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1 Introduction

There are many mathematicians who contributed to and helped shape mathe-

matics into its present form because of the techniques they developed. As new

technologies revolutionize our world, however, the role of some techniques has

diminished. Subsequently, these mathematicians fade into the background

on the stage of mathematics. Karl Brandan Mollweide, his equations, and

their importance in trigonometry are such an example.

The role of trigonometry has changed throughout the development of

mathematics. For hundreds of years, it was a useful tool for astronomers and

land surveyors. It is not a coincidence that the founders of trigonometry,

Aristarchus and Hipparchus, along with other great contributors to the field,

such as Mollweide, were astronomers.

Beginning with Regiomontanus in 1464 though, trigonometry evolved as

a field of study distinct from astronomy, with its emphasis initially on compu-

tation and the solutions of triangles and then on analysis. Besides deriving

trigonometric identities, a significant portion of typical trigonometry text-

books in the past was devoted to the solutions of triangles. In fact, even in

1784, in his Harmonia Trigonometrica; or, a Short Treatise of Trigonometry,

Henry Owen still defined trigonometry as “the art of measuring or resolving

triangles.” By the solution (or resolution) of a triangle, we mean that by

given some parts (sides and/or angles) of a triangle, the remaining are to

be determined using various relationships among the angles and the sides

of a triangle. Many trigonometric identities serve well for this purpose, for

example, the law of sines and the law of tangents. Furthermore, after solving

a triangle, mathematicians in the past routinely checked their calculations.

A textbook from 1928 quoted, “It is absolutely necessary that the computer

should know that his results are correct. For this reason all work must be

checked” [28].

1



The equations shown below are for unclear reasons attributed to Karl

Brandan Mollweide and are known by his name. They are useful for checking

the solution of a triangle because each equation involves all three angles and

three sides of a triangle:

sin 1

2
(A − B)

cos 1

2
C

=
a − b

c
(1)

cos 1

2
(A − B)

sin 1

2
C

=
a + b

c
. (2)

Here and throughout this article, I will follow the convention that in 4ABC,

A = ]BAC, B = ]ABC and C = ]ACB. Also a = BC, b = AC and

c = AB.

With the advent of calculators and computers, however, as Professor Un-

derwood Dudley commented, “we don’t check our solutions of triangles much

these days” [51]. Hence, most of today’s trigonometry textbooks do not even

mention the Mollweide equations and do so only in the context of derivation,

not in checking the solutions of triangles.

The Mollweide equations are also useful because they allow for easy appli-

cation of the logarithms, which transform products into sums. In fact, soon

after their discovery, the logarithms became an integral part of trigonometry

because of their great use in computations.

I first came across the Mollweide equations in a textbook published in

1938 [22]. While trying to prove the Mollweide equations geometrically, I

noticed a common motif that ties together some of the trigonometric identi-

ties, including the law of tangents [52]. I rediscovered a figure (figure 5) and

developed a figure (figure 8) that prove quite a few identities. My curiosity

propelled me to delve into the history of Mollweide the mathematician and

his equations themselves: their history, proof, and their relationship to the

law of tangents and other trigonometric identities, all of which will be the

focus of this article.

2 Karl Brandan Mollweide

Mollweide is not considered a major figure in mathematics. Although he

published articles and books in astronomy, physics, mathematics, and was

the editor of both Euklid’s Elemente and a mathematics dictionary, these

accomplishments were not sufficient to earn him a place in most of the English
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history books in mathematics. Almost all of the biographical information in

this article is from a newspaper article that appeared about a month after

his death and the Allgemeine Deutsche Biographie [55, 18].

Karl Brandan Mollweide was born in Wolfenbüttel in Brunswick, Ger-

many on February 3, 1774. As a boy, he attended the public school in

Wolfenbüttel, but did not show any interest in mathematics. For unknown

reasons, his talent in mathematics emerged suddenly after the age of twelve.

He began studying calculus on his own from books he found at home, in-

cluding a calculus text by Johann Hemeling. Mollweide soon advanced to

algebra. At age fourteen, he predicted the occurrence of an eclipse based

on his calculations. He showed such exceptional knowledge that his teacher,

Christian Leiste, commented on his surprising answers, “Has he memorized

all the logarithmic tables in his head?” By this time, he had decided to study

mathematics. He headed to the University of Helmstedt, where he studied

under Johann Friedrich Pfaff. Pfaff, who made significant contributions to

the theory of differential equations, was also the advisor of Karl Friedrich

Gauss from 1798 to 1799 when Gauss was working on his famous doctoral

dissertation on the fundamental theorem of algebra.

After three years of study at the University of Helmstedt, Mollweide be-

came a teacher there. Unfortunately, he gave up his position only a year later

because of debilitating hypochondriac symptoms which remained through-

out his life. Two years of rest at home, however, improved his condition

sufficiently for him to assume the position of professor of mathematics and

astronomy at the University of Halle. At Halle he sought to improve upon

the weaknesses of the Mercator projection.

Gerhard Krämer, better known to us by his Latinized name Gerardus

Mercator, developed a map-making technique known by his name in 1569 as

a navigation tool. (Note that nowadays the Mercator projection is taught

using logarithms, which were not discovered by Napier until 1614.) The

Mercator projection is unique because it preserves angles, and is therefore

a conformal map. Spirals of constant compass heading on the globe called

rhumb lines (or loxodrome) form straight lines on this map. It was a re-

markable achievement for the sailors at the time because it allowed for more

accurate navigating. Distance and area, however, are exaggerated in high

latitudes on this projection.

