameters
Passing values in and out of module

Copyright [Oracle Corporation, 1999. All rights reserved. OF\)ACLE

13-14 Oracle Developer: Build Forms |

Writing the Trigger Code

Using Variables in Form Builder

In triggers and subprograms, Form Builder generally accepts two types of variablesfor

storing values:

* PL/SQL variables: These must be declared in a DECLARE section, and
remain available until the end of the declaring block. Theyatre
prefixed by a colon. If declared in a PL/SQL package, a variable is
accessible across all triggers that access this package.

» Form Builder variables: Variable types maintained by the Form Builder.
These are seen by PL/SQL as external variables, and require a colon (:)
prefix to distinguish them from PL/SQL objects (except when their
name is passed as a character string to a subprogram). Form Builder
variables ar@ot formally declared in a DECLARE section, and can
exist outside the scope of a PL/SQL block.

Form Builder Variables
The following variables are available for the storage and manipulation of values:

Form Builder Variable Type Description

Item (text, list, check box, and so on) Scope: Current form and attached menu
Use: Presentation and interaction with user

Global variable Scope: All modules in current session
Use: Session-wide storage of character data
System variable Scope: Current form and attached menu
Use: Form status and control
Parameter Scope: Current module

Use: Passing valuesin and out of module

Initializing Global Variables with Default Value
You can use the DEFAULT_VALUE built-in to assign a value to a global variable.
Form Builder creates the global variable if it does not exist. If the value of the
indicated variable is not null, DEFAULT_VALUE does nothing. The following
example creates a global variable named country and initializes it with the value
TURKEY:

Default_Value(TURKEY’,GLOBAL.country’);

Oracle Developer: Build Forms | 13-15

Lesson 13: Producing Triggers

Syntax of Variables

* :block_name.item_name
* :GLOBAL.variable_name
* :SYSTEM.variable_name
* :PARAMETER.name

Copyright [Oracle Corporation, 1999. All rights reserved. OF\)ACLE

13-16 Oracle Developer: Build Forms |

Writing the Trigger Code

Examples of Form Builder Variables

In each of the following examples, note that a colon (:) prefixes Form Builder
variables, and a period (.) separates the components of their name. The examples are
not compl ete triggers.

Example

References to items should be prefixed by the name of the owning Form Builder
block, which prevents ambiguity when items of the same name exist in different
blocks. Thisis also more efficient than the item name aone:

: BLOCK3. product _id : = :BLOCK2. product _id;

Example
References to global variables must be prefixed by the word global. They may be
created as the result of an assignment:

: GLOBAL. customer _id :=:BLOCKL.id;

Example
References to system variables must be prefixed by the word system:

| F :SYSTEM.MODE ="NORMAL' THEN
ok to leave block := TRUE;
END IF;

Example
Parameters defined at design-time have the prefix parameter:

IF :PARAMETER:.starting_point=2 THEN
GO_BLOCK(BLOCK?2); -- built-in procedure
END IF;

Removing Global Variables

You can use the ERASE built-in to remove a global variable. Globals always allocate
255 bytes of storage. To ensure that performance is not impacted more than necessary,
always erase any global variable when it is no longer needed.

Oracle Developer: Build Forms | 13-17

Lesson 13: Producing Triggers

Form Builder Built-in
Subprograms

Built-ins belong to either:

* The Standard Extensions package where no prefix
is required

* Another Form Builder package where a prefix is
required

Copyright [Oracle Corporation, 1999. All rights reserved. OF\)ACLE

13-18 Oracle Developer: Build Forms |

Adding Functionality Using Built-in Subprograms

Adding Functionality Using Built-in Subprograms

The Form Builder Built-in Subprograms

Form Builder provides a set of predefined subprograms as part of the product. These
subprograms are defined within built-in packages as either a procedure or function.

The Form Builder built-in subprograms belong to one of the following:

» Standard Extensions packages: These built-ins are integrated into the
Standard PL/SQL command set in Form Builder. You can call them
directly, without any package prefix. You can use more than one hundred
standard built-ins.

» Other Form Builder packages: Subprograms in other built-in packages

provide functionality related to a particular supported feature. These
require the package name as a prefix when called.

Package Description

DDE Provides Dynamic Data Exchange support

DEBUG Provides built-ins for debugging PL/SQL program units

EXEC_SQL Provides built-ins for executing dynamic SQL within PL/SQL procedures

FTREE Provides built-ins for manipulating hierarchical tree items

OLE2 Providesa PL/SQL API for creating, manipulating, and accessing attributes
of OLE2 automation objects

ORA_FFI Provides built-ins for calling out to foreign (C) functions from PL/SQL

ORA_NLS Enables you to extract high-level information about your current language
environment

ORA_PROF | Provides built-insfor tuning PL/SQL program units

TEXT_IO Provides built-ins to read and write information from and to files

PECS Provides built-ins for the Performance Event Collection Services; provided

for backward compatibility
TOOL_ENV | Enablesyou tointeract with Oracle environment variables

TOOL_ERR | Enablesyou to access and manipulate the error stack created by other
built-in packages such as Debug
TOOL_RES | Provides built-ins to manipulate resource files

VBX Provides built-ins for controlling and interacting with VBX controls; this
package works only in a 16-bit environment and is provided for backward
compatibility

WEB Provides built-ins for the Web environment

All the built-in subprograms used in this lesson are part of the Standard Extensions
package.

Oracle Developer: Build Forms | 13-19

Lesson 13: Producing Triggers

Limits of Use

® Unrestricted built-ins are allowed in any trigger or
subprogram.

* Restricted built-ins are allowed only in certain
triggers and subprograms called from such
triggers.

* Consult the Help system.

Copyright O Oracle Corporation, 1999. All rights reserved. ORACLE

13-20 Oracle Developer: Build Forms |

Adding Functionality Using Built-in Subprograms

Where Can Built-in Subprograms Be Used?
You can call built-insin any trigger or user-named subprogram in which you use

PL/SQL. However, some built-ins provide functionality that is not allowed in certain
trigger types. Built-ins are therefore divided into two groups:

» Unrestricted built-ins: Unrestricted built-ins do not affect logical or
physical navigation and can be called from any trigger, or from any
subprogram.

* Restricted built-ins: Restricted built-ins affect navigation in your form,
either external screen navigation, or internal navigation. You can call
these built-ins only from triggers while no internal navigation is
occurring. Theonline Help specifies which groups of built-ins can be
used in each trigger.

Oracle Developer: Build Forms | 13-21

Lesson 13: Producing Triggers

Using Built-in Definitions

Frogam Tools Miindow Help

Erperd PL/5GL E ditor 9 [=] 3
[ellapse

Eanard Al Compile | Revet | Mew. | Delete [Ciose | H
Co el Type: | Trigger x| Object: [(Form Leven =] | =l

Cieate: Name: [WHEN-BUTTON-PRESSED =l

Uslzic ’
- ||rF sHow LoV LoV _NiHE) - 4

£dd Bookmark
G to Baokar

Paste Name

¥
Not Cmoiled

|5Hnw,mv LOV_NAME 1N VARCH =] Find FHDW,L %%
H H SHUW_ELTTUH IELTTUH_MNAME IN YAHLHAHZ, MEDDALE_IN N Y
SHOW_EDITOR [EDITOR_ID IN FORMS4C.EDITOR, MESSAGE_IN

5HOW _EDITOR [EDITOR_ID IN FORMS4C.EDITOR, MESSAGE_IN
SHOW _KEYS:
SHOW_LOV [LOV_ID IN FORMSAC L0V, X IN NUMEER, " IN NUME
SHOW/_LOV (LOV_MNAME IN VARCHAR2, X IN NUMBER, ' IN NUME
SHOW_LOY (LOY_ID IN FORMSAC LOY] RETURN BOOLEAN:

Tl

SHOW_PAGE [P IN NUMBER]: 1 i :
SHOW_VIEW [VIEW_MAME IN VARCHARZ):

SHOW_MENL,
SHOW_VIEW [VIEW_ID IN FORMS4CVIEWRORT): _'ﬂ
»

DX Now (@00

Copyright [Oracle Corporation, 1999. All rights reserved. OF\)ACLE

Open PL/SQL code
Select built-in

Paste names or arguments

Modify pasted code

AW [IN|PF

13-22 Oracle Developer: Build Forms |

Adding Functionality Using Built-in Subprograms

Using Built-in Definitions in the Form Builder
When you are writing atrigger or program unit, the Form Builder enables you to ook
up built-in definitions, and optionally copy their names and argument prototypes into
your code.
1 Place the cursor at the point in your PL/SQL code (in the PL/SQL
Editor) where a built-in subprogram isto be called.
2 Expand the Built-in Packages node in the Navigator, and select the
procedure or function that you need to use (usually from Standard
Extensions).
3 If you want to copy the built-in prototype arguments or name, or both,
select Navigator—>Paste Name or Navigator—>Paste Arguments from
the menus (Paste Arguments includes the built-in name also).
4 The definition of the built-in is copied to the cursor position in the
PL/SQL Editor, where you can insert your own values for arguments, as
required.
Note: A subprogram can be either a procedure or a function. Built-in subprograms are
therefore called in two distinct ways:
» Built-in procedures: Called as a complete statement in a trigger or
program unit with mandatory arguments.
» Built-in functions: Called apart of a statement, in a trigger or program
unit, at a position where the function’s return value will be used. Again,
the function call must include any mandatory arguments.

Example
The SHOW_LOV built-in is a function that returns a Boolean value (indicating
whether the user has chosen a value from the LOV). It might be called as part of an
assignment to a boolean variable. Thisdsa complete trigger.
DECLARE
cust oner _chosen BOOLEAN,

BEGA N
customer_chosen := SHOW_LOV(customer_list);

Oracle Developer: Build Forms | 13-23

Lesson 13: Producing Triggers

Useful Built-ins

e EDIT_TEXTITEM

e ENTER_QUERY, EXECUTE_QUERY

e EXIT_FORM

e GO_BLOCK, GO_ITEM

e GET_ITEM_PROPERTY, SET_ITEM_PROPERTY
e MESSAGE

e SHOW_ALERT, SHOW_EDITOR, SHOW_ LOV
e SHOW_VIEW, HIDE_VIEW

Copyright [Oracle Corporation, 1999. All rights reserved. OF\)ACLE

13-24 Oracle Developer: Build Forms |

Adding Functionality Using Built-in Subprograms

Useful Built-ins for Adding Functionality to ltems
Here are just afew built-ins that you can use in triggers to add functionality to items.

They are discussed in later lessons.

Built-in Subprogram

Description

EDIT_TEXTITEM procedure

Invokes the Form Runtime item editor for the current
text item

ENTER_QUERY procedure

Clearsthe current block, and creates a sample record
(Operators can then specify query conditions before
executing the query with a menu or button command.
If there are changes to commit, the Form Builder
prompts the operator to commit them before
continuing ENTER_QUERY processing.)

EXECUTE_QUERY procedure

Clearsthe current block, opens a query, and fetchesa
number of selected records (If there are changesto
commit, Form Builder prompts the operator to
commit them before continuing EXECUTE_QUERY
processing.)

EXIT_FORM procedure

Exits current form (or cancels query, if in
ENTER-QUERY mode)

GET_ITEM_PROPERTY function

Returns specified property values for the specified
item

GO_BLOCK procedure

Navigates to the specified block

GO_ITEM procedure

Navigates to the specified item

HIDE_VIEW procedure

Hides the indicated canvas

LIST_VALUES procedure

Invokes the LOV attached to the current item

MESSAGE procedure

Displays specified text on the message line

SET_ITEM_PROPERTY procedure

Changes setting of specified property for an item

SHOW_ALERT function

Displays the given alert, and returns a numeric value
when the operator selects one of three alert buttons

SHOW_EDITOR procedure

Displays the specified editor at the given coordinates
and passes a string to the editor, or retrieves an
existing string from the editor

SHOW_LOV function

Invokes a specified LOV and returns a Boolean value,
indicating whether user selected a value from the list

SHOW_VIEW procedure

Displays the indicated canvas at the coordinates
specified by the X Position and Y Position of the
canvas property settings (If the view isaready dis-
played, SHOW_VIEW raisesit in front of any other
views in the same window.)

Oracle Developer: Build Forms |

Lesson 13: Producing Triggers

When-Button-Pressed
Trigger

* Fires when the operator clicks a button.

* Accepts restricted and unrestricted
built-ins.

* Useto provide convenient navigation, to display
LOVs and many other frequently used functions.

\ /
Example ~ A\ 4 -
GO_BLOCK('Stock’); ™ —
_ Show Stock |- EXECUTE_QUERY; ~
[N

Copyright [Oracle Corporation, 1999. All rights reserved. OF\)ACLE

13-26 Oracle Developer: Build Forms |

Using Triggers

Using Triggers

When-Button-Pressed Trigger

Thistrigger fires when the user selects a button. You can define the trigger on an
individual item or at higher levelsif required.

When-Button-Pressed accepts both restricted and unrestricted built-ins. You can use
buttons to provide a wide range of functions for users. These functions include:

* Navigation

» Displaying LOVs

* Invoking calculations and other functions

Example

The Stock_Button in the CONTROL block is situated on the CV_INVENTORY
canvas of the ORDERS form. When pressed, the button activates the
When-Button-Pressed trigger. The trigger code results in navigation to the
S_INVENTORY block and execution of a query on the S_INVENTORY block.

GO_BLOCK('S_INVENTORY?);
EXECUTE_QUERY;

Oracle Developer: Build Forms | 13-27

Lesson 13: Producing Triggers

When-Window-Closed
Trigger

* Fires when the operator closes a window by using
a window manager-specific close command.

* Accepts restricted and unrestricted built-ins.

* Used to programmatically close a window when
the operator issues a window manager-specific
close command. You can close a window by using
built-ins.

Copyright O Oracle Corporation, 1999. All rights reserved. OF\)ACI_E

13-28 Oracle Developer: Build Forms |

Using Triggers

When-Window-Closed Trigger

Thistrigger fireswhen you close awindow by using awindow manager-specific close
command. You define thistrigger at the form level.

The When-Window-Closed trigger accepts both restricted and unrestricted built-ins.

Use thistrigger to close awindow programmatically when the operator issues the

window manager Close command. Form Builder does not close the window when the
operator issues awindow manager-specific close command; it only fires
When-Window-Closed trigger. It is the developer’s responsibility to write the required
functionality in this trigger. You can close a window with the HIDE_WINDOW,
SET_WINDOW_PROPERTY, and EXIT_FORM built-in subprograms. ¥annot

hide the window that contains the current item.

Example
When the operator issues the window manager-specific Close command, the following
code in a When-Window-Closed trigger closes the W_INVENTORY window by
setting the VISIBLE property to FALSE.

GO_ITEM('S_ORD.ID?):

SET_WINDOW_PROPERTY(W_INVENTORY", VISIBLE, PROPERTY_FALSE);

Oracle Developer: Build Forms | 13-29

Lesson 13: Producing Triggers

Summary

To produce a trigger:
1. Select a scope in the Object Navigator.

2. Create atrigger and select a Name from the LOV,
or use the SmartTriggers menu option.

3. Define code in the PL/SQL Editor.
4. Compile.

Copyright [Oracle Corporation, 1999. All rights reserved. OF\)ACLE

Summary

* Find built-ins in the Navigator under Built-in
Packages:

— Paste built-in name and arguments to your
code by using the Paste Name and Arguments
option.

— Refer to online Help.

* The When-Button-Pressed trigger provides a wide
range of functionality to users.

* Use the When-Window-Closed trigger to provide
functionality when the user issues a window
manager-specific close command.

Copyright [Oracle Corporation, 1999. All rights reserved. OF\)ACLE

13-30 Oracle Developer: Build Forms |

Using Triggers

Practice 13 Overview

This practice covers the following topics:
® Using built-ins to display LOVs

* Using the When-Button-Pressed and
When-Window-Closed triggers to add functionality
to items

* Using built-ins to display and hide the Help stack
canvas

Copyright O Oracle Corporation, 1999. All rights reserved. OF\)ACI_E

Note
For solutions to this practice, see Practice 13 in Appendix A, “Practice Solutions.”

Oracle Developer: Build Forms | 13-31

Lesson 13: Producing Triggers

Practice 13 Overview

This practice focuses on how to use When-Button-Pressed and When-Window-Closed
triggers.

* Using built-ins to display LOVs

» Using When-Button-Pressed and When-Window-Closed triggers to add
functionality to items

» Using built-ins to display and hide the Help stacked canvas

13-32 Oracle Developer: Build Forms |

Practice 13

Practice 13

1 Inthe CUSTGXX form, write atrigger to display the Sales Rep_Lov
when the Sales Rep _Lov_Button is pressed. To create the
When-Button-Pressed trigger, use the Smart Triggers feature. Find the
relevant built-in in the Object Navigator under built-in packages, and
use the “Paste Name and Arguments” feature.

2 Create a When-Window-Closed trigger at the form level in order to exit
form.

3 Save, compile, and run the form.

4 In the ORDXX form, write a trigger to display the Products_LOV
when the Products LOV_Button is selected.

5 Write a trigger that exits the form when the Exit_Button is selected.

6 Save, compile, and run the form.

7 Create a When-Button-Pressed trigger on the
CONTROL.Show_Help_Button that uses the SHOW_VIEW built-in to
display the CV_HELP.

SHOW_VIEW(CV_HELP);

8 Create a When-Button-Pressed trigger on
CONTROL .Hide Help_Button that hidesthe CV_HELP. Use the
HIDE_VIEW built-in to achieve this.

HIDE_VIEW(CV_HELP);

9 Save, compile, and run the ORDGXX form to test.

Note: The stacked canvas, CV_HELRP, displaysonly if the current item will not be

obscured. Ensure, at least, that the first entered item in the form is one that will not
be obscured by CV_HELP.

You might decide to advertise Help only while the cursor isin certain items, or
move the stacked canvas to a position that does not overlay enterableitems. The
CV_HELP canvas, of course, could aso be shown in its own window, if
appropriate.
10 Create a When-Button-Pressed trigger on CONTROL .Stock_Button
that uses the GO_BLOCK built-in to display the S INVENTORY
block.

Oracle Developer: Build Forms | 13-33

Lesson 13: Producing Triggers

13-34 Oracle Developer: Build Forms |

Debugging Triggers

Lesson 14: Debugging Triggers

Objectives

After completing this lesson, you should be able to
do the following:

* Describe the components of the Debugger
®* Run aform module in debug mode
* Debug PL/SQL code

Copyright [Oracle Corporation, 1999. All rights reserved. OF\)ACLE

Oracle Developer: Build Forms |

Introduction

Introduction

Overview

This lesson shows you how to debug triggers by using the PL/SQL Debugger to
execute code one line at atime. This lesson also shows you how to view and change
variables while using the Debugger.

Oracle Developer: Build Forms | 14-3

Lesson 14: Debugging Triggers

Debugging Triggers

Monitor and debug triggers by:

®* Compiling correct errors in the PL/SQL Editor
* Displaying debug messages at run time

* Invoking the PL/SQL Debugger

Copyright [Oracle Corporation, 1999. All rights reserved. OF\)ACLE

Debugging Tips

* Connect to the database for SQL compilation.
* Theline that fails is not always responsible.

* Watch for missing semicolons and quotation
marks.

* Define triggers at the correct level.
* Placetriggers where the event will happen.

Copyright [Oracle Corporation, 1999. All rights reserved. OF\)ACLE

14-4 Oracle Developer: Build Forms |

Debugging Triggers

Debugging Triggers

How to Debug Triggers in the Form Builder
With the Form Builder you can monitor and debug triggers in a number of ways:

Compiling: Syntax errors and object reference errors (including
references to database objects) are reported when you compile a trigger
or generate the form module. This enables you to correct these problems
in the PL/SQL Editor before run time.

Running a form with run time parameter debug_messages=Yes:

In Debug mode, you can request messages to be displayed to indicate when
triggers fire. This helps you see whether certain triggers are firing, their origin and
level, and the time at which they fire.

Invoking the PL/SQL Debugger: With the Debugger you can monitor
the execution of codeithin a trigger (and other program units). You can
step through the code on a line-by-line basis, and you can monitor called
subprograms and variables as you do so. You can also submit arbitrary
PL/SQL statements while the form is running, and modify variables.

General Tips to Solve Trigger Problems

Make sure you are connected to the (correct) database when you compile
triggers that contain SQL. Error messages can be deceiving.

The PL/SQL Editor reports the line tHails, but the error may be due to
a dependency on an earlier line of code.

Missing semicolons (;) and mismatched quotes are a common cause of
compile errors. Check for this if a compile error does not give an
obvious indication to the problem.

If a trigger seems to fire too often, or on the wrong block or item in the
form, check whether it is defined at the required level. For example, a
form-level When-Validate-ltem trigger fires for every changed item in
the form. To check this, you can run the form with Debug Messages on.

For triggers that populate other items, make sure the trigger belongs to
the object where the firing event will occagt on the items to be
populated.

Oracle Developer: Build Forms | 14-5

Lesson 14: Debugging Triggers

Run Form
Debug

(Compiles automatically)

Contains source

code and _ “’u EMX U‘
executable runfile

J (Runs automatically)

Run Form in ;
Debug Mode {" a i

Copyright [Oracle Corporation, 1999. All rights reserved. OF\)ACLE

14-6 Oracle Developer: Build Forms |

Debugging Triggers

Running a Form Module in Debug Mode

In Debug mode, you can monitor triggers that fire and use the PL/SQL Debugger. To
interact with code in the Debugger, the run time module (. f nx) must be rebuilt to
include source versions of the form code.

To run aform in Debug mode, follow these steps:
1 Click the Run Form Debug button in the Navigator, or select
Program—>Run Form—>Debug from the menu.
The form module is built and runs automatically.

2 When the form module is started, the PL/SQL Debugger is initially
displayed so that you can enter Debug actions before the form begins
running. When you dismiss the Debugger, the form is entered for
running.

Displaying Messages When Triggers Fire

You can display messages that wait for acknowledgment before execution continues
each time a trigger fires. These are displayed on the message line, and include the
trigger’s type and scope.
To display messages, run the form from the command line, specifying the
Debug_Messages option.
For example in Microsoft Windows:

i frun60 nyformscott/tiger debug_messages = YES

Each message is displayed just before the execution of the trigger, enabling you to see
the current state of the form before the effects of the trigger.

Oracle Developer: Build Forms | 14-7

Lesson 14: Debugging Triggers

PL/SQL Debugger

B Forms Debugger [(O]
57 p|x? [e B EE M 00 | %%

.Z.. Client Program Unit: WHEN-BUTTON-PRESSED [CONTROL.STOCK_BUTTON] [Block]
00001 BEGIM

B(01) GO BLOCK['S_INVENTORY'):
00003 END:

IJILI;I_P_L

- Modules

~Global Variables

:I-System Variables

- Command Line Parameters
(- Built-in Packages
[-Debug Actions
[
[

7.
+-Database Objects

@Hehug 1) PL/SQL> ;1

Copyright O Oracle Corporation, 1999. All rights reserved. OF\)ACI_E

PL/SQL Debugger

E_Er Forms Debugger

ST AR

T

Copyright O Oracle Corporation, 1999. All rights reserved. OF\)ACI_E

14-8 Oracle Developer: Build Forms |

Debugging Triggers

The PL/SQL Debugger

The PL/SQL Debugger enables you to perform the following tasks:

» Step through program units and examine the units as they progress.
» Examine or modify the state of variables during execution.

