

Quantifying Quality Requirements Using Planguage

Erik Simmons
Intel Corporation
JF1-46
2111 NE 25th Ave.
Hillsboro, OR 97214-5961
erik.simmons@intel.com

V rsion 1.1, 03/30/01

P

K

A
E
E
C
p
E
M
H

A
W
b
o
s
q
D
k
h
a
a
e

e

© Intel Corporation 2001. All rights reserved.

repared for Quality Week 2001

ey Words: Product Quality; Quality Requirements; Quantified Quality

uthor Biography
rik Simmons has 15 years experience in multiple aspects of software and quality engineering.
rik currently works as Platform Quality Engineer in the Platform Quality Methods group, part of the
orporate Quality Network at Intel Corporation. He is responsible for Requirements Engineering
ractices at Intel, and lends support to several other corporate software and product quality initiatives.
rik is a member of the Pacific Northwest Software Quality Conference Board of Directors. He holds a
asters degree in mathematical modeling and a Bachelors degree in applied mathematics from
umboldt State University in California.

bstract
ithin the last decade, requirements engineering has benefited from increased attention. Several good

ooks are now available, from general textbooks on requirements engineering to specific monographs
n advanced topics. Among the many benefits has been an increased awareness of the importance of
pecifying quality requirements. However, outside of structured English, few methods for specifying
uality requirements have been established. Planguage, created by Tom Gilb, is one notable exception.
esigned to quantify qualitative statements in plans, specifications, and designs, Planguage is a
eyword-driven language that allows measurable, testable quality requirements to be written. Planguage
as many benefits; it is easy to learn, flexible, compact, extensible, and prevents omissions by providing
 consistent set of parameters for quality requirements. In this paper, Planguage keywords and syntax
re introduced. Examples of quality requirements before and after using Planguage are given, and the
xperiences of introducing Planguage within a product engineering environment are discussed.

mailto:erik.simmons@intel.com

© Intel Corporation 2001. All rights reserved.

Introduction
The last decade has seen an increased focus on the methods, process, and benefits of good
requirements engineering. In the past few years alone, several very good books have been
published on the topic. Undergraduate and graduate programs now more commonly introduce
students to the fundamental concepts and techniques of requirements engineering.

Despite these and other advances, few techniques are taught for properly specifying quality
attributes like performance, reliability, scalability, and ease of use. In most cases, structured
English sentences are used to express the underlying requirements using terms that are difficult
or impossible to test adequately. Qualitative terms like easy, fast, reliable, secure, scalable,
efficient, robust, and a host of others are fertile ground for misunderstandings between product
stakeholders.

Planguage was created by Tom Gilb in order to overcome these problems by quantifying
qualitative terms [Gilb01, Gilb97a, Gilb97b]. Planguage is a keyword-driven language whose
name is derived from a contraction of the words planning and language1. Planguage can be used
in requirements specifications, design documents, plans, and other places where qualitative
statements are common. Its primary benefits are quantifying the qualitative and improving
communication about complex ideas. In addition to these, Planguage has several other desirable
features and benefits:

Ease of Learning and Use
Planguage can be taught effectively to individuals and groups in a short period. At Intel,
Planguage is covered in only a few hours as part of the requirements engineering curriculum.
Although this brief exposure is not enough to guarantee successful adoption and use of
Planguage, when combined with a small amount of follow-up mentoring and a catalog of
examples the results have been quite good. More than 1,200 students at Intel have been
exposed to Planguage within the past 12 months, and Planguage has made its way into many
product development efforts. It is used by engineering, quality assurance, marketing, and
program management alike in a widening array of documents, plans, and designs.

Flexibility and Extensibility
Planguage is designed to be extensible and customizable to fit local needs. This includes the
addition of keywords and the rich structure of Planguage, with its ability to create and label
statements, collections, and other internal structures for reuse. These properties have made
Planguage popular and useful across differing product development efforts � an essential
capability in order to obtain broad adoption and use in as diverse an environment as Intel.

Prevention of Omissions
One of the most powerful benefits of Planguage is its ability to prevent omissions when
quantifying qualitative statements. Because keywords are prescribed for all the important
dimensions, users of Planguage are less likely to omit necessary information. Planguage is
equally effective in this regard whether implemented as a table within a document or as part of an
automated requirements repository. In both cases, users praise its ability to bring issues to light
through its complete, separate, and consistent treatment of the important dimensions of
quantification.