With this weakness in mind, Mollweide introduced a homolographic (equal-

area) projection in 1805, which is now known as the Mollweide projection.
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Mollweide’s method involves only trigonometric functions. Unlike the Mer-

cator projection, the Mollweide projection preserves area in relation to each

other. As we know, a projection cannot be both conformal and homolograph-

ical. For this contribution, Mollweide is better known today in the field of

cartography than in mathematics.

After spending eleven years at Halle, in 1811, he accepted the position of

professor of astronomy at the University of Leipzig. Here he exerted great

influence on his student August Ferdinand Möbius, who later studied as-

tronomy from Gauss at Göttingen and mathematics from Pfaff at Halle.

(Pfaff had accepted the appointment as the chair of mathematics at Halle in

1810 when Helmstedt was closed.) Learning from all these masters, Möbius

achieved his own immortality in mathematics, as evidenced by the strip,

function, inversion formula and transformation all in his name.

Unfortunately, the war between Germany and France in 1813 had a neg-

ative effect on Mollweide’s research. The war forced him to devote time

on geography, and funding for his observatory was limited; even though he

headed the observatory at Leipzig, he never practiced or observed astronomy.

In 1814, for the above reasons and for the love of mathematics, Mollweide be-

came a professor of mathematics at Leipzig. Möbius succeeded Mollweide’s

position in astronomy in 1816. While at Leipzig, Mollweide declined a posi-

tion with better offers from the University of Dorpat (part of Russia at the

time) because of his patriotism. He remained a professor at Leipzig until his

death on March 10, 1825, from a long bout of dry cough that was eventually

complicated by fever.

Only a few anecdotes are known about Mollweide’s personal life. He

married late, at the age of 40, to the widow of Meissner, a former astronomer

at the observatory. But they did not have any children. Accordingly, he

always appeared older than his age because of his gray hair.

As a teacher, he tried with his full heart to promote the study of science

and mathematics. Anyone who expressed interest in these topics received

his support. As a result, although his students were often initially put off

by his hypochondriasis, he was loved by those who knew him well; deep

down he was truly kind and always wanted only the best for science and

mathematics. Mollweide was admired as a lecturer because of his ability to

present dry topics in an interesting manner by drawing connections to other

topics. He was also known for his penmanship; his ability to draw a “perfect”

circle freehand amazed his students.
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As a scientist and mathematician, Mollweide fought against the philoso-

phy of indefinite deductions and mystical interpretations. For example, he

organized the scattered rules of magic squares into a book, De Quadratis

Magicis Commentatio, and published in 1816. This book was the first on

magic squares devoid of any mystical nature. Furthermore, he strongly ad-

mired Euclid and defended him against criticisms of his methods and proofs.

But although he admired the geometrical methods of the ancient mathe-

maticians, he acknowledged that modern sciences required the use of modern

analytical methods.

Mollweide demonstrated various talents as a mathematician. He was

feared as a proofreader for his ability to easily detect and harshly criticize

the smallest flaw in papers. Although he did not discover any completely new

mathematical methods, he was admired for thoroughly investigating and ex-

tending known methods. Among his mathematical contributions, Mollweide

was the first to use the modern congruence symbol “∼=” in the 1824 edi-

tion of Lorenz’s German translation of Euklid’s Elemente. He also took

over the work on the mathematical dictionary, Mathematisches Wörterbuch,

from Georg Simon Klügel, but only published one volume in 1823 prior to

his death. Although the Gauss analogies in spherical trigonometry were pub-

lished [by Gauss] in 1809, they were actually proceeded in 1808 by Mollweide,

and in 1807 by Jean Baptiste Joseph Delambre [13].

Although Mollweide is not considered a major figure in the history of

mathematics, he did make significant contributions to the field, and even

more so to the field of cartography with his map projection method. Our

focus now, though, is on the equations that bear his name.

3 The History of Mollweide’s Equations

In mathematics, Mollweide is immortalized by the aforementioned trigono-

metric equations, although he was not the first to discover these equations.

Throughout the eighteenth century, a number of mathematicians, from New-

ton to Cagnoli, have derived the Mollweide equations using various methods.

Let us begin with equation (2), which is also known as Newton’s formula.

Sir Isaac Newton gives a different form of the equation (see figure 1) in his

Arithmetica Universalis in 1707 [33]. Problem VI in Arithmetica Universalis

asks to determine the sides of 4ABC if the base AB, the sum of the sides

AC + BC and the vertical angle C are given. After solving the problem,
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Newton commented:

Si anguli ad basin quærerentur, conclusio foret concinnior; utpote

ducatur EC datum angulum bisecans & basi occurrens in E; &

erit AB.AC + BC(:: AE.AC) :: sin. ang. ACE. sin. ang. AEC.

Et ab angulo AEC ejusque complemento BEC si subducatur

dimidium anguli C relinquentur anguli ABC & BAC.

In translation:

If the angles at the base are looked for, the conclusion is neater.

Draw EC bisecting the given angle and meeting the base at E.

Then
AB

AC + BC
=

AE

AC
=

sin(]ACE)

sin(]AEC)
.

If from the angle AEC, and also from its complement BEC you

subtract half the angle C, there will be left the angles ABC and

BAC.

