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Abstract

Several distributed management architectures, incorporating mobile agent technology, have
been recently proposed to answer the scalability limitations of centralised models and the
flexibility problems of static hierarchical frameworks. Yet, although agent-based management
frameworks have recently started evolving from the early ‘flat’ models to hierarchical
structures, they cannot efficiently cope with the dynamically changing traffic and topological
characteristics of modern networks. This is mainly due to the limited use of agent mobility
(employed either through mid-level manager entities or between static mid-level managers
and managed devices) and lack of appropriate policies enabling automatic calibration of the
management system based on network conditions. This paper presents a hierarchical agent-
based infrastructure, suitable for the management of large-scale enterprise networks that
addresses these issues. The transition to hierarchical agent-based management is achieved
through a mid-level manager that being a mobile agent itself, operates at an intermediary level
between the manager and the legacy systems and takes full control of managing a given
network segment. These entities make the system more adaptive to changing networking
conditions, while localising the traffic associated with bandwidth-intensive monitoring
applications. A quantitative evaluation, in terms of the overall management cost, confirms
that this architecture outperforms both centralised approaches and mobile agent-based ‘flat’
management models.
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1. Introduction

The increasing complexity of networks has motivated the evolution of existing
management models. These models traditionally adopt a centralised, Client/Server (CS)
approach wherein the functionality of both clients (managers) and distributed servers (agents)
is rigidly defined at design time. Concerning formal standardisation approaches in Network
Management (NM), the scene has been dominated, during the past decade, by the IETF
Simple Network Management Protocol (SNMP) [23] and the OSI Common Management
Information Protocol (CMIP) [11]. Within these protocols, physical resources are represented
by managed objects. Collections of managed objects are grouped into tree-structured
Management Information Bases (MIB). Both SNMP and CMIP follow the CS paradigm,
typically associated with massive transfers of management data, which cause considerable
strain on network throughput and processing bottlenecks at the manager host.
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These problems have motivated a trend towards distributed management intelligence that
represents a rational approach to overcome the limitations of centralised NM. As a result,
several hierarchical/distributed management frameworks have been proposed both by
researchers and standardisation bodies [10][13][22]. However, these models, as discussed in
Section 2, are typically identified by static management components that cannot adapt to the
evolving nature of today’s networks, with rapidly changing traffic patterns and topology
structures.

Lately, the Mobile Agent (MA) paradigm has emerged within the distributed computing
field. The term MA refers to autonomous programs with the ability to move from host to host
to resume or restart their execution and act on behalf of users towards the completion of a
given task [1]. One of the most popular topics in MA research community has been
distributed NM, wherein MAs have been proposed as a means to balance the burden
associated with the processing of management data and decrease the traffic associated with
their transfers (data can be filtered at the source). The majority of MA-based management
platforms [3][19][24] are still based on ‘flat’ architectures (i.e. they do not take into account
the hierarchical structure of modern networks), which only partially solve the scalability
limitations of centralised architectures. This problem has been addressed to some extent by
frameworks that propose a domain-based approach [5][8][20] with further improvements
demonstrated by several hierarchical models [14][21][26]. However, even hierarchical
architectures do not fully exploit the benefits brought about by agent mobility and, as a result,
they cannot answer the flexibility limitations of proprietary management platforms. In
particular, two approaches have been presented so far: (a) Use of static mid-level managers
relying on MAs for the network monitoring process [14][21]; (b) Use of mobile mid-level
managers either performing decentralised SNMP management [26] or integrating distributed
management frameworks under standardisation [17]. Still, even the latter approach lacks
clearly defined mechanisms for achieving automatic adaptation of the management system to
changing network configurations, i.e. mid-level managers do not normally change the
location where they execute. In addition, the use of centralised management, even between
the middle and bottom levels of the hierarchy, may cause scalability problems.

This work aspires to address these issues through introducing a highly scalable and
adaptive hierarchical MAF tailored to distributed NM applications. Such a model presupposes
the presence of a novel management element, termed Mobile Distributed Manager (MDM),
operating at an intermediary level between the manager and the stationary agents. MDMs are
essentially MAs, which take full control of managing a specific network domain and localise
the associated management traffic (i.e. expensive, low-bandwidth WAN links are not heavily
used). Apart from the fact that management functionality may be added/configured at
runtime, this architecture can also dynamically adapt to fluctuating networking conditions.
Namely, an MDM entity may be assigned to / removed from a network segment to reflect a
change on network traffic patterns, or move to the least loaded host in order to optimise the
usage of local resources. The system's scalability is further improved by assigning monitoring
tasks to MAs (launched and controlled by the MDM) capable of filtering collected data
locally. MDMs are deployed to remote subnets according to policies defined by the
administrator. The advantage of our proposed architecture over centralised management and
‘flat’ MA-based models is verified by an analytical quantitative evaluation. It is emphasised
that the design ideas introduced in this paper have been already implemented; our prototype
has been tested on realistic topology and application scenarios, with several measurements
recorded and discussed herein.

The remainder of the paper is organised as follows: Section 2 comprises an overview of
the formal and research approaches in the area of distributed NM. Section 3 reviews several
MAFs proposed to distributed NM applications, whilst Section 4 explains the rationale behind
our chosen hierarchical approach. Section 5 provides an overview of the MAF used to support
this work. Section 6 discusses the implementation details of the introduced architecture with a
quantitative evaluation of the bandwidth usage given in Section 7 and empirical results
presented in Section 8. Finally, conclusions are drawn in Section 9.
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2. Review of Hierarchical Management Approaches

Large enterprise networks span application, organisational and geographical boundaries.
In order to cope sufficiently with the unpredictable growth of the number of network devices,
structuring networks in logical hierarchies is being employed as a design and deployment
principle. Any of the following or a combination of these partitioning criteria can be used: (a)
geographical subdivisions; (b) administrative subdivisions; (c) grouping based on different
access privileges and security policies; (d) performance-driven network partitioning between
multiple management servers. The design of such networks’ management systems must
consider that the resultant network segments may be better managed as logical, hierarchically
structured domains. A brief review of standardisation and research approaches to hierarchical
management follows.