» Set breakpoints to suspend execution, so that you can analyze the status
of the application at a given point.

» Define debug actions that will execute on certain events (Debug
triggers).

* Add PL/SQL statements during execution.
The Debugger contains the following components (see slides on opposite page):

1 | Navigator Help, Create, Delete, Expand, Collapse, Expand All,
controls Collapse All, Find (Control the Navigator pane asyou
do in the main Object Navigator.)

2 | Source pane A read-only copy of current program unit (You can
select lines of code and set breakpointsin this pane.)

3 | Navigator pane | Hierarchical list of programmatic objects (Functions the
same as it does in main Object Navigator.)

4 | Interpreter pane | Command line area where you enter PL/SQL and
Debugger commands

5 | Stepinto Executes the STEP INTO command
(button)

6 | Step Over Executes the STEP OVER command
(button)

7 | Step Out Executes the STEP OUT command
(button)

8 | Go (button) Executes the GO command

9 | Reset (button) Executes the RESET command

10 | Close (button) Closes the Debugger

Oracle Developer: Build Forms | 14-9

Lesson 14: Debugging Triggers

Invoking the Debugger and Breakpoints

Action Edit Query Block Becord Fisld window [JEEEY
CIEEAN A e -
Keys
Display Errar
Debug

Debug

"
‘ B Forms Debugger

<]
Eos 7 e x 2 [N E 8BS S %
2., Client Program Unit: WHEN-BUTTON-PRESSED (CONTROL.STOCK_BUTTON) (Block)
00001l BEGIM

© EB(01) GO BLOCK('S_INVENTORY'): =
00003 END; 7
sl | ol
T = aiem |
Form S_INVENTORY
=l-CONTROL
Triggers J
Startup L Elems
H H =-STOCK_BUTTON =
E
i "wHEN-BUTTON-PRESSED [COMTROLSTOCK_BUTTON] =
| b s
L JJ
(debug 1) PL/SQL> -

Copyright [Oracle Corporation, 1999. All rights reserved. OF\)ACLE

1 | Selecttrigger
2 | Set breakpoint

14-10 Oracle Developer: Build Forms |

Debugging Triggers

Invoking the Debugger and Breakpoints

You can invoke the Debugger at any time while aform is running in Debug mode by
selecting Help—>Debug from the Runform menu.

Menus and the Debugger

When control is passed to the Debugger, the Main menu includes View, Debug, and
Navigator options, each providing additional submenus for controlling the Debugger.

Setting Breakpoints in a Trigger

Breakpoints invoke the Debugger during code execution, and you can analyze and
interact with triggers and other program units when specific points in the code are
reached. A breakpoint invokes the Debugger just before execution of the line where
the breakpoint is set. You can define a breakpoint in two ways.

Method 1

1 Select the desired trigger in the Navigator pane. The Debugger displays
its source in the Source pane.

2 Double-click the line in the Source pane where the breakpoint is to be
set. You can now dismiss the Debugger, and it will reappear when the
specified line is reached during trigger execution.

Method 2 Other debug actions can be attached alternatively as follows:

1 Select the desired trigger, as in the first step of Method 1, and then select
Debug—>Break from the menu. This invokes the PL/SQL Breakpoint
dialog box.

2 In the trigger area of the Breakpoint dialog box, enter:
RAI SE DEBUG BREAK. This raises an exception from the Debug
package, which passes control to the Debugger when this line is
subsequently reached during execution. With this method, you have set
up aBreakpoint trigger from the Breakpoint dialog box, which fires
each time the breakpoint is reached in the normal trigger.

Note: Breakpoints must be attached to an executable statement in the body of the
code. Comment lines or NULL commands are not valid for this purpose.

Oracle Developer: Build Forms | 14-11

Lesson 14: Debugging Triggers

Breakpoint and Debug Triggers

NN,
e

e
Statement

O \ |y P =
=(Fire)” . Bregkpomt
T __ trigger

Statement
Every Lm—
Statement Ny
Fire)C
L

Debugger

Statement

Program Unit

Copyright [Oracle Corporation, 1999. All rights reserved. OF\)ACLE

Debug Triggers

PL/SQL Trigger

Trigger: New [Enabled

Location: [Program Unit |~

Program Unit: I/"Hunfulm“r‘"DHDEHS—W "MPE_20_AUG_199711_30_34"

Line: [

Trigger Body:

IF :item.quanticy shipped < :item.quantity THEN -
Raise debug.break;
END IF:

[T | Cancel Help

Copyright [Oracle Corporation, 1999. All rights reserved. OF\)ACLE

14-12 Oracle Developer: Build Forms |

Debugging Triggers

Breakpoint Triggers and Debug Triggers

You may sometimes want to define debug actions that occur automatically, either on a
breakpoint, or when certain program units and triggers are executed. Define debug
actions asfollows:

» Breakpoint triggers: A trigger that fires on a breakpoint, and contains
PL/SQL and DEBUG functions and procedures.

- Select a line of code in the Source pane, where a breakpoint is to be
set.

- Select Debug—>Break from the menu, which invokes the
Breakpoint dialog box.

- Enter your debug code in the Trigger area, then click OK.

» Debug triggers: Like Breakpoint triggers, you can define Debug triggers
to fire when a breakpoint occurs. Debug triggers, however, can be
attached to a program unit, or fired when each line of code is executed in
that program unit.

Note: Debug triggers only cause a breakpoint if you raise the DEBUG.BREAK

exception within them. Otherwise, they perform their actions in the background.

1 Select a program unit or line of source code in the Debugger.

2 Select Debug—>Trigger from the menu. This opens the PL/SQL Trigger
dialog box.

3 Enter your debug code in the Trigger body area, and then click OK.

Disabling Debug Actions

To disable debug actions during run time, you clear the Enabled check box in the
PL/SQL trigger or Breakpoint dialog box. You can redisplay these dialogs by locating
the debug action below the Debug Actions node in the Navigator, then double-clicking
on the listed action you want to display. After selecting the listed action, you can use
the pop-up menu to disable or enable the selected action by clicking the right mouse
button.

Oracle Developer: Build Forms | 14-13

Lesson 14: Debugging Triggers

Debug Commands

Step over
@ — Reset
@ Step ‘ | Step |
into out

co[LILI™

Copyright O Oracle Corporation, 1999. All rights reserved. OF\)ACI_E

Note

Your trigger code is often nested in the single PL/SQL block that Form Builder
provides.

1 | Trigger

2 | Subprograms

14-14 Oracle Developer: Build Forms |

Debugging Triggers

Useful Commands in the Debugger

You can enter following commandsin the Interpreter pane. Those marked with
asterisks (*) have an equivalent toolbar button:

Command Description

STEPINTO* Advances execution into the next subprogram called by this
line

.STEP OVER* Executes the subprogram without stepping into it; stops at the
next line

.STEP OUT* Resumeto end of current level (subprogram)

.GO* Resumes execution indefinitely

.RESET* Exits current subprogram now

.SHOW LOCALS Displays all local variables (PL/SQL variables declared
locally) and parameters

The following subprograms from the DEBUG package can be entered on the
command line of the Debugger (in the Interpreter pane), or included in Debug and
Breakpoint triggers. When you use them, you can display and set values for variables
and parameters in the current trigger or subprogram scope:

Subprogram Description

DEBUG.INTERPRET(string) A procedure that lets you nest an I nterpreter command
(like those above) as a string, and then execute from
debug triggers

DEBUG.GETx(varname) A function that returns the value of variable varname.

(x represents datatype (n for NUMBER, d for DATE,
c for CHAR or VARCHAR?2, i for PLS_INTEGER).)
DEBUG.SETx(varname,value) A procedure that sets a specified value for a variable.
(x represents datatype (n for NUMBER, d for DATE,
c for CHAR or VARCHAR?2, i for PLS_INTEGER).)

Oracle Developer: Build Forms | 14-15

Lesson 14: Debugging Triggers

Debug Example

Debug Example

/3 |WHEN-BUTTON- The results are: ??
@ DEPRESSED A

@ ...calls... @

Y

Procedure XYZ;

A

@y @

Function ABC; (3>

Copyright [Oracle Corporation, 1999. All rights reserved. OF\)ACLE

14-16 Oracle Developer: Build Forms |

Debugging Triggers

Example
This simple example demonstrates some of the basic features available in the
debugger. The example form consists of a single button with trigger code for the
When-Button-Pressed event. The code works as follows:
1 Thetrigger callsthe XY Z procedure, passing it a value for the
XyZz_param input parameter.
2 The XYZ procedure calls the ABC function passing it a value for the
abc_param input parameter.

PROCEDURE xyz(xyz_param | N NUVBER) IS
v_results NUVBER

BEA N
v_results := ABC(10);
v_results :=v_results + xyz_param
MESSAGE(‘Theresults are: ‘|| TO_CHAR(v_results));
END xyz;

3 The ABC function multiplies two variables and adds the result to the
abc_param input parameter.

4 The ABC function returns the result to the XY Z procedure.

5 The XYZ procedure adds the result to the xyz_param and displaysitin
the console at the bottom of the form window.

FUNCTION abc (abc_param IN NUMBER) RETURN NUMBER IS
v_total NUMBER :=0;
v_num2 NUMBER := 3;
v_num6 NUMBER :=8§;
f*--wrong value should be 6 */
BEGIN
v_total :==v_num3*v_num6;
v_total :=v_total + abc_param;
RETURN v_total;
END abc;

Oracle Developer: Build Forms | 14-17

Lesson 14: Debugging Triggers

Debugger: Setting a Breakpoint

B Forms Debugger [_ (Ol =
*§5§1fp|x?|#g)ﬁj|5% Find: %%

2., Client Program Unit: WHEN-BUTTON-PRESSED (BLOCK1.PUSH_BUTTON1) (Block)
00001 BEGIN
®EB(01) xyzi(l00);
00003 END;
4

¥ A

i E-MODULE1
- Triggers
[1- Attached Libraries

E-PUSH_BUTTON1 =

=~ Triggers
WHEN-BUTTON-P [BLOCK1.F!
[Parameter Lists and Values
I__I [#- Program Units _'LI
i ¥

PL/SQL> .break .
Ereakpoint #1 installed at line 2 of WHEN-BUTTCON-PRESSED (BLOCEL.PUSH_

PL/SQL>

Copyright [Oracle Corporation, 1999. All rights reserved. OF\)ACLE

14-18 Oracle Developer: Build Forms |

Debugging Triggers

Debugger: Setting a Breakpoint

When you click the Debug Example button in the form, “134” displays at the bottom

of the screen (console). However, the expected results were “128.” The syntax must be
correct because everything compiled correctly. So, there must be something wrong in
the logic of the application code within the form. The developer needs to debug the
code to find why it produced the wrong results.

1 Run the ORDERS form in Debug mode (use the Run Form Debug
button), and locate the When-Button-Pressed trigger in Blockl in the
Debugger. Set a breakpoint on the executable line (Source pane) that
calls the procedure:

00001 BEG N
B(01) xyz(100); -- 'B(01)" indicates the break
00003 END;

2 Dismissthe Debugger and the forms runs.

3 Click the Debug Example button in the form. The program stops at the
breakpoint.

Oracle Developer: Build Forms | 14-19

Lesson 14: Debugging Triggers

Debugger: Stepping into Code

B# Forms Debugger M [=] ES

S5 e |x? (ElE0BE M 00000 | wE

Eg Client Program Unit: XYZ [Procedure Body)
00001 PROCEDURE xyz (®yz parsm IN NUMBER] IS v results NUMBER: g
00002 BEGIN

o> 00003 v _results
00004 v_results

ALBC (10} ;
v_results + xyz_param;

i
o

System Variables

Command Line Parameters

Built-in Packages

Debug Actions

Stack

8 [0] Block wHEN-BUTTOM-PRESSED [BLOCK1.PUSH_BUTTON1] Line 2

o [T [[L

%Z_PARAM INOMBER] = 100

-4 _RESIILTS (NUMBER] = |
- Database Objects -

| K| L
{debugy 1) PL/3QL> .step INTO a

{debug 1) PL/SQL>
> Step to line 3 of XYI

{dsbug 1] PL/$0L> =1

Copyright O Oracle Corporation, 1999. All rights reserved. OF\)ACI_E

14-20 Oracle Developer: Build Forms |

Debugging Triggers

Debugger: Stepping into Code
4 TheXYZ procedure now displays in the Source pane, with “=>" to mark
current position at the beginning of the executable code.
00001 BEG N
5 Click the Step Into button in the Debugger to advance into the XYZ
procedure.
00001 PROCEDURE xyz (xyz_param | N NUMBER IS

v_results NUVBER

00002 BEGA N

=>003 v_results : = ABC(10);

00004 v_results :=v_results + xyz_param

00005 MESSAGE(‘Theresults are: ‘|| TO_CHAR(v_results));
00006 END xyz;

6 Examine the Stack values for the xyz_param and v_results parameters
(aswell as system variables). Everything looks normal in the xyz
procedure.

-Stack

-[1]Procedure Body XYZ Line 3
|- XYZ_PARAM (NUMBER)= 100
|-V_RESULTS (NUMBER)=

Oracle Developer: Build Forms | 14-21

Lesson 14: Debugging Triggers

Debugger: Checking Variables

E¥ Forms Debugger |_ O] =

1570 (X ? [wh| 2 e BE me] Y
E_.g Client Program Unit: ABC [Function Body)
ooo04 w_numt NUMEER := &;

00005 f+% wrong value: should he & &/
0000a BEGIN

= 00007 v_total := v_numd * v_numé; -
sl |

E-Debug Actions

El-Stack

i - B [0] Block WHEN-BUTTON-PRESSED (BLOCK1.PUSH_BUTTON1) Line 2
B [1] Pracedure Body =YZ Line 3

8 [2] Function Body ABC Line 7

- ABC_PARAM (NUMBER) = 10

- Retumiyalue [MUMBER) =

A_TOTAL [NUMBER] = 0

L1

O |

H W_MUM3 [NUMBER) = 2 —
BEF) = [-
L v
(debuy 1) PL/SOL> -
> Ztep to line 4 of AEC
{debuy 1)PL/3QL> .step INTO 1
{debug 1) PL/SOL> =1

Copyright [Oracle Corporation, 1999. All rights reserved. OF\)ACLE

Oracle Developer: Build Forms |

Debugging Triggers

Debugger: Stepping into Code (continued)

7 Click the Step Into button to enter the ABC function. Step through each
of the opening assignment statement. Find the problem in the code
(v_num6 isincorrectly set to 8 instead of 6).

00001 FUNCTI ON abc (abc_param | N NUVBER) RETURN NUMBER | S
00002 v_total NUMBER : = O;
00003 v_nun8 NUMBER : = 3;
=>004 v_nunt NUMBER : =8;
00005 /*-- wong val ue should be 6
00006 */
8 Check the stack values of the v_total, v_num3, and v_numé6 variables.
- St ack
-[2] Functi on Body ABC Line 3
| - ABC_PARAM (NUMBER) = 10
| - V_TOTAL (NUMBER) =
|- V_NUMB (NUMBER) =
|- V_.NUMB (NUVBER) =
Change the stack value of v_num6 to its correct value.
|- V_.NUMB (NUVBER) =6
9 Continue to step through the ABC function using the Step Into button.

Verify the stack values for thev_total variable. At the end of the ABC
function, use the Step Into button to return to the XY Z procedure.

00003 v_resul ts :=ABC(10)
=>004 v_results :=v_results + xyz_param
00005 MESSAGE(' The results are:’ || TO CHAR(v_results));

Oracle Developer: Build Forms | 14-23

Lesson 14: Debugging Triggers

Corrected Code

FUNCTI ON abc (abc_param | N NUVBER) RETURN NUMBER
IS

v_total NUMBER : = 0;

v_nun8 NUMBER : = 3;

v_nunt NUMBER : = 6;

/*-- changed value to 6

*/

BEG N

v_total := v_nunB * v_nunb;
v_total := v_total + abc_param
RETURN v_total ;

END abc;

Copyright [Oracle Corporation, 1999. All rights reserved. OF\)ACLE

14-24 Oracle Developer: Build Forms |

Debugging Triggers

Debugger: Changing the Code and Rerunning

10 Go back into the ABC function in Form Builder. Change the value
assigned to v_numé6 from 8 to 6. Rerun the form without the Debugger
on. The correct result is displayed.

FUNCTI ON abc (abc_param | N NUMBER) RETURN NUMBER | S
v_total NUMBER : = O;

v_nun8 NUMBER : = 3;

v_nunt NUMBER : = 6;

[*-- corrected value is 6

*/

BEA N

v_total := v _nunB * v_nun®;
v_total :=v_total + abc_param
RETURN v_total ;

END abc;

Oracle Developer: Build Forms | 14-25

Lesson 14: Debugging Triggers

Summary

®* To debug aform: Use the Run Form Debug button,
and set breakpoints.

* Debug commands can be entered in the Interpreter
pane or by using buttons.

* Set breakpoints to invoke the Debugger.

* Break and Debug triggers are available to program
Debug Actions on events in the form.

Copyright O Oracle Corporation, 1999. All rights reserved. ORACLE

14-26 Oracle Developer: Build Forms |

Summary

Summary

» To debug a form, follow these steps:

a Use the Run Form Debug button (compiles and runs form
automatically).

b Set breakpoints.

» Debug commands can be entered in the Interpreter pane or by using
buttons.

» Set breakpoints to invoke the Debugger.

» Break and Debug triggers are available to program Debug Actions on
events in the form.

Oracle Developer: Build Forms | 14-27

Lesson 14: Debugging Triggers

Practice 14 Overview

This practice covers using the Debugger to help
solve problems at run time.

Copyright [Oracle Corporation, 1999. All rights reserved. OF\)ACLE

Note
For solutions to this practice, see Practice 14 in Appendix A, “Practice Solutions.”

14-28 Oracle Developer: Build Forms |

Practice 14 Overview

Practice 14 Overview

In this practice, you will create a generic procedure for the LOV in the CUSTGXX

form, and you will run this module in Debug mode and step through the code to
monitor its progress.

Use the Debugger to help solve problemsat run time.

Oracle Developer: Build Forms |

Lesson 14: Debugging Triggers

Practice 14

1 Open your CUSTGXX. FMB file. In thisform, create a procedure that is
called List_Of Values. Import code fromthepr 14 1.t xt file

PROCEDURE i st_of val ues(p_l ov i n VARCHAR2, p_text i n VARCHAR?)
IS
v_| ov BOOLEAN
BEG N
v_lov:= SHONLOV(p_l ov);
IF v_l ov THEN
MESSAGE(’ You have just selected a '||p_text);
ELSE
MESSAGE(’ You have just cancelled the List of Values');
END | F;
END;

2 Modify the When-Button-Pressed trigger for
CONTROL.Sales Lov_Button in order to call this procedure.

When-Button-Pressed on CONTROL.Sales Lov_Button
LIST_OF _VALUES(SALES REP_LOV, 'Sales Representative’);

3 Compile and run your form in Debug mode. Set a breakpoint in one of
your triggers, and investigate the call stack. Try stepping through the
code to monitor its progress.

14-30 Oracle Developer: Build Forms |

Adding Functionality
to ltems

Lesson 15: Adding Functionality to Items

Objectives

After completing this lesson, you should be able to
do the following:

* Supplement the functionality of input items by
using triggers and built-ins

* Supplement the functionality of
noninput items by using triggers and built-ins

Copyright [Oracle Corporation, 1999. All rights reserved. OF\)ACLE

Oracle Developer: Build Forms |

Introduction

Introduction

Overview
In thislesson, you will learn how to use triggers to provide additional functionality to
GUI itemsin form applications.

Oracle Developer: Build Forms |

Lesson 15: Adding Functionality to Items

Iltem Interaction Triggers

When-Button-Pressed

When-Checkbox-Changed

N When-Radio-Changed
A -Image-P
L N (I'.”’ When-Image-Pressed
SN — When-Image-Activated
N When-List-Changed

When-List-Activated

Copyright O Oracle Corporation, 1999. All rights reserved. ORACLE

154 Oracle Developer: Build Forms |

Item Interaction Triggers

Item Interaction Triggers

There are several types of GUI itemsthat the user can interact with by using the mouse
or by pressing afunction key. Most of these items have default functionality. For
example, by selecting aradio button, the user can change the value of the radio group
item.

You will often want to add triggers to provide customized functionality when these
events occur. For example:

* Performing tests and appropriate actions as soon as the user clicks a
radio button, a list, or a check box

» Conveniently displaying an image when the user clicks an image item

» Defining the functionality of a push-button (which has none until you
define it)

The following triggers fire due to user interaction with an item, as previously
described. They can be defined at any scope.

Trigger Firing Event
When-Button-Pressed User single-clicks with mouse or uses
function key to select
When-Checkbox-Changed User changes check box state, by
single-click or function key
When-Radio-Changed User selects different button, or deselects
current button, in aradio group
When-Image-Pressed User single-clicks image item
When-Image-Activated User double-clicks image item
When-List-Changed User changes value of alist item
When-List-Activated User double-clicks element in a T-list

Oracle Developer: Build Forms | 15-5

Lesson 15: Adding Functionality to Items

Coding Item Interaction Triggers

* Valid commands:
— SELECT statements
— Standard PL/SQL constructs
— All built-in subprograms

* Use When-Validate-" object’ to trap the operator
during validation.

Copyright [Oracle Corporation, 1999. All rights reserved. OF\)ACLE

15-6 Oracle Developer: Build Forms |

Item Interaction Triggers

Example of When-Radio-Changed

When-Radio-Changed trigger on :S_ORD.Payment_Type. When the user selects
credit as the payment type for an order, this trigger immediately confirms whether the
customer has agood or excellent credit rating. If not, then the payment typeis set to
cash.
DECLARE
v_credit_rating S QUSTOMER credit_rati ngddYPE;
BEG N
IF:S_ORD.payment_type ='CREDIT' THEN
SELECT credit_rating INTO v_credit_rating
FROMS_CUSTOMER
WHERE id=:S_ORD.customer_id,;
IF v_credit_rating NOT INCGOOD’,EXCELLENT’) THEN
:S_ORD.payment_type :="CASH’;
MESSAGE('Warning-customer must pay cash’);
ENDIF;
ENDIF;
END;
Note: During an unhandled exception, the trigger terminates and sends the Unhandled
Exception message to the operator. The item interaction triggers do not fire on
navigation or validation events.

Command Types in Item Interaction Triggers

You can use standard SQL and PL/SQL statementsin these triggers, like the example
above. However, you will often want to add functionality to items by calling built-in
subprograms, which provide awide variety of mechanisms.

