## Q.No. 1 - 25 Carry One Mark Each

1. Two independent random variables $X$ and $Y$ are uniformly distributed in the interval $[-1,1]$. The probability that $\max [\mathrm{X}, \mathrm{Y}]$ is less than $1 / 2$ is
(A) $3 / 4$
(B) $9 / 16$
(C) $1 / 4$
(D) $2 / 3$

Answer:- (B)
2. If $x=\sqrt{-1}$, then the value of $x^{\prime}$ is
(A) $\mathrm{e}^{-\pi / 2}$
(B) $e^{\pi / 2}$
(C) $x$
(D) 1

Answer:- (A)
3. Given, $f(z)=\frac{1}{z+1}-\frac{2}{z+3}$. If C is a counterclock wise path in the $z$-plane such that $|z+1|=1$, the value of $\frac{1}{2 \pi j} \oint_{C} f(z) d z$ is
(A) -2
(B) -1
(C) 1
(D) 2

Answer:- (C)
4. In the circuit shown below, the current through the inductor is

(A) $\frac{2}{1+j} A$
(B) $\frac{-1}{1+j} \mathrm{~A}$
(C) $\frac{1}{1+j} A$
(D) 0 A

Answer:- (C)
5. The impedance looking into nodes 1 and 2 in the given circuit is

(A) $50 \Omega$
(B) $100 \Omega$
(C) $5 \mathrm{~K} \Omega$
(D) $10.1 \mathrm{k} \Omega$

Answer:- (A)

[^0]© All rights reserved by GATE Forum Educational Services Pvt. Ltd. No part of this booklet may be reproduced or utilized in any form without the written permission.
6. A system with transfer function
$$
G(s)=\frac{\left(s^{2}+9\right)(s+2)}{(s+1)(s+3)(s+4)}
$$
is excited by $\sin (\omega \mathrm{t})$. The steady-state output of the system is zero at
(A) $\omega=1 \mathrm{rad} / \mathrm{s}$
(B) $\omega=2 \mathrm{rad} / \mathrm{s}$
(C) $\omega=3 \mathrm{rad} / \mathrm{s}$
(D) $\omega=4 \mathrm{rad} / \mathrm{s}$

Answer:- (C)
7. In the sum of product function $f(X, Y, Z)=\sum(2,3,4,5)$, the prime implicants are
(A) $\bar{X} Y, X \bar{Y}$
(B) $\bar{X} Y, X \bar{Y} \bar{Z}, X \bar{Y} Z$
(C) $\bar{X} Y \bar{Z}, \bar{X} Y Z, X \bar{Y}$
(D) $\bar{X} Y \bar{Z}, \bar{X} Y Z, X \bar{Y} \bar{Z}, X \bar{Y} Z$

Answer:- (A)
8. If $x[n]=(1 / 3)^{|n|}-(1 / 2)^{n} u[n]$, then the region of convergence (ROC) of its Ztransform in the $Z$-plane will be
(A) $\frac{1}{3}<|z|<3$
(B) $\frac{1}{3}<|z|<\frac{1}{2}$
(C) $\frac{1}{2}<|z|<3$
(D) $\frac{1}{3}<|z|$

## Answer:- (C)

9. The radiation pattern of an antenna in spherical co-ordinates is given by

$$
F(\theta)=\cos ^{4} \theta ; 0 \leq \theta \leq \pi / 2
$$

The directivity of the antenna is
(A) 10 dB
(B) 12.6 dB
(C) 11.5 dB
(D) 18 dB

Answer:- (A)
10. A coaxial cable with an inner diameter of 1 mm and outer diameter of 2.4 mm is filled with a dielectric of relative permittvity 10.89. Given $\mu_{0}=4 \pi \times 10^{-7} \mathrm{H} / \mathrm{m}, \varepsilon_{0}=\frac{10^{-9}}{36 \pi} \mathrm{~F} / \mathrm{m}$, the characteristic impedance of the cable is
(A) $330 \Omega$
(B) $100 \Omega$
(C) $143.3 \Omega$
(D) $43.4 \Omega$

Answer:- (B)
11. A source alphabet consists of N symbols with the probability of the first two symbols being the same. A source encoder increases the probability of the first symbol by a small amount $\varepsilon$ and decreases that of the second by $\varepsilon$. After encoding, the entropy of the source
(A) increases
(B) remains the same
(C) increases only if $\mathrm{N}=2$
(D) decreases

Answer:- (D)

[^1]12. The diodes and capacitors in the circuit shown are ideal. The voltage $v(t)$ across the diode D1 is
(A) $\cos (\omega \mathrm{t})-1$
(C) $1-\cos (\omega t)$
(D) $1-\sin (\omega t)$


Answer:- (C)
13.