A first approach to decentralisation was the introduction of RMON (Remote
MONitoring) [25] that facilitates the collection of traffic-oriented statistics by monitoring
devices (probes), which provide detailed information concerning traffic activity within their
local domain (e.g. an Ethernet segment).

Management distribution requirements have not been adequately addressed in the early
versions of SNMP. The MIBs adding distribution support to SNMPv3 [23] were issued only
in 1999. In particular, the DISMAN (DIStributed MANagement) Working Group of the IETF
was chartered to define an architecture where a main manager can delegate control above
several distributed management stations. Among others, the DISMAN framework provides
mechanisms for distributing scripts which perform arbitrary management tasks to remote
devices that implement the Script MIB [13].

SNMP Research has conducted similar work proposing the “Middle-Level Manager”
[22], a dual-role entity that plays the role of the agent when managers request information,
while acting as a manager for the agents located within its domain. When the MLM is placed
across a WAN link, remotely from the manager platform, it obviates the necessity of
performing SNMP polling. This reduces the polling traffic on the WAN link, thereby
achieving significant cost savings.

The concept of management distribution has been pushed much further by Management
by Delegation (MbD) [10]. MbD has been the first attempt to address decentralisation and
automation of management tasks by dynamically delegating management functions to
stationary agents (“elastic processes”).

The main weakness of the aforementioned standardisation and research approaches to
hierarchical management is their inflexible and static definition. There are two parts to
building such management hierarchies: (i) assigning roles (e.g. “Mid-Level Manager”) to the
members of the hierarchy, and (ii) assigning members to specific physical locations that will
function under the supervision of higher-level members. This is feasible if the network is
moderately small and/or not very dynamic, and if a single administrator is the only user and
specifier of the management policies. However, it is not in step with the dynamically evolving
topological and traffic characteristics of large-scale enterprise networks.

In addition, the distribution of aggregation and filtering computations in these
approaches is manual and static. The administrator of such a system is required to know the
managed network well enough to build a hierarchy of distributed servers that will accom-
modate, to a certain degree, all desirable computations that might be performed on NM data.
Also, the MLMs, SubManagers, etc, may suffer from overloads while executing their tasks,
either due to limited capacity or insufficient computing power of the hosting processors.

Nevertheless, all these formal and research efforts point in the right direction to handle
the present complexity of NM: “Divide & Conquer”. Considering the technological issues
associated with distributed management, we discern a field that the mobile agent paradigm
can revolutionise by enriching system functionality.

3. Distributed Management based on Mobile Agents: Research Approaches
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The use of mobile code has attracted tremendous attention during the last few years.
MAs offer a new powerful abstraction for distributed computing, answering many of the
flexibility and scalability problems of traditional centralised archetypes. Regarding distributed
NM area, MAs can provide all the functionality offered by static delegation agents, having the
additional benefit of mobility. In that sense, MAs can be regarded as a ‘superset’ of MbD
agents, leading to more efficient use of computing resources on the managed entities, as
management functions are executed only so long as the MAs reside and are active on the NEs
[9]. On the other hand, the use of MAs imposes extra strain on the physical resources of
remote hosts, brings about performance concerns and introduces potential security threats [6].
The trade-offs of using MAs for management applications as opposed to simply downloading
code to remote devices are discussed in [1].

Figure 1. Centralised and distributed (MA-based) approaches to Network Management

Most of the MA-based frameworks proposed for network monitoring applications
[3][19][24], assume a ‘flat’ network structure, i.e. a single MA is launched from the manager
platform and sequentially visits all the managed NEs, regardless from the underlying topology
(Figure 1b). One of the first prototypes proposed for NM has been presented in [24], where
issues related with access provisioning to managed resources and communication between
MAs are discussed. The framework described in [3] (extends previous work introduced in
[5]]) enforces a strict security scheme and addresses interoperability issues through providing
compliance with CORBA [4]. Pualiafito et al. [19] introduce the Mobile Agent Platform
(MAP), used for monitoring the systems state by calculating aggregation functions combining
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several MIB values (health functions). Nicklisch et al. [16] present the INCA architecture that
supports agent prioritisation for timely execution of critical tasks and identifies multiple agent
code transfer schemes.

However, although relaxing the network from a flood of request/response SNMP
messages (see Figure 1a), such an approach brings about scalability issues, especially when
frequent polling is required. That is, in large networks the round-trip delay for the MA will
greatly increase, whilst the network overhead may overcome that of the centralised paradigm
(the MA size will grow after visiting each of the nodes included into its itinerary [2]). The
situation seriously deteriorates when considering management of remote LANs, connected to
the backbone network through low-bandwidth, expensive WAN links. In this case, frequent
MA transfers are likely to create bottlenecks and considerably increase the management cost.

A first step to address this problem has been realised through a “segmentation” approach
[5][8], whereby the network is partitioned into several domains and a single MA object is
assigned to each of them (see Figure 1c). The model presented in [5] also allows for several
management levels through organising a hierarchy of the domains abstraction. The
“segmentation” approach introduces a high degree of parallelism in the data collection
process, thereby reducing the overall response time. That has been verified by simulation
results presented in [20].

Alternatively, when acquired data are to be analysed off-line, the “broadcast” approach
[8] may be used: an MA object is broadcasted to all managed devices and remains there for a
number of PIs (defined by the administrator) collecting an equal number of samples before
returning to the manager (see Figure 1d). It is noted that although improving the management
system scalability, “segmentation” and “broadcast” schemes cannot cope efficiently with the
management of remote LANs, since when data acquisition is required in real-time, the MA
transfers though the WAN link are not decreased. A comparison of Figures 1b and 1c
confirms that in both flat and “segmentation” polling, MA objects traverse the WAN link
twice per PI, in order to visit the remote site and bring back the collected results. On the other
hand, “broadcast” polling is unsuitable for time critical applications [8].