Oracle Developer: Build Forms | 15-7

Lesson 15: Adding Functionality to Items

Interacting with Check Boxes

When-Checkbox-Changed

| F CHECKBOX_CHECKED('S_ORD.order_filled’) THEN
SET_ITEM_PROPERTY('S_ORD.date_shipped’,
UPDATE_ALLOWED, PROPERTY_FALSE);

ELSE
SET_ITEM_PROPERTY('S_ORD.date_shipped’,
UPDATE_ALLOWED, PROPERTY_TRUE);

END IF;

Copyright [Oracle Corporation, 1999. All rights reserved. OF\)ACLE

15-8 Oracle Developer: Build Forms |

Defining Functionality for Input Items

Defining Functionality for Input Items

You have already seen an example of adding functionality to radio groups; we now
look at adding functionality to other itemsthat accept user input.

Check Boxes

When the user selects or clears a check box, the associated value for the state is set.
You may want to perform trigger actions based on this change. Note that the
CHECKBOX_CHECKED function enables you to test the state of a check box
without needing to know the associated values for the item.

Example

This When-Checkbox-Changed trigger on the:S_ORD.Order_Filled item preventsthe
Date_Shipped item from being updated if the user marks the order asfilled (checked
on). If the check box is set to off, then the Date_Shipped is enabled.

IF CHECKBOX_CHECKED('S_ORD.order _filled’) THEN
SET_ITEM_PROPERTY(S_ORD.date_shipped,
UPDATE_ALLOWED,PROPERTY_FALSE);
ELSE
SET_ITEM_PROPERTY(S_ORD.date_shipped,
UPDATE_ALLOWED, PROPERTY_TRUE);
END IF;

Oracle Developer: Build Forms | 15-9

Lesson 15: Adding Functionality to Items

Changing List Items at Run Time

LExcellent _t Index
ADD_LIST_ELEMENT 1
Excellent
DELETE_LIST_ELEMENT Good 2
Poor 3

Copyright [Oracle Corporation, 1999. All rights reserved. OF\)ACLE

15-10 Oracle Developer: Build Forms |

Defining Functionality for Input Items

List Items

You can use the When-List-Changed trigger to trap user selection of alist value. For
T-lists, you can trap double-clicks with When-List-Activated.

With Form Builder, you can also change the selectable elementsin alist as follows:
» Periodically update the list from a two-column record group.

* Add or remove individual list elements through the
ADD_ LIST_ELEMENT and DELETE_LIST_ELEMENT built-ins,
respectively.

ADD_LIST_ELEMENT(Ilist_item_name’,index,’label’,'value’)
DELETE_LIST_ELEMENT(list_item_name’,index)

Parameter Description

Index A number identifying the element position in the list (top=1)
Label The name of the element

Value The new value for this element

Note: You can eiminate the Null list element of alist by setting the required property
to Yes.

Oracle Developer: Build Forms | 15-11

Lesson 15: Adding Functionality to Items

Displaying LOVs from Buttons

® Uses:
— Convenient alternative for accessing LOVs
— Can display independently of text items
* Needs:
— When-Button-Pressed trigger
— LIST_VALUES or SHOW_LOV built-in

Copyright [Oracle Corporation, 1999. All rights reserved. OF\)ACLE

15-12 Oracle Developer: Build Forms |

Defining Functionality for Noninput ltems

Defining Functionality for Noninput Items

Displaying LOVs from Buttons

If you have attached aL OV to atext item, then the user can invoke the LOV from the

text item by selecting Edit—>Display List or pressing the [List Values] key.

However, it is always useful if a button is available to display a LOV. The button has
two advantages:

» Itis convenient alternative for accessing the LOV.

* ltdisplays a LOV independently of a text item (using SHOW_LOV).

There are two built-ins that you can call to invoke a LOV from a trigger. These are
LIST_VALUES and SHOW_LOV.

LIST_VALUES Procedure

This built-in procedure invokes the LOV that is attached to the current text item in the
form. It has an optional argument, which may be set to RESTRICT, meaning that the
current value of the text item is used as the initial search string on the LOV. The
default for this argument is NO_RESTRICT.

SHOW_LOV Function
This built-in function, without arguments, invokes the LOV of the current item.
However, there are arguments that let you define which LOV is to be displayed, and
what the x and y coordinates are where its window should appear:
SHOW_LOV('lov_name’, x,y)
SHOW_LOV(lov_id, x,y)
Notice that either the LOV name (in quotes) or the LOV 1D (without quotes) can be
supplied in the first argument.

Note: Thelov_idisaPL/SQL variable where the internal 1D of the object is stored.
Internal 1Ds are amore efficient way of identifying an object.

Oracle Developer: Build Forms | 15-13

Lesson 15: Adding Functionality to Items

LOVs and Buttons

105

LOV button Employee_Id]

* Employees (LOV) |
/.\A Name 1D

Sundar 101

When-Button-Pressed

Jayne 102
IF SHOW_LOV(myLov’) Louise 103
THEN... Pascal 104

Bulent [105
Tushar 106
Ursula 107

Copyright [Oracle Corporation, 1999. All rights reserved. OF\)ACLE

15-14 Oracle Developer: Build Forms |

Defining Functionality for Noninput ltems

Using the SHOW_LOV Function
The SHOW_L QV function returns a Boolean value:
« TRUE indicates that the user selected a record from the LOV.

* FALSE indicates that the user dismissed the LOV without choosing a
record, or that the LOV returned 0O records from its Record Group.

Note

* You can use the FORM_SUCCESS function to differentiate between the
two causes of SHOW_LOV returning FALSE.

Create the LOV button with a suitable label, such as “Pick,” and arrange it on the
canvas where the user intuitively associates it with the items that the LOV supports
(even though the button has no direct connection with text items). This is usually
adjacent to the main text item that the LOV returns a value to.

You can use the SHOW_LOV function to display a LOV that is not even attached
to a text item, providing that you identify the LOV in the first argument of the
function. When called from a button, this invokes the LOV to be independent of
cursor location.

» Switch off the button’s Mouse Navigate property of the button. When
using LIST_VALUES, the cursor needs to reside in the text item that is
attached to the LOV. With SHOW _LOV, this also maintains the cursor to
in its original location after the LOV is closed, wherever that may be.

Example

This When-Button-Pressed trigger on the Customer_Lov_Button invokes an LOV in a
PL/SQL loop, until the function returns TRUE. Because SHOW_LOV returns TRUE
when the user selects a record, the LOV redisplays until they do so.
LOOP
EXIT WHEN SHOW_LOV('customer_lov’);
MESSAGE(You must select a value from list);
END LOOP;

Oracle Developer: Build Forms | 15-15

Lesson 15: Adding Functionality to Items

Populating Image ltems

|
{ Fetch on queryJ—W W
' Database
SUMMIT I—,
SPORTING
GooDs ——H WRITE_IMAGE_FILE)—;
:)
— READ_IMAGE_FILE }—
J | |

Image file in the
file system

Copyright [Oracle Corporation, 1999. All rights reserved. OF\)ACLE

Oracle Developer: Build Forms |

Defining Functionality for Noninput ltems

Image Items

Image items that have the Database Item property set to Yes automatically populatein
response to a query in the owning block (from aLONG RAW column in the base
table).

Nonbase table image items, however, need to be populated by other means. For
example, from an image file in the file system:

READ_IMAGE_FILE built-in procedure

You might decide to populate an image item from a button trigger, using When-
Button-Pressed, but there are two triggers that fire when the user interacts with an
image item directly:

* When-Image-Pressed (fires for a single click on image item)

* When-Image-Activated (fires for a double-click on image item)

READ_IMAGE_FILE Procedure
This built-in procedure lets you load an image file, in a variety of formats, into an
image item.

READ_IMAGE_FILE(filename’, filetype’, item_name’);

Parameter Description

filename The image file name (Without a specified path, the default path is
assumed.)

filetype Thefiletype of theimage (You can use ANY as avalue, but it isrecom-

mended to set a specific filetype for better performance. Refer to the online
Help system for file types.)

item_name The name of the image item (a variable holding the Item_id isalso valid for
this argument) (This parameter is optional.)

Note
» The filetype parameter is optional in READ_IMAGE_FILE. If you omit
filetype, you must explicitly identify the item_name parameter.

* The reverse procedure, WRITE_IMAGE_FILE, is also available. You
can use GET_FILE_NAME built-in to display the standard open file
dialog box where the user can select an existing file or specify a new file.

Oracle Developer: Build Forms | 15-17

Lesson 15: Adding Functionality to Items

Loading the Right Image

READ | MAGE_FI LE(
'F_’||TO_CHAR(:S_ITEM.product_id)||.BMP’,
'BMP’,

'S_ITEM.product_image’);

Copyright [Oracle Corporation, 1999. All rights reserved. OF\)ACLE

15-18 Oracle Developer: Build Forms |

Defining Functionality for Noninput ltems

Example of Image Items

The following When-Image-Pressed trigger on the Product_Image item displays a

picture of the current product (inthe ITEM block) when the user clicksthe image item.

This example assumes that the related filenames have the format:

F_<product id>. BWP
READ_IMAGE_FILE(F_’|[TO_CHAR(:S_ITEM.product_id)|.BMP’,

'BMP’,’S_ITEM.product_image’);

Notice that as the first argument to this built-in is datatype CHAR, the concatenated

NUMBER item, product_id, must first be converted by using the TO_CHAR function.

Note: If you load an image into a base table image item by using

READ_IMAGE_FILE, then its contents will be committed to the database LONG

RAW column when you save changes in the form. You can use this technique to

populate a table with images.

Oracle Developer: Build Forms | 15-19

Lesson 15: Adding Functionality to Items

Interacting with Sound Items

GET_ITEM_PROPERTY and SET_ITEM_PROPERTY:
* SHOW_FAST_FORWARD_BUTTON mi

e SHOW_PLAY_BUTTON B
e SHOW_RECORD_BUTTON o
e SHOW_REWIND_BUTTON L
e SHOW_SLIDER EiI D
e SHOW_TIME_INDICATOR
e SHOW_VOLUME_CONTROL P

Copyright [Oracle Corporation, 1999. All rights reserved. OF\)ACLE

15-20 Oracle Developer: Build Forms |

Defining Functionality for Noninput ltems

Interacting with Sound Items

When you create a sound item, Form Builder automatically represents the item in the
layout with the sound item control.

You can hide or display or get information about each component of a sound item
control programmatically by using SET _ITEM_PROPERTY and
GET_ITEM_PROPERTY built-ins (however, you must always have either the Play or
Record button displayed for a sound item).

You can use the following properties with these two built-ins:
 SHOW_FAST _FORWARD BUTTON

« SHOW_PLAY_BUTTON

« SHOW_RECORD_BUTTON

« SHOW_REWIND BUTTON

« SHOW_SLIDER

e SHOW_TIME_INDICATOR

« SHOW_VOLUME_CONTROL

Use the PROPERTY_TRUE or PROPERTY_FALSE parameters with the
SET_ITEM_PROPERTY built-in. The GET_ITEM_PROPERTY built-in returns
TRUE or FALSE as data type VARCHARZ2.

Oracle Developer: Build Forms | 15-21

Lesson 15: Adding Functionality to Items

Populating Hierarchy Trees

CREATE_GROUP_FROM QUERY AW Wﬂ

* Database

Record Group /.\\ When-New-Form-Instance

l ==

| SET_TREE_PROPERTY |—>

Ford
— Volvo
VW
____ Toyota

Copyright O Oracle Corporation, 1999. All rights reserved. OF\)ACLE

15-22 Oracle Developer: Build Forms |

Defining Functionality for Noninput ltems

Populating Hierarchical Trees

The hierarchical tree displays data in the form of a standard navigator, similar to the
Object Navigator used in Oracle Devel oper.

You can populate a hierarchical tree with values contained in a Record Group or Query
Text. At run time, you can programmatically add, remove, modify, or evaluate
elementsin ahierarchical tree. You can aso use the property pal ette to populate the
hierarchical tree.

Note: All built-ins are located in the FTREE built-in package.

SET_TREE_PROPERTY Procedure

This built-in procedure can be used to change certain properties for the indicated
hierarchical tree item It can also be used to populate the indicated hierarchical tree
item from arecord group.

Ftree. Set_Tree_Property(itemnanme, Ftree.property, val ue);

Parameter Description

item_name Specifiesthe name of the object created at design time. The datatype of the
nameis VARCHAR2.

property Specifies one of the following properties:

RECORD_GROUP: Replaces the data set of the hierarchical tree with a
record group and causes it to display

QUERY _TEXT: Replaces the data set of the hierarchical tree with an SQL
query and causes it to display

ALLOW_EMPTY_BRANCHES: Possible values are PROPERTY_TRUE
and PROPERTY _FALSE

value Specifies the value appropriate to the property you are setting:
PROPERTY_TRUE: The property is set to the TRUE state.
PROPERTY_FALSE: The property is set to the FAL SE state.

Oracle Developer: Build Forms | 15-23

Lesson 15: Adding Functionality to Items

Displaying Hierarchy Trees

WHEN-NEW-FORM-INSTANCE

rg_enps : = | create_group_from_query(‘rg_emps’
‘select 1, level, last_name, NULL,
to_char(id) ‘ ||

‘from s_emp * ||

‘connect by prior id= manager_id ‘||
‘start with title = “President™);

v_ignore := populate_group(rg_emps);

ftree.sefset_tree_property tree5’,

ftree.record_group, rg_emps);

Copyright O Oracle Corporation, 1999. All rights reserved. ORACLE

Oracle Developer: Build Forms |

Defining Functionality for Noninput ltems

Populating Hierarchical Trees (continued)
You can add data to atree view by:

» Populating a tree with values contained in a record group or query by
using the POPULATE_TREE built-in

* Adding data to a tree under a specific node by using the
ADD_TREE_DATA built-in

* Modifying elements in a tree at run time by using built-in subprograms
* Adding or deleting nodes and the data elements under the nodes

Example

This code could be used in a WHEN-NEW-FORM-INSTANCE trigger to initially
populate the hierarchical tree with data. The example locates the hierarchical tree first.
Then, a record group is created and the hierarchical tree is populated.

DECLARE
htree | TEM
v_ignore NUMVBER;

rg_enps RECORDGROUP,

BEG N
htree : = Find_Iten{'tree_bl ock. htree3d');

rg_enps : = Oeate_G oup_From Query('rg_emps',
"select 1, level, enane, NULL, to_char(enpno) * ||

"fromenp ||
‘connect by prior enmpno = ngr ‘||
'start with job = ' PRESIDENT '’);

v_ignore : = Popul ate_G oup(rg_enps);

Ftree. Set_Tree_Property(htree, Ftree. RECCRD GROUP, rg_enps);
END;

Oracle Developer: Build Forms | 15-25

Lesson 15: Adding Functionality to Items

Summary

* Jtem interaction triggers accept SELECT
statements and other standard PL/SQL constructs.

®* You use built-ins for check boxes, LOV control, list
item control, image file reading, hierarchical tree,
and sound item control.

Copyright [Oracle Corporation, 1999. All rights reserved. OF\)ACLE

15-26 Oracle Developer: Build Forms |

Summary

Summary
In thislesson, you learned to use triggers to provide functionality to the GUI itemsin
form applications.

* The item interaction triggers accept SELECT statements and other
standard PL/SQL constructs.

» There are built-ins for LOV control, list item control, image file reading,
sound item control, hierarchical tree, and so on.

Oracle Developer: Build Forms | 15-27

Lesson 15: Adding Functionality to Items

Practice 15 Overview

This practice covers the following topics:

* Writing a trigger to check whether the customer’s
credit rating forces him to pay cash

* Creating a toolbar button to display and hide
product images

Copyright [Oracle Corporation, 1999. All rights reserved. OF\)ACLE

Note
For solutions to this practice, see Practice 15 in Appendix A, “Practice Solutions.”

Oracle Developer: Build Forms |

Practice 15 Overview

Practice 15 Overview
In this practice, you add some triggers that enable interaction with buttons. You aso
create some additional functionality for aradio group.
» Writing a trigger to check whether the customer’s credit rating forces
him to pay cash
» Creating a toolbar button to display and hide product images

Oracle Developer: Build Forms | 15-29

Lesson 15: Adding Functionality to Items

Practice 15

1 Inthe ORDGXX form write atrigger that fires when the Payment Type
changes, alowing only those customers with a good or excellent Credit
Rating to pay for orders on credit. You can import thepr 15_1. t xt
file.

2 Inthe CONTROL block, create anew button called Image_Button and
position it on the Toolbar. Set Label property to Image Off.

3 Import thefilepr 15_3. t xt into atrigger that fires when the
Image_Button is clicked. The file contains code that determines the
current value of the visible property of the Product Image item. If the
current value is True, the visible property toggles to False for both the
Product Image item and the Image Description item. Finally the |abel
changes on the Image_Button to reflect its next toggle state. However, if
the visible property is currently False, the visible property togglesto
True for both the Product Image item and the Image Description item.

When-Button-Pressed on CONTROL.Image Button

IFGET_ITEM_PROPERTY(S_ITEM.product_image’,VISIBLE)="TRUE' THEN
SET_ITEM_PROPERTY('S_ITEM.product_image’, VISIBLE,
PROPERTY_FALSE),
SET_ITEM_PROPERTY('S_ITEM.image_description’, VISIBLE,
PROPERTY_FALSE),
SET_ITEM_PROPERTY(CONTROL.image_button’,LABEL,’ Image On’);

ELSE
SET_ITEM_PROPERTY('S_ITEM.product_image’, VISIBLE,
PROPERTY_TRUE);
SET_ITEM_PROPERTY('S_ITEM.image_description’, VISIBLE,
PROPERTY_TRUE);
SET_ITEM_PROPERTY(CONTROL.image_button’,LABEL,

'Image Off");

END IF;

4 Save, compile, and run the form.

15-30 Oracle Developer: Build Forms |

Runform Messages
and Alerts

Lesson 16: Runform Messages and Alerts

Objectives

After completing this lesson, you should be able to
do the following:

* Describe the default messaging
* Handle errors using built-in subprograms

* Identify the different types of Form Builder
messages

* Control system messages
* Create and control alerts

Copyright [Oracle Corporation, 1999. All rights reserved. OF\)ACLE

16-2 Oracle Developer: Build Forms |

Introduction

Introduction

Overview

This lesson shows you how to intercept system messages, and if desired, replace them
with ones that are more suitable for your application. You will also learn how to
handle errors by using built-in subprograms, and how to build customized alerts for
communicating with users.

Oracle Developer: Build Forms | 16-3

Lesson 16: Runform Messages and Alerts

Communicating with the Operator

Alerts #8 Dracle Developer Forms Runtime: M= B
Action Edit Ouery Block Record Field Window Help
System WR2 B ER amk war | Fxa ?
Application 7 WINDOW1 o=
Jace K
lr & You have UNSAYED records! & I
F SaveandExit | DoMot Save andEsit | [
5 tion
[E TDiguhart Ml [Warehouse Manage:
Messages £
- RrA-40100: At first record.
Informative = I
Error
Working
Application

Copyright [Oracle Corporation, 1999. All rights reserved. OF\)ACLE

16-4 Oracle Developer: Build Forms |

Run-time Messages and Alerts Overview

Run-time Messages and Alerts Overview

The Form Builder displays messages at run time to inform the operator of events that
occur in the session. Asthe designer, you may want to either suppress or modify some
of these messages, depending on the nature of the application.

The Form Builder can communicate with the user in the following ways:

Informative message: A message tells the user the current state of
processing, or gives context-sensitive information. The default display is
on the message line. You can suppress its appearance with an
On-Message trigger.

Error message: This informs the user of an error that prevents the current
action. The default display is on the message line. You can suppress
message line errors with an On-Error trigger.

Working message: This tells the operator that the form is currently
processing (for example: Working...). This is shown on the message line.
This type of message can be suppressed by setting the system variable
SUPPRESS WORKING to True.

System alert: Alerts give information to the operator that require either
an acknowledgment or an answer to a question before processing can
continue. This is displayed as a modal window. When more than one
message is waiting to show on the message line, the current message
also displays as an alert.

You can also build messages and alerts into your application:

Application message: These are messages that you build into your
application by using the MESSAGE built-in. The default display is on
the message line.

Application alert: These are alerts that you design as part of your

application, and issue to the operator for a response by using the
SHOW_ALERT built-in.

Oracle Developer: Build Forms | 16-5

Lesson 16: Runform Messages and Alerts

Detecting Run Time Errors

* FORM_SUCCESS
— TRUE: Action successful
— FALSE: Error/Fatal error occurred
* FORM_FAILURE
— TRUE: A nonfatal error occurred
— FALSE: No error/No fatal error
* FORM_FATAL
— TRUE: A fatal error occurred
— FALSE: No error/No nonfatal error

Copyright [Oracle Corporation, 1999. All rights reserved. OF\)ACLE

16-6 Oracle Developer: Build Forms |

Built-ins and Handling Errors

Built-ins and Handling Errors

When a built-in subprogram fails, it does not directly cause an exception in the calling
trigger or program unit. This means that subsequent code continues after a built-in
fails, unless you take action to detect afailure.

Example
A button in the CONTROL block called Stock Button is situated on the Toolbar
canvas of the ORDERS form. When clicked, this When-Button-Pressed trigger
navigatesto the S INVENTORY block, and performs a query there.
GO_BLOCK(S_INVENTORY’);
EXECUTE_QUERY;
If the GO_BLOCK built-in procedure fails because the S INVENTORY block does
not exist, or because it is nonenterable, then the EXECUTE_QUERY procedure still
executes, and attempts a query in the wrong block.

Built-in Functions for Detecting Success and Failure

The Form Builder supplies some functions that indicate whether the latest actionin
the form was successful:

Built-in Function Description of Returned Value
FORM_SUCCESS TRUE: Action successful

FALSE: Error or fatal error occurred
FORM_FAILURE TRUE: A nonfatal error occurred

FALSE: Either no error, or afatal error
FORM_FATAL TRUE: A fatal error occurred

FAL SE: Either no error, or a nonfatal error

Note: These built-in functions return success or failure of the latest action in the form.
Thefailing action may occur in atrigger that fired as aresult of abuilt-in from the first
trigger. For example, the EXECUTE_QUERY procedure, can cause a Pre-Query
trigger to fire, which may itself fail.

Oracle Developer: Build Forms | 16-7

Lesson 16: Runform Messages and Alerts

Errors and Built-Ins

* Built-in failure does not cause an exception.

® Test built-in success with FORM_SUCCESS
function.

IF FORM_SUCCESS THEN . . .
* What went wrong?
— ERROR_CODE, ERROR_TEXT, ERROR_TYPE

— MESSAGE _CODE, MESSAGE _TEXT,
MESSAGE _TYPE

Copyright [Oracle Corporation, 1999. All rights reserved. OF\)ACLE

16-8 Oracle Developer: Build Forms |

Errors and Built-Ins

Errors and Built-Ins

It isusually most practical to use FORM _SUCCESS, because this returns FAL SE if
either afatal or anonfatal error occurs. You can then code the trigger to take
appropriate action.