(A) $Y=\bar{A} \bar{B}+\bar{C}$
(B) $Y=(A+B) C$
(C) $Y=(\bar{A}+\bar{B}) \bar{C}$
(D) $Y=A B+C$

Answer:- (A)
14. With initial condition $x(1)=0.5$, the solution of the differential equation, $\mathrm{t} \frac{\mathrm{dx}}{\mathrm{dt}}+\mathrm{x}=\mathrm{t}$ is
(A) $\mathrm{x}=\mathrm{t}-\frac{1}{2}$
(B) $\mathrm{x}=\mathrm{t}^{2}-\frac{1}{2}$
(C) $x=\frac{t^{2}}{2}$
(D) $x=\frac{t}{2}$

Answer:- (D)
15. The unilateral Laplace transform of $f(t)$ is $\frac{1}{s^{2}+s+1}$. The unilateral Laplace transform of $(t) f(t)$ is
(A) $-\frac{s}{\left(s^{2}+s+1\right)^{2}}$
(B) $-\frac{2 s+1}{\left(s^{2}+s+1\right)^{2}}$

[^2](C) $\frac{s}{\left(s^{2}+s+1\right)^{2}}$
(D) $\frac{2 s+1}{\left(s^{2}+s+1\right)^{2}}$

Answer:- (D)
16. The average power delivered to an impedance $(4-j 3) \Omega$ by a current $5 \cos (100 \pi t+100) A$ is
(A) 44.2 W
(B) 50 W
(C) 62.5 W
(D) 125 W

Answer:- (B)
17. In the following figure, $\mathrm{C}_{1}$ and $\mathrm{C}_{2}$ are ideal capacitors. $\mathrm{C}_{1}$ has been charged to 12 V before the ideal switch S is closed at $\mathrm{t}=0$. The current $\mathrm{i}(\mathrm{t})$ for all t is

(A) zero
(B) a step function
(C) an exponentially decaying function
(D) an impulse function

## Answer:- (D)

18. The $\mathrm{i}-\mathrm{v}$ characteristics of the diode in the circuit given below are

$$
i=\left\{\begin{array}{c}
\frac{v-0.7}{500} A, v \geq 0.7 V \\
0 A, v<0.7 V
\end{array}\right.
$$



The current in the circuit is
(A) 10 mA
(B) 9.3 mA
(C) 6.67 mA
(D) 6.2 mA

Answer:- (D)
19. The output $Y$ of a 2-bit comparator is logic 1 whenever the 2-bit input $A$ is greater than the 2 -bit input B . The number of combinations for which the output is logic 1 , is
(A) 4
(B) 6
(C) 8
(D) 10

Answer:- (B)

[^3]20. Consider the given circuit

Draw a fig
In this circuits, the race around
(A) does not occur
(B) occurs when CLK $=0$
(C) occur when CLK = 1 and $\mathrm{A}=\mathrm{B}=1$
(D) occurs when $C L K=1$ and $A=B=0$

Answer:- (A)
21. The electric field of a uniform plane electromagnetic wave in free space, along the positive $x$ direction, is given by $\vec{E}=10\left(\hat{a}_{y}+j \hat{a}_{z}\right) e^{-j 25 x}$. The frequency and polarization of the wave, respectively, are
(A) 1.2 GHz and left circular
(B) 4 Hz and left circular
(C) 1.2 GHz and right circular
(D) 4 Hz and right circular

Answer:- (A)
22. A plane wave propagating in air with $\vec{E}=\left(8 \hat{a}_{x}+6 \hat{a}_{y}-5 \hat{a}_{z}\right) e^{j(\omega t+3 x+4 y)} V / m$ is incident on a perfectly conducting slab positioned at $x \leq 0$. The $\bar{E}$ field of the reflected wave is
(A) $\left(-8 \hat{a}_{x}-6 \hat{a}_{y}-5 \hat{a}_{z}\right) e^{j(\omega t+3 x+4 y)} V / m$
(B) $\left(-8 \hat{a}_{x}-6 \hat{a}_{y}-5 \hat{a}_{z}\right) e^{j(\omega t+3 x+4 y)} V / m$
(C) $\left(-8 \hat{a}_{x}+6 \hat{a}_{y}-5 \hat{a}_{z}\right) e^{j(\omega t-3 x-4 y)} V / m$
(D) $\left(-8 \hat{a}_{x}-6 \hat{a}_{y}-5 \hat{a}_{z}\right) e^{j(\omega t-3 x-4 y)} V / m$