The scalability problem is more adequately addressed by hierarchical models that have
recently started coming into the picture. In particular, Liotta et al. [14] have conducted an
interesting study of an MA-based management architecture adopting a multi-level approach
enabled by static “Middle Managers” able to launch MAs; interesting cost functions
corresponding to various MA configurations are also proposed. Sahai & Morin [21] introduce
the concept of “Mobile Network Manager” (MNM), an application that may execute on
portable computers and assist the administrator to remotely control his/her managed network,
through launching MAs to carry out distributed management tasks. The heavier part of the
management functionality is integrated into a static “management server”; the framework is
enriched with features such as fault tolerance, adaptability of MAs to changes in the
environment (they are capable of detecting the disappearance of an agent server), etc. In [17],
Oliveira and Lopes propose the integration of the IETF’s DISMAN framework into their MA-
based NM infrastructure. However, the described “Mobile Disman” architecture is
heavyweight (it consists of many resource-demanding components) and would certainly
increase the requirements on system resources; it must also be considered that DISMAN is
still very much under development.  In addition, [14] and [17] are not supplemented by
prototype implementations. The framework presented in [26] addresses scalability issues by
delegating NM tasks to MAs that migrate to remote domains where they act as local
managers, performing SNMP operations. Several interesting applications are proposed,
including evaluation of health functions, termination of mis-behaving processes to free-up
system resources, etc. Nevertheless, since each MA corresponds to a single management task,
the introduction of additional services will trigger the deployment of an equal number of
independent MAs that will not necessarily execute on the same host (see Figure 1f). This
approach though, is not in line with the concept of a compact mid-level manager entity
responsible for all the decentralised operations performed in its domain, which in our opinion
offers better grouping, organisation and control over distributed NM tasks.
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In the aforementioned works, agent mobility is either exploited between the middle and
bottom levels of the hierarchy to carry out the network monitoring process [14][21] (see
Figure 1e), or integrated within mid-level managers that rely on standardised frameworks for
accessing the legacy systems [17][26]. In the former case, the problems of static hierarchical
frameworks listed in the preceding section still remain unsolved. Yet, even the latter
approaches lack clearly defined mechanisms for achieving automatic adaptation of the
management system to changing network configurations, i.e. mid-level managers do not
normally change the location where they execute [26]. In addition, critical issues such as
well-defined criteria for segmenting the network into management domains, explicit
determination of the domain boundaries or strategies for assigning mid-level managers to
these domains, are not elucidated.

A direct application of these approaches in distributed systems management is far from
straightforward. Although the problems that need to be solved have been identified, the rules
that define the mid-level entities deployment strategy, i.e. questions concerning when and
where to deploy, remove or change the location of mobile mid-level managers still remain
open. In addition, scalability issues may arise as a result of using centralised management,
even between mid-level managers, since the ability of MAs to filter management at the source
in a variety of applications [9] is not fully utilised. Hence, the deployment of a highly
adaptive hierarchically structured MA-based management model seems a rational approach to
address these issues as well as to overcome the limitations of statically configured NM
frameworks presented in the preceding section.

4. Hierarchical, Mobile Agent-based Network Management

In search of more flexible solutions, this work aspires to push the concept of MA-based
Hierarchical/Distributed Management much further. Specifically, we introduce the novel
concept of Mobile Distributed Manager (MDM), referring to a management component that
operates at an intermediary level between the manager and management agent end points.
MDM entities are essentially MAs that undertake the full responsibility of managing a
network domain, when certain criteria (determined by the administrator) are satisfied. Upon
being assigned to a domain, the MDM migrates to a host running in that domain (Figure 2a)
and takes over the management of local NEs from the central manager.

Figure 2. Hierarchical MA-based management

As a result, the traffic related to the management of that domain becomes localised, as
the MDM is able to dispatch and receive MAs to collect NM data from the local hosts (Figure
2b), or even execute centralised management operations on them. The MDM continues to
perform its tasks without the manager’s intervention, even if the interconnecting link fails. A
first-line response is also given to tackle trivial faults/alarms, with the manager being notified
only in case of a complex problem or an emergency situation. In performance management
applications, only aggregated values and statistics are sent to the manager at regular intervals,

MDM

Manager

Remote LAN

(a)

MDM

Manager

Remote LAN

①

(b)

②



7

thereby diminishing the amount of data transferred through the WAN link. The duration of
these intervals is application-dependent and determined by the administrator.

The decision concerning the selection of the host where the MDM will carry out its
management tasks from, will be discussed in a later section. It is noted that the management
domain assigned to an MDM entity may be confined to a single network segment or expand
to a larger set of hosts.

The mobility feature of MDMs allows the management system to adapt dynamically to a
fluctuating environment, optimising the use of network resources. Management functionality
may be downloaded at runtime, while this architecture can also dynamically adapt to
changing networking conditions. Namely, an MDM entity can be deployed to / removed from
a network segment in response to a change in network traffic distribution, or move to the least
loaded host to minimise the usage of local resources.

The application chosen as a case study for our test-bed is ‘untargeted’ network monitoring
over a large set of NEs with periodic data collection. Fault management applications have not
been examined. However, given that our platform co-operates with a fault management
system, it can limit the data collection process to a subset of NEs wherein a potential miss-
behaviour has been identified, i.e. MAs acting as data collectors can target a restricted set of
NEs, until the fault is isolated.