Separation of Success and Survival
When considering qualitative concepts, there are usually many levels of achievement (or a range
of achievement) possible. The question is not whether a system is reliable or secure, but how
reliable or secure. Planguage excels at expressing these ideas through its use of more than one
level of achievement. By allowing for specification of the best recorded level of performance, the

1 The term Planguage is also used as the name of some programming languages for parallel
processors, but that use is not related to its use in this paper.

© Intel Corporation 2001. All rights reserved.

optimum level, the planned level, and the level below which financial or political failure occurs,
Planguage paints a detailed and complete picture of success and survival, allowing for informed,
due-diligent decision making.

Planguage Keywords & Syntax
Planguage has a rich set of keywords. The commonly used keywords are given in Table 1.

Table 1: Planguage Keywords

TAG A unique, persistent identifier
GIST A short, simple description of the concept contained in the Planguage

statement
STAKEHOLDER A party materially affected by the requirement
SCALE The scale of measure used to quantify the statement
METER The process or device used to establish location on a SCALE
MUST The minimum level required to avoid failure
PLAN The level at which good success can be claimed
STRETCH A stretch goal if everything goes perfectly
WISH A desirable level of achievement that may not be attainable through

available means
PAST An expression of previous results for comparison
TREND An historical range or extrapolation of data
RECORD The best-known achievement
DEFINED The official definition of a term
AUTHORITY The person, group, or level of authorization

As an example of the extensibility of Planguage, four sub-keywords have been created for the
keyword METER. The sub-keywords are designed to add precision and specificity to the METER
statement, and are given in Table 2.

Table 2: Sub-keywords for the METER Keyword

METHOD The method for measuring to determine a point on the Scale
FREQUENCY The frequency at which measurements will be taken
SOURCE The people or department responsible for making the measurement
REPORT Where and when the measurement is to be reported

Besides keywords, Planguage also offers several convenient and useful sets of symbols:

• Fuzzy concepts requiring more details are marked using angle brackets: <fuzzy concept>
• Qualifiers, which are used to modify other keywords, are contained within square

brackets: [when, which, �]
• A collection of objects is indicated by placing the items in braces: {item1, item2, �}
• The source for a statement is indicated by an arrow: Statement � source

Using Qualifiers
Qualifiers allow for precise description of conditions and events. They add richness, precision,
and utility to Planguage. Here are several (unrelated) examples of qualifier use:

PLAN [Q1 ’00]: 20,000 units sold
MUST [First year]: 120,000 units sold

WISH [First release, enterprise version]: 1 Dec. 2000
PLAN [US market, first 6 months of production]: Defects Per Million < 1,000

METER [Prototype]: Survey of focus group

© Intel Corporation 2001. All rights reserved.

METER [Release Candidate]: Usability lab data

A Basic Application of Planguage
Requirements often contain statements like the following:

“The system must be easy to learn.”

When presented with this first requirement, nearly everyone would agree that it is not testable as
written. It is up to the tester or someone else downstream to decide what �easy� is, what �learn�
means, and how to test whether the product meets minimum levels of goodness.

A second common form of the statement of usability is made in structured English:

“The system must be used successfully to place an order in under 10 minutes without
assistance by at least 80% of test subjects with no previous system experience.”

This is an improvement over the first requirement, and represents the typical state of the practice.
The second wording gets a better response for testability, and many believe that they could write
and execute tests for it.

Here is the Planguage version:

TAG: Learnable
GIST: The ease of learning to use the system.
SCALE: Time required for a Novice to complete a 1-item order using only the online help system

for assistance.
METER: Measurements obtained on 100 Novices during user interface testing.
MUST: No more than 7 minutes 80% of the time
PLAN: No more than 5 minutes 80% of the time
WISH: No more than 3 minutes 100% of the time
PAST [our old system]: 11 minutes � recent site statistics
Novice: DEFINED: A person with less than 6 months experience with Web applications and no

prior exposure to our Website.

This statement provides a great deal of information in a compact format. Additionally, it is testable
and far less ambiguous than the previous structured English statement.

Finding Scales and Meters
Scales exists for just about any concept. Here are some helpful hints for locating/defining scales:

• Divide the measured quality into its elementary components first if possible
• Use known, accepted scales of measure when possible
• Derive new scales from known scales by substituting terms
• Incorporate qualifiers in the scales to increase usefulness and specificity
• Don�t confuse scale with meter
• Share effective scales with others

Examples of scales for several situations are given in Table 3:

Table 3: SCALE Examples

Environmental Noise dBA at 1.0 meter
Software Security Time required to break into the system
Software
Maintainability

Average engineering time from report to closure of defects
reported prior to release

© Intel Corporation 2001. All rights reserved.