Example of FORM_SUCCESS

Hereisthe same trigger again. Thistime, the FORM_SUCCESS functionisused in a
condition to decide if the query should be performed, depending on the success of the
GO _BLOCK action.
GO_BLOCK(S_INVENTORY’);
IF FORM_SUCCESS THEN
EXECUTE_QUERY;
ELSE
MESSAGE(An error occurred while navigating to Stock’);
ENDIF;
Triggersfail only if thereis an unhandled exception or you raise the
FORM_TRIGGER_FAILURE exception to fail the trigger in a controlled manner.

Note: Look at the program unit CHECK _PACKAGE_FAILURE, which iswritten for
you as part of Relation management, when you build master-detail blocks. This
procedure may be called to fail atrigger if the last action was unsuccessful.

Built-in Functions to Determine the Error

When you detect an error, you may need to identify it to take a specific action. Three
more built-in functions provide this information:

Built-in Function Description of Returned Value

ERROR_CODE Error number (datatype NUMBER)

ERROR_TEXT Error description (datatype CHAR)

ERROR_TYPE FRM=Form Builder error, ORA=COracle error
(datatype CHAR)

We will look at these built-ins again when we discuss controlling messages.

Oracle Developer: Build Forms | 16-9

Lesson 16: Runform Messages and Alerts

Message Severity Levels

0= = P All (default)
5 - !
|
10 - |
15 - *
20 -
More critical
25 -
>25
Define by:

:SYSTEM.MESSAGE_LEVEL

Copyright O Oracle Corporation, 1999. All rights reserved. OF\)ACI_E

16-10 Oracle Developer: Build Forms |

Controlling System Messages

Controlling System Messages

Suppressing Messages According to Their Severity

You can prevent system messages from being issued, based on their severity level.
Form Builder classifies every message with a severity level that indicates how critical
or trivia theinformation is; the higher the numbers, the more critical the message.
There are six levels that you can affect.

Severity Level Description

0 All messages

5 Reaffirms an obvious condition

10 User has made a procedural mistake

15 User attempting action for which the form is not designed

20 Cannot continue intended action dueto atrigger problem or some other
outstanding condition

25 A condition that could result in the form performing incorrectly

>25 M essages that the designer cannot suppress

In atrigger, you can specify that only messages above a specified severity level are to
be issued by the form. You do this by assigning a value to the system variable
MESSAGE_LEVEL. Form Builder then only issues messages that are above the
severity level defined in thisvariable.

The default value for MESSAGE_LEVEL (at form startup) is 0. This means that
messages of all severities are displayed.

Oracle Developer: Build Forms | 16-11

Lesson 16: Runform Messages and Alerts

Suppressing Messages

:SYSTEM.MESSAGE_LEVEL :='5’;

UP;

IF NOT FORM_SUCCESS THEN
MESSAGE('Already at the first
Order’);

END IF;

:SYSTEM.MESSAGE_LEVEL :='0’;

:SYSTEM.SUPPRESS_WORKING := 'TRUE’,

Copyright [Oracle Corporation, 1999. All rights reserved. OF\)ACLE

Oracle Developer: Build Forms |

Controlling System Messages

Example of Suppressing Messages

The following When-Button-Pressed trigger moves up one record, using the built-in
procedure UP. If the cursor is aready on the first record, the built-in fails and the
following message usually displays: FRM 40100: At first record.

Thisisaseverity level 5 message. However the trigger suppresses this, and outputsits
own application message instead. The trigger resets the message level to normal (0)
afterwards.

:SYSTEM.MESSAGE_LEVEL :='5’;

UP;

IF NOT FORM_SUCCESS THEN

MESSAGE(Already at the first Order);
ENDIF;
:SYSTEM.MESSAGE_LEVEL :="0’;

Suppressing Working Messages

Working messages are displayed when the Form Builder is busy processing an action.

For example, while querying you receive: Wor ki ng. . . message. You can suppress

this message by setting the system variable SUPPRESS WORKING to True.
:SYSTEM.SUPPRESS_WORKING :="TRUE’;

Note: You can set these system variables as soon as the form starts up, if required, by

performing the assignmentsin a When-New-Form-Instance trigger.

Oracle Developer: Build Forms | 16-13

Lesson 16: Runform Messages and Alerts

FORM_TRIGGER_FAILURE
BEGN |

RAI SE formtrigger_failure;

EXCEPTI ON I *—
WHEN <exception> THEN
RAI SE formtrigger_failure;

END;

. -
Fail trigger <

Copyright [Oracle Corporation, 1999. All rights reserved. OF\)ACLE

16-14 Oracle Developer: Build Forms |

The FORM_TRIGGER_FAILURE Exception

The FORM_TRIGGER_FAILURE Exception

Triggers only fail when one of the following occurs:
» During an Unhandled Exception

* When you request Form Builder to fail the trigger by raising the built-in
exception FORM_TRIGGER_FAILURE

This exception is defined and handled by Form Builder, beyond the visible trigger text
that you write. You can raise this exception:

* In the executable part of a trigger, to skip remaining actions and fail the
trigger

* In an exception handler, to fail the triggdter your own exception
handling actions have been obeyed

In either case, Form Builder has its own exception handler for
FORM_TRIGGER __ FAILURE, which fails the trigger but does cause an
unhandled exception. This means that you can fail the trigger in a controlled manner.

Example

This example adds an action to the trigger exception handler, raising an exception to
fail the trigger when the message is sent, and therefore trapping the user in the
Customer_ID item:

SELECT nane, phone
I NTO : S_ORD. cust oner _nane, :S_CRD. cust orrer _phone
FROM S QUSTOMER WHERE id = : S _ORD. cust oner _i d;
EXCEPTI ON
WHEN no_dat a found THEN

MESSAGE('Customer with this ID not found’);

RAISE form_trigger_failure;

Oracle Developer: Build Forms | 16-15

Lesson 16: Runform Messages and Alerts

Error Triggers

® On-Error:
— Fires when a system error message is issued

— Is used to trap Form Builder and Oracle Server
errors, and to customize error messages

®* On-Message:

— Fires when an informative system message is
issued

— Is used to suppress or customize specific
messages

Copyright [Oracle Corporation, 1999. All rights reserved. OF\)ACLE

16-16 Oracle Developer: Build Forms |

Triggers for Intercepting System Messages

Triggers for Intercepting System Messages

By writing triggers that fire on message events you can intercept system messages
before they are displayed on the screen. These triggers are:

* On-Error: Fires on display of a system error message
* On-Message: Fires on display of an informative system message

These triggerseplace the display of a message, so that no message is seen by the
operator unless you issue one from the trigger itself.

You can define these triggers at any level. For example, an On-Error trigger at item
level only intercepts error messages that occur while control is in that item. However,
if you define one or both of these triggers at form level, all messages that cause them
to fire will be intercepted regardless of which object in the current form causes the
error or message.

On-Error Trigger
Use this trigger to:

» Detect Form Builder and Oracle Server errors. This trigger can perform
corrective actions based on the error that occurred.

* Replace the default error message with a customized message for this
application.

Remember that you can use the built-in functions ERROR_CODE, ERROR_ TEXT,
and ERROR_TYPE to identify the details of the error, and possibly use this
information in your own message.

Example of an On-Error Trigger

This On-Error trigger sends a customized message for error 40202 (field must be
entered), but reconstructs the standard system message for all other errors.

| F ERROR_CCDE = 40202 THEN
MESSAGE(You must fill in this field for an Order’);

ELSE
MESSAGE(ERROR_TYPE|| ' || TO_CHAR(ERROR_CODE) || :"||
ERROR_TEXT);

END IF;

RAISE FORM_TRIGGER_FAILURE;

Oracle Developer: Build Forms | 16-17

Lesson 16: Runform Messages and Alerts

Handling Informative Messages

* On-Message trigger
® Built-in functions:
- MESSAGE_CODE
— MESSAGE_TEXT
— MESSAGE_TYPE

Copyright [Oracle Corporation, 1999. All rights reserved. OF\)ACLE

16-18 Oracle Developer: Build Forms |

Triggers for Intercepting System Messages

On-Message Trigger

Use thistrigger to suppress informative messages, replacing them with customized
application messages, as appropriate.

You can handle messages in On-Message in a similar way to On-Error. However,
because this trigger fires due to informative messages, you will use different built-ins
to determine the nature of the current message.

Built-in Function Description of Returned Value

MESSAGE_CODE Number of informative message that would have
displayed (datatype NUMBER)

MESSAGE_TEXT Text of informative message that would have displayed
(datatype CHAR)

MESSAGE_TYPE FRM =Form Builder message

ORA= Oracle server message

NULL=No messageissued yet in this session
(datatype CHAR)

Note: These functions return information about the most recent message that was
issued. If your applications must be supported in more than one national language,
then use MESSAGE_CODE in preference to MESSAGE_TEXT when checking a

message.

Example of an On-Message Trigger

This On-Message trigger modifies the “Query caused no records to be retrieved”
message (40350).

| F MESSAGE_CODE = 40350 THEN
MESSAGE('No Orders found-check your search values’);

ELSE
MESSAGE(MESSAGE_TYPE||-' || TO_CHAR(MESSAGE_CODE) ||
|| MESSAGE_TEXT);

END IF;

Oracle Developer: Build Forms | 16-19

Lesson 16: Runform Messages and Alerts

Alert Properties

@

A Alert Message (Maximum 200 characters)

® @ 6 6

Copyright O Oracle Corporation, 1999. All rights reserved. OF\)ACI_E

Label 2 | Label 3 |

Alert Example

Thisis ageneric example of an aert, showing all three icons and buttons that can be
defined.

1 | Title

2 | Message

3 | Alert style (stop,
caution, note)

4 | Buttonl label
5 | Button2 label
6 | Button3 label

16-20 Oracle Developer: Build Forms |

Creating and Controlling Alerts

Creating and Controlling Alerts

Alerts are an alternative method for communicating with the operator. Because they
display in amodal window, alerts provide an effective way of drawing attention and
forcing the operator to answer the message before processing can continue.

Use aerts when you need to do the following:

» Display a message that the operator cannot ignore, and must
acknowledge.

» Ask the operator a question where up to three answers are appropriate
(typically Yes, No, or Cancel).

You handle the display and responses to an alert by using built-in subprograms. Alerts
are therefore managed in two stages:

» Create the alert at design-time, and define its properties in the Property
palette.

» Activate the alert at run time by using built-ins, and take action based on
the operator’s returned response.

How to Create an Alert

Like other objects you create at design-time, alerts are created from the Object
Navigator.

1 Select the Alerts node in the Navigator, and then select Create.
2 Define the properties of the alert in the Property Palette.
Here are the properties that are specific to an alert. This is an abridged list.

Property Description

Name Name for this object

Title Alert title

Alert Style Defines the symbol that accompanies message:
Stop, Caution, or Note

Buttonl, Button2, Button3 Labelsfor each of the three possible buttons (Null
indicates that the button is not required.)

Default Alert Button Button 1, Button 2, or Button 3

Message Message that will appear in the alert
(maximum 200 characters)

Oracle Developer: Build Forms | 16-21

Lesson 16: Runform Messages and Alerts

Planning Alerts

Yes/No Yes/No/Cancel
questions questions
° STOP ° STOF

CAUTION NOTE
& CAUTION @ NOTE
Caution Informative
messages messages

Copyright [Oracle Corporation, 1999. All rights reserved. OF\)ACLE

16-22 Oracle Developer: Build Forms |

Creating and Controlling Alerts

Planning Alerts: How Many Do You Need?

Potentially, you can create an alert for every separate alert message that you need to

display, but thisis usually unnecessary.

You can define amessage for an alert at run time, before it is displayed to the operator.

This meansthat a single alert can be used for displaying many messages, providing

that the available buttons are suitable for responding to each of these messages.

Cresate an alert for each combination of:

» Alert style required

» Set of available buttons (and labels) for operator response

For example, an application might require one Note-style alert with a single button
(OK) for acknowledgment, one Caution alert with a similar button, and two Stop alerts
that each provide a different combination of buttons for a reply. You can then assign a

message to the appropriate alert before its display, through the
SET_ALERT_PROPERTY built-in procedure.

Oracle Developer: Build Forms | 16-23

Lesson 16: Runform Messages and Alerts

0 STOP
Yes Nao

SET_ALERT_PROPERTY
SET_ALERT_BUTTON_PROPERTY

CAUTION

& CAUTION

NOTE

@ NOTE

Copyright [Oracle Corporation, 1999. All rights reserved. OF\)ACLE

16-24 Oracle Developer: Build Forms |

Creating and Controlling Alerts

Controlling Alerts at Run Time

There are built-in subprograms to change an alert message, to change aert button
labels, and to display the alert, which returns the operator’s response to the calling
trigger.

SET_ALERT_PROPERTY Procedure

Use this built-in to change the message that is currently assigned to an alert. At form
startup, the default message (as defined in the Property palette) is initially assigned:

SET_ALERT_PROPERTY(alert_name’,property, message’)

Parameter Description

Alert_name The name of the alert, as defined in the Designer (You can
alternatively specify an alert_id (unquoted) for this argument.)

Property The property being set (Use ALERT_MESSAGE_TEXT when
defining a new message for the alert.)

Message The character string that defines the message (You can give a character
expression instead of a simple quoted string, if required.)

SET_ALERT BUTTON_PROPERTY Procedure
Use this built-in to change the label on one of the alert buttons:

SET_ALERT_BUTTON_PROPERTY (alert_name’, button, property,
'value’)

Parameter Description

Alert_name The name of the alert, as defined in the Designer (You can
alternatively specify an alert_id (unquoted) for this argument.)

Button The number that specifiesthe alert button (Use ALERT_BUTTON1,
ALERT_BUTTONZ2, ALERT_BUTTONS3 constants.)

Property The property being set; use LABEL

Vaue The character string that defines the label

Oracle Developer: Build Forms | 16-25

Lesson 16: Runform Messages and Alerts

SHOW_ALERT Function

*I[F SHOW_ALERT(del_Check’)=ALERT_BUTTON1 THEN

|
v
L ~ |

Q Do pou realy wart ko delete thig Order 7
Yes e
|
Y |
Alert_Buttonl |
Alert_Button2 '

Alert_Button3

Copyright O Oracle Corporation, 1999. All rights reserved. ORACLE

16-26 Oracle Developer: Build Forms |

Creating and Controlling Alerts

SHOW_ALERT Function
SHOW_ALERT ishow you display an dert a run time, and return the operator’s
response to the calling trigger:

selected_button := SHOW_ALERT('alert_name);

Alert_Name is the name of the aert, as defined in the builder. You can alternatively
specify an Alert_Id (unquoted) for this argument.

SHOW_ALERT returnsaNUMBER constant, that indicates which of the three
possible buttons the user pressed in response to the alert. These numbers correspond to
the values of three PL/SQL constants, which are predefined by the Form Builder:

If the number equals... The Operator selected is...
ALERT_BUTTON1 Button 1
ALERT_BUTTON2 Button 2
ALERT_BUTTONS3 Button 3

After displaying an alert that has more than one button, you can determine which
button the operator pressed by comparing the returned val ue against the corresponding
constants.

Example

A trigger that fires when the user attempts to delete a record might invoke the aert,
shown opposite, to obtain confirmation. If the operator selects Yes, then the
DELETE_RECORD huilt-inis called to delete the current record from the block.
IF SHOW_ALERT(del_check’)=ALERT_BUTTON1THEN
DELETE_RECORD;
END IF;

Oracle Developer: Build Forms | 16-27

Lesson 16: Runform Messages and Alerts

Directing Errors to an Alert

PROCEDURE Al ert_On_Failure IS
n NUVBER;
BEG N
SET_ALERT_PROPERTY (error_alert’,
ALERT_MESSAGE_TEXT,ERROR_TYPE]||
"-’||[TO_CHAR(ERROR_CODE)||
. || ERROR_TEXT);
n := SHOW_ALERT (error_alert’);
END;

Copyright O Oracle Corporation, 1999. All rights reserved. ORACLE

16-28 Oracle Developer: Build Forms |

Creating and Controlling Alerts

Directing Errors to an Alert

You may want to display errors automatically in an alert, through an

On-Error trigger. The built-in functions that return error information, such as
ERROR_TEXT, canbeusedinthe SET_ALERT_PROPERTY procedure, to construct
the alert message for display.

Example

The following user-named procedure can be called when the last form action was
unsuccessful. The procedure fails the calling trigger and displays Er r or _Al ert
containing the error information.

PROCEDURE al ert _on failure IS
n NUVBER
BEA N
SET_ALERT PROPERTY(
‘error_alert,
ALERT_MESSAGE_TEXT,
ERROR_TYPE||-'||TO_CHAR(ERROR_CODE)||:" ||
ERROR_TEXT);
n:= SHOW_ALERT(error_alert’);
END;

Oracle Developer: Build Forms | 16-29

Lesson 16: Runform Messages and Alerts

Summary

* Application and system messages appear on
message line.

® Test for built-in failure by using FORM_SUCCESS
or other built-in functions.

* Set system variables to suppress system
messages: MESSAGE_LEVEL and
SUPPRESS_WORKING.

Copyright [Oracle Corporation, 1999. All rights reserved. OF\)ACLE

Summary

* On-Error trigger intercepts system error
messages.

* On-Message trigger intercepts system error
messages.

* Alert types: Stop, Caution, and Note

* Up to three buttons are available for operator
response.

* Display alerts with SHOW_ALERT.

®* Change alert message with
SET_ALERT_PROPERTY.

Copyright [Oracle Corporation, 1999. All rights reserved. OF\)ACLE

16-30 Oracle Developer: Build Forms |

Summary

Summary

In this lesson, you saw how to intercept system messages, and how to replace them
with ones that are more suitable for your application. You aso learned how to build
customized aerts for communicating with operators.

The application and system messages appear on the Message line.

Test for failure of built-ins by using the FORM_SUCCESS built-in
function or other built-in functions.

Set system variables to suppress system messages:

- Assign a value to MESSAGE_LEVEL to specify that only messages
above a specific severity level are to be used by the form.

- Assign a value of True to SUPPRESS_WORKING to suppress all
working messages.

On-Error trigger intercepts system error messages.
On-Message trigger intercepts informative system messages.
Alert types: Stop, Caution, and Note.

Up to three buttons are available for operator response (NULL indicates
that the button is not required.).

Display alerts at run time with SHOW_ALERT.
Change alert messages with SET_ALERT_PROPERTY.

Oracle Developer: Build Forms | 16-31

Lesson 16: Runform Messages and Alerts

Practice 16 Overview

This practice covers the following topics:
* Using an alert to inform the operator that the
customer must pay cash

* Using a generic alert to ask the operator to confirm
that the form should terminate

Copyright O Oracle Corporation, 1999. All rights reserved. OF\)ACI_E

Note
For solutions to this practice, see Practice 16 in Appendix A, “Practice Solutions.”

16-32 Oracle Developer: Build Forms |

Practice 16 Overview

Practice 16 Overview

In this practice, you create some alertsin the ORDGXX form. These include a general

alert for questions and a specific alert that is customized for payment type.

* Using an alert to inform the operator that the customer must pay cash

» Using a generic alert to ask the operator to confirm that the form should
terminate

Oracle Developer: Build Forms | 16-33

Lesson 16: Runform Messages and Alerts

Practice 16

1

Create an alert in ORDGXX called Payment_Type Alert with asingle

OK button. The message should read “This customer must pay cash!”
Suggested Title: Payment Type. Style: Caution.

Alter the When-Radio-Changed trigger on Payment_Type to show the
Payment_Type_Alert instead of the message when a customer must pay
cash.

Create a generic alert called Question_Alert that allows Yes and No

replies.

Leave the Message property blank for this alert. Select the Stop style, and define
two buttons in the alert: Yes and No.

Alter the When-Button-Pressed trigger on CONTROL.EXxit_Button that
uses Question_Alert to ask the operator to confirm that the form should
terminate.

Call the SET_ALERT_PROPERTY built-in to define the message:
“Do you really want to leave the form?”

Test the returned value of SHOW_ALERT, and call the EXIT_FORM built-in if
the operator replied Yes.

Save, compile, and run the form to test.

16-34 Oracle Developer: Build Forms |

Query Triggers

Lesson 17: Query Triggers

Objectives

After completing this lesson, you should be able to
do the following:

* Explain the processes involved in querying a data
block

* Describe query triggers and their scope

* Write triggers to supplement query results and
screen query conditions

* Control trigger action based on the form query
status

Copyright [Oracle Corporation, 1999. All rights reserved. OF\)ACLE

17-2 Oracle Developer: Build Forms |

Introduction

Introduction

Overview

In this lesson, you learn how to control events associated with queries on base table
data blocks. You can customize the query process as necessary, and supplement the
results returned by a query.

Oracle Developer: Build Forms | 17-3

Lesson 17: Query Triggers

Query Processing

|Fire Pre-QJerytrigger! A

Abort query
on failure
| Construct SELECT... |

|Perform queryI

= ¢
|Fetcharowintoanewrecordl = = = =
~— I
; Flush
| Mark record as valid I record
- = on failurel
|Fire Post-Query trigger I— -—-==--

|Va| i date any record changes I

Copyright [Oracle Corporation, 1999. All rights reserved. OF\)ACLE

17-4 Oracle Developer: Build Forms |

Query Triggers

Query Triggers

Generaly, triggers are associated with a query in one of two ways:
» Actrigger fires due to the query process itself
For example: Pre-Query and Post-Query

* An event can fire a trigger in Enter Query mode, if the Fire in Enter
Query Mode property of the associated trigger is enabled

The query triggers, Pre-Query and Post-Query, fire due to the query process itself, and
are usually defined on the block where the query takes place.

With these triggers you can add to the normal Form Builder processing of records, or
possibly abandon a query before it is even executed, if the required conditions are not
suitable.

Form Builder Query Processing

When a query is initiated on a data block, either by the operator or by a built-in
subprogram, the following major events take place:

1 In Enter Query mode, Form Builder fires the Pre-Query trigger if
defined.

2 If the Pre-Query succeeds, Form Builder constructs the query SELECT
statement, based on any existing criteria in the block (either entered by
the operator or by the Pre-Query).

3 The query is performed.

4 Form Builder fetches the column values of a row into the base table
items of a new record in the block.

5 The record is marked Valid.

6 Form Builder fires the Post-Query trigger. If it fails, this record is
flushed from the block.

7 Form Builder performs item and record validation if the record has
changed (due to a trigger).

8 Step 4 is repeated for any remaining records of this query.

Oracle Developer: Build Forms | 17-5

Lesson 17: Query Triggers

SELECT Statements Issued

SELECT base columm, ..., ROWD
| NTO . base item ..., :ROND
FROM base_tabl e
WHERE defaul t_where_cl ause
AND (exanpl e_record_condi ti ons)
AND (query _where_condi ti ons)
ORDER BY defaul t _order_by cl ause |
query where_order_by

Slightly different for COUNT

Copyright O Oracle Corporation, 1999. All rights reserved. OF\)ACI_E

17-6 Oracle Developer: Build Forms |

SELECT Statements Issued During Query Processing

SELECT Statements Issued During Query Processing

If you have not altered default query processing, Form Builder issues a SELECT
statement when you want to retrieve or count records.