The notation in the original text, p.q :: x.y, (equivalent to our p : q = x : y)

originates from the inventor of the slide rule, William Oughtred, who used it

for geometrical ratio.

Even though Newton does not clearly state equation (2), the last sentence

in his remark indicates that he may have been aware of the relationship stated

in equation (2), as we shall see later.

B

C

AE

Figure 1

E H F

G

Figure 2

The next major development in the Mollweide equations occurred in 1743.

Figure 2 is reproduced from page 5 of A Miscellany of Mathematical Prob-

lems. In Three Volumes (1743) by Anthony Thacker (?–1744). He refers to

Newton’s Problem V in Arithmetica Universalis. In figure 2, GH is the height
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of 4EFG. Thacker then assigns B = EF , S = EG + GF , D = EG − GF ,

s = sin 1

2
(E + F ), q = cos 1

2
(E + F ), x = sin 1

2
(E −F ) and y = cos 1

2
(E −F ).

Using algebraic computations, he arrives at qS = By and xB = sD. Both

equations appear on page 6 of the same book. Then on page 13, he summa-

rizes:

Theorem IX.

As the Base of any Triangle : the Sum of its other two Sides ::

the Cosine of half the Sum of the Angles at the Base : the Cosine

of half their Difference.

Theorem X.

As the Base of any Triangle : the Difference of the other two

Sides :: the Sine of half the Sum of the Angles at the Base : the

Sine of half their Difference.

Using the above two theorems, Thacker goes on to solve two triangles

given in Seth Ward’s Mathematiks. In particular, he also states that Newton’s

problem VI, mentioned previously, may be solved with his theorem IX. While

Newton is implicit in stating equation (2), Thacker is explicit, on page 15 of

his book (note the correction of the misprint, Co––sine):

AB : AC + BC :: Co––sine of half the Angle C : Cosine of half the

Difference betwixt the Angles A and B.

Three years after Thacker, in 1746, the German mathematician Friedrich

Wilhelm von Oppel (1720–1769) includes these two statements on page 18

of his Analysis Triangulorum:

§84 Basis trianguli est ad differentiam crurum ut sinus semi-

summæ angulorum ad basin sitorum ad sinum semidifferentiæ

eorundem angulorum.

§85 Basis trianguli est ad summam crurum ut cosinus semi-

summæ angulorum ad basin ad cosinum semidifferentiæ eorun-

dem.

In more familiar notations, §84 and §85 are, respectively:

c

a − b
=

sin 1

2
(A + B)

sin 1

2
(A − B)

(3)

c

a + b
=

cos 1

2
(A + B)

cos 1

2
(A − B)

. (4)
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Oppel begins with the same concept as figure 7 in the construction of
1

2
(A + B) and 1

2
(A − B). He follows with laborious algebraic calculations

of the sides and applies the law of tangents in order to reach the above two

corollaries. Although Oppel’s statements are equivalent to Thacker’s, his

proof is quite different.

Interestingly, all of the authors who studied the history of the Mollweide

equations attributed equations (3) and (4) to Oppel [2, 4, 38, 43, 48]. They

completely ignored Thacker’s explicit statement of equation (2), which was

later attributed to Newton. These authors most probably overlooked Thacker

because his book title is not specific for trigonometry.

Two years after Oppel, in 1748, Thomas Simpson (1710–1761) gives the

present forms of equations (1) and (2) in his Trigonometry, Plane and Spher-

ical with the Construction and Application of Logarithms. Simpson, who is

best remembered for the numerical methods of integration known as Simp-

son’s rule (actually discovered by Newton), does not reach these equations

algebraically like Thacker, as evidenced by his lack of mention of them in

his A Treatise of Algebra (1745). Instead, Simpson arrives at them geomet-

rically:

PROP. VII. As the base of any plane triangle ABC is to the sum

of the two sides, so is the sine of half the vertical angle to the

co-sine of half the difference of the angles at the base.

Simpson proves this proposition using figure 3 (see below). In 4ABC with

BC < AC, extend AC to D so that CD = BC. Connect BD. Draw

CE ‖ AB and CF ⊥ BD. It follows that ]BCF = 1

2
(A + B) and ]ECF =

1

2
(B − A).

Various mathematicians, among them, Henry Gellibrand in 1635, Seth

Ward in 1654, William Oughtred in 1657, John Caswell in 1685 [15, 45, 34,

6, 20, 49] used figures similar to figure 3 to prove the law of tangents. Even as

early as 1595, Pitiscus essentially uses the same construction for the angles
1

2
(A + B) and 1

2
(A − B) to prove the law of tangents in his Trigonometria.

Yet no one could extract equation (2) out of this figure.

Simpson continues:

PROP. VIII. As the base of any plane triangle ABC is to the

difference of the two sides, so is the co-sine of half the vertical

angle to the sine of half the difference of the angles at the base.
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For this proposition, he uses a figure similar to figure 4. In 4ABC,

BD = AB. Then CD = a − c and ]DAC = 1

2
(A − C).

A B

C

D

E
F

Figure 3

A

B

CH

D

Figure 4

The next year, William Emerson (1701–1782) gives two corollaries to

the law of tangents that appear on pages 95 and 96 of The Elements of

Trigonometry (1749). Figure 4 is a simplification of Emerson’s figure. The

height BH is added to illustrate his corollaries.