In summary, our proposed architecture meets the following design requirements:
� Integration with existing management standards: Our architecture encompasses the

dominant NM framework of the Internet world, i.e. SNMP. Due to its huge installation
base, integration with SNMP was considered of vital importance to maintain compliance
with legacy management systems.

� Mobility support: The ability of management components to move from host to host
offers a powerful abstraction that should not be disregarded when building distributed
applications. The architecture should therefore provide a set of services to allow the
migration and cloning of management agents, regardless of the underlying management
models.

� Modularity: The management community has not yet reached a consensus on the choice
of a NM model, resulting in several different solutions available, either proprietary or
standard. Maintaining architectures with intrinsic modularity eases the interoperability
between different vendor models. In addition, modularity makes feasible the addition of
new services or the modification of existing ones.

� Fault-tolerance and robustness: MDM entities should be able to detect and tolerate
failures on the inter-connecting link between their local subnet and the manager's site or
on the manager platform itself; it is essential that the management process is not disrupted
should such failures are detected.

� Load balancing: The total workload should be equally distributed among the various
processors of the underlying subsystems. MAs can take full advantage of the increasing
processing capability of network devices to achieve management intelligence distribution,
however that should not lead to exhaustive consumption of local resources. In particular,
the stationary ‘agencies’, interfacing between incoming MAs and legacy systems, should
have a minimal footprint on local devices, whilst MDMs should be designed as light-
weight as possible, i.e. they should be equipped with basic management functionality.

� Minimal intrusiveness: MDMs should be deployed at specific hosts so as to minimise
their intrusiveness in terms of the effect of management-related traffic on other
applications and the additional processing burden placed upon host processors. In
addition, MAs itineraries should be decided in an intelligent, non-random manner, aiming
at maximising efficiency and reducing network overhead.

� Dynamic adaptation: Topological and traffic characteristics of today’s networks are
rapidly changing. A hierarchical NM system should therefore be flexible enough to adapt
to those changes. Hence, the location where MDMs run is not fixed, neither is the set of
hosts under their control. MDMs can be transparently sent to a domain when the
associated cost savings are considerable or removed when their existence is no longer
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necessary. They can also autonomously decide to move within their domain when the
host processor is overloaded and continue their operation on the least loaded node.

� Ease in introducing new services: It is essential to provide an open architecture in which
the administrator can easily add new services or modify existing ones at runtime. In our
framework, there is a direct mapping of management functions to certain MA objects.
The effortless introduction of new services is accomplished through a graphical tool that
automates MA code generation and eases the deployment of new MAs that carry out
specific management operations.

5. The Mobile Agent Framework

The MAF that comprises the core of the hierarchical infrastructure has been entirely
developed in Java chosen due to its inherent portability, rich class hierarchy and dynamic
class loading capability.

Our framework consists of three major components [7], illustrated in Figure 3:
(I) Manager Application: The manager application, equipped with a browser style Graphical
User Interface (GUI), co-ordinates monitoring and control policies related to the NEs. Active
agent servers are automatically discovered by the manager, which maintains and dynamically
updates a ‘discovered list’.

(II) Mobile Agent Server (MAS): The interface between visiting MAs and legacy
management systems is achieved through MAS modules, installed on every managed device.
The MAS logically resides above a standard SNMP agent, creating an efficient run-time
environment for receiving, instantiating, executing, and dispatching MA objects.

Figure 3. The Mobile Agents-based NM Infrastructure

The MAS also provides requested management information to incoming MAs and
protects the host system against external attack. The MAS composes four primary
components: (a) Mobile Agent Listener, (b) Security Component, (c) Service Facility
Component, and (d) Migration Facility Component. Special focus has been given on the
design of the Security Component in order to face the security threats represented by
executing MAs [6]. Thus, in addition to the authorisation of the MAs requests, the RSA
algorithm has been implemented to provide authentication of incoming MAs and encryption
of the obtained sensitive NM data.

(III) Mobile Agents (MAs): From our perspective, MAs are Java objects with a unique ID,
capable of migrating between hosts where they execute as separate threads and perform their
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specific management tasks. MAs are supplied with an itinerary table, a data folder where
collected management information is stored and several methods to control interaction with
polled devices. As described in [7], service-oriented MAs, associated with new management
tasks, may be created at runtime using the Mobile Agent Generator (MAG) graphical tool.
The MAG automatically generates and compiles the code of MAs; MA classes may extend
one of the provided super-classes (corresponding to general patterns of NM tasks).

As mentioned in [9], the multi-node movement of MAs can be exploited in a variety of
data filtering applications. In particular, MAs may: (i) aggregate several MIB values into
more meaningful values, (ii) efficiently acquire atomic snapshots of SNMP tables, and (iii)
filter tables’ contents by applying complex filtering expressions thereby keeping only the
values that meet pre-specified criteria.

6. Implementation Details

6.1. Topology Map of Active Devices

An important element of our framework is the topology map, a graphical component of
the manager application, used to view the devices with currently active MAS servers. This
component not only shows the discovered active devices, but also the underlying network
topology, namely the subnetworks where these devices are physically connected as well as
how these subnetworks are interconnected.

In terms of implementation, the topology map is internally represented by a tree structure
(termed the “topology tree”), where each of the tree nodes corresponds to a specific
subnetwork. The node representing the manager’s location is the root of the topology tree (see
Figure 4).