SELECT base col unn, base colum, ... , ROND

INTO :base item:base item ... , :ROND

FROM base tabl e

WHERE defaul t_where cl ause

AND (exanpl e_record_conditions)

AND (query where_conditions)

CRDER BY defaul t _order_by cl ause | query_where_order_by

SELECT COUNT(*)

FROM base table

WHERE defaul t_where _cl ause

AND (exanpl e_record_conditions)

AND (query where_conditions)

CRDER BY defaul t _order_by cl ause | query_where_order_by
Note: The vertical bar (|) inthe ORDER BY clause indicates that either of the two
possibilities can be present. Form Builder retrieves the ROWID only when the Key
Mode block property is set to Unique (the default). The entire WHERE clause is
optional. The ORDER BY clauseis aso optional.

If you want to count records that satisfy criteria specified in the Query/Where dialog
box, enter one or more variables and press [Count Query] in the Example Record.

Oracle Developer: Build Forms | 17-7

Lesson 17: Query Triggers

WHERE Clause

®* Three sources for the WHERE clause:
— WHERE clause block property
— Example Record
— Query/Where dialog box

* WHERE clauses are combined by the AND
operator

Copyright [Oracle Corporation, 1999. All rights reserved. OF\)ACLE

ORDER BY Clause

* Two sources for the ORDER BY clause:
— ORDER BY clause block property
— Query/Where dialog box

e Second source for ORDER BY clause overrides the
first one

Copyright [Oracle Corporation, 1999. All rights reserved. OF\)ACLE

17-8 Oracle Developer: Build Forms |

WHERE and ORDER BY Clauses

WHERE and ORDER BY Clauses

The WHERE and ORDER BY clauses of a default base table SELECT statement are
derived from several sources. It isimportant to know how different sources interact.

Three Sources for the WHERE Clause
WHERE clause block property

» Example Record

* Query/Where dialog box

If more than one source is present, the different conditions will all be used and linked
with an AND operator.

Two Sources for the ORDER BY Clause
* ORDER BY clause block property
* Query/Where dialog box

An ORDER BY clause specified in the Query/Where dialog box overrides the value of
the ORDER BY clause block property.

Note: You can change the WHERE clause and ORDER BY clause block properties at
run time by using the SET_BLOCK_PROPERTY built-in.

Oracle Developer: Build Forms | 17-9

Lesson 17: Query Triggers

Pre-Query Trigger

* Defined at block level
* Fires once, before query is performed

IF TO CHAR(: S ORD.ID)||
TO_CHAR(: S_CRD. DATE_ORDERED) | |
TO_CHAR(: S_ORD. DATE_SHI PPED)
I'S NULL THEN
MESSAGE('You must query by
Order ID or Date’);
RAISE form_trigger_failure;
END IF;

Copyright [Oracle Corporation, 1999. All rights reserved. OF\)ACLE

17-10 Oracle Developer: Build Forms |

Writing Query Triggers

Writing Query Triggers

Pre-Query Trigger

You must define this trigger at block level or above. It firesfor either aglobal or
restricted query, while the form isin Enter Query mode (that is, before Form Builder
executes the query).

If the operator has initiated the query, the trigger fires after the query criteriais
entered.

This means you can use Pre-Query asfollows:

» To test the operator’s query conditions, and to fail the query process if
the conditions are not satisfactory for the application

» To add criteria for the query by assigning values to base table items

Example

This Pre-Query trigger on the S_ORD block only permits queries if there is a
restriction on either the Order ID, Date Ordered, or Date Shipped. This prevents
attempts at very large queries.
|F TO CHAR(: S CRD.i d)] |
TO CHAR(: S _CRD. date_ordered)| |
TO CHAR(: S_ORD. date_shi pped) 1S NULL THEN
MESSAGE(You must query by Order ID or Date’);
RAISE form_trigger_failure;
END IF;

Note: Pre-Query is useful for assigning values passed from other Oracle Developer
modules, so that the query is related to data elsewhere in the session. We will ook at
doing this|ater.

Oracle Developer: Build Forms | 17-11

Lesson 17: Query Triggers

Post-Query Trigger

* Fires for each fetched record (except during array
processing)

* Useto populate nondatabase items and calculate
statistics

SELECT COUNT(ord_id)

I NTO :S_ORD. |i nei tem count
FROM S_I TEM

WHERE ord_id = :S ORD.i d;

Copyright [Oracle Corporation, 1999. All rights reserved. OF\)ACLE

Using SELECT Statements in Triggers

* Form Builder variables are preceded by a colon.
* The query must return one row for success.
* Code exception handlers.

* The INTO clause is mandatory, with a variable for
each selected column or expression.

* ORDER BY is not relevant.

Copyright [Oracle Corporation, 1999. All rights reserved. OF\)ACLE

17-12 Oracle Developer: Build Forms |

Writing Query Triggers

Post-Query Trigger

Thistrigger isdefined at block level or above. Post-Query fires for each record that is
fetched into the block as aresult of a query. Note that the trigger only fires on the
initial fetch of arecord, not when arecord is subsequently scrolled back into view a
second or third time.

Use Post-Query as follows:
» To populate nondatabase items as records are returned from a query
» To calculate statistics

Example

This Post-Query trigger on the S_ORD block selects the total count of line items for
the current Order, and displays this number as a summary value in the nonbase table
item :Lineitem_count.

SELECT COUNT(ord_i d)

INTO : S _CORD. |i nei tem count

FROM S | TEM

WHERE ord_id =:S CRD.i d;

Using SELECT Statements in Triggers

The previous trigger example, populates the Lineitem_Count item through the INTO
clause. Again, colons are required in front of Form Builder variables to distinguish
them from PL/SQL variables and database columns.

Here is a reminder of some other rules regarding SELECT statements in PL/SQL:

* Asingle row must be returned from the query, or else an exception is
raised that terminates the normal executable part of the block. You
usually want to match a form value with a unique column value in your
restriction.

» Code exception handlers in your PL/SQL block to deal with possible
exceptions raised by SELECT statements.

* The INTO clause is mandatory, and must define a receiving variable for
each selected column or expression. You can use PL/SQL variables,
form items or global variables in the INTO clause.

» ORDER BY and other clauses that control multiple-row queries are not
relevant (unless they are part of an Explicit Cursor definition).

Oracle Developer: Build Forms | 17-13

Lesson 17: Query Triggers

Query Array Processing

* Reduces network traffic

* Enables Query Array processing:
— Enable Array Processing option
— Set Query Array Size property

®* Query Array Size property

* Query All Records property

Copyright [Oracle Corporation, 1999. All rights reserved. OF\)ACLE

17-14 Oracle Developer: Build Forms |

Query Array Processing

Query Array Processing

The default behavior of Form Builder is to process records one at atime. With array
processing, a structure (array) containing multiple records is sent to or returned from
the server for processing.

Form Builder supports both array fetch processing and array DML processing. For
both querying and DML operations, you can determine the array size to optimize
performance for your needs. This lesson focuses on array query processing.

Enabling Array Processing for Queries

1 Setting preferences:
- Select Tools—>Preferences.
- Click the Runtime tab.
- Select the Array Processing check box.

2 Setting properties:
- Inthe Object Navigator, select the Data Blocks node.
- Double-click the Data Blocks icon to display the Property Palette.

- Under the Records category, set the Query Array Size property to a
number that represents the number of recordsin the array for array
processing.

Query Array Size Property This property specifies the maximum number of
records that Form Builder should fetch from the database at one time.

A size of 1 providesthe fastest perceived response time, because Form Builder fetches
and displays only one record at atime. By contrast, a size of 10 fetches up to ten
records before displaying any of them, however, the larger size reduces overal
processing time by making fewer calls to the database for records.

Query All Records Property Specifies whether all the records matching the query
criteria should be fetched into the data block when a query is executed.

* Yes: Fetches all records from query.

* No: Fetches the number of records specified by the Query Array Size
block property.

Oracle Developer: Build Forms | 17-15

Lesson 17: Query Triggers

Coding for
ENTER-QUERY Mode

* Some triggers may fire in Enter-Query mode.

® Set to fire in Enter-Query Mode property.

* Test mode during execution with :SYSTEM.MODE
— NORMAL
— ENTER-QUERY
— QUERY

Copyright [Oracle Corporation, 1999. All rights reserved. ORACLE

17-16 Oracle Developer: Build Forms |

Coding Triggers for Enter Query Mode

Coding Triggers for Enter Query Mode

Some triggers that fire when the form isin Normal mode (during data entry and
saving) may also be fired in Enter Query mode. You need to consider the trigger type
and actions in these cases.

Fire in Enter Query Mode Property

This property determines whether Form Builder fires atrigger if the associated event
occurs in Enter Query mode. Not all triggers can do this; consult the Form Builder
online Help, which lists each trigger and whether this property can be set.

By default, the Fire in Enter Query Mode property is set to Yes for triggers that accept
this. Set it to No in the Property Palette if you only want the trigger to firein Normal
mode.

Example

If you provide a button for the operator to invoke an LOV, and the LOV isrequired to
help with query criteria as well as data entry, then the When-Button-Pressed trigger
needs to fire in both modes. Thistrigger has Fire in Enter Query Mode set to Yes
(default for thistrigger type):
| F SHOW_LOV(Customers’) THEN
MESSAGE('Selection successtul’);
END IF;

Oracle Developer: Build Forms | 17-17

Lesson 17: Query Triggers

Coding for
ENTER-QUERY Mode

* Example

I F :SYSTEM.MODE ='NORMAL’
THEN ENTER_QUERY;

ELSE EXECUTE_QUERY;

END IF;

®* Some built-ins are illegal.
® Consult online Help.

®* You cannot navigate to another record in the
current form.

Copyright [Oracle Corporation, 1999. All rights reserved. OF\)ACLE

17-18 Oracle Developer: Build Forms |

Coding Triggers for Enter Query Mode

Finding Out the Current Mode

When atrigger will fire in both Enter Query mode and Normal modes, you may need
to know the current mode at execution time for the following reasons:

* Your trigger needs to perform different actions depending on the mode.
* Some built-in subprograms cannot be used in Enter Query mode.

The read-only system variable, MODE, stores the current mode of the form. Its value
(always upper case) is one of the following:

Value of SYSTEM .M ODE |Definition

NORMAL Form isin Normal processing mode.
ENTER-QUERY Form isin Enter Query mode.
QUERY Form isin Fetch-processing mode, meaning that Form Builder

is currently doing afetch. (For example, this value aways
occursin a Post-Query trigger.)

Example
Consider the following When-Button-Pressed trigger for the Query button.

If the operator clicks the button in Normal mode, then the trigger places the form in
Enter Query mode (using the ENTER_QUERY built-in). Otherwise, if already in
Enter Query mode, the button executes the query (using the EXECUTE_QUERY
built-in).
| F :SYSTEM.MODE =’"NORMAL’ THEN
ENTER_QUERY;
ELSE
EXECUTE_QUERY;
ENDIF;

Using Built-ins in Enter Query Mode

Some built-in subprograms are illegal if atrigger is executed in Enter Query mode.
Again, consult the Form Builder online Help which specifies whether an individual
built-in can be used in this mode.

One generd restriction isthat in Enter Query mode you can not navigate to another
record in the current form. So any built-in that would potentially enablethisisillegal.
These include GO_BLOCK, NEXT_BLOCK, PREVIOUS BLOCK, GO_RECORD,
NEXT_RECORD, PREVIOUS RECORD, UP, DOWN, OPEN_FORM, and others.

Oracle Developer: Build Forms | 17-19

Lesson 17: Query Triggers

Overriding Default Query Processing

Trigger Do-the-Right-Thing Built-in
On-Close

On-Count COUNT_QUERY

On-Fetch FETCH_RECORDS
Pre-Select

On-Select SELECT_RECORDS
Post-Select

Copyright O Oracle Corporation, 1999. All rights reserved. ORACLE

17-20 Oracle Developer: Build Forms |

Overriding Default Query Processing

Overriding Default Query Processing

You can use certain transactional triggers to replace default commit processing. Some

of the transactional triggers can also be used to replace default query processing. You

can use “Do-the-right-thing” built-ins to augment default query processing; do not use
“Do-the-right-thing” to replace default processing.

Additional Transactional Triggers for Query Processing

Trigger Do-the-Right-Thing Built-in
On-Close

On-Count COUNT_QUERY

On-Fetch FETCH_RECORDS
Pre-Select

On-Select SELECT_RECORDS
Post-Sel ect

Oracle Developer: Build Forms | 17-21

Lesson 17: Query Triggers

Overriding Default Query Processing

* On-Fetch continues to fire until:

— It fires without executing
CREATE_QUERIED_RECORD.

— The query is closed by the user or by
ABORT_QUERY.

— It raises FORM_TRIGGER_FAILURE.

®* On-Select replaces open cursor, parse, and
execute phases.

Copyright [Oracle Corporation, 1999. All rights reserved. OF\)ACLE

Oracle Developer: Build Forms |

Overriding Default Query Processing

Characteristics of Transactional Triggers for Query Processing

Trigger

Characteristic

On-Close

Fireswhen Form Builder closes a query (It augments, rather than
replaces, default processing.)

On-Count

Fires when Form Builder would usually perform default Count Query
processing to determine the number of rows that match the query
conditions

On-Fetch

Fires when Form Builder performs afetch for a set of rows (You can
use the CREATE_QUERIED_RECORD built-in to create queried
records if you want to replace default fetch processing.) Thetrigger
continuesto fire until:

* No queried records are created during a single execution
of the trigger

* The query is closed by the user or by the
ABORT_QUERY built-in is executed from another
trigger

» The trigger raises FORM_TRIGGER_FAILURE

Pre-Select

Fires after Form Builder has constructed the block SELECT state
based on the query conditions, but before it issues this statement

On-Select

Fires when Form Builder would usually issue the block SELECT
statement (The trigger replaces the open cursor, parse, and exec
phases of a query.)

Post-Select

Fires after Form Builder has constructed and issued the block SE
statement, but before it fetches the records

ment

ute

LECT

Uses for Transactional Triggers for Query Processing

Transactional triggers for query processing are primarily intended to access certain
data sources other than Oracle. However, you can also use these triggers to implement
special functionality by augmenting default query processing against an Oracle

database.

Oracle Developer: Build Forms | 17-23

Lesson 17: Query Triggers

Obtaining Query Information at Run Time

e SYSTEM.MODE
¢ SYSTEM.LAST_QUERY

— Contains bind variables (ORD_ID = :1) before
SELECT_RECORDS

— Contains actual values (ORD_ID = 102) after
SELECT_RECORDS

Copyright [Oracle Corporation, 1999. All rights reserved. OF\)ACLE

17-24 Oracle Developer: Build Forms |

Obtaining Query Information at Run Time

Obtaining Query Information at Run Time

If you want to exercise more control over your queries, use system variables and built-
ins to obtain information about queries.

Using SYSTEM.MODE

Use the SY STEM.MODE system variable to obtain the form mode. The three values
are NORMAL, ENTER_QUERY, and QUERY. We discussed this system variable in
the section “Finding Out the Current Mode” in this lesson.

Using SYSTEM.LAST_QUERY

Use SYSTEM.LAST_QUERY to obtain the text of the base-table SELECT statement
that was last executed by Form Builder. If a user has entered query conditions in the
Example Record, the exact form of the SELECT statement depends on when this
system variable is used.

If the system variable is used before Form Builder has implicitly executed the
SELECT_RECORDS built-in, the SELECT statement contains bind variables (for
example, ORD_ID =:1).

If the system variable is used after Form Builder has implicitly executed

the SELECT_RECORDS built-in, the SELECT statement contains the actual search
values (for example, ORD_ID = 102). For example, the system variable contains bind
variables during the Pre-Select trigger and actual search values during the Post-Select
trigger.

Oracle Developer: Build Forms | 17-25

Lesson 17: Query Triggers

Obtaining Query Information at Run Time

* GET_BLOCK_PROPERTY
SET_BLOCK_PROPERTY

— Getand set:
DEFAULT_WHERE
ORDER_BY
QUERY_ALLOWED
QUERY_HITS

— Getonly:
QUERY_OPTIONS
RECORDS_TO_FETCH

Copyright [Oracle Corporation, 1999. All rights reserved. OF\)ACLE

Obtaining Query Information at Run Time

e GET_ITEM_PROPERTY
SET_ITEM_PROPERTY

— Getand set:
CASE_INSENSITIVE_QUERY
QUERYABLE
QUERY_ONLY

— Getonly:
QUERY_LENGTH

Copyright [Oracle Corporation, 1999. All rights reserved. OF\)ACLE

17-26 Oracle Developer: Build Forms |

Obtaining Query Information at Run Time

Using GET_BLOCK_PROPERTY and SET_BLOCK_PROPERTY

The following block properties may be useful for obtaining query information. Only
the properties marked with an asterisk can be set.

DEFAULT_WHERE (*¥)
ORDER_BY (¥)
QUERY_ALLOWED (¥)
QUERY_HITS (¥)
QUERY_OPTIONS
RECORDS_TO_FETCH

Using GET_ITEM_PROPERTY and SET_ITEM_PROPERTY

The following item properties may be useful for getting query information. Only the
properties marked with an asterisk can be set.

CASE_INSENSITIVE_QUERY (¥)
QUERYABLE (*)

QUERY_ONLY (¥)
QUERY_LENGTH

Oracle Developer: Build Forms | 17-27

Lesson 17: Query Triggers

Summary

A Pre-Query trigger fires before a query executes.
Use it to check or modify query conditions.

* A Post-Query trigger fires as each record is
fetched (except array processing). Use it to
perform calculations and populate additional
items.

Copyright [Oracle Corporation, 1999. All rights reserved. OF\)ACLE

Summary

®* Some triggers can fire in both Normal and Enter
Query modes:

— Test the current mode with SYSTEM.MODE.

— Some built-ins are illegal in Enter Query mode.
* Obtain query information at run time:

— SYSTEM.MODE

— SYSTEM.LAST_QUERY

Copyright [Oracle Corporation, 1999. All rights reserved. OF\)ACLE

Oracle Developer: Build Forms |

Summary

Summary
In this lesson, you learned how to control the events associated with queries on base
table blocks.

* The Pre-Query trigger fires before the query executes. This trigger is
defined at the block level or above. Use the Pre-Query trigger to check
or modify query conditions.

* The Post-Query trigger fires as each record is fetched (except array
processing). This trigger is defined at the block level or above. Use the
Post-Query trigger to perform calculations and populate additional
items.

» Some triggers can fire in both Normal and Enter Query modes.
- Use SYSTEM.MODE to test the current mode.
- Some built-ins are illegal in Enter Query mode.

* Override default query processing by using “Do-the-right-thing”
built-ins.

» Obtain query information at runtime by using:
- SYSTEM.MODE, SYSTEM.LAST_QUERY

- Some properties of GET/SET_BLOCK_PROPERTY and
GET/SET _ITEM_PROPERTY

Oracle Developer: Build Forms | 17-29

Lesson 17: Query Triggers

Practice 17 Overview

This practice covers the following topics:

* Populating customer names and sales
representative names for each row of the S_ORD
block

* Populating descriptions for each row of the
S _ITEM block

* Disabling the effect of the Exit button in Enter
Query mode

* Adding two check boxes to enable case-sensitive
and exact match query

Copyright O Oracle Corporation, 1999. All rights reserved. OF\)ACI_E

Note
For solutions to this practice, see Practice 17 in Appendix A, “Practice Solutions.”

17-30 Oracle Developer: Build Forms |

Practice 17 Overview

Practice 17 Overview

In this practice, you create two query triggers to popul ate nonbase table items. You

will aso change the default query interface to enable case sensitive and exact match

query.

* Populating customer names and sales representative names for each row
of the S_ORD block

» Populating descriptions for each row of the S_ITEM block
» Disabling the effect of the Exit button in Enter Query mode
* Adding two check boxes to enable case sensitive and exact match query

Oracle Developer: Build Forms | 17-31

Lesson 17: Query Triggers

Practice 17

1 Inthe ORDGXX form, write atrigger that populates the
Customer_Name and the Sales Rep_Name for every row fetched by a
query on the S_ ORD block.

2 Write atrigger that populates the Description for every row fetched by a
query onthe S ITEM block.

3 Ensure that the Exit_Button has no effect in Enter Query mode.

4 Adjust the default query interface. Open the CUSTOMERS form
module. Add a check box called CONTROL.Case_Sensitiveto the form
so that the user can specify whether or not a query for a customer name
should be case sensitive. You can import thepr 17_4. t xt fileinto the
When-Checkbox-Changed trigger. Set the initial value property to “Y.”

In the CONTROL block, add a check box (called CONTROL.Case_Sensitive as
shown below) to it, and create the following trigger. Set the “Mouse Navigate”
property to No.

When-Checkbox-Changed Trigger on the CONTROL .Case_Sensitive Item
(Checkbox)
IF NVL(:CONTROL.case_sensitive,'Y’) ="Y’ THEN
SET_ITEM_PROPERTY(S_CUSTOMER.name’, CASE_INSENSITIVE_QUERY,
PROPERTY_FALSE);
ELSE
SET_ITEM_PROPERTY(S_CUSTOMER.name’,CASE_INSENSITIVE_QUERY,
PROPERTY_TRUE);
END IF;

5 Add acheck box called CONTROL .Exact_Match to the form so that the
user can specify whether or not a query condition for a customer name
should exactly match the table value. (If a nonexact match is allowed,
the search value can be part of the table value.) You can import the
pr17_5. txt fileinto the Pre-Query Trigger. Set the initia value
property to “Y.” Add another check box (called
CONTROL.Exact_Match as shown below) to the CONTROL block and
create the following trigger. Set the Mouse Navigate property to No.

Pre-Query Trigger on theS CUSTOMER Block

IF NVL(:CONTROL.exact_match, 'Y"') ='N' THEN
:S_CUSTOMER.name :='%' || :S_CUSTOMER.name || '%';
END IF;

17-32 Oracle Developer: Build Forms |

Validation

Lesson 18: Validation

Objectives

After completing this lesson, you should be able to
do the following:

* Explain the effects of the validation unit upon a
form

* List Form Builder validation properties
* Control validation by using triggers

Copyright [Oracle Corporation, 1999. All rights reserved. OF\)ACLE

18-2 Oracle Developer: Build Forms |

Introduction

Introduction

Overview

In this lesson, you will learn how to supplement item validation by using both object
properties and triggers. You will also learn to control when validation occurs.

Oracle Developer: Build Forms | 18-3

Lesson 18: Validation

Validation

* Form Builder validates at the following levels:

Form level

Block level

Record level
Item level

Copyright [Oracle Corporation, 1999. All rights reserved. OF\)ACLE

Validation

* Validation occurs when:

— [Enter] key or ENTER Built-in is
obeyed

— Operator or trigger leaves the validation unit
(includes a Commit)

Copyright [Oracle Corporation, 1999. All rights reserved. OF\)ACLE

18-4 Oracle Developer: Build Forms |

Validation Process

Validation Process

Form Builder performs avalidation process at several levelsto ensure that records and
individual values follow appropriate rules. If validation fails, then control is passed
back to the appropriate level, so that the operator can make corrections. Validation
occurs at:

Item level: Form Builder records a status for each item to determine
whether it is currently valid. If an item has been changed and is not yet
marked as valid, then Form Builder first performs standard validation
checks to ensure that the value conforms to the item’s properties. These
checks are carried out before firing any When-Validate-ltem triggers that
you have defined. Standard checks include the following:

- Format mask

- Required (if so, then is the item null?)