System Reliability #1 The Mean Time To Failure of the system
System Reliability #2 The time at which a certain percentage of the system failures

have occurred (known as the B-life). For example, at the B10
life, 10% of the units have failed.

System Learnability Average time for <novices> to become <proficient> at a defined
set of tasks (this can be measured on competing prototypes)

Vendor Of Choice Gaps between customer�s expressed importance and
satisfaction for various product and service attributes

Revenue Total sales in US$, Average Selling Price, etc.
Market Share Percentage of Total Available Market (TAM)

To locate a meter, study the scale carefully. If no meter comes to mind:

• Look at references, handbooks, examples, etc. for ideas
• Ask others for their experience with similar methods
• Look for examples within test procedures

Once you have located a candidate meter, be sure that:

• The meter is adequate in the eyes of all stakeholders
• There is no less-costly meter available that can do the same job (or better)
• The meter can be measured before product release or completion of the deliverable

Examples of Meters for several situations are given in Table 4:

Table 4: METER Examples

Environmental Noise Lab measurements performed according to the Environmental
Test Handbook

Software Security An attempt by a team of experts to break into the system using
commonly available tools

Software
Maintainability

 Analysis of at least 30 consecutive defects reported and
corrected during development

System Reliability #1 A Probability Ratio Sequential Test demonstration with α=10%,
β=10%, Discrimination Ratio = 3

System Reliability #2 Weibull analysis of 50 sample units bench tested to failure

Planguage Examples
In practice, the TAG keyword is often dropped, as is the GIST keyword. Instead, the tag itself is
placed before the text of the gist, like this:

LEARNABLE: The ease of learning to use the system

instead of

TAG: Learnable
GIST: The ease of learning to use the system

Most of the examples that follow use the shorter format combining the tag and gist.

Example 1: Power Consumption
Before Planguage, here is an actual requirement as written. Only the company names have been
altered:

© Intel Corporation 2001. All rights reserved.

�The third key requirement is power consumption. Generally, the power consumption
requirements are driven by noise requirements, or CE compatibility. The customers expressed
the need for lower active power consumption so that passive cooling can be used. However, this
is one possible implementation, and other implementations need to be addressed by engineering.
Standby power consumption should meet the levels obtained by CE devices; 5-10W, and be
achievable with the fan off. Cost is a factor. 10W standby is acceptable if the implementation
cost is less than that of 5W standby. These requirements were articulated by Company1,
Company2, Company3, Company4, and Company5.�

The same requirement written using Planguage:

STANDBY: Standby Power Consumption �{Company1, Company2, Company3, Company4,
Company5}
GIST: The amount of power consumed by the system with the fan off and the HDD not spinning
SCALE: Watts
METER: Measurement on 3 units for 10 seconds at 23°C, ± 2°C
MUST: 10W
PLAN[CostOK]: 5W
CostOK: Design and manufacturing costs do not exceed 10W cost by more than 25%
NOTE: Relates to noise and CE compatibility requirements. Passive cooling within the system is
desired.

This rewritten statement is traceable (since it is uniquely and persistently identified by its TAG),
measurable (and testable), and more precise than the original while taking up less space and
using fewer words than before.

Example 2: Acoustic Noise
Another actual requirement, as originally written:

�The second key requirement is that the acoustic noise generated by the PC be at levels similar
to common consumer electronics equipment. Based on OEM feedback, this acoustic noise level
while the PC is active (HDD active) needs to be in the range of 25-33dB. Company1 shared the
progress they have made in this area. They have moved from 38dB active in 1996 to 33dB active
in 1997. Their goal is to maintain less than 33dB. Company2’s requirement is 25dB during active
state.�
Rewritten using Planguage:

NOISE: Acoustic Noise �{Company1, Company2}
GIST: The amount of acoustic noise generated by the system with the fans running and HDD
spinning.
SCALE: dBA
METER: Acoustic Sound Pressure test from the current Environmental Test Handbook,
measured on 3 units
MUST [Company1]: 33dBA
MUST [Company2]: 25dBA
PLAN: 25dBA
TREND [1996 � 1997, Company2]: 38dBA � 33dBA

Note that other solutions are possible. The original requirement does not make clear whether the
PLAN should be 33dB, 25dB, or some other value. Similarly, the MUST statement(s) could be
written in several other ways. It is the conversations required to determine which expression is
correct that are valuable.

Example 3: Development Process Efficiency
This example makes use of the optional sub-keywords for the Meter (Method, Frequency,
Source, and Report).