Cor. 1. As the Base CA :

Sum of the Sides, CB + BA ::

So diff. Sides CD :

Diff. Segments of the Base made by a Perpen-

dicular ::

So Cos. 1

2
Sum op. Angles, or S. 1

2
the vertical

Angle :

Cos. 1

2
diff. op. Angles, or Cos. 1

2
diff. vertical

Angle, made by a Perp.

Cor. 2. As the Base CA :

Difference of the Sides CD ::

So Sum of the Sides, CB + BA :

Diff. Segments by a Perpendicular :

So Sine half Sum op. Angles,
A + C

2
:

Sine of half their Difference,
A − C

2
.

Emerson uses the shorthand S. as sine. Corollary 1 translates to:

CA

CB + BA
=

CD

CH − HA
=

cos 1

2
(A + C)

cos 1

2
(A − C)

=
sin 1

2
B

cos 1

2
(]CBH − ]HBA)

.
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And Corollary 2 is:

CA

CD
=

CB + BA

CH − HA
=

sin 1

2
(A + C)

sin 1

2
(A − C)

.

Across the English Channel in France, Antoine René Mauduit (1731–

1815) states the Mollweide equations in a scholium to the Napier analogies

on pages 83 and 84 in his Principes d’Astronomie Sphérique ou Traité complet

de Trigonométrie Sphérique (1765):

1◦. Le sinus du demi-angle vertical est au cosinus de la demi-

somme ou de la demi-différence des angles; comme la base ou

le côté opposé à’cet angle est à la difference ou à la somme des

deux autres côté; c’est-à-dire que sin 1

2
A : cos

(

C ± B

2

)

:: BC :

AB ∓ AC.

2◦. Le cosinus du demi-angle vertical est au sinus de la demi-

somme, ou de la demi-différence des angles opposé; comme la

base est à la somme, ou à la difference des côté opposés: c’est-à-

dire que cos 1

2
A : sin

(

C − B

2

)

:: BC : AB ± AC.

There is a misprint in the previous statement, sin

(

C − B

2

)

should be

sin

(

C ± B

2

)

. Mauduit overlooks the fact that cos 1

2
(C + B) = sin 1

2
A and

cos 1

2
A = sin 1

2
(C +B) since 1

2
A and 1

2
(B+C) are complementary. Therefore,

half of his above identities do not hold, although his mistakes are corrected

in Crakelt’s 1768 English translation. Mauduit does mention Newton and

Simpson in the preface of his book, which indicates that he was aware of

their work.

The Mollweide equations appear again in the English literature before

Mollweide’s rediscovery. Basil Nikitin (1737–1809) and Prochor Souvoroff

give these two equations in the English translation of their [Russian] Elements

of Plane and Spherical Trigonometry in 1786. The preface to this edition

indicates that they were well aware of Simpson’s and Emerson’s work. They

describe these two equations, with a geometric proof, as a corollary to the

law of tangents on page 21. They also note that these equations may be used

to solve a triangle if two sides and the included angle are given.

Finally, in 1786, the Italian astronomer Antonio Cagnoli (1743–1816)

gives an analytic derivation of these two equations by using the law of sines
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and the sum-to-product formula [5]. He also applies these two identities to

solve a triangle when angle A, its opposite side BC and the sum or difference

of the other two sides, (AB + AC) or (AB − AC), are given.

We finally arrive at Mollweide’s publication of the equations that bear

his name. In 1808, he derives these two equations using the law of sines

in Monatliche Correspondenz [32]. He does mention Cagnoli’s trigonometry

book at the beginning of his article, which points to further speculation

as to why these equations now bear his name. Interestingly, in his paper,

Mollweide does not use his equations in the methods for which they would

become famous. Although he points out the advantage of these equations in

the easy application of logarithms, he does not include any applications. And

so we are still left to wonder (1) how the equations came to bear Mollweide’s

name and (2) how they became applied as a check to the solutions of triangles.

Unfortunately, the evidence for both is not clear. Regarding our first

point, after 1808, equations (1) and (2) appear in various German articles

and textbooks [14, 16, 19, 21, 36, 37, 46]. Why and when these two equa-

tions were named after Mollweide is difficult to understand. According to

Tropfke, the wide availability of Mollweide’s article may be one reason [43].

Alternatively, the flourish of the German mathematicians in the nineteenth

century may also have contributed. For example, quite a few famous Ger-

man mathematicians–among them, Möbius and Gauss–were familiar with

Mollweide and referred to him in their publications. Siegmund Günther gave

credit to Mollweide by naming a method in the approximation of
√

3 “Die

Methode von Mollweide” [17], even though Mollweide’s method was previ-

ously discovered by other mathematicians. Even the Allgemeine Deutsche

Biographie states that Mollweide discovered trigonometric formulas involv-

ing the sides and angles [18]. In 1897, Hammer credited Mollweide as the

discoverer of these equations [19], but Braunmühl and Tropfke corrected this

mistake and gave a detailed account on the history of the Mollweide equations

in 1901 and 1923, respectively [4, 43]. Neither of them mentioned Thacker,

Emerson, Nikitin or Souvoroff, however.

Although many mathematicians credited Mollweide for the equations, on

the other hand, more often than not the German textbooks I found did

not even mention Mollweide, a fact that raises even more speculation as to

why the equations bear his name. In fact, the multitude of texts at the time

renders it difficult to trace how these equations were attributed to Mollweide.