- Data type

- Range (Lowest-Highest Allowed Value)

- Validate from List (see later in this lesson)

Record level: After leaving a record, Form Builder checks to see
whether the record is valid. If not, then the status of each item in the
record is checked, and a When-Validate-Record trigger is then fired, if
present. When the record passes these checks, it is set to valid.

Block and form level: At block or form level, all records below that level

are validated. For example, if you commit (save) changes in the form,

then all records in the form are validated, unless you have suppressed
this action.

When Does Validation Occur?

Form Builder carries out validation for the validation unit under the following
conditions:

The [Enter] key is (ENTER command is not necessary mapped to the
key that is physically labeled Enter) pressed or the ENTER built-in
procedure is run (whose purpose is to force validation immediately).

The operator or a trigger navigates out ofwakdation unit. This

includes when changes are committed. The default validation unit is
item, but can also be set to record, block, or form by the designer. The
validation unit is discussed in the next section.

Oracle Developer: Build Forms | 18-5

Lesson 18: Validation

Validation Unit Property

%&r“ﬁ:& Ell»l|ﬂ? Find: %

Farm Module: DRDERS

General =

Functional

#* Menu Security

#* Mavigation

Records

= Database
2 Walidation Unit Detault ;I
= Interaction Mode
= Maximum Query Time E?a'{g Block

= Mawimum Records Fetched

@ Isolation Mode
#* Physical

International

#* Compatibility -
1 ¥

Scope of form validation at runtime.

Copyright [Oracle Corporation, 1999. All rights reserved. OF\)ACLE

Oracle Developer: Build Forms |

Using Object Properties to Control Validation

Using Object Properties to Control Validation

You can control when and how validation occurs in aform, even without triggers. Do
this by setting properties for the form and for individual items within it.

The Validation Unit

The validation unit defines the maximum amount of data an operator can enter in the
form before Form Builder initiates validation. Validation unit is a property of the form
module, and it can be set in the Property Palette to any of the following:

Default

ltem

Record

Block

* Form

The default setting is item level. The default setting is usually chosen.

In practice, an item-level validation unit means that Form Builder validates changes
when an operator navigates out of a changed item. This way, standard validation
checks and firing the When-Validate-Item trigger of that item can be done
immediately. As a result, operators are aware of validation failure as soon as they
attempt to leave the item.

At higher validation units (record, block, or form level), the above checks are
postponed until navigation moves out of that unit. All outstanding items and records
are validated together, including the firing of When-Validate-ltem and
When-Validate-Record triggers.
You might set a validation unit above item level under one of the following conditions:
» \Validation involves database references, and you want to postpone

traffic until the operator has completed a record (record level).

» The application runs in a block-mode environment (block level).

Oracle Developer: Build Forms | 18-7

Lesson 18: Validation

LOV for Validation
. LOV
Full list
TERRY e ENAME HDATE
Partial list
MART P VMARTIN 20-FEB-81
MARTINEZ 22-FEB-81
Valid SEDAT 06-MAR-96
WARD = = = P WARD 06-FEB-95 |
AL - = = = AN 08-SEP-81 |
Auto I
complete v
ALAN
Copyright O Oracle Corporation, 1999. All rights reserved. OF\)ACI_E

18-8 Oracle Developer: Build Forms |

Using Object Properties to Control Validation

Using LOVs for Validation

When you attach an LOV to atext item by setting the LOV property of the item, you
can optionally use the LOV contents to validate data entered in the item.

Do this by setting the Validate from List property to Yesfor the item. At vaidation
time, Form Builder then automatically usesthe item value as a non case-sensitive
search string on the LOV contents. The following events then occur, depending on the
circumstances:

» If the value in the text item matches one of the values in the first column
of the LOV, validation succeeds, the LOV is not displayed, and
processing continues normally.

» If the item’s value causes a single record to be found in the LOV, butis a
partial value of the LOV value, then the full LOV column value is
returned to the item (providing that the item is defined as the return item
in the LOV). The item then passes this validation phase.

» If the item value causes multiple records to be found in the LOV, Form
Builder displays the LOV and uses the text item value as the search
criteria to automatically reduce the list, so that the operator must choose.

* If no match is found, then the full LOV contents are displayed to the
operator.

Note: Make sure that LOVs you create for validation purposes have the validation
column defined first, with a display width greater than 0. You also need to define the
Return Item for the LOV column as the item being validated.

For performance reasons, do not use the LOV for Validation property for large LOVS.

Oracle Developer: Build Forms | 18-9

Lesson 18: Validation

Validation Triggers

* ltem level
When-Validate-ltem

* Block level
When-Validate-Record

IF :S_ORD.date_shipped < :S_ORD.date_ordered THEN
MESSAGE('Ship Date is before Order Date!’);
RAISE form_trigger_failure;

END IF;

Copyright [Oracle Corporation, 1999. All rights reserved. OF\)ACLE

18-10 Oracle Developer: Build Forms |

Controlling Validation by Using Triggers

Controlling Validation by Using Triggers

There aretriggersthat fire due to validation, which let you add your own customized
actions. There are also some built-in subprograms that you can call from triggers that
affect validation.

When-Validate-Item Trigger

You have already used thistrigger to add item-level validation. The trigger fires after
standard item validation, and input focusis returned to the item if the trigger fails.

Example

ThisWhen-Validate-ltem trigger on :S_ORD.date_ordered ensuresthat the Order Date
is not later than the current (database) date:
IF :S ORD. date_ordered > SYSDATE THEN
MESSAGE('Order Date is later than today!);
RAISE form_trigger_failure;
END IF;

When-Validate-Record Trigger

Thistrigger fires after standard record-level validation, when the operator has |eft a
new or changed record. Because Form Builder has already checked that required items
for the record are valid, you can use thistrigger to perform additional checks that may
involve more than one of the record’s items, in the order they were entered.

When-Validate-Record must be defined at block level or above.

Example

This When-Validate-Record trigger on block S_ORMxures that orders cannot be
shipped before they are ordered.
IF : S ORD date_shipped < : S ORD. date_ordered THEN
MESSAGE('Ship Date is before Order Date!);
RAISE form_trigger_failure;,
END IF;

Oracle Developer: Build Forms | 18-11

Lesson 18: Validation

Validating User Input

Customer ID

998 | /.\4
A W-V-I

SELECT .
WHERE id = : S ORD. custoner _id

\/

Trigger failure?

Copyright [Oracle Corporation, 1999. All rights reserved. OF\)ACLE

18-12 Oracle Developer: Build Forms |

Validating User Input

Validating User Input

While populating other items, if the user enters aninvalid value in theitem, a
matching row will not be found, and the SELECT statement will cause an exception.
The success or failure of the query can, therefore, be used to validate user inpuit.
The exceptions that can occur when asingle row is not returned from a SELECT ina
trigger are:
« NO_DATA _FOUND
No rows are returned from the query.
« TOO_MANY_ROWS
More than one row is returned from the query.
Example
The following When-Validate-ltem trigger is again placed on the Customer_ID item,
and returns both the Name and Phone Number that correspond to the Customer ID
entered by the user.

SELECT nane, phone

I NTO : S_ORD. cust oner _nane, :S_CRD. cust orer _phone

FROM s_cust oner

WHERE id = : S ORD. cust orer _i d;
If the Customer_ID item contains a value that is not found in the table, the
NO_DATA_FOUND exception is raised, and the trigger will fail because there is no
exception handler to prevent the exception from propagating to the end of the trigger.

Note: A failing When-Validate-ltem trigger prevents the cursor from leaving the item.
For an unhandled exception, as above, the user receives the message:

FRM 40735: <trigger type> trigger raised unhandl ed exception
<exception>

Oracle Developer: Build Forms | 18-13

Lesson 18: Validation

Tracking Validation Status

* NEW

— When a record is created

— Also for Copy Value from Item or Initial Value
* CHANGED

— When changed by user or trigger

— When any item in new record is changed

Copyright [Oracle Corporation, 1999. All rights reserved. OF\)ACLE

Tracking Validation Status

e VALID
— When validation has been successful
— After records are fetched from database
— After a successful post or commit
— Duplicated record inherits status of source

Copyright [Oracle Corporation, 1999. All rights reserved. OF\)ACLE

18-14 Oracle Developer: Build Forms |

Tracking Validation Status

Tracking Validation Status

When Form Builder leaves an object, it usually validates any changes that were made
to the contents of the object. To determine whether validation must be performed,
Form Builder tracks the validation status of items and records.

Item Validation Status

Satus Definition

NEW When arecord is created, Form Builder marks every item in that record as
new. Thisistrue evenif the item is populated by the Copy Vaue from Item
or Initial Value item properties, or by the When-Create-Record trigger.

CHANGED | Form Builder marks an item as changed under the following conditions:

* When the item is changed by the user or a trigger

* When any item in a new record is changed, all of the items
in the record are marked as changed

VALID Form Builder marks an item as valid under the following conditions:

» Allitems in record that are fetched from the database are
marked as valid

« If validation of the item has been successful

» After successful post or commit

» Each item in a duplicated record inherits the status of its
source

Record Validation Status

Satus Definition

NEW When a record is created, FormilBer marks that record as new. This is
true even if the item is populated by the Copy Value from Item or Initia
Value item properties, or by the When-Create-Record trigger.

CHANGED Whenever an item in a record is marked as changed, Form Builder marks
that record as changed.

VALID Form Builder marks a record as valid under the following conditions:
» After all items in the record have been successfully
validated
» Allrecords that are fetched from the databasemarked as
valid

» After successful post or commit
* A duplicated record inherits the status of its source

Oracle Developer: Build Forms | 18-15

Lesson 18: Validation

Built-ins for Validation

¢ CLEAR _BLOCK, CLEAR_FORM, EXIT_FORM
* ENTER
¢ SET FORM_PROPERTY
— (..., VALIDATION)
— (..., VALIDATION_UNIT)
* ITEM_IS VALID item property
e VALIDATE (VALIDATION_ UNIT)

Copyright [Oracle Corporation, 1999. All rights reserved. OF\)ACLE

18-16 Oracle Developer: Build Forms |

Built-ins for Validation

Built-ins for Validation
You can use the following built-in subprograms in triggers to affect validation.

CLEAR_BLOCK, CLEAR_FORM, and EXIT_FORM

The first parameter to these built-ins, COMMIT_MODE, controls what will be done
with unapplied changes when a block is cleared, the form is cleared, or theformis
exited respectively. When the parameter is set to NO_VALIDATE, changes are neither
validated nor committed (by default, the operator is prompted for the action).

ITEM_IS_VALID Item Property

You can use GET_ITEM_PROPERTY and SET_ITEM_PROPERTY

built-inswith the ITEM_IS VALID parameter to get or set the validation status of an
item. You cannot directly get and set the validation status of arecord. However, you
can get or set the validation status of all the itemsin arecord.

ENTER

The ENTER built-in performs the same action as the [Enter] key. That is, it forces
validation of datain the current validation unit.

SET_FORM_PROPERTY

You can use this to disable Form Builder validation. For example, suppose you are
testing aform, and you need to bypass normal validation. Set the Validation property
to Property_Falsefor this purpose:

SET_FORM_PROPERTY(‘form_name’VALIDATION, PROPERTY_FALSE);
You can a'so use this built-in to change the validation unit programmatically:
SET_FORM_PROPERTY (‘form_name’,VALIDATION_UNIT, scope);

VALIDATE

VALIDATE forces Form Builder to immediately execute validation processing for the
indicated scope.

Note: Scopeisone of DEFAULT _SCOPE, BLOCK _SCOPE, RECORD_SCOPE, or
ITEM_SCOPE.

Oracle Developer: Build Forms | 18-17

Lesson 18: Validation

Summary

* Validation occurs at item, record, block, and form
levels.

* Validation happens when:
— [Enter] Key or ENTER built-in is activated

— Control leaves the validation unit due to
navigation or commit

Copyright [Oracle Corporation, 1999. All rights reserved. OF\)ACLE

Summary

* Standard validation occurs before trigger
validation.

* Default validation unit is item level.
* Validation status

- NEW

— CHANGED

— VALID

* When-Validate-“object” triggers to supplement
validation.

Copyright [Oracle Corporation, 1999. All rights reserved. OF\)ACLE

18-18 Oracle Developer: Build Forms |

Summary

Summary
In thislesson, you learned to use additional validation featuresin Form Builder, and to
control when validation occurs.
» \Validation occurs at three levels:
- Item level: To ensure that the value conforms to the item’s properties

- Record level: To ensure that the record is valid (If it is not, then the
status of each item in the record is checked.)

- Block and form level: To ensure that the all records below the level
are validated.

» Validation happens when:

- The [Enter] Key or the ENTER built-in procedure is run (to force
validation immediately.)

- Control leaves the validation unit due to navigation or Commit.
» Standard validation occurs before trigger validation.
* The Default validation unit is item level.
* Validation Status:
- NEW
- CHANGED
- VALID
* The When-Validate-dbject” triggers supplement standard validation.

Oracle Developer: Build Forms | 18-19

Lesson 18: Validation

Practice 18 Overview

This practice covers the following topics:

* Validating the Sales Representative item value
using a LOV

* Writing a validation trigger to check that the
shipped date is not before the ordered date

* Populating customer names, sales representative
names, and IDs when a customer ID is changed

* Writing a validation trigger to populate the name
and the price of the product when the product ID is
changed

Copyright O Oracle Corporation, 1999. All rights reserved. OF\)ACI_E

Note
For solutions to this practice, see Practice 18 in Appendix A, “Practice Solutions.”

18-20 Oracle Developer: Build Forms |

Practice 18 Overview

Practice 18 Overview

In this practice, you introduce additional validation to the CUSTGXX and ORDGXX
form modules.
» \Validating sales representative item value using an LOV

» Wiriting a validation trigger to check that the shipped date is not before
the ordered date

* Populating customer names, sales representative names, and IDs when a
customer ID is changed

» Wiriting a validation trigger to populate the name and the price of the
product when the product ID is changed

Oracle Developer: Build Forms | 18-21

Lesson 18: Validation

Practice 18
1 Inthe CUSTGXX form, cause the Sales Rep L ov to display whenever
the user enters a Sales Rep_|d that does not exist in the database.
2 Save, compile, and run the form to test.

3 Inthe ORDGXX form, write a validation trigger to check that the
Date_Shipped is not before the Date_Ordered.

Write a When-Validate-record trigger to compare the values of the Date_Shipped
and Date_Ordered. If the Date_Shipped isbeforethe Date_Ordered, fail the trigger
with a suitable message.

4 Inthe ORDGXX form, create atrigger to write the correct valuesto the
Customer_Name, Sales Rep_Name, and Sales Rep_|d items whenever
validation occurs on Customer_Id.

Fail the trigger if the customer is not found.

5 Create another validation trigger on S ITEM.Product_Id to derive the
name of the product, and write it to the Description item.

Fail the trigger and display a message if the product is not found.

18-22 Oracle Developer: Build Forms |

Navigation

Lesson 19: Navigation

Objectives

After completing this lesson, you should be able to
do the following:

* Distinguish between internal and external
navigation

* Describe and use navigation triggers
* Identify built-ins that cause navigation

Copyright O Oracle Corporation, 1999. All rights reserved. ORACLE

19-2 Oracle Developer: Build Forms |

Introduction

Introduction

Overview

The Oracle Developer Form Builder component offers a variety of waysto control
cursor movement. Thislesson looks at the different methods of forcing navigation
both visibly and invisibly.

Oracle Developer: Build Forms | 19-3

Lesson 19: Navigation

About Navigation

* What is the navigation unit?
— Outside the form
— Form
— Block
— Record
— ltem
* Entering and leaving objects
* What happens if navigation fails?

Copyright O Oracle Corporation, 1999. All rights reserved. ORACLE

194 Oracle Developer: Build Forms |

About Navigation

About Navigation

The following sections introduce a number of navigational conceptsto help you to
understand the navigation process.

What Is the Navigational Unit?

The navigational unit isan invisible, internal object that determines the navigational
state of aform. Form Builder uses the navigation unit to keep track of the object that is
currently the focus of a navigational process. The navigation unit can be one of the
objects in the following hierarchy:

Outside the form
Form

Block

Record

Item

When Form Builder navigates, it changes the navigation unit moving through this
object hierarchy until the target item is reached.

Entering and Leaving Objects

During navigation, Form Builder leaves and enters objects. Entering an object means
changing the navigation unit from the object above in the hierarchy. Leaving an object
means changing the navigation unit to the object above.

The Cursor and How it Relates to the Navigation Unit

The cursor is a visible, external object that indicates the current input focus. Form
Builder will not move the cursor until the navigation unit has successfully become the
target item. In this sense, the navigation unit acts as a probe.

What Happens if Navigation Fails?

If navigation fails, Form Builder reverses the navigation path and attempts to move the
navigation unit back to its initial location. Note that the cursor is still at its initial
position. If Form Builder cannot move the navigation unit back to its initial location, it
exits the form.

Oracle Developer: Build Forms | 19-5

Lesson 19: Navigation

Navigation Properties

* Form module
— Mouse navigation limit
— First navigation data block
* Block
— Navigation style
— Previous navigation data block
— Next navigation data block

Copyright O Oracle Corporation, 1999. All rights reserved. ORACLE

Navigation Properties

® Jtem
— Enabled
— Keyboard navigable
— Mouse navigate
— Previous navigation item
— Next navigation item

Copyright O Oracle Corporation, 1999. All rights reserved. ORACLE

19-6 Oracle Developer: Build Forms |

Controlling Navigation

Controlling Navigation

You can control the path through an application by controlling the order in which the
user navigates to objects. You have seen navigation properties for blocks and items.
There are two other navigation properties that you can set for the form module: Mouse
Navigation Limit and First Navigation Block.

Form Module Properties

Function

Mouse Navigation Limit

Determines how far outside the current item the user
can navigate with the mouse

First Navigation Block

Specifies the name of the block to which Form
Builder should navigate on form startup (Setting
this property does not override the order used for
committing.)

Object Property
Block Navigation Style
Previous Navigation Block
Next Navigation Block
[tem Enabled
Keyboard Navigable

Mouse Navigate

Previous Navigation Item

Next Navigation Item

Note: In abitmapped environment, you can use the mouse to navigate to any enabled
item regardless of its position in the navigational order.

Oracle Developer: Build Forms |

Lesson 19: Navigation

Copyright O Oracle Corporation, 1999. All rights reserved. ORACLE

19-8 Oracle Developer: Build Forms |

Controlling Navigation

Mouse Navigate Property

The Mouse Navigate property applies only to mouse-driven applications, and isvalid
for the following items:

e Push Button
e Check box
e Listitem
* Radio group
» Hierarchical tree item
e Sound item
e Custom item
- ActiveX Control
- VBX Control
- OLE2 Container

- Bean Area
Setting Useto Ensure That
Yes Form Builder navigates to the new item which causes the rel evant
navigational and validation triggers to fire
No Form Builder does not navigate to the new item or validate the existing item
when the user activates the new item with the mouse

Note: The default setting for the Mouse Navigate property is Yes.

Oracle Developer: Build Forms | 19-9

LeSSON 19: NAVIGAON e

Copyright O Oracle Corporation, 1999. All rights reserved. OR’ACLE

PRE-FORM
PRE-BLOCK _
\\ _A/_
PRE-REQ‘ORD POST-TE{T-ITEM
PJR;E-TEXT-ITEM POST-RECORD
—_— POST-BLOCK

Oracle Developer: Build Forms |

Understanding Internal Navigation

Understanding Internal Navigation

Navigation occurs when the user or atrigger causes the input focus to move to another
object. You have seen that navigation involves changing the location of the input focus
on the screen. In addition to the visible navigation that occurs, some logical navigation
takes place. Thislogical navigation is aso known as internal navigation.

Example

When you enter aform module, you see the input focus in the first enterable item of
the first navigation block. You do not see the internal navigation events that must
occur for theinput focus to enter the first item. These internal navigation events are as
follows:

» Entry to form

» Entry to block
» Entry to record
* Entry to item

Example

When you commit your inserts, updates, and deletes to the database, you do not see the
input focus moving. However, internally the following navigation events must occur
before commit processing begins:

e EXxit current item
e Exit current record
e Exit current block

Oracle Developer: Build Forms | 19-11

Lesson 19: Navigation

Navigation Triggers

Pre- an d Post-

- (T —
T T —

__ When-New-‘object” -Instance

Copyright O Oracle Corporation, 1999. All rights reserved. ORACLE

Navigation Triggers

Pre- and Pos When-New-

)
arger than trigger obje

Copyright O Oracle Corporation, 1999. All rights reserved. ORACLE

19-12 Oracle Developer: Build Forms |

Navigation Triggers

Navigation Triggers

The navigation triggers can be subdivided into two general groups:
* Pre- and Post- navigation triggers
* When-New*object” -Instance triggers

When Do Pre- and Post-Navigation Triggers Fire?

The Pre- and Post- navigation triggers fire during navigation, that is just before entry
to or just after exit from the object specified as part of the trigger name.

Example
The Pre-Text-Item trigger firesjust before entering a text item.

When Do When-New-“object” -Instance Triggers Fire?

The When-New-" object”-Instance triggers fire immediately after navigation to the
object specified as part of the trigger name.

Example

The When-New-Item-Instance trigger firesimmediately after navigation to a new
instance of an item.

When Do Navigation Triggers Not Fire?

The Pre- and Post- navigation triggersdo not fireif they belong to aunit that issmaller
than the current validation unit. For instance, if the validation unit is Record, Pre- and
Post-Text-Item triggers do not fire.

What Happens When a Navigation Trigger Fails?

If aPre- or Post navigation trigger fails, the input focus returnsto itsinitial location
(whereit was prior to the trigger firing). To the user, it appears that the input focus has
not moved at all.

Note: Be sure that Pre- and Post- navigation triggers display a message on failure.
Failure of a navigation trigger can cause afatal error to your form. For example,
failure of Pre-Form, Pre-Block, Pre-Record, or Pre-Text-Item on entry to the form will
cancel execution of the form.

Oracle Developer: Build Forms | 19-13

Lesson 19: Navigation

When-New-“object” -Instance Triggers

* When-New-Form-Instance

* When-New-Block-Instance
* When-New-Record-Instance
* When-New-Item-Instance

Copyright O Oracle Corporation, 1999. All rights reserved. ORACLE

SET_ “object” PROPERTY Examples

SET_FORM_PROPERTY(FIRST_NAVIGATION_BLOCK,
'S_ITEMY);

SET_BLOCK_PROPERTY('S_ORD’, ORDER_BY,
'CUSTOMER_ID);

SET_RECORD_PROPERTY(3, 'S_ITEM’, STATUS,
QUERY_STATUS);

SET_ITEM_PROPERTY(CONTROL.stock_button’,
ICON_NAME, 'stock’);

Copyright O Oracle Corporation, 1999. All rights reserved. ORACLE

19-14 Oracle Developer: Build Forms |

Using the When-New-“object’-Instance Triggers

Using the When-New-“object” -Instance Triggers

If you include complex navigation paths through your application, you may want to
check or set initial conditions when the input focus arrives in a particular block,
record, or item. Use the following triggers to do this:

Trigger Fires

When-New-Form-Instance Whenever Form Builder runs aform, after
successful navigation into aform

When-New-Block-Instance After successful navigation into a block

When-New-Record-Instance After successful navigation into the record

When-New-Item-Instance After successful navigation to a new instance
of the item

Initializing Form Builder Objects

Use the When-New-“object” -Instance triggers, along with the
SET “object” PROPERTY built-in subprogramsto initialize Form Builder objects.
These triggers are particularly useful if you conditionally require adefault setting.