Answer:-
23. In a baseband communications link, frequencies upto 3500 Hz are used for signaling. Using a raised cosine pulse with $75 \%$ excess bandwidth and for no inter-symbol interference, the maximum possible signaling rate in symbols per seconds is
(A) 1750
(B) 2625
(C) 4000
(D) 5250

Answer:- (C)

[^4]24. The power spectral density of a real process $X(t)$ for positive frequencies is shown below. The values of $E\left[X^{2}(t)\right]$ and $[E[X(t)]]$, respectively, are

(A) $6000 / \pi, 0$
(B) $6400 / \pi, 0$
(C) $6400 / \pi, 20 /(\pi \sqrt{2})$
(D) $6000 / \pi, 20 /(\pi \sqrt{2})$

Answer:- (B)
25. The current $i_{b}$ through the base of a silicon npn transistor is $1+0.1$ $\cos (10000 \pi \mathrm{t}) \mathrm{mA}$. At 300 K , the $\mathrm{r}_{\pi}$ in the small signal model of the transistor is

(A) $250 \Omega$
(B) $27.5 \Omega$
(C) $25 \Omega$
(D) $22.5 \Omega$

Answer:- (C)

## Q.No. 26 - 55 Carry Two Marks Each

26. Given that
$A=\left[\begin{array}{cc}-5 & -3 \\ 2 & 0\end{array}\right]$ and $I=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$, the value of $A^{3}$ is
(A) $15 \mathrm{~A}+12 \mathrm{I}$
(B) $19 \mathrm{~A}+30 \mathrm{I}$
(C) $17 \mathrm{~A}+15 \mathrm{I}$
(D) $17 \mathrm{~A}+21 \mathrm{I}$

Answer:- (B)
27. The maximum value of $f(x)=x 3-9 x^{2}+24 x+5$ in the interval $[1,6]$ is
(A) 21
(B) 25
(C) 41
(D) 46

Answer:- (B)

[^5]28. If $V_{A}-V_{B}=6 V$, then $V_{C}-V_{D}$ is

(A) -5 V
(B) 2 V
(C) 3 V
(D) 6 V

Answer:- (A)
29. The voltage gain $A V$ of the circuit shown below is

$$
\text { (A) }\left|A_{V}\right| \approx 200
$$

(B) $\left|A_{v}\right| \approx 100$
(C) $\left|A_{v}\right| \approx 20$
(D) $\left|A_{v}\right| \approx 10$

Answer:- (D)
30. The state transition diagram for the logic circuit shown is

(A)

(B)

(C)

(D)


Answer:- (D)

[^6]31. Let $\mathrm{y}[\mathrm{n}]$ denote the convolution of $\mathrm{h}[\mathrm{n}]$ and $\mathrm{g}[\mathrm{n}]$, where $\mathrm{h}[\mathrm{n}]=(1 / 2)^{\mathrm{n}} \mathrm{u}[\mathrm{n}]$ and $g[n]$ is a causal sequence. If $y[0]=1$ and $y[1]=1 / 2$, then $g[1]$ equals
(A) 0
(B) $1 / 2$
(C) 1
(D) $3 / 2$

Answer:- (A)
32. The circuit shown is a

(A) low pass filter with $f_{3 d B}=\frac{1}{\left(R_{1}+R_{2}\right) C} \mathrm{rad} / \mathrm{s}$
(B) high pass filter with $f_{3 d B}=\frac{1}{R_{1} C} \mathrm{rad} / \mathrm{s}$
(C) low pass filter with $f_{3 d B}=\frac{1}{R_{1} C} \mathrm{rad} / \mathrm{s}$
(D) high pass filter with $f_{3 d B}=\frac{1}{R_{1} C} \mathrm{rad} / \mathrm{s}$

## Answer:- (B)

33. The magnetic field along the propagation direction inside a rectangular waveguide with the cross section shown in the figure is
$H_{z}=3 \cos \left(2.094 \times 10^{2} x\right) \cos \left(2.618 \times 10^{2} y\right) \cos \left(6.283 \times 10^{10} t-\beta z\right)$