In the English language, proofs to the Mollweide equations (usually derived
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from the law of sines) appear in various textbooks [9, 27, 42, 50], but as in the

German texts, these authors neither quoted the source of these equations nor

used them in checking the solutions of triangles. American authors appear

to have inherited the mistake from the Germans. Finally, although equations

(1) and (2) were first given by British mathematicians, one by Thacker, then

both by Simpson, later British authors simply failed to acknowledge them.

None of them gave an eponym to these equations.

The application of the Mollweide equations as a check to the solutions

of triangles occurred much later than Mollweide himself, although the origin

of this use remains unknown. Again, the plethora of textbooks published

renders it difficult to see who first applied these equations in this manner.

Most authors in the middle or late nineteenth century were content with giv-

ing or deriving the identities without applying the equations. Some authors,

however, did apply the Mollweide equations in solving triangles. Among

them, Lardner, Serret and Petersen, illustrated their application when two

sides and the included angle (a, b and C) are given [27, 39, 35]. Lardner

and Serret also applied them when a side, its opposite angle and the sum or

difference of the other two sides (C, c and a±b) are given [27, 39]. Chauvenet

(for whom the Chauvenet Prize is named) used them when two angles and a

side are given [7]. Furthermore, others noticed that the Mollweide equations

could be used to derive Heron’s formula [7, 41].

Wentworth was the first author I could identify who labelled the Moll-

weide equations the “check formula” in his examination question in 1889 [47].

Wilczynski gave a more explicit statement [48]:

[The Mollweide equations] are particularly convenient for the pur-

pose of checking the accuracy of the numerical solution of a tri-

angle. For each of these equations contains all of the six parts of

the triangle, so that an error in any one of these parts would be

likely to make itself felt by a lack of agreement between the two

members of one of these equations.

He also points out the mistake in crediting the equations to Mollweide.

And so, for unknown reasons, both equations (1) and (2) are mistakenly

attributed to Mollweide, although they became used in checking the solutions

of triangles because of their unique properties. This recognition leads us to

the proof of the equations and their relation to the law of tangents.
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4 Proof of the Equations

Surprisingly, these rather complicated looking equations have fairly simple

geometric proofs. This insight comes from the construction of the angles
1

2
(A−B) and 1

2
(A+B) and the segments (a− b) and (a+ b) [10, 22, 29, 51].

Figure 5, which I constructed to prove the Mollweide equations, appears

as early as 1701 in Samuel Heynes’ A Treatise of Trigonometry, Plane and

Spherical, Theoretical and Practical as a proof to the law of tangents (p.21

and figure IIII on p. 27) and also used by Dickson in 1922 [11]. 4ABC is

the triangle of interest with AC < BC. The construction for obtuse triangle

is the same, just move point B along the semicircle. Extend CA to D and

AC to F so that CD = BC = CF = a. Connect BD and BF .

D A C F

B

E

Figure 5

y

u

i a

e

r
o

Figure 6

The beauty of this figure is that it contains all the required elements

to prove equations (1) through (4). AF = AC + CF = a + b. AD =

CD −AC = a− b. In the isosceles 4BCD, ]D = ]CBD. ]D + ]CBD =

180◦ − C = A + B. Therefore, ]D = 1

2
(A + B). ]D + ]ABD = A implies

that ]ABD = 1

2
(A − B). The isosceles 4BCF implies that ]F = 1

2
C.

Finally, notice that ∠DBF is a right angle.

In 4ABD, using the law of sines, proving equation (3) only takes one

step [11, 53]. Since ∠D and ∠F are complementary to each other, sin]D =

cos ]F . Substituting ]D = 1

2
(A+B) and ]F = 1

2
C, sin 1

2
(A+B) = cos 1

2
C,

equation (1) follows.

In 4ABF , again, using the law of sines, we have sin ]ABF/sin ]F =

(a + b)/c. Since ∠ABD and ∠ABF are complementary, sin ]ABF = cos

]ABD = cos 1

2
(A − B). Along with ]F = 1

2
C, a simple substitution gives

equation (2). Equation (4) can be obtained by noting that ∠D and ∠F are

complementary, or sin 1

2
C = cos 1

2
(A + B).

To see how Newton’s version of the equation relates to equation (2),
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draw the angle bisector of ∠C so it meets side AB at point E. We con-

clude CE‖FB since ∠ACE ∼= ∠F . Since 4ACE ∼ 4AFB, we have

AB/(AC+BC) = AE/AC = sin ]ACE/ sin ]AEC = sin ]F/ sin ]ABF =

AB/(AC +CF ) = c/(a+b). The rest is already proven in the previous para-

graphs.

As mentioned previously, figure 5 was first used to prove the law of tan-

gents. It is not a coincidence that the Mollweide equations are closely related

to the law of tangents.

5 The Law of Tangents

5.1 Derivation of the Law of Tangents from the Moll-

weide Equations

The law of tangents may be easily derived from the Mollweide equations.

Dividing equations (1) and (2) gives a slight variation of the law of tangents,

which reflects the symmetry of the Mollweide equations:

tan 1

2
(A − B)

cot 1

2
C

=
a − b

a + b
.

A simple substitution of cot 1

2
C = tan 1

2
(A + B) gives the law of tangents.

Multiplication gives yet another identity (not related to the law of tan-

gents though):
sin(A − B)

sin C
=

a2 − b2

c2
.