Example

The following example of a When-New-Block-Instance trigger conditionally sets the
DELETE ALLOWED property to FALSE.

IF GET_APPLICATION_PROPERTY(username) ='SCOTT THEN
SET_BLOCK_PROPERTY('S_ITEM,DELETE_ALLOWED, PROPERTY_FALSE);
END IF;

Example

Perform a query of al orders, when the ORDERS form is run, by including the
following code in your When-New-Form-Instance trigger:

EXECUTE_QUERY;

Oracle Developer: Build Forms | 19-15

Lesson 19: Navigation

The Pre- and Post-Triggers

* Pre/Post-Form

* Pre/Post-Block

* Pre/Post-Record

* Pre/Post-Text-ltem

Copyright O Oracle Corporation, 1999. All rights reserved. ORACLE

Post-Block Trigger Example

Disabling Stock_Button when leaving CONTROL
block:

SET_ITEM_PROPERTY(CONTROL.stock_button’, enabled,
property_false);

Copyright O Oracle Corporation, 1999. All rights reserved. ORACLE

19-16 Oracle Developer: Build Forms |

Using the Pre- and Post-Triggers

Using the Pre- and Post-Triggers

Trigger Type Useto
Pre-Form * \Validate
- User
- Time of day

* Initialize control blocks

Call another form to display messages
Post-Form * Perform housekeeping

Erase global variables
» Before exit

Display messages to user

Pre-Block » Authorize access to the block
» Set global variables
Post-Block » Validate the last record that had input focus
» Test a condition and prevent the user
from leaving
Pre-Record » Set global variables
Post-Record * Clear global variables

e Set a visual attribute for an item as the user
scrolls down through a set of records

 Perform cross field validation

Pre-Text-ltem » Derive a complex default value
* Record the previous value of a text item
Post-Text-Iltem » Calculate or change item values

Note: Define Pre- and Post-Text-Item triggers at item level, Pre- and Post-Block at
block level, and Pre- and Post-Form at form level. Pre- and Post-Text-Item triggersfire
only for text items.

Oracle Developer: Build Forms | 19-17

Lesson 19: Navigation

-Text-

Copyright O Oracle Corporation, 1999. All rights reserved. ORACLE

19-18 Oracle Developer: Build Forms |

The Navigation Trap

The Navigation Trap

You have seen that the Pre- and Post- navigation triggers fire during navigation, and
when they fail the internal cursor attempts to return to the current item
(SYSTEM.CURSOR_ITEM).

The diagram on the opposite page illustrates the navigation trap. This can occur when
aPre- or Post- navigation trigger fails and attempts to return the logical cursor to its
initial item. However, if theinitial item has a Pre-Text-Item trigger that also failsthe
cursor has nowhere to go, and afatal error occurs.

Note: Be sure to code against navigation trigger failure.

Oracle Developer: Build Forms | 19-19

Lesson 19: Navigation

Navigation in Triggers

* When-New-ltem-Instance

IF CHECKBOX_CHECKED('S_ORD.order_filled) THEN
SET_ITEM_PROPERTY('S_ORD.date_shipped’,
UPDATE_ALLOWED, property_true);

GO_ITEM('S_ORD.date_shipped’); @

END IF;

®* Pre-Text-ltem

IF CHECKBOX_CHECKED('S_ORD.order_filled’) THEN
SET_ITEM_PROPERTY('S_ORD.date_shipped’,
UPDATE_ALLOWED, property_true);

GO_ITEM('S_ORD.date_shipped’); @
END IF;

Copyright O Oracle Corporation, 1999. All rights reserved. ORACLE

19-20 Oracle Developer: Build Forms |

Navigation in Triggers

Navigation in Triggers

You can initiate navigation programmeatically by calling the built-in subprograms, such
as GO_ITEM and PREVIOUS BLOCK from triggers.

Built-in Routines for Navigation

Function

GO_FORM

Navigates to an open form (in amultiple form
application)

GO_BLOCK Navigates to an indicated block

GO_ITEM Navigates to an indicated item

GO_RECORD Navigates to a specific record

NEXT_BLOCK Navigates to the next enterable block
NEXT_ITEM Navigates to the next enterable item

NEXT_KEY Navigates to the next enterable, primary key item

NEXT_RECORD

Navigates to the first enterable item in the next
record

NEXT_SET Fetches another set of records from the database
and navigatesto the first record that the fetch
retrieves

UP Navigates to the instance of the current item in the
previous record

DOWN Navigates to the instance of the current item in the

next record

PREVIOUS BLOCK

Navigates to the previous enterable block

PREVIOUS ITEM

Navigates to the previous enterableitem

PREVIOUS RECORD

Navigates to the previous record

SCROLL_UP

Scrolls the block so that the records above the top
visible one display

SCROLL_DOWN

Scrolls the block so that the records below the
bottom visible one display

Oracle Developer: Build Forms |

Lesson 19: Navigation

Summary

* Controlling navigation through properties
® Internal navigation
* Navigation triggers
— When-New- “object”-Instance
— Pre-
— Post-
* Navigation trap
* Navigation in triggers

Copyright O Oracle Corporation, 1999. All rights reserved. ORACLE

19-22 Oracle Developer: Build Forms |

Summary

Summary
In this lesson, you learned at the different methods of forcing visible navigation and
also theinvisible events.
* You can control navigation through the following properties:
- Form module properties
- Data block properties
- Item properties
» Internal navigation events also occur.
» Navigation triggers:
- When-New*object” -Instance
- Pre- and Post-
» Avoid the navigation trap.
» Navigation built-ins are available.

Oracle Developer: Build Forms | 19-23

Lesson 19: Navigation

Practice 19 Overview

This practice covers the following topics:
* Executing a query at form startup

* Populating product images when cursor arrives on
each record of the S_ITEM block

Copyright O Oracle Corporation, 1999. All rights reserved. ORACLE

Note
For solutions to this practice, see Practice 19 in Appendix A, “Practice Solutions.”

19-24 Oracle Developer: Build Forms |

Practice 19 Overview

Practice 19 Overview

In this practice, you use When-New-“object” -Instance triggers to populate the

Product_Image item as the operator navigates between records in the ORDGXX form.

Also, you provide atrigger to automatically perform query at form startup.

» Executing a query at form startup

* Populating product images when the cursor arrives on each record of the
S _ITEM block

Oracle Developer: Build Forms | 19-25

Lesson 19: Navigation

Practice 19

1 Write aWhen-New-Form-Instance trigger on the ORDGXX form to
execute a query at form startup.

Use the EXECUTE_QUERY buiilt-in.

2 Write atrigger that fires as the cursor arrives in each record of the
S ITEM block, and populate the Product_Image item with a picture of
the product, if one exists. Use Get_Product_Image function for this
purpose.
Get_Product_Image function is aready created for you. This function returns the
image file name for the given product number. If afile is not found, the function
returns“No file.”

FUNCTI ON get _pr oduct _i mage (product _nunber | N NUVBER) RETURN

VARCHARZ | S
v_fil enane VARCHAR2(20);
BEG N

SELECT s_i nage. fil ename INTOv_fil enane
FROM s_image, s_product

WHERE s_image.id = s_product.inmage_id
AND s_product.id = product _nunber;
IFv_filenane is null THEN

v_filename := "No file’;

END | F;

RETURN v_fi | enane;

EXCEPTI ON

WHEN no_data_found THEN return('No file’);
END;

If the function returns a usable filename, your trigger should pass this name to the
READ_IMAGE_FILE built-in.

3 Define the same trigger type and code on the S_ ORD block.

Thiswill display the image for the first line item’s product if the operator changes
the displayed order.

4 |s there another trigger where you might also want to place this code?
5 Save, compile, and run the form to test.

19-26 Oracle Developer: Build Forms |

Transaction Processing

Lesson 20: Transaction Processing

Objectives

After completing this lesson, you should be able to
do the following:

* Describe details of commit processing and commit
triggers

* Supplement transaction processing by using
triggers

* Allocate sequence numbers to records as they are
applied to tables

* Implement array DML

Copyright O Oracle Corporation, 1999. All rights reserved. ORACLE

20-2 Oracle Developer: Build Forms |

Introduction

Introduction

Overview

While applying a user’s changes to the database, the Oracle Developer Form Builder
enables you to make triggers fire in order to alter or add to the default behavior. This
lesson shows you how to build triggers that can perform additional tasks during this
stage of a transaction.

Oracle Developer: Build Forms | 20-3

Lesson 20: Transaction Processing

Transaction Processing

| FORM A |
ActionI Edit S Transaction (Begin)
Save
Block#1 I
oc |UPDATE Tabl el I
[New Record]| |
| Updated Refjord | | I NSERT | NTO Tabl el I
[I |
Block#2
oc | DELETE FROM Tabl e2 |
Updated Réford |
[Deleted Re[dord | | UPDATE Tabl e2 I

Transaction (End) |00"T"'t wor k;

Copyright O Oracle Corporation, 1999. All rights reserved. OF\)ACLE

20-4 Oracle Developer: Build Forms |

Transaction Processing

Transaction Processing
When Form Builder is asked to save the changes made in aform by the user, a process
takes place involving events in the current database transaction. This process includes:

» Default Form Builder transaction processing: Applies the user’s changes
to the base tables

» Firing transactional triggers: Needed to perform additional or modified
actions in the saving process defined by the designer

When all of these actions are successfully completed, Form Builder commits the
transaction, making the changes permanent.

What Happens in Transaction Processing?
The transaction process occurs as a result of either of the following actions:

* The user presses [Save] or selects Action—>Save from the menu, or
clicks on the Save button on the default Form toolbar.

*+ The COMMIT_FORM built-in procedure is called from a trigger.
In either case, the process involves two phases, posting and committing.

Post Posting writes the user’s changes to the base tables, using implicit INSERT,
UPDATE, and DELETE statements generated by Form Builder. The changes are
applied in blocksequence order as they appear in the Object Navigator at design time.
For each block, deletes are performed first, followed by inserts and updates.
Transactional triggers fire during this cycle if defined by the designer.

The built-in procedure POST alone can invoke this posting process.

Commit This performs the database commit, making the applied changes permanent
and releasing locks.

Oracle Developer: Build Forms | 20-5

Lesson 20: Transaction Processing

Transaction Processing

Transaction processing includes two phases:
* Post:

— Writes record changes to base tables

— Fires transactional triggers
* Commit: Performs database commit
Errors result in:
* Rollback of the database changes
®* Error message

Copyright O Oracle Corporation, 1999. All rights reserved. ORACLE

20-6 Oracle Developer: Build Forms |

Transaction Processing

Rollbacks

Form Builder will roll back applied changes to a savepoint if an error occursin its
default processing, or when atransactional trigger fails.

By default, the user isinformed of the error through a message, and afailing insert or
update results in the record being redisplayed. The user can then attempt to correct the
error before trying to save again.

Savepoints

Form Builder issues savepointsin a transaction automatically, and will roll back to the
latest savepoint if certain events occur. Generally, these savepoints are for Form
Builder internal use, but certain built-ins, such asthe EXIT_FORM built-in procedure,
can request arollback to the latest savepoint by using the TO_SAVEPOINT option.

Locking

When you update or delete base table records in aform application, database locks are
automatically applied. Locks also apply during the posting phase of a transaction, and
for DML statements that you explicitly use in your code.

Note: The SQL statements COMMIT, ROLLBACK, and SAVEPOINT cannot be
called from atrigger directly. If encountered in a client-side program unit, Form
Builder treats COMMIT asthe COMMIT_FORM built-in, and ROLLBACK asthe
CLEAR_FORM built-in.

Oracle Developer: Build Forms | 20-7

Lesson 20: Transaction Processing

The Commit Sequence of Events

| Validate the form |

D
| Validate the block |

| More

I records? | Pre-Delete |

I On-Delete | Delete row
|

|

| | Post-Delete |

T

Copyright O Oracle Corporation, 1999. All rights reserved. OF\)ACLE

The Commit Sequence of Events

= = = = = = -

INSERT 1 UPDATE More
records? |
| Copy value from item | |
;
|Check uniqueness| | Check uniqueness | I
|On-|nsert|| Insert row | |On-Update|| Update row |I
1
| Post-Insert | | Post-Update | I
2 oA — — = e
More | Post-Forms-Comnmit |

blocks?

Commit changes
Stop Post-Database-Commit

Copyright O Oracle Corporation, 1999. All rights reserved. ORACLE

20-8 Oracle Developer: Build Forms |

The Commit Sequence of Events

The Commit Sequence of Events

The commit sequence of events (when the Array DML sizeis 1) isasfollows:
1 Validate the form.
2 Process savepoint.
3 Firethe Pre-Commit trigger.
4 Validate the block (for al blocksin sequential order).
For all deleted records of the block (in reverse order of deletion):
- Firethe Pre-Delete trigger.
- Delete therow from the base table or fire the On-Delete trigger.
- Firethe Post-Delete trigger.
For all inserted or updated records of the block in sequential order:
If it isan inserted record:
- Copy Vdue From Item.
- Firethe Pre-Insert trigger.
- Check the record uniqueness.
- Insert the row into the base table or fire the On-Insert trigger.
- Firethe Post-Insert trigger.
If it isan updated record:
Fire the Pre-Update trigger.
Check the record uniqueness
Update the row in the base table or fire the On-Update trigger.
- Firethe Post-Update trigger.
5 Fire the Post-Forms-Commit trigger.
If the current operation is COMMIT, then:
6 Issuean SQL-COMMIT statement.
7 Fire the Post-Database-Commit trigger.

Oracle Developer: Build Forms | 20-9

Lesson 20: Transaction Processing

Characteristics of
Commit Triggers

®* Pre-Commit: Fires once if form changes are made
or uncommitted changes are posted

* Pre- and Post-DML

®* On-DML: Fires per record, replacing default DML
on row

Use DELETE_RECORD, INSERT_RECORD,
UPDATE_RECORD built-ins

Copyright O Oracle Corporation, 1999. All rights reserved. ORACLE

Characteristics of
Commit Triggers

* Post-Forms-Commit: Fires once even if no
changes are made

* Post-Database-Commit: Fires once even if no
changes are made

Note: A commit-trigger failure causes a rollback to
the savepoint.

Copyright O Oracle Corporation, 1999. All rights reserved. ORACLE

20-10 Oracle Developer: Build Forms |

Characteristics of Commit Triggers

Characteristics of Commit Triggers

You have already seen when commit triggers fire during the normal flow of commit
processing. The following table gives more detailed information regarding the
conditions under which these triggersfire.

Trigger Characteristic

Pre-Commit Fires once during commit processing, before base table
blocks are processed; firesif there are changes to base table
itemsin the form or if changes have been posted but not yet
committed (Thistrigger alwaysfires in case of uncommitted
posts, even if there are no changes to post.)

Pre- and Post-DML Fire for each record that is marked for insert, update, or
delete, just before or after the row is inserted, updated, or
deleted in the database

On-DML Firesfor each record that is marked for insert, update, or
delete when Forms would typically issue its INSERT,
UPDATE, or DELETE statement (These triggers replace the
DML statements. Include acall to the INSERT _RECORD,
UPDATE_RECORD, or DELETE_RECORD built-into
perform the default processing for these triggers.)
Post-Forms-Commit Fires once during commit processing, after base table blocks
are processed but before the SQL-COMMIT statement is
issued; even firesif there are no changes to post or commit.
Post-Database-Commit Fires once during commit processing, after the
SQL-COMMIT statement is issued; even fires if there are no
changes to commit (Thisis aso true for the SQL-COMMIT
statement itself.)

Note: If a commit trigger—except for the Post-Database-Commit trigger—fails, the
transaction is rolled back to the savepoint that was set at the beginning of the current
commit processing. This also means that earlier, not yet committed posts are not rolled
back.

Oracle Developer: Build Forms | 20-11

Lesson 20: Transaction Processing

rate sequence numbers; journaling
ally generated columns; check

nt foreign-key update rule;
1s; check constraints

Copyright O Oracle Corporation, 1999. All rights reserved. ORACLE

Commit Triggers Uses

On-Insert/Updal

rms-Commit

Copyright O Oracle Corporation, 1999. All rights reserved. ORACLE

20-12 Oracle Developer: Build Forms |

Common Uses for Commit Triggers

Common Uses for Commit Triggers

Once you know when a commit trigger fires, you should be able to choose the right
commit trigger for the functionality that you want. To help you with this, the most
common uses for commit triggers are mentioned below.

Trigger Common Use

Pre-Commit Checks user authorization; sets up special locking
requirements

Pre-Delete Writes to journal table; implements restricted or cascade
delete

Pre-Insert Writesto journal table; fills automatically generated columns;
generates sequence numbers; checks constraints

Pre-Update Writesto journal table; fills automatically generated columns;
checks constraints; implements restricted or cascade update

Post-Delete, Post-Insert, Seldom used

Post-Update

On-Delete, On-Insert Replaces default block DML statements; for example, to

On-Update implement a pseudodel ete or to update a join view

Post-Forms-Commit Checks complex multirow constraints

Post-Database-Commit Determines if commit was successful; determinesif there are
posted, uncommitted changes

Where possible, implement functionality such aswriting to ajournal table,
automatically supplying column values, and checking constraints in the server.
Note: Locking is also needed for transaction processing. You can use the On-Lock
trigger if you want to amend the default locking of Form Builder.

Use DML statements in commit triggers only; otherwise the DML statements are not
included in the administration kept by Form Builder concerning commit processing.
This may lead to unexpected and unwanted results.

Oracle Developer: Build Forms | 20-13

Lesson 20: Transaction Processing

Life of an Update
tem Column Rollback Locked
= Data

Upd@_ =
@@SPU@ e 20]
[commit |- {307 {3} - - »

Copyright O Oracle Corporation, 1999. All rights reserved. OR’AC'_E

20-14 Oracle Developer: Build Forms |

Common Uses for Commit Triggers

Life of an Update

To help you decide where certain trigger actions can be performed, consider an update
operation as an example.

The price of aproduct isbeing updated in aform. After the user queriestherecord, the
following events occur:

1 The user updates the Price item. Thisis now different from the
corresponding database column.

2 The user savesthe change, initiating the transaction process.

3 The Pre-Update trigger fires (if present). At this stage, the item and
column are still different, because the update has not been applied to the
base table. The trigger could compare the two values, for example, to
make sure the new price is not lower than the existing one.

4 Form Builder applies the user’s change to the database row. The item
and column are now the same.

5 The Post-Update trigger fires (if present). It is too late to compare the
item against the column, because the update has already been applied.
However, the Oracle database retains the old column value as rollback
data, so that a failure of this trigger reinstates the original value.

6 Form Builder issues the database commit, thus discarding the rollback
data, releasing locks, and making the changes permanent. The user
receives the messagér‘ansacti on Conpl eted...".

Oracle Developer: Build Forms | 20-15

Lesson 20: Transaction Processing

Delete Validation

* Pre-Delete trigger

* Final checks before row deletion

DECLARE
CURSOR C1 IS
SELECT "anything’ FROM S_ORD
WHERE customer_id = :S_CUSTOMER:.id;
BEGIN
OPEN C1;
FETCH C1 INTO :GLOBAL.dummy;
IF C1%FOUND THEN
MESSAGE('There are orders for this customer!’);
RAISE form_trigger_failure;
ELSE
CLOSE C1,
END IF;
END;

Copyright O Oracle Corporation, 1999. All rights reserved. ORACLE

20-16 Oracle Developer: Build Forms |

Common Uses for Commit Triggers

Delete Validation

Master-detail blocks that are linked by arelation with the nonisolated deletion rule
automatically prevent master records from being deleted in the form if matching detail
rows exist.

You may, however, wish to implement asimilar check, asfollows, when adeletionis
applied to the database:

» Afinal check to ensure that no dependent detail rows have been inserted
by another user since the master record was marked for deletion in the
form (In an Oracle database, this is usually performed by a constraint or
a database trigger.)

» Afinal check against form data, or checks that involve actions within the
application

Note: If you select the “Enforce data integrity” check box in the Data Block Wizard,

Form Builder automatically creates the related triggers to implement constraints.

Example

This Pre-Delete trigger on the CUSTOMER block of the CUSTOMERS form prevents
deletion of rows if there are existing orders for the customer.

DECLARE
QURSOR CL I S
SELECT "anything FROM S_ORD
WHERE customer_id =:S_CUSTOMER:u.id;
BEGIN
OPENC1;
FETCH C1INTO :GLOBAL.dummy;
IF C1%FOUND THEN
CLOSE C1,
MESSAGE('There are orders for this customer!’);
RAISE form_trigger_failure;
ELSE
CLOSE C1,
END IF;
END;

Oracle Developer: Build Forms | 20-17

Lesson 20: Transaction Processing

Assigning Sequence Numbers

SELECT S ORD_| D. next val
I NTO :S_ORD.id
FROM SYS. dual ;

Insert
Pre-Insert —_—

-

e

L d

Database

Sequence
Copyright O Oracle Corporation, 1999. All rights reserved. OR’AC'_E

20-18 Oracle Developer: Build Forms |

Common Uses for Commit Triggers

Assigning Sequence Numbers to Records

You will recall that you can assign default values for items from an Oracle sequence,
to automatically provide unique keysfor records on their creation. However, if the
user does not complete arecord, the assigned sequence number is “wasted.”

An alternative method is to assign unique keys to records from a Pre-Insert trigger, just
before their insertion in the base table, by which time the user has completed the
record and issued the Save.

Assigning unique keys in the posting phase can:

* Reduce gaps in the assigned numbers

* Reduce data traffic on record creation, especially if records are discarded
before saving

Example

This Pre-Insert trigger on the S_ORD block assigns an Order ID from the sequence
S_ORD_ID, which will be written to the ID column when the row is subsequently
inserted.

SELECT S ORD | D. next val

INTO :S ORD.id

FROM SYS. dual ;
Note: The Insert Allowed and Keyboard Navigable properties on :S_ORD.id should
be No, so that the user does not enter an ID manually.

You can also assign sequence numbers from a table. If you use this method, then two
transactional triggers are usually involved:

» Use Pre-Insert to select the next available number from the sequence
table (locking the row to prevent other users from selecting the same
value) and increment the value by the required amount.

» Use Post-Insert to update the sequence table, recording the new upper
value for the sequence.

Oracle Developer: Build Forms | 20-19

Lesson 20: Transaction Processing

Keeping an Audit Trail

* Write changes to nonbase tables.
* Gather statistics on applied changes.