The phase velocity $V_{F}$ of the wave inside the waveguide satisfies
(A) $\mathrm{v}_{\mathrm{p}}>\mathrm{c}$
(B) $\mathrm{v}_{\mathrm{p}}=\mathrm{c}$
(C) $0<\mathrm{v}_{\mathrm{p}}=\mathrm{c}$
(D) $\mathrm{v}_{\mathrm{p}}=0$

Answer:- (A)
34. The signal $m(t)$ as shown is applied both to a phase modulator (with kp as the phase constant) and a frequency modulator (with $\mathrm{k}_{f}$ as the frequency constant) having the same carrier frequency


[^7]The ratio $\mathrm{k}_{\mathrm{p}} / \mathrm{k}_{f}$ (in rad/Hz) for the same maximum phase deviation is
(A) $8 \pi$
(B) $4 \pi$
(C) $2 \pi$
(D) $\pi$

Answer:- (B)
35. A binary symmetric channel (BSC) has a transition probability of $1 / 8$. If the binary transmit symbol $X$ is such that $P X=0)=9 / 10$, then the probability of error for an optimum receiver will be
(A) $7 / 80$
(B) $63 / 80$
(C) $9 / 10$
(D) $1 / 10$

Answer:-
36. In the CMOS circuit shown, electron and hole mobilities are equal, and M1 and M2 are equally

(A) $\mathrm{V}_{\text {in }}<1.875 \mathrm{~V}$
(B) $1.87 \mathrm{~V}<\mathrm{V}_{\text {in }}<3.125 \mathrm{~V}$
(C) $V_{\text {in }}>3.125 \mathrm{~V}$
(D) $0<V_{i n}, 5 V$

Answer:- (A)
37. A fair coin is tossed till a head appears for the first time. The probability that the number of required tosses is odd, is
(A) $1 / 3$
(B) $1 / 2$
(C) $2 / 3$
(D) $3 / 4$

Answer:- (C)
38. The direction of vector $A$ is radially outward from the origin, with $|A|=k r^{n}$ where $r^{2}=x^{2}+y^{2}+z^{2}$ and $k$ is a constant. The value of $n$ for which $\nabla \cdot A=0$ is
(A) -2
(B) 2
(C) 1
(D) 0

Answer:- (D)
39. Consider the differential equation
$\frac{d^{2} y(t)}{d t^{2}} 2 \frac{d y(t)}{d t}+y(t)=\delta(t)$ with $\left.y(t)\right|_{t=0^{-}}=-2$ and $\left.\frac{d y}{d t}\right|_{t=0}=0$
The numerical value of $\left.\frac{d y}{d t}\right|_{t=0}$ is
(A) -2
(B) -1
(C) 0
(D) 1

Answer:- (D)

[^8]40. Assuming both the voltage sources are in phase, the value of $R$ for which maximum power is transferred from circuit $A$ to circuit $B$ is

(A) $0.8 \Omega$
(B) $1.4 \Omega$
(C) $2 \Omega$
(D) $2.8 \Omega$

Answer:-
41. The state variable description of an LTI system is given by

$$
\begin{gathered}
\left(\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{3}
\end{array}\right)=\left(\begin{array}{ccc}
0 & a_{1} & 0 \\
0 & 0 & a_{2} \\
a_{3} & 0 & 0
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)+\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) u \\
y=\left(\begin{array}{lll}
1 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)
\end{gathered}
$$

where y is the output and u is the input. The system is controllable for
(A) $a_{1} \neq 0, a_{2}=0, a_{3} \neq 0$
(B) $a_{1}=0, a_{2} \neq 0, a_{3} \neq 0$
(C) $\mathrm{a}_{1}=0, \mathrm{a}_{2} \neq 0, \mathrm{a}_{3}=0$
(D) $a_{1} \neq 0, a_{2} \neq 0, a_{3}=0$

Answer:- (D)
42. The fourier transform of a signal $h(t)$ is $H(j \omega)=(2 \cos \omega)(\sin 2 \omega) / \omega$. The value of $h(0)$ is
(A) $1 / 4$
(B) $1 / 2$
(C) 1
(D) 2

Answer:- (C)
43. The feedback system shown below oscillates at $2 \mathrm{rad} / \mathrm{s}$ when