© Intel Corporation 2001. All rights reserved.

EFFICIENT: The efficiency of the development process
SCALE: Rework as a percentage of total effort expended
METER: Examination of defect logs and project data
METHOD: Total Rework (defect logs) divided by total effort (project tracking database)
FREQUENCY: Measured monthly
SOURCE: Software Process Engineering Team data
REPORT: Senior Staff Meeting
MUST: No more than 45%
PLAN: No more than 35%
PAST: 50-60% � guess, based on industry averages.

Example 4: Software Scalability
Scalability.CPU: The CPU usage pattern under increasing application stress.
SCALE: Minimum application transactions per second required to sustain 100% CPU utilization
for at least 15 seconds.
METER: Stress testing of the application using automated software drivers and a representative
operational profile.
MUST [Single Processor, 500MHz]: At least 45 TPS
PLAN [Single Processor, 500 MHz]: At least 60 TPS

Example 5: Security
This example illustrates how fuzzy concepts can be marked as needing clearer definition. The
requirement could be used as a template for several projects, with the terms and achievement
levels defined as needed for each one:

Security.Access: The resistance of the system to <unauthorized access>.
SCALE: Time required to obtain <unauthorized access> to the system using commonly available
tools and techniques.
METER: Attempted <access> by a team of two skilled security engineers with no special
knowledge of the system.
PLAN: At least 16 hours
MUST: At least 8 hours

Example 6: Memory Use
TAG: MemoryUse
GIST: The amount of memory used by the application.
SCALE: Megabytes
METER: Performance Log observations made during system testing.
PLAN [Peak committed memory, Representative Operational Profile]: No more than 24 MB
PLAN [Peak committed memory, Stress Profile]: No more than 40 MB
PLAN [Average committed memory, Representative Operational Profile]: No more than 16 MB
PLAN [Average committed memory, Stress Profile]: No more than 24 MB
Representative Operational Profile: DEFINED: An operational profile that is likely to occur during
use of the system after deployment. Specifically not a profile designed to stress the application in
ways not possible or rarely encountered in actual use.
Stress Profile: DEFINED: An operational profile designed to cause extreme resource
consumption or challenge the system's performance, regardless of whether the profile is likely or
even possible to occur in actual use.

Lessons Learned Introducing Planguage at Intel
Planguage has been among the most popular topics in the requirements engineering coursework
taught at Intel. The material has been presented to a broad cross section of the company, in
terms of both job function and geographic location. Students embrace Planguage because it
solves a real problem with elegance and simplicity. Most teams have felt the pain of mismatched

© Intel Corporation 2001. All rights reserved.

expectations that stemmed from weak, qualitative terms. Planguage presents an opportunity to
avoid those problems from the start. Test teams and quality assurance personnel also like the
clarity and accountability that comes with Planguage requirements.

If students have any difficulty as they learn Planguage, it is usually when they first attempt to
locate scales and meters for Planguage statements. Students sometimes confuse scale and
meter, so a simple example such as natural gas service or residential water supply is useful and
provides a way to clarify thinking for less-obvious situations.

Although Planguage is a simple concept that has innate appeal, students typically require some
additional assistance before they become independently proficient with the techniques involved
(especially scales and meters). Two strategies work well to provide this assistance: follow-on
mentoring from experienced Planguage users and a catalog of example Planguage requirements
from which to draw ideas and templates. This catalog can be extended with new material as it is
developed, and could be nicely implemented as a Website.

Planguage is designed for a much broader application than just quality requirements. Once
Planguage use has been established on a team or in a business unit, others pick the language up
for roadmaps, marketing objectives, vision statements, plans, and other uses. The positive
benefits of such cross-pollination are significant.

References

Gilb01 Gilb, Tom, A Handbook for Systems & Software Engineering Management

using Planguage, Addison Wesley 2001
Gilb97a Gilb, Tom, Requirements-Driven Management: A Planning Language,

Crosstalk, June 1997
Gilb97b Gilb, Tom, Quantifying the Qualitative, available at http://www.result-

planning.com

	Introduction
	Ease of Learning and Use
	Flexibility and Extensibility
	Prevention of Omissions
	Separation of Success and Survival
	Planguage Keywords & Syntax

	TAG
	METHOD
	Using Qualifiers
	A Basic Application of Planguage
	Finding Scales and Meters
	Planguage Examples

	Example 6: Memory Use
	Lessons Learned Introducing Planguage at Intel
	References
	Gilb, Tom, A Handbook for Systems & Software Engineering Management using Planguage, Addison Wesley 2001