Post-Insert example:

:GLOBAL.insert_tot :=
TO CHAR(TO NUMBER(: GLOBAL. i nsert _tot) +1);

Copyright O Oracle Corporation, 1999. All rights reserved. ORACLE

20-20 Oracle Developer: Build Forms |

Common Uses for Commit Triggers

Keeping an Audit Trail

You may want to use the Post event transactional triggers to record audit information
about the changes applied to base tables. In some cases, this may involve duplicating
inserts or updates in backup history tables, or recording statistics each timea DML
operation occurs.

If the base table changes are committed at the end of the transaction, the audit
information will also be committed.

Example
This Post-Update trigger writes the current record 1D to the UPDATE_AUDIT table,
along with atime stamp and the user who performed the update.

I NSERT | NTO update_audit (id, timestanp, who _did_it)
VALLES (:S ORD id, SYSDATE, USER);

Example

This Post-1nsert trigger adds to a running total of Inserts for the transaction, whichis
recorded in the global variable INSERT_TOT. (Thisglobal variableisinitialized at the
start of posting, and recorded in atable at the end, as discussed later.)

:GLCBAL.insert _tot := TO CHAR(TO NUMBER(: LOBAL. i nsert _tot) +1);

Oracle Developer: Build Forms | 20-21

Lesson 20: Transaction Processing

Testing the Result
of Trigger DML

* SQL%FOUND
* SQL%NOTFOUND
* SQL%ROWCOUNT

UPDATE S_ORD
SET dat e_shi pped = SYSDATE
WHERE id = : S ORD.i d;
| F SQLYANOTFOUND THEN
MESSAGE(Record not found in database’);
RAISE form_trigger_failure;
END IF;

Copyright O Oracle Corporation, 1999. All rights reserved. ORACLE

Oracle Developer: Build Forms |

Common Uses for Commit Triggers

Obtaining Cursor Information in PL/SQL
When you perform DML in transactional triggers, you may need to test the results.

Unlike SELECT statements, DML statements do not rai se exceptions when zero or
multiple rows are processed. PL/SQL provides some useful attributes for obtaining
results from the implicit cursor used to process the latest SQL statement (in this case,
DML).

PL/SQL Cursor Attribute Values
SQL%FOUND TRUE: Indicates > 0 rows processed

FALSE: Indicates O rows processed
SQL%NOTFOUND TRUE: Indicates O rows processed

FALSE: Indicates > O rows processed
SQL%ROWCOUNT Integer indicating the number of rows processed
Example

This When-Button-Pressed trigger records the date of posting as the date shipped for
the current Order record. If arow isnot found by the UPDATE statement, an error is
reported.
UPDATE S_ORD
SET dat e_shi pped = SYSDATE
WHERE id = : S ORD.i d;
| F SQLYNOTFOUND THEN
MESSAGE('Record not found in database’);
RAISE form_trigger_failure;
ENDIF;

Note: Triggers containing base table DML can adversely affect the usual behavior of
your form, because DML statements can cause some of the rows in the database to
lock.

Oracle Developer: Build Forms | 20-23

Lesson 20: Transaction Processing

DML Statements Issued
During Commit Processing

I NSERT | NTO base_table (base_col unm, base_col um, ...)
VALUES (:base_item :base_item ...)

UPDATE base_t abl e

SET base_col uimm = :base_item base _col unm =
:base_item ...

WHERE RON D = : RON D

DELETE FROM base_tabl e
WHERE RON D = : RON D

Copyright O Oracle Corporation, 1999. All rights reserved. OF\)ACLE

DML Statements Issued During Commit
Processing

Rules:
* DML statements may fire database triggers.
* Form Builder uses and retrieves ROWID.

* The Update Changed Columns Only and Enforce
Column Security properties affect UPDATE
statements.

* Locking statements are not issued.

Copyright O Oracle Corporation, 1999. All rights reserved. OF\)ACLE

20-24 Oracle Developer: Build Forms |

DML Statements Issued During Commit Processing

DML Statements Issued During Commit Processing

If you have not altered default commit processing, Form Builder issues DML
statements at commit time for each database record that is inserted, updated, or
deleted.

I NSERT | NTO base_t abl e(base_col utm, base_colum, ...)
VALUES (:base_item :base_item ...)

UPDATE base_tabl e
SET base _column = : base_item base colunn = :base item
WHERE ROWN D = : RON D

DELETE FROM base_tabl e
WHERE ROWD = : ROND

Rules
» These DML statements may fire associated database triggers.

» Form Builder uses the ROWID construct only when the Key mode block
property is set to Automatic (the default).

» If Form Builder successfully inserts a row in the database, it also
retrieves the ROWID for that row.

» If the Update Changed Columns Only block property is set to Yes, only
base columns with changed values are included in the UPDATE
statement.

» If the Enforce Column Security block property is set to Yes, all base
columns for which the current user has no update privileges are excluded
from the UPDATE statement.

Locking statements are not issued by Form Builder during default commit processing;
they are issued as soon as a user updates or deletes a record in the form. If you set the
Locking mode block property to delayed, Form Builder waits to lock the

corresponding row until commit time.

Oracle Developer: Build Forms | 20-25

Lesson 20: Transaction Processing

Overriding Default Transaction

Additional transactional triggers:

Do-the-Right-Thing Built-in_

On-Check-Unique CHECK_RECORD_UNIQUEN
ENFORCE_COLUMN_SECURITY
COMMIT_FORM
ISSUE_ROLLBACK
ISSUE_SAVEPOINT

=F ATE_SEQUENCE_NUMBER

On-Column-Security

On-Commit
On-Rollback

-Savepoint

equence-Number

Copyright O Oracle Corporation, 1999. All rights reserved. OR’ACLE

20-26 Oracle Developer: Build Forms |

Overriding Default Transaction Processing

Overriding Default Transaction Processing

You have aready seen that some commit triggers can be used to replace the default
DML statements that Form Builder issues during commit processing. You can use
severa other triggers to override the default transaction processing of Form Builder.

Transactional Triggers

All triggersthat are related to accessing adata source are called transactional triggers.
Commit triggers form a subset of these triggers. Other examples include triggers that
fire during logon and logout or during queries performed on the data source.

Additional Transactional Triggers for Commit Processing

Trigger Do-the-Right-Thing Built-in
On-Check-Unique CHECK_RECORD_UNIQUENESS
On-Column-Security ENFORCE_COLUMN_SECURITY
On-Commit COMMIT_FORM

On-Rollback ISSUE_ROLLBACK

On-Savepoint ISSUE_SAVEPOINT
On-Sequence-Number GENERATE_SEQUENCE_NUMBER

Oracle Developer: Build Forms | 20-27

Lesson 20: Transaction Processing

Overriding Default Transaction

Transactional triggers for logging on and off:

Pre-Logon

Pre-Logout
On-Logon

Copyright O Oracle Corporation, 1999. All rights reserved. ORACLE

20-28 Oracle Developer: Build Forms |

Overriding Default Transaction Processing

Transactional Triggers for Logging On and Off

Trigger Do-the-Right-Thing Built-in
Pre-Logon -
Pre-L ogout -
On-Logon LOGON

On-Logout LOGOUT
Post-Logon -
Post-L ogout -

Uses for Transactional Triggers

» Transactional triggers, except for the commit triggers, are primarily
intended to access certain data sources other than Oracle.

» The logon and logoff transactional triggers can also be used with Oracle
databases to change connections at run time.

Oracle Developer: Build Forms | 20-29

Lesson 20: Transaction Processing

Running with Data Sources
Other than Oracle

®* Three ways to run against data sources other than
Oracle

— Oracle Open Gateways
— Oracle Open Client Adapter for ODBC
— Write appropriate transactional triggers

Copyright O Oracle Corporation, 1999. All rights reserved. ORACLE

Running with Data Sources
Other than Oracle

® Connecting with Open Gateway:

— Cursor and Savepoint mode form module
properties

— Key mode and Locking mode block properties
® Using transactional triggers:

— Call 3GL programs

— Database data block property

Copyright O Oracle Corporation, 1999. All rights reserved. ORACLE

20-30 Oracle Developer: Build Forms |

Running Against Data Sources Other than Oracle

Running Against Data Sources Other than Oracle

Three Ways to Run Against Data Sources Other than Oracle
» Use Oracle Open Gateway products.

» Use Oracle Open Client Adapter for ODBC.

» Write the appropriate set of Transactional triggers.

Connecting with Open Gateway

When you connect to a data source other than Oracle with an Open Gateway product,
you should be aware of these transactional properties:

* Cursor mode form module property

» Savepoint mode form module property
» Key mode block property

* Locking mode block property

You can set these properties to specify how Form Builder should interact with your
data source. The specific settings depend on the capabilities of the data source.

Using Transactional Triggers

If no Open Gateway or Open Client Adapter drivers exist for your data source, you
must define transactional triggers. From these triggers, you must call 3GL programs
that implement the access to the data source.

Database Data Block Property

This block property identifies a block as a transactional control block; that is, a control
block that should be treated as a base table block. Setting this property to Yes ensures
that transactional triggers will fire for the block, even though it is not a base table
block. If you set this property to Yes, you must define all On-Event transactional
triggers, otherwise you will get an error during form generation.

Oracle Developer: Build Forms | 20-31

Lesson 20: Transaction Processing

Getting and Setting the
Commit Status

* What is commit status?
* SYSTEM.RECORD_STATUS:
- NEW
INSERT (also caused by control items)
QUERY
CHANGED

Copyright O Oracle Corporation, 1999. All rights reserved. ORACLE

20-32 Oracle Developer: Build Forms |

Getting and Setting the Commit Status

Getting and Setting the Commit Status

If you want to process arecord in your form, it is often useful to know if therecord is
in the database or if it has been changed, and so on. You can use system variables and
built-ins to obtain this information.

What Is the Commit Status of a Record?

The commit status of arecord of a base table block determines how the record will be
processed during the next commit process. For example, the record can be inserted,
updated, or not processed at all.

The Four Values of SYSTEM.RECORD_STATUS

Value Description

NEW Indicates that the record has been created, but that none of itsitems
have been changed yet (The record may have been populated by
default values.)

INSERT Indicates that one or more of theitemsin anewly created record have

been changed (The record will be processed as an insert during the
next commit processif its block hasthe CHANGED status; see
below. Note that when you change a control item of a NEW record,
the record status also becomes INSERT.)

QUERY Indicates that the record corresponds to arow in the database, but that
none of its base table items have been changed

CHANGED |Indicatesthat one or more base table items in a database record have

been changed (The record will be processed as an update (or delete)
during the next commit process.)

Oracle Developer: Build Forms | 20-33

Lesson 20: Transaction Processing

Getting and Setting the
Commit Status

e SYSTEM.BLOCK_STATUS:

— NEW (may contain records with status
INSERT)

— QUERY (also possible for control block)
— CHANGED (block will be committed)

Copyright O Oracle Corporation, 1999. All rights reserved. ORACLE

Getting and Setting the
Commit Status

e SYSTEM.FORM_STATUS:
- NEW
— QUERY
— CHANGED

Copyright O Oracle Corporation, 1999. All rights reserved. ORACLE

20-34 Oracle Developer: Build Forms |

Getting and Setting the Commit Status

Three Values of SYSTEM.BLOCK_STATUS

Value Description

NEW Indicates that al records of the block have the status NEW (Note that a base
table block with the status NEW may also contain records with the status
INSERT caused by changing control items).

QUERY Indicates that all records of the block have the status QUERY if the block isa
base table block (A control block has the status QUERY if it contains at least
one record with the status INSERT.)

CHANGED |Indicatesthat the block contains at |east one record with the status INSERT or
CHANGED if the block is a base table block (The block will be processed

during the next commit process. Note that a control block cannot have the sta-
tus CHANGED.)

Three Values of SYSTEM.FORM_STATUS

Value Description

NEW Indicates that all blocks of the form have the status NEW

QUERY Indicates that at least one block of the form has status QUERY and all other
blocks have the status NEW

CHANGED |Indicatesthat at |east one block of the form has the status CHANGED

Oracle Developer: Build Forms | 20-35

Lesson 20: Transaction Processing

Getting and Setting the
Commit Status

* System variables versus built-ins for commit
status

* Built-ins for getting and setting commit status:
— GET_BLOCK_PROPERTY
— GET_RECORD_PROPERTY
— SET_RECORD PROPERTY

Copyright O Oracle Corporation, 1999. All rights reserved. ORACLE

Getting and Setting the
Commit Status

* Example: If the third record of block S_ORD is a
changed database record, set the status back to
QUERY.

* Warnings:

— Do not confuse commit status with validation
status.

— The commit status is updated during
validation.

Copyright O Oracle Corporation, 1999. All rights reserved. ORACLE

20-36 Oracle Developer: Build Forms |

Getting and Setting the Commit Status

Using Built-ins to Get the Commit Status

The system variables SY STEM.RECORD_STATUS and
SYSTEM.BLOCK_STATUS apply to the record and block where the cursor is
located. You can use built-ins to obtain the status of other blocks and records.

Built-in Description
GET_BLOCK_PROPERTY Use the STATUS property to obtain the block status of
the specified block.

GET_RECORD_PROPERTY Use the STATUS property to obtain the record status of
the specified record in the specified block.

SET_RECORD_PROPERTY Set the STATUS property of the specified record in the
specified block to one of the following constants:

e NEW_STATUS, INSERT_STATUS

e QUERY_STATUS

e CHANGED_STATUS

Example

If the third record of the S ORD block is a changed database record, set the status
back to QUERY.

BEG N

IF GET_RECORD_PROPERTY(3,’'S_ORD’,status)="CHANGED’ THEN
SET_RECORD_PROPERTY(3,'S_ORD’, status, query_status);

END IF;

END;

Oracle Developer: Build Forms | 20-37

Lesson 20: Transaction Processing

Array DML

* Performs array inserts, updates, and deletes
* Vastly reduces network traffic

Fewer round trips

Empno | Ename| Job | Hiredate (exact number depends
on array size)
1234 | Jones |Clerk | 01-Jan-95 2inserts
1235 | Smith | Clerk | 01-Jan-95
2 updates ‘ H
1236 |Adams |Clerk|01-Jan-95
1 delete
1237 | Clark |Clerk|01-Jan-95 Database

Copyright O Oracle Corporation, 1999. All rights reserved. OF\)ACLE

Effect of Array DML
on Transactional Triggers

PRE- 1 Fi ¢ h
. I ires for eac
Repeated > /.\A Fires insert, update,
for each 1 delete
insert, |
update, I
delete
. ! Fires for each
/.\\ Fires | insert, update,
I delete
Array DML Size =1 ! Array DML Size > 1

Copyright O Oracle Corporation, 1999. All rights reserved. OF\)ACLE

20-38 Oracle Developer: Build Forms |

Array Processing

Array Processing

Overview

Array processing is an option in Form Builder that alters the way records are
processed. The default behavior of Form Builder is to process records one at atime.
By enabling array processing, you can process groups of records at atime, reducing
network traffic and thereby increasing performance. With array processing, a structure
(an array) containing multiple recordsis sent to or returned from the server for
processing.

Form Builder supports both array fetch processing and array DML processing. For
both querying and DML operations, you can determine the array size to optimize
performance for your needs. This lesson focuses on array DML processing.

Array processing is available for query and DML operations for blocks based on
tables, views, procedures, and subqueries; it is not supported for blocks based on
transactiona triggers.

Effect of Array DML on Transactional Triggers

With DML Array Size set to 1, the Pre-Insert, Pre-Update, and Pre-Delete triggersfire
for each new, changed, and deleted record; the DML isissued, and the Post- trigger for
that record fires.

With DML Array Size set to greater than 1, the appropriate Pre- triggersfire for all of
the new, changed, and deleted rows; all of the DML statements are issued, and all of
the Post- triggersfire.

If you change 100 rows and DML Array Sizeis 20, you get 100 Pre- triggers, 5 arrays
of 20 DML statements, and 100 Post- triggers.

Oracle Developer: Build Forms | 20-39

Lesson 20: Transaction Processing

Implementing Array DML

1. Enable the Array Processing option.
2. Specify a DML Array Size of greater than 1.
3. Specify block primary keys.

Copyright O Oracle Corporation, 1999. All rights reserved. ORACLE

20-40 Oracle Developer: Build Forms |

Array Processing

How to Implement Array DML

1 To set preferences:
- Select Tools—>Preferences.
- Click the Runtime tab.
- Select the Array Processing check box.

2 To set properties:
- Inthe Object Navigator, select the Data Blocks node.
- Double-click the Data Blocks icon to display the Property Palette.

- Under the Advanced Database category, set the DML Array Size

property to a number that represents the number of recordsin the

array for array processing. You can also set this property

programmatically.
Note: When the DML Array Size property is greater than 1, you must specify the
primary key. Key mode can still be unique.
The Oracle server uses the ROWID to identify the row, except after an array insert. I
you update arecord in the same session that you inserted it, the server locks the record
by using the primary key.

Oracle Developer: Build Forms | 20-41

Lesson 20: Transaction Processing

Summary

* Post and commit phases
* Flow of commit processing

* DML statements issued during commit
processing

* Characteristics and common uses of commit
triggers

* Overriding default transaction processing
* (etting and setting the commit status
* Implementing Array DML

Copyright O Oracle Corporation, 1999. All rights reserved. ORACLE

20-42 Oracle Developer: Build Forms |

Summary

Summary

This lesson showed you how to build triggers that can perform additional tasks during
the save stage of a current database transaction.

» Transactions are processed in two phases:

- Post Applies form changes to the base tables and fires transactional
triggers

- Commit: Commits the database transaction
» Flow of commit processing
» DML statements issued during commit processing:

- Based on base table items

- UPDATE and DELETE statements use ROWID by default
* Characteristics of commit triggers:

- The Pre-Commit, Post-Forms-Commit, and Post-Database-Commit
triggers fire once per commit process, but consider uncommitted
changes or posts.

- The Pre-, On-, and Post-Insert, Update, and Delete triggers fire once
per processed record.

« Common uses for commit triggers: check authorization, set up special
locking requirements, generate sequence numbers, check complex
constraints, replace default DML statements issued by Form Builder.

* Overriding default transaction processing:
- Transactional On-Event triggers and “Do-the-Right-Thing” built-ins

- Data sources other than Oracle use Open Gateway, ODBC, or
transactional triggers

» Getting and setting the commit status:
- System variables
- Built-ins

* Array DML

Oracle Developer: Build Forms | 20-43

Lesson 20: Transaction Processing

Practice 20 Overview

This practice covers the following topics:

* Automatically populating order IDs by using a
sequence

* Automatically populating item IDs by adding the
current highest order ID

®* Customizing the commit messages in the
CUSTOMERS form

® Customizing the login screen in the CUSTOMERS
form

Copyright O Oracle Corporation, 1999. All rights reserved. ORACLE

Note
For solutions to this practice, see Practice 20 in Appendix A, “Practice Solutions.”

20-44 Oracle Developer: Build Forms |

Practice 20 Overview

Practice 20 Overview

In this practice, you add transactional triggers to the ORDGXX form to automatically
provide sequence numbers to records at save time. You also customize commit
messages and the login screen in the CUSTGXX form.

* Automatically populating order IDs by using a sequence

* Automatically populating item IDs by adding the current highest order
ID

» Customizing the commit messages in the CUSTOMERS form
» Customizing the login screen in the CUSTOMERS form

Oracle Developer: Build Forms | 20-45

Lesson 20: Transaction Processing

Practice 20

1

In the ORDGXX form write a transactional trigger onthe S_ ORD block

that populates S ORD.Id with the next value fromthe S ORD_ID

sequence.

Create a Pre-Insert trigger that assigns a value from this sequence. If an exception
occurs in the trigger, fail the trigger with a message.

2 IntheS_ORD block, set the Enabled property of the ID item to No.
3 Save, compile, and run the form to test.

Insert a new order. The unique ID for the order should appear when you saveit.
Create asimilar trigger onthe S ITEM block that assigns the Item_Id

when anew record is saved.

Derive this number by adding to the current highest Item_Id for the order. Perform
the action in aPre-Insert trigger. Set the Required and Enabled propertiesto No for
Item_Id.

Save, compile, and run the form to test.

Insert anew line-item record inthe S ITEM block, then saveit.

Open the CUSTGXX form module. Create three global variables called
GLOBAL.INSERT, GLOBAL.UPDATE, and GLOBAL.DELETE.

These variables indicate respectively the number of inserts, updates, and

deletes. You need to write Post-1nsert, Post-Update, and Post-Delete

triggersto initialize and increment the value of each global variable.

20-46 Oracle Developer: Build Forms |

Practice 20

Practice 20 (continued)

7 Create aprocedure called HANDLE_MESSAGE. Import the
pr20_10. t xt file. This procedure receives two arguments. The first
one is a message number, and the second is a Boolean error indicator.
This procedure uses the three global variablesto display a customized
commit message and then erases the global variables.

PRCCEDURE handl e_nessage(nessage_number | N NUMBER, 1S ERRCR I N
BOOLEAN) IS
BEA N
| F message_nunber I N (40400, 40406, 40407) THEN
DEFAULT_VALUE('0’,'GLOBAL.insert’);
DEFAULT_VALUE('0’,"GLOBAL.update’);
DEFAULT_VALUE('0’,'GLOBAL.delete’);
MESSAGE('Save Ok:"||
‘GLOBAL.insert || 'records inserted, ’||
‘GLOBAL.update || 'records updated, ’||
‘GLOBAL.delete || 'records deleted I'!");
ELSIFis_error=TRUE THEN
MESSAGE(ERROR:’|| ERROR_TEXT);
ELSE
MESSAGE(MESSAGE_TEXT);
END IF;
END;

Call the procedure when an error occurs. Pass the error code and TRUE. Call the
procedure when a message occurs. Pass the message code and FAL SE.

8 Open the CUSTGXX form module. Write an On-Logon trigger to control
the number of connection tries. Use the LOGON_SCREEN built-in to
simulate the default login screen and LOGON to connect to the database.
You canimport the pr 20_11. t xt file.

Oracle Developer: Build Forms | 20-47

Lesson 20: Transaction Processing

On-Logon at Form Level

DECLARE
connect ed BOCLEAN : = FALSE;
tries NUMBER : = 3;
un VARCHAR2(30) ;
pw VARCHAR2(30) ;
cs VARCHAR2(30);
BEGA N
SET_APPLICATION_PROPERTY(CURSOR_STYLE, 'DEFAULT";
WHILE connected = FALSE and tries >0 LOOP
LOGON_SCREEN,;
un:=GET_APPLICATION_PROPERTY(USERNAME);
pw:=GET_APPLICATION_PROPERTY(PASSWORD);
cs:=GET_APPLICATION_PROPERTY(CONNECT_STRING);
LOGON(un, pw||'@’ || cs, FALSE);
IF FORM_SUCCESS THEN
connected := TRUE;
END IF;
tries :=tries- 1;
END LOOP;
IF NOT CONNECTED THEN
MESSAGE('Too many tries!’);
RAISE FORM_TRIGGER_FAILURE;
END IF;
END:;

20-48 Oracle Developer: Build Forms |