(A) $K=2$ and $a=0.75$
(B) $\mathrm{K}=3$ and $\mathrm{a}=0.75$
(C) $\mathrm{K}=4$ and $\mathrm{a}=0.5$
(D) $K=2$ and $a=0.5$

Answer:- (A)

[^9]44. The input $x(t)$ and output $y(t)$ of a system are related as $y(t)=$ $\int_{-\infty}^{t} x(\tau) \cos (3 \tau) d \tau$. The system is
(A) time-invariant and stable
(B) stable and not time-invariant
(C) time-invariant and not stable
(D) not time-invariant and not stable

Answer:- (B)
45. A transmission line with a characteristic impedance of $100 \Omega$ is used to match a $50 \Omega$ section to a $200 \Omega$ section. If the matching is to be done both at 429 MHz and 1 GHz , the length of the transmission= line can be approximately
(A) 82.5 cm
(B) 1.05 m
(C) 1.58 cm
(D) 1.75 m

## Answer:-

46. A BPSK scheme operating over an AWGN channel with noise power spectral density of $N_{0} / 2$, uses equiprobable signals $s_{1}(t)=\sqrt{\frac{2 \mathrm{E}}{T}} \sin \left(\omega_{c} t\right)$ and $s_{2}(t)=-\sqrt{\frac{2 \mathrm{E}}{\mathrm{T}}} \sin \left(\omega_{\mathrm{c}} \mathrm{t}\right)$ over the symbol interval $(0, T)$. If the local oscillator in a coherent receiver a head in phase by $45^{\circ}$ with respect to the received signal, the probability of error in the resulting system is
(A) $\mathrm{Q}\left(\sqrt{\frac{2 \mathrm{E}}{\mathrm{N}_{0}}}\right)$
(B) $\mathrm{Q}\left(\sqrt{\frac{\mathrm{E}}{\mathrm{N}_{0}}}\right)$
(C) $Q\left(\sqrt{\frac{E}{2 N_{0}}}\right)$
(D) $Q\left(\sqrt{\frac{E}{4 N_{0}}}\right)$

Answer:- (B)
47. The source of a silicon $\left(n_{i}=10^{10}\right.$ per $\left.\mathrm{cm}^{3}\right) \mathrm{n}$-channel MOS transistor has an area of $1 \mathrm{sq} \mu \mathrm{m}$ and a depth of $1 \mu \mathrm{~m}$. If the dopant density in the soured is $10^{19} / \mathrm{cm}^{3}$, the number of holes in the source region with the above volume is approximately
(A) $10^{7}$
(B) 100
(C) 10
(D) 0

Answer:- (D)

## Common Data for Questions: 48 \& 49

In the three dimensional view of a silicon n-channel MOS transistor shown below, $\delta=20 \mathrm{~nm}$
The transistor is of width $1 \mu \mathrm{~m}$.
The depletion width formed at every $\mathrm{p}-\mathrm{n}$ junction is 10 nm . The relative permitivities of Si and $\mathrm{SiO}_{2}$, respectively, are 11.7 and 3.9 , and $\varepsilon_{0}=8.9 \times 10^{-12} \mathrm{~F} / \mathrm{m}$

[^10]
48. The source-body junction capacitance is approximately
(A) 2 fF
(B) 7fF
(C) 2 pF
(D) 7 pF

Answer:- (A)
49. The gate-source overlap capacitance is approximately
(A) 0.7 fF
(B) 0.7 pF
(C) 0.35 fF
(D) 0.24 pF

## Answer:- (A)

## Common Data Questions: 50 \& 51

With 10 V dc connected at port A in the linear nonreciprocal two-port network shown below, the following were observed:
(i) $1 \Omega$ connected at port B draws a current of 3 A
(ii) $2.5 \Omega$ connected at port B draws a current of 2 A

50. For the same network, with 6 V dc connected at port $\mathrm{A}, 1 \Omega$ connected at port $B$ draws $7 / 3 \mathrm{~A}$. If 8 V dc is connected to port A , the open circuit voltage at port $B$ is
(A) 6 V
(B) 7 V
(C) 8 V
(D) 9 V

## Answer:-

51. With 10 V dc connected at port A , the current drawn by $7 \Omega$ connected at port $B$ is
(A) $3 / 7 \mathrm{~A}$
(B) $5 / 7 \mathrm{~A}$
(C) 1 A
(D) $9 / 7 \mathrm{~A}$

Answer:- (C)