Figure 4. The topology tree structure

Each of the tree nodes consists of the following attributes:
� the subnetwork’s name;
� the names of hosts and routers physically connected to this subnetwork;
� a flag indicating the presence of an active MDM on this subnetwork;
� the number nl of local active hosts on this subnetwork;
� the number ns of active hosts on the subnetwork’s ‘subtree’ (the term subtree here denotes

the set of subnetworks located in hierarchically lower levels in the topology tree,
including the present subnetwork itself), hence ls nn ≥ ;

� a pointer to the upper level tree node;
� pointers to the next level nodes;
� a list of graphical components, each corresponding to a specific host, that will be made

visible upon discovering an active MAS entity on that host.
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For instance, the number of active hosts in the subtree of Subnetwork A (in Figure 4) will be:

subD,lsubC,lsubB,lsubA,lsubA,s nnnnn +++= (6-1)

All the information related to the managed network described above, is given to the
manager application upon its initialisation, through parsing a text file (“network
configuration” file). That file does not include, of course, the activity status information,
which is automatically discovered as described in the preceding section. For each file entry, a
new subnetwork node is created and inserted into the topology tree. In particular, its ‘parent’
(upper-level) subnetwork is located and then the next-level pointer of the parent node as well
as the upper-level pointer of the inserted node are updated.

As described below, the topology tree plays a crucial role when the manager application
needs to make a decision on which subnetworks require the deployment of an MDM entity.

6.2. MDMs Deployment Policies

A key characteristic of this work is the dynamic adaptation of our architecture to changes
in the managed network. The structure of the proposed model is not rigidly designed, as
MDMs may be dynamically deployed to specific network domains, given that certain
requirements are met. Specifically, the administrator may explicitly set (through the GUI
shown in Figure 5) the policies that define the hierarchical NM system operation, i.e. specify
the criteria that should be satisfied for deploying an MDM to a network segment.

Figure 5. Graphical User Interface for customising the hierarchical NM system policies

In general, the deployment of MDMs may conform to either of the two following
policies:
� Policy 1: the population of remotely active managed devices.
� Policy 2: the overall cost involved with the management of a remote set of devices.

When applying Policy 1, the administrator specifies the number of remote managed NEs
that will justify the deployment of an MDM to a particular network segment. This number
may either denote nl or ns. If, for instance, the specified number N denotes the population of
the examined subnetwork’s local devices nl, an MDM will be deployed to every network
segment S with Nn S,l ≥ ; the boundaries of the domain assigned to the MDM will then be
limited to that segment. If, on the other hand, N denotes the active hosts on the subnetwork’s
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‘subtree’ ns, the domain assigned to the MDM will include all the active hosts located within
the examined subnetwork's subtree, excluding the hosts already assigned to another MDM.
The MDM will initially migrate to the least loaded host included into its assigned domain
(this issue is discussed in detail in Section 6.4). Accordingly, when the population of NEs
directly managed by an MDM exceeds a certain limit, that domain will be divided to two
independent domains, with another MDM undertaking the management of the second domain.

When applying Policy 2, the management cost may either be: (a) proportional to the
inverse of link bandwidth, or (b) manually specified.

6.3. MDMs Deployment Implementation

Upon discovering an active MAS module, the corresponding host is located through
scanning the topology tree and finding the subnetwork where the host belongs, whilst the host
icon is instantly made visible on the topology map. Then, the number nl of active hosts on that
subnetwork is increased by one and subsequently, through following the pointer to the upper-
level nodes, all the topology tree nodes up to the root are traversed and their number ns of
subtree nodes is also updated (increased by one). A similar procedure is followed when an
MAS server is being shut down.

The discovery or termination of an MAS server triggers an event at the manager host.
The topology tree is then scanned with the subnetworks that meet certain requirements added
to a list. In case that ‘Policy 1’ is employed, referring to the policies listed in the preceding
section, that list will include the subnetworks with nl or ns (depending on whether the MDMs
deployment is a function of the active devices running locally or in the whole subtree) greater
than the specified constant N. If ‘Policy 2’ is employed, the cost corresponding to the
management of each subnetwork is evaluated and the list of subnetworks created accordingly.
Ultimately, an MDM will be deployed to each of the subnetworks included in the list.

Certainly, the set of management tasks already performed by the manager on these
subnetworks will need to be conveyed to the MDM deployed therein. This is achieved
through sending the Polling Threads (PT) [8] configurations along with the MDM. PTs are
originally started and controlled by the manager application with each of them corresponding
to a single monitoring task. Unfortunately, PTs cannot be transparently transferred along with
the MDM retaining their execution state, as Java does not support threads
serialisation/deserialisation. Upon its arrival at the remote subnetwork, the MDM instantiates
the PTs using their configurations. The PTs will thereafter start performing their tasks without
any further disruption of the management process: they launch the required number of MAs
(supplied with their corresponding itinerary) and then ‘sleep’ for one polling interval (PI).
When this period elapses the same process is repeated. Meanwhile, an MDM’s listener
daemon receives the MAs that return carrying their collected data.

6.4. Processing Load Balancing

Although MDMs have been designed to be as lightweight as possible, they cannot avoid
consuming memory and processing resources on the NE where they execute. The framework
should therefore be sufficiently flexible to allow MDMs to autonomously move to another
host, when their current hosting device is overloaded, in order to provide a more balanced
distribution of the overall processing load.

This is accomplished through the regular inspection of the domain’s NEs, in terms of
their memory and CPU utilisation: an MA object is periodically dispatched and visits all the
local devices obtaining these figures before delivering the results to the MDM. Host load
figures represent their average load over relatively long time windows to avoid sensitivity to
sporadic utilisation peaks. If the hosting processor is seriously overloaded, compared to the
neighbouring devices, the MDM will transparently move to the least loaded node. MDMs are
prevented from continuously oscillating between different hosts through adjusting the value
of  the “tolerance factor”, 0< tf < 1. Assuming that an MDM executes on a host x, with
average utilisation Ux (this is a linear function of the CPU and memory usage), the MDM will
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consider migrating to another host y only if its utilisation is Uy < (1 - tf) Ux. If for instance, tf =
0.2, the MDM will not migrate to y unless its utilisation level is at least 20% lower than that
of x.

The MDM notifies the manager application about its new location of execution before
the actual migration occurs. Should the manager attempt to contact the MDM while the latter
is still moving, an exception will be thrown and a new attempt to contact the MDM will take
place after a specified interval; in the meanwhile, the MDM arrives at its new hosting device
and is able of receiving manager's messages.