William Emerson gives a variant of the above as the third corollary to

the law of tangents in the same book mentioned previously:

sin(A + C)

sin(A − C)
=

AC2

BC2 − BA2
.

The law of tangents also follows directly from Thacker’s and Oppel’s

equations; dividing equation (3) by equation (4) gives the law of tangents:

tan 1

2
(A + B)

tan 1

2
(A − B)

=
a + b

a − b
.

5.2 History of the Law of Tangents

Although closely related, the law of tangents has a much older history than

the Mollweide equations. François Viète (1540–1603), who led trigonometry

14



to assume a more important role in analysis, was the first to give the mod-

ern version of the law of tangents in his Variorum de Rebus Mathematicis

Responsorum Liber VIII in 1593. His version appears on page 402 of his

collected work, Opera Mathematica [44]:

Vt adgregatum crurum ad differentiam eorundem, ita prosinus

dimidiæ summæ angulorum ad basin ad prosinum dimidiæ dif-

ferentiæ.

Viète uses prosinus and transsinuosa as the trigonometric functions tan-

gent and secant, respectively. Prior to Viète, though, the Danish mathemati-

cian Thomas Fincke (1561–1656), (also known as Finke, Finck, or Fink) had

observed that the lines tangent to a circle are related to the sines. Hence, in

1583, he introduced the terms tangent and secant in trigonometry on pages

73 and 76 respectively in his Geometriae Rotundi. But Viète did not agree

with Fincke out of fear that confusion might arise from using the same terms

in geometry and what would later become the field known as trigonome-

try. Later authors, however, agreed with Fincke rather than Viète, as we

know from our present use of the terms tangent and secant. Maginus in 1592

(De Planis Triangulis, Venice), Blundevile in 1594 (Exercises, Containing

Eight Treatises, London) and Pitiscus in 1595 (Trigonometria, Heidelberg),

all adopted Fincke’s nomenclature, although without referencing him. With

Pitiscus’ Trigonometria, we also witness the birth of the word trigonometry.

Fincke not only preceded Viète in the naming of the tangent and secant

functions, but also in the law of tangents. Fincke–who as a professor of

mathematics, rhetoric, and medicine was quite the renaissance man [38]–

gives the law of tangents in a more complicated but equivalent form on page

292 of his Geometriae Rotundi :

ut semissis summæ crurum ad differentiam summæ semissis al-

teriusque cruris, sic tangens semissis anguli crurum exterioris ad

tangentem anguli quo minor interiorum semisse dicti reliqui mi-

nor est, aut major, major.

In our notations (refer to figure 5), the above statement is:

1

2
(a + b)

1

2
(a + b) − b

=
tan 1

2
]BCF

tan(1

2
]BCF − B)

.
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Indeed, since ]BCF = A + B, the law of tangents follows after a direct

substitution. This expression is a more direct translation of Fincke’s work,

although Tropfke, Smith and Zeller give the following version [43, 40, 54]:

1

2
(a + b)

1

2
(a + b) − b

=
tan 1

2
(180◦ − C)

tan[1
2
(180◦ − C) − B]

.

While today we relate the law of tangents to a triangle, the very first

version was not restricted to a triangle. The prelude to the law of tangents

appears in Proposition 8 on page 281 of Fincke’s Geometriae Rotundi. It

states that if the sum or the difference of two arcs (or angles) and the ratio

of their sines are given, each arc (or angle) can be determined. The essence

of the solution is the equation,

tan 1

2
(A + B)

tan 1

2
(A − B)

=
sin A + sin B

sin A − sin B
=

a + b

a − b
. (5)

At the beginning of Proposition 8, Fincke refers to Regiomontanus (1436–

1476), who may have known this identity in 1464 [40]. Fincke thought highly

of Regiomontanus, as he states right after the law of tangents in his Geome-

triae Rotundi :

Cujus certe libri à studiosis avidè legi debent: & cum fructu legi

possunt.

In translation,

His books ought to be read eagerly by students; they are able to

be read with profit.

Since Regiomontanus is such an important figure in trigonometry, I will di-

gress here to mention his contributions.

Regiomontanus was born Johann Müller near Königsberg, Franconia (now

in Bayern, Germany; not the more famous Königsberg of East Prussia). Fol-

lowing the tradition in which a person is known by the Latinized name of

his birthplace, Regiomontanus is the direct translation of Königsberg, or the

king’s mountain. Regiomontanus, who lived during the transition period

from the Dark Ages to the Renaissance, was probably the most influential

mathematician in Europe during the fifteenth century. He was the first Eu-

ropean to treat trigonometry as an independent subject rather than as a tool

for astronomy. His De Triangulis Omnimodis (completed in 1464 but not
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published until 1533) was the first textbook to present trigonometry in the

manner we know today. Prior to De Triangulis Omnimodis, Regiomontanus

completed his teacher Georg Peurbach’s half-finished translation of Ptolemy’s

Almagest ; their combined efforts resulted in the book Epitome in Ptolemæi

Almagestum, which, when published in 1462, replaced the medieval version

that had been translated from Arabic. Regiomontanus’ contributions were

pivotal in reviving trigonometry in Europe.