[^11]
## Statement for linked Answer Questions: 52 \& 53

The transfer function of a compensator is given as $G_{C}(s)=\frac{s+a}{s+b}$
52. $G_{C}(S)$ is a lead compensator if
(A) $a=1, b=2$
(B) $a=3, b=2$
(C) $a=-3, b=-1$
(D) $a=3, b=1$

Answer:- (A)
53. The phase of the above lead compensator is maximum at
(A) $\sqrt{2} \mathrm{rad} / \mathrm{s}$
(B) $\sqrt{3} \mathrm{rad} / \mathrm{s}$
(C) $\sqrt{6} \mathrm{rad} / \mathrm{s}$
(D) $1 / \sqrt{3} \mathrm{rad} / \mathrm{s}$

Answer:- (A)

## Statement for Linked Answer Questions: 54 \& 55

An infinitely long uniform solid wire of radius a carries a uniform dc current of density.
54. The magnetic field at a distance $r$ from the center of the wire is proportional to
(A) $r$ for $r<a$ and $1 / r^{2}$ for $r>a$
(B) 0 for $r<a$ and $1 / r$ for $r>a$
(C) $r$ for $r<a$ and $1 / r$ for $r>a$
(D) 0 for $r<a$ and $1 / r^{2}$ for $r>a$

Answer:- (C)
55. A hole radius $b(b<a)$ is now drilled along the length of the wire at a distance $d$ from the centre of the wire as shown below.


The magnetic field inside the hole is
(A) uniform and depends only on d
(B) uniform and depends only on b
(C) uniform and depends on both b and d
(D) non uniform

Answer:- (B)

[^12]
## Q. No. 56-60 Carry One Mark Each

56. Which one of the following options is the closest in meaning to the word given below?
Latitude
(A) Eligibility
(B) Freedom
(C) Coercion
(D) Meticulousness

Answer:- (B)
57. One of the parts (A, B, C, D) in the sentence given below contains an ERROR. Which one the following is INCORRECT?
I requested that the should be given the driving test today instead of tomorrow.
(A) requested that
(B) should be given
(C) the driving test
(D) instead of tomorrow

Answer:- (B)
58. If $(1.001)^{1259}=3.52$ and $(1.001)^{2062}=7.85$, then $(1.001)^{3321}=$
(A) 2.23
(B) 4.23
(C) 11.37
(D) 27.64

Answer:- (D)
Exp:- let $1.001=x$
$x^{1259}=3.52$ and $x^{2062}=7.85$
$x^{3321}=x^{1259} \cdot x^{2062}=3.52 \times 7.85=27.64$
59. Choose the most appropriate alternative from the options given below to complete the following sentence:

If the tried soldier wanted to lie down, he $\qquad$ the mattress out on the balcony
(A) should take
(B) shall take
(C) should have taken
(D) will have taken

Answer:- (C)
60. Choose the most appropriate word from the options given below to comlete the following sentence:

Given the seriousness of the situation that he had to face, his $\qquad$ was impressive.
(A) beggary
(B) nomenclature
(C) jealousy
(D) nonchalance

Answer:- (D)

[^13]
## Q. No. 61 -65 Carry Two Marks Each

61. The data given in the following table summarizes the monthly budget of an average household.

| Category | Amount (Rs) |
| :--- | :---: |
| Food | 4000 |
| Clothing | 1200 |
| Rent | 2000 |
| Savings | 1500 |
| Other expenses | 1800 |

The approximate percentage of the monthly budget NOT spent on saving is
(A) $10 \%$
(B) $14 \%$
(C) $81 \%$
(D) $86 \%$

Answer:- (D)
Exp:- Total budget $=10,500$
Expenditure other than savings $=9000$
Hence, $\frac{9000}{10500}=86 \%$
62. $A$ and $B$ are friends. They decide to meet between 1 PM and 2 PM on a given day. There is a condition that whoever arrives first will not wait for the other for more than 15 minutes. The probability that they will meet on that day is
(A) $1 / 4$
(B) $1 / 16$
(C) $7 / 16$
(D) $9 / 16$

Answer:- (C)
R

$O B$ is the line when both $A$ and $B$ arrive at same time.
Total sample space $=60 \times 60=3600$
Favourable cases $=$ Area of OABC - Area of PQRS

$$
=3600-2 \times\left(\frac{1}{2} \times 45 \times 45\right)=1575
$$

$\therefore$ The required probability $=\frac{1575}{3600}=\frac{7}{16}$

[^14]63. One of the legacies of the Roman legions was discipline. In the legions, military law prevailed and discipline was brustal. Discipline on the battlefield kept units obedient, intact and fighting, even when the odds and conditions were against them.