6.5. Manager-MDMs Communication

One of our framework key advantages is that it greatly reduces the amount of
information exchanged between the manager platform and the managed devices. This is due
to the introduction of the intermediate management level (MDMs).  However, that does not
obviate the necessity for bi-directional communication between MDMs and the manager host.
In particular, MDMs often need to send the manager the statistics obtained through filtering
raw data collected from the local devices, inform the manager when migrating to another
host, etc. In the opposite direction, the manager may request an MDM to terminate its
execution or move to another domain, update a PT configuration, undertake the management
responsibility for a managed NE that has just started execution on the MDM’s local segment,
download in runtime an additional management service, i.e. a new MA object along with its
corresponding PT definition, etc. We have chosen Java RMI [12] for implementing the
communication bus between the distributed MDMs and the manager host, due to its inherent
simplicity and the rapid prototype development that it offers.

6.6. Fault Tolerance

MDM entities have been designed so as to tolerate failures on the interconnecting link
between their local subnet and the manager's site or on the manager platform. Such failures
are typically detected when MDMs attempt to deliver aggregated results to the manager.
Upon detecting a failure, they continue to perform their decentralised tasks as normal, while
periodically checking for the status of the link and/or the manager. As soon as the
communication is restored, all management data collected in the meanwhile are returned to
the manager. Certainly, in case that a large number of monitoring tasks are controlled by the
MDM, a prolonged disruption of the communication flow between the MDM and the
manager would result in significant growth of the MDM’s size. That may in turn have a
serious impact on the MDM’s hosting device resources. Hence, in order to maintain control
over the growth of the MDMs state, the administrator may choose (through the GUI shown in
Figure 5) between the following models: As soon as an MDM detects a failure it will either:
(i) overwrite the least recently collected management data by keeping only the latest acquired
values, or (ii) reduce the polling frequency of the individual monitoring tasks so that the
management data accumulation rate will decrease.

7. Quantitative Evaluation

A critical omission frequently noticed in research papers introducing new MA-based
frameworks for NM is the analytical evaluation of the performance issues arising when
implementations of the corresponding models are to be used in real networking environments.
With very few exceptions (e.g. [8], [26]), in most of these works, it is just claimed that their
presented prototypes perform better than other approaches, but no further proofs are provided.
Reference [2] comprises an interesting theoretical investigation of the three Mobile Code
paradigms (Code On Demand, Remote Evaluation and MAs). A general performance
comparison among these approaches is also provided, that may serve as a reference point for
related quantitative evaluations. In this section, we undertake an extensive evaluation, in
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terms of bandwidth usage, tailored to our concrete implementation and utilised in Section 8 to
prove the prevalence of the proposed model over centralised and flat MA-based management.

Although mobility can often be beneficial for NM, overheads induced by MAs and
MDMs in particular, e.g. due to their deployment and management should be accounted for
very carefully. Slightly different configurations for a set of MDMs may result in dramatically
variant network loads [14]. Hence, it is crucial to define concrete cost functions estimating the
corresponding overheads.

In this context, let the “cost coefficients” 
ji S,Sk denote the cost of sending a byte of

information between arbitrarily indexed subnetworks Si and Sj, where S0 is the manager host
location. For multi-hop connections, the cost coefficients will be equal to the summation of
the individual links coefficients. In the following investigation, we make the simplifying
assumption that an MDM may manage only the hosts included in a single subnetwork and not
a wider set of devices.

Examining a simple performance management application, let us first evaluate the
management cost imposed from SNMP-based management. If Sreq is the average request size
(at MAC layer), and polling of N devices, each for v operational variables, is applied, the
wasted bandwidth for p PIs would be:

( ) ( )[ ]∑
=

∗∆∗−+∗∗=
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i
reqreqS,SSNMP pSvSkC i

0
12

0
(7-1)

where every extra value included in the SNMP response packet’s varbind list represents an
additional overhead of reqS∆  bytes, on average. The index Si represents the subnetwork
including the host i.

A simple function characterising the bandwidth consumption for our hierarchical
architecture, is the following:

delivpoldepldistrhier CCCCC +++= (7-2)

where the four terms represent the cost for distributing to the MAS servers the bytecode of the
MA that will undertake the monitoring task, the MDMs deployment cost, the bandwidth used
for the actual monitoring operation (polling) and the cost for delivering to the manager host
the collected data, respectively. The first two terms are expected to dominate on the overall
cost only for short-term monitoring tasks, whilst the latter two dominate for management
tasks with prolonged duration.

Concerning bytecode distribution, a lightweight scheme is adopted. The majority of
MAFs proposed for management applications [3][21][24], with the exception of INCA [16]
and NetDoctor [26], involve transfer of both the MA's code and state on each migration.
Instead, we have chosen to adopt the “push” scheme (defined in [16]), whereby bytecode is
distributed at the MA’s construction time and only the state information transferred thereafter,
resulting in a much lower demand on network resources (bytecode size is typically much
larger than state size [2]). The code distribution scheme proposed in [3][21][24] offers a better
starting point in terms of the associated network overhead, since the bootstrapping procedure
described above is not required. However, it is outperformed by the scheme adopted by our
MAF, after a small number of PIs.

The introduction of MDMs reduces the code distribution cost even further: the MAs
bytecode is no longer broadcasted to all managed devices, as in [7], but instead it is
distributed to the active MDMs, which in turn multicast it to the local NEs. The code
distribution cost is therefore given by:
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where M is the total number of active MDMs, C the compressed bytecode size and Ni the
number of hosts included in subnetwork Si.
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Likewise, Cdepl is equal to the cost of broadcasting M MDM objects to their
corresponding remote domains:

∑
=

∗++∗=
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confMDMS,Sdepl )SnSTC(kC i

0
0

0
(7-4)

where CMDM is the MDM class size (≈ 9 Kb), STi represents the compressed state size of an
MA when migrating from the ith host and confS the average size of each of the n PT
configurations attached to the MDM (≈ 250 bytes).