Interestingly, Fincke’s Proposition 8 is a slight variation of Theorem XXI

in book IV of Regiomontanus’ De Triangulis Omnimodis, which in turn has

its root in Book XI of Ptolemy’s Almagest. Theorem XXI states that if any

known arc less than a semicircumference is divided into two arcs, whose ratio

of the sines is given, then each of the arcs can be determined. Regiomontanus,

however, does not use the concept of tangents in his De Triangulis Omnimodis

and thus never really elucidates equation (5). Whether or not he knew the

concept of tangent while writing De Triangulis Omnimodis is questionable,

although he does use the tangent function in a later book in 1467, the Tabulae

Directionum.

The figure that accompanies Proposition 8, which is quite similar to that

of Regiomontanus, is reproduced in figure 6. Although Fincke does not show

the proof himself, his figure may be used to prove the law of tangents. In

1900, Braunmühl filled in the details using a similar figure [3]. Briefly, arc ai

is divided by the radius ue into ae and ei, and the subtending chord ai into

ao and oi. Radius uy ⊥ ai. Let radius ur = 1, ae = A, ei = B, ao = α and

oi = β. Then sin A/ sin B = α/β. Furthermore, ay = yi = 1

2
(A + B) and

ye = 1

2
(A − B). Similarly, ar = 1

2
(α + β) and ro = 1

2
(α − β). Since radius

ur = 1, tan 1

2
(A + B) = ar = 1

2
(α + β) and tan 1

2
(A − B) = ro = 1

2
(α − β).

Dividing the last two equations gives the law of tangents.

Although Viète gave us the modern version of the law of tangents, Fincke,

whose enlightenment rests on Theorem XXI of Regiomontanus, stated the

law of tangents for the first time and also demonstrated its application by

solving a triangle when two sides and the included angle are given.

5.3 An Old and a New Proof to the Law of Tangents

There are many geometric proofs to the law of tangents [2, 8, 12, 29, 31]. The

following proof (figure 7) is a personal communication from Professor Kevin

Kolbeck after seeing my proof [52]. Coincidentally, a similar figure appeared

in Theorem V of Simpson’s Trigonometry, Plane and Spherical as a proof to
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the law of tangents.

E C D B

A

F

Figure 7

4ABC is the triangle of interest with side AC < BC. Extend BC to

E and pick point D on BC such that CE = AC = CD = b. Connect

AD, AE and draw DF ⊥ AD. From this construction, again, we see that

]ADC = 1

2
(A + B) and ]DAB = 1

2
(A − B). DB = a − b and EB = a + b.

Note that 4BDF ∼ 4BEA.

tan 1

2
(A − B)

tan 1

2
(A + B)

=
tan ]DAF

tan ]ADE
=

DF/AD

AE/AD
=

DF

AE
=

DB

EB
=

a − b

a + b

Figure 8, a modification of figure 7, is another proof to equation (5).

CD = AC = CE = b. The height is CH. Draw DG and EJ such that

DG ‖ CH ‖ EJ . Draw DM and CN so that DM ⊥ CH and CN ⊥ EJ .

Extend BA to meet EJ at J . Again note that DA ⊥ EA.

B A

C

D

E

G H J

M

N

Figure 8

From previous constructions, we know that BD = a− b and BE = a+ b.

In 4AHC, CH = b sin A. In 4DMC, CM = b sin B. In 4CNE, EN =

b sin B. Therefore, DG = MH = b sin A− b sin B and EJ = b sin A+ b sin B.
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Using 4BDG ∼ 4BEJ , again we have:

tan 1

2
(A + B)

tan 1

2
(A − B)

=
tan ]EDA

tan ]DAG
=

EA/DA

DG/AG

=
EJ/AG

DG/AG
=

EJ

DG
=

sin A + sin B

sin A − sin B

=
BE

BD
=

a + b

a − b
.

From Regiomontanus to Fincke, to Viète, and to Mollweide, the under-

lying theme among the law of tangents, the Mollweide equations and the

various equations mentioned previously is the intricate relationship among

the sides of a triangle and the various trigonometric functions of 1

2
(A + B)

and 1

2
(A − B). Indeed, the construction of figure 8 leads us to the proofs of

more trigonometric identities.

6 Some Identities Involving 1
2(A+B) and 1

2(A−
B)

Our readers may readily recognize that equation (5) is an immediate con-

sequence of the law of sines and the sum-to-product formula, which again,

involve 1

2
(A + B) and 1

2
(A − B).

sin A + sin B = 2 cos
1

2
(A − B) sin

1

2
(A + B) (6)

sin A − sin B = 2 sin
1

2
(A − B) cos

1

2
(A + B). (7)

Interestingly, equation (6) was proven by Viète through a geometric con-

struction [1]. He also developed the formula for sinA + cos B and cos A +

cos B. These identities may have enlightened Napier in the development of

the logarithms, which also transform products into sums [30].

Yokio Kobayashi and Sidney Kung each gives two elegant geometric

proofs to both the above identities and the remaining two [23, 24, 25, 26]:

cos A + cos B = 2 cos
1

2
(A − B) cos

1

2
(A + B) (8)

cos B − cos A = 2 sin
1

2
(A − B) sin

1

2
(A + B). (9)

Like Kung’s proofs, figure 8 has the advantage of having both angles
1

2
(A − B) and 1

2
(A + B) in the same figure. ]CDA = ]CAD = 1

2
(A + B)
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and ]DAB = ]AEJ = 1

2
(A − B). Notice that ∠GDA and ∠DAB are

complementary and that 4DGA ∼ 4AJE.