Cpol is defined as the summation of the cost induced for polling the NEs being directly
managed by the manager host and the cost associated with polling the NEs that operate under
the MDMs control, multiplied with the number of PIs:
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Clearly, the first term of the summation will dominate on the overall polling cost if the m
devices managed by the central manager platform are spread among several subnetworks.
Specifically, cost coefficients 1+ii S,S

k  are typically larger when an MA migrates from

subnetwork Si to another subnetwork Si+1  ( 1+
≠

ii SS ) rather than when it moves within the
same subnetwork ( 1+

=
ii SS ). It is emphasised that MAs state size STi does not remain

constant, but increases for each visited node. Thus, the polling cost highly depends on the
increment rate of the MAs state size, which in turn is a function of “selectivity” σ, a metric
defined in [14] as the ratio of the amount of data ultimately delivered to that acquired from
each host. It is apparent that for small selectivity values (the major part of the obtained data
being filtered at the source) the MAs state size will practically remain constant, otherwise the
state will rapidly grow. Thus, if b bytes of information are obtained at each host, an MA’s
state size at its ith hop is given by:

( ) ibSTSTi ∗∗+= σ0 (7-6)
The last term appearing in Eq. (7-2) represents the cost associated with the delivery of

the gathered data from the MDMs to the manager host:

∑
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where t indicates (in number of PIs) how often MDMs package the computed statistics of size
D and deliver them to the manager.

It needs to be emphasised that MDM functionality is not limited to simply gathering and
delivering data to an upper-level manager. Although this paper concentrates on data-intensive
network monitoring applications as a case study, a broad spectrum of management
applications (including fault, configuration and security management) could be also
performed. Upon arriving at their remote domains, MDMs may autonomously make
management decisions and take actions based on the values of collected MIB values (for
instance when the value of an aggregation function of several MIB objects exceeds a pre-
specified threshold). These actions may include first-line support to handle trivial faults,
perform simple configuration tasks, decisions to recalibrate the management system as a
response to changes sensed to traffic patterns or network configuration, e.g. to share the
management responsibility of its domain with another MDM, move to a nearby domain,
terminate execution, etc.

8. Empirical Results

The quantitative model introduced in the preceding section has been applied to the test
network shown in Figure 6, where the network domain margins are depicted by the dotted
curved lines. Referring to this particular topology, we assign the cost coefficients the
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following values: 1
221100
=== S,SS,SS,S kkk , 5

10
=S,Sk  and 50

20
=S,Sk . Coefficient values

are chosen in accordance to the bandwidth available on the links they correspond to. We have
also measured the following variables values: Sreq = 90 bytes, reqS∆ = 17 bytes, C = 1.95
Kbytes, and ST0  = 447 bytes. These values have been measured after testing our framework
in a real network comprising Solaris and WinNT devices.

Equations (7-1) - (7-7) are applied to compare the performance of SNMP polling against
that of MA-based flat and hierarchical NM in terms of the overall management cost, as shown
in Figure 7, drawn on a logarithmic scale. The functions defining the cost of MA-based flat
management represent special cases of those developed for hierarchical management.

We consider a data intensive application, namely polling every host for the contents of
the MIB-II interfaces table [15]. We assume that there are two interfaces per host, i.e. 2×21
collected values per host, since each table row includes 21 columns. As described in [9], the
MA objects are able of performing local filtering of the obtained data, so that only the values
corresponding to the more heavily loaded interface are being encapsulated into the MA’s state
and returned to the manager or the MDM that originally launched the MA. This results in
improved system scalability, due to the low selectivity ratio σ achieved over the acquired
data. In particular, we have measured an MA state size increment of only 13 bytes for each
visited host ( 13=×bσ ). We also assume that management data are gathered by the MDM
and delivered to the manager at regular intervals (in this case, every 10 PIs). The MDM that
runs on Subnet 2 for instance, having to poll 4 devices, it gathers D = 4_devices × 13
bytes/device = 52 bytes every PI and delivers (through an RMI call) to the manager a total of
10 × 52 = 520 bytes every 10 PIs.

Figure 6. The test network

Clearly, the introduced hierarchical architecture gives rise to a remarkable reduction of
management cost, while the cost of flat management is surpassed by that of centralised
polling only after the first 16 PIs. It is also noted that the starting point for the cost induced by
the hierarchical infrastructure is much lower than the equivalent of flat management, due to
the adopted scalable code distribution scheme, described in the preceding section.

It should be also emphasised that for both SNMP and MA-based flat management,
whenever a packet or an MA object is sent through a link, the traffic associated with the
actual transfer affects both the network segments attached to that link. For instance, if an MA
was to poll all the devices of Subnet 1 and then (on its ith hop) move to Subnet 2 to continue
its execution, the migration cost for the transfer between Subnet 1 and Subnet 2 would be:
( ) iS,SS,SS,S STkkk ∗++
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network from this unnecessary traffic burden, as after the MDMs deployment, the
management traffic is localised thereby minimising the use of interconnecting links.

As shown in Figure 8, the introduction of “segmentation” polling (see Figure 1c) slightly
improves the performance of flat NM in terms of the management cost, while it greatly
reduces the overall response time, as evidenced in [8]. We have also measured the
management cost for “broadcast” polling (see Figure 1d), where the MAs are assumed to
remain on the managed devices for 10 PIs, before returning to the manager host to deliver an
equal number of samples. Although the cost is reduced compared to “segmentation” scheme,
it still does not fall below that of hierarchical management. In addition, “broadcast” polling
cannot be utilised in time-critical applications.

Figure 9 illustrates the same comparison as Figure 7, with the difference that the cost
coefficients are now proportional to the inverse of link bandwidths. Assuming that all the
subnetworks are 10 Mbps Ethernet and that the bandwidths of the links connecting Subnet 0
to Subnet 1 and Subnet 2 are 10 Mbps and 64 Kbps respectively, the cost coefficients
become: 1

10221100
==== S,SS,SS,SS,S kkkk  and 25156

20
.k S,S =  (when multiplied with a

normalising factor cnor = 107). The increase of the WAN link coefficient value amplifies the
separating gap between the cost of hierarchical NM and these of SNMP-based and flat
management, although this is not visible due to the logarithmic scale.

Figure 10 focuses on the NM traffic generated from each of the compared paradigms on
the WAN link connecting Subnet 0 to Subnet 2. Again, the hierarchical NM framework
outperforms both flat MA-based and SNMP management with sufficient distinct. In

Figure 7. Management cost of hierarchical
framework against SNMP and flat MA-based

polling

Figure 8. Comparison of the management
costs for hierarchical, SNMP-based,

“segmentation” and “broadcast” polling

Figure 9. Comparison of the management costs
when the cost coefficients  are proportional to

the inverse of link bandwidth

Figure 10. Bandwidth usage of the WAN link
imposed by hierarchical, SNMP-based and flat

MA-based management
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particular, following bytecode distribution and MDM deployment, our framework uses the
WAN link only to deliver the statistics to the manager host, every 10 PIs. In contrast, SNMP
heavily utilises the link to broadcast request messages and receive back the associated
responses, while in flat management an MA object traverses the link at least twice in every
PI, provided that MAs itineraries are optimised so as to poll the remote LAN hosts in
sequence.

Although our prototype has not yet been tested in a large enterprise network
environment, it is expected to scale well, especially when combining our hierarchical
framework with “segmentation”/ “broadcast” polling schemes. For instance, MDMs could be
easily coupled with “segmentation” scheme: after deploying the MDMs to their remote
domains (possibly comprising large numbers of hosts), these could launch sufficient MAs per
PI in order to reduce the overall response time and thereby further improve system scalability.

It is also worth noting that our testbed uses quite powerful nodes (PCs) and has not been
tested on real mobile hardware (PDAs, mobile phones, laptops) with limited processing
power and/or memory. The requirements of our platform on CPU/memory resources of
managed devices are determined by the cost of running an SNMP agent (fairly lightweight), a
Java Virtual Machine (JVM), a MAS and occasionally some MAs (acting either as data
collectors or as MDMs). The MASs and the MAs have very low requirements on
computational resources. Furthermore, the cost of running a JVM on a device is decreasing as
Java chips technology is evolving in the direction of ever-smaller footprints (e.g., picoJava
microprocessors can be used to run applications in small electronic appliances such as
organisers, pagers, and cell phones [18]).

9. Conclusions

This paper introduces the concept of adaptive hierarchical management and provides a
rationale for the use of MA technology. The proposed hierarchical architecture is intrinsically
dynamic by employing mobile mid-level managers (MDMs) that may transparently move to a
specific network domain to take over its management responsibility and localise the
associated traffic. Although hierarchical MA-based management is not an entirely new
concept (see [14][21][26]), our infrastructure goes one step beyond by offering improved
adaptability to changing networking environments and defining concrete policies regarding
network segmentation into management domains, MDMs deployment and explicit
determination of domain boundaries.

Apart form their ability to move from a management domain to another, MDMs may
also move within their managed domain. In particular, MDMs periodically inspect the
resource availability of their managed nodes and choose to move and resume execution to the
least loaded host, allowing for more balanced distribution of processing and memory load. In
addition to addressing flexibility issues, management scalability is also further improved by
fully exploiting the benefits of agent mobility. MDMs rely on other MAs for the data
collection process; these MAs apply filtering operations locally, thereby minimising the
volume of data transferred within the individual management domains.

Despite its advantages, our approach is likely to involve a high number of MAs (MDMs)
which rises MAs management issues. In addition , the fault-tolerance features of our platform
should be enhanced so as to cope with failures on the nodes where MDMs execute.

It is emphasised that our proposed design ideas are supplemented by a complete
prototype implementation. An analytical quantitative evaluation, oriented to our specific
framework design, has been described, in which functions defining the management cost
associated with the proposed architecture against that of centralised NM have been derived. A
prototype implementation of the introduced MAF has been tested in a realistic topology
scenario, comparing its performance against both centralised and flat MA-based NM. The
results section, which builds upon and complements the quantitative evaluation study, along
with measurements extracted from our experimental test-bed, shows that the proposed
architecture outperforms other candidate approaches with sufficient distinction, both in terms
of the overall management cost and the bandwidth usage of low-bandwidth WAN links.
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List of Acronyms

CMIP: Common Management
Information Protocol

CPU: Central Processing Unit
CS: Client/Server
DISMAN: Distributed Management
GnG: Get ’n’ Go
GnS: Go ’n’ Stay
GUI: Graphical User Interface
IETF: Internet Engineering Task Force
JVM: Java Virtual Machine
LAN: Local Area Network
M2M: Manager-to-Manager
MA: Mobile Agent
MAC: Medium Access Control
MAF: Mobile Agent Framework
MAG: Mobile Agent Generator
MAS: Mobile Agent Server

MbD: Management by Delegation
MDM:  Mobile Distributed Manager
MIB: Management Information Base
MLM: Middle Level Manager
NE: Network Element
NM: Network Management
OSI: Open Systems Interconnection
PDA: Personal Digital Assistant
PDU: Protocol Data Unit
PI: Polling Interval
PT: Polling Thread
RMI: Remote Method Invocation
RMON: Remote Monitoring
SNMP: Simple Network Management
             Protocol
WAN: Wide Area Network
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