Let us label CD = AC = CE = 1. Then, in 4ADE,

DA = 2 cos
1

2
(A + B)

AE = 2 sin
1

2
(A + B).

In 4ADG,

DG = DA · sin ]DAB = 2 sin 1

2
(A − B) cos 1

2
(A + B)

GA = DA · cos ]DAB = 2 cos 1

2
(A − B) cos 1

2
(A + B).

Similarly, in 4AJE,

AJ = AE · sin ]AEJ = 2 sin 1

2
(A − B) sin 1

2
(A + B)

EJ = AE · cos ]AEJ = 2 cos 1

2
(A − B) sin 1

2
(A + B).

As noted before, CH = NJ = sin A, AH = cos A, EN = CM = sin B

and CN = DM = GH = HJ = cos B. Then,

DG = CH − CM = sin A − sin B

GA = GH + AH = cos A + cos B

AJ = CN − AH = cos B − cos A

EJ = NJ + EN = sin A + sin B.

From the above labelling, formula (6), (7), (8) and (9) follow by equating

the different representations of EJ , DG, GA and AJ respectively.

There is also enough information in figure 8 to prove the following identi-

ties, which are derived by none other than the grand master Leonhard Euler

in 1748 in his Introductio in Analysin Infinitorum.

tan
1

2
(A + B) =

sin A + sin B

cos A + cos B
(10)

tan
1

2
(A − B) =

sin A − sin B

cos A + cos B
(11)

cot
1

2
(A + B) =

sin A − sin B

cos B − cos A
(12)

cot
1

2
(A − B) =

sin A + sin B

cos B − cos A
(13)

(14)

Using the fact that 4DGA ∼ 4AJE, equation (10) follows from tan 1

2
(A+

B) = EA/DA = EJ/GA. Equation (12) can be obtained from cot 1

2
(A +
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B) = DA/EA = DG/AJ . Equations (11) and (13) are self evident in 4DGA

and 4AJE.

In 4DGA, tan 1

2
(A − B) = DG/AG. We also know cot 1

2
(A + B) =

DG/AJ . Then cot 1

2
(A + B)/ tan 1

2
(A − B) = AG/AJ , or

cot 1

2
(A + B)

tan 1

2
(A − B)

=
cos A + cos B

cos B − cos A
.

We can extract a few more identities from figure 8. Since EN + CM =

EJ − DG, we have:

sin B = cos
1

2
(A − B) sin

1

2
(A + B) − sin

1

2
(A − B) cos

1

2
(A + B).

CN + DM = GA + AJ implies

cos B = cos
1

2
(A − B) cos

1

2
(A + B) + sin

1

2
(A − B) sin

1

2
(A + B).

Similar identities for sin A and cos A can also be derived by adding equa-

tions (6) and (7) or subtracting equation (9) from (8) respectively.

In 4ADG, using Pythagorean’s theorem, AD2 = DG2 + AG2, or

4 cos2
1

2
(A + B) = (sin A − sin B)2 + (cos A + cos B)2

Similarly, in 4AJE, the following can be obtained:

4 sin2
1

2
(A + B) = (sin A + sin B)2 + (cos B − cos A)2.

Heading the same direction, square both sides of identities (7) and (9)

and then add them to get:

4 sin2
1

2
(A − B) = (sin A − sin B)2 + (cos B − cos A)2.

Viète applied this identity in the computation of his trigonometric tables.

Using identities (6) and (8) together gives the last of this type of rela-

tionship, namely,

4 cos2
1

2
(A − B) = (sin A + sin B)2 + (cos A + cos B)2.

7 Conclusion

The equations named after a mathematician better known for his accom-

plishment in cartography–Karl Brandan Mollweide–are fascinating because
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of their symmetry, their ability to check the solutions of triangles and their

relationship to the law of tangents and other identities involving 1

2
(A + B)

and 1

2
(A − B). For reasons still unclear to me, Mollweide became famous

for a pair of equations that were first discovered by Newton and fully de-

veloped by Simpson. The Mollweide equations eventually found a unique

place in trigonometry as a computational tool. As new technologies emerge,

Mollweide’s equations are losing their glory. Nonetheless, we should always

remember all those mathematicians who paved the road ahead of us because

their achievements demonstrate the ingenuity of the human mind.

For those who are willing to go a little further, I will leave them to

stretch their imagination to look for the following identities in figure 8 using

2 sin 1

2
(A + B) cos 1

2
(A + B) = sin(A + B) and 2 sin 1

2
(A−B) cos 1

2
(A−B) =

sin(A − B).

sin 1

2
(A + B)

sin 1

2
(A − B)

=
sin(A + B)

sin A − sin B
=

2 sin2 1

2
(A + B)

cos B − cos A
(15)

cos 1

2
(A + B)

cos 1

2
(A − B)

=
sin(A + B)

sin A + sin B
=

2 cos2 1

2
(A + B)

cos A + cos B
(16)

2 sin A cos B = sin(A + B) + sin(A − B) (17)

(Hint: Identity (17) can be obtained by noting the area of the trapezoid

DEJG is the sum of the areas of 4DAE, 4DGA and 4AJE.)
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des Méthodes et des Formules Nouvelles, avec des Applications à la Plu-
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formeln, A.F. Höst & sohn, Kopenhagen, 1885, pp.50-1.

[36] A. Richter, Aufgaben über das geradlinige Dreieck, trigonometrisch
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