Which one of the following statements best sums up the meaning of the above passage?
(A) Through regimentation was the main reason for the efficiency of the Roman legions even in adverse circumstances.
(B) The legions were treated inheritance from their seniors.
(C) Discipline was the armies' inheritance from their seniors.
(D) The harsh discipline to which the legions were subjected to led to the odds and conditions being against them.

Answer:- (A)
64. Raju has 14 currency notes in his pocket consisting of only Rs. 20 notes and Rs. 10 notes. The total money value of the notes is Rs.230. The number of Rs. 10 notes that Raju has is
(A) 5
(B) 6
(C) 9
(D) 10

Answer:- (A)
Exp:- Let the number of Rs. 20 notes be $x$ and Rs. 10 notes be $y$
$20 x+10 y=230$
$x+y=14$
$x=9$ and $y=5$
Hence the numbers of 10 rupee notes are 5
65. There are eight bags of rice looking alike, seven of which have equal weight and one is slightly heavier. The weighting balance is of unimited capacity. Using this balance, the minimum number of weighings required to identify the heavier bag is
(A) 2
(B) 3
(C) 4
(4) 8

Answer:- (A)
Let us categorize the bags in three groups as
$\mathrm{A}_{1} \mathrm{~A}_{2} \mathrm{~A}_{3}$
$B_{1} B_{2} B_{3}$
$\mathrm{C}_{1} \mathrm{C}_{2}$
$1^{\text {st }}$ weighing A vs $B$

## Case-1

$\mathrm{A}_{1} \mathrm{~A}_{2} \mathrm{~A}_{3}=\mathrm{B}_{1} \mathrm{~B}_{2} \mathrm{~B}_{3}$
Then either $C_{1}$ or $C_{2}$ is heavier
$2^{\text {nd }}$ weighing
$\mathrm{C}_{1}$ vs $\mathrm{C}_{2} \quad \mathrm{~A}_{1}$ vs $\mathrm{A}_{2}$
If $C_{1}>C_{2}$, then $C_{1} \quad$ If $A_{1}=A_{2}$, then $A_{3}$
If $C_{1}<C_{2}$, then $C_{2} \quad$ If $A_{1}>A_{2}$, then $A_{1}$ If $A_{1}<A_{2}$, then $A_{2}$

Case -2
$\mathrm{A}_{1} \mathrm{~A}_{2} \mathrm{~A}_{3} \neq \mathrm{B}_{1} \mathrm{~B}_{2} \mathrm{~B}_{3}$
Either A or B would be heavier(Say A >B)

$$
\begin{aligned}
& \text { If } A_{1}=A_{2} \text {, then } A_{3} \\
& \text { If } A_{1}>A_{2} \text {, then } A_{1}
\end{aligned}
$$

[^15]© All rights reserved by GATE Forum Educational Services Pvt. Ltd. No part of this booklet may be reproduced or utilized in any form without the written permission.


[^0]:    $\downarrow$ Correspondence Course $\downarrow$ All India Test Series $\downarrow$ Classroom Coaching $\downarrow$ eTutor-Online Classes

[^1]:    $\uparrow$ Correspondence Course $\uparrow$ All India Test Series $\uparrow$ Classroom Coaching $\uparrow$ eTutor-Online Classes
    © All rights reserved by GATE Forum Educational Services Pvt. Ltd. No part of this booklet may be reproduced or utilized in any form without the written permission.

[^2]:    $\uparrow$ Correspondence Course $\uparrow$ All India Test Series $\downarrow$ Classroom Coaching $\uparrow$ eTutor-Online Classes
    © All rights reserved by GATE Forum Educational Services Pvt. Ltd. No part of this booklet may be reproduced or utilized in any form without the written permission.

[^3]:    $\uparrow$ Correspondence Course $\uparrow$ All India Test Series $\uparrow$ Classroom Coaching $\uparrow$ eTutor-Online Classes
    © All rights reserved by GATE Forum Educational Services Pvt. Ltd. No part of this booklet may be reproduced or utilized in any form without the written permission.

[^4]:    $\uparrow$ Correspondence Course $\uparrow$ All India Test Series $\downarrow$ Classroom Coaching $\uparrow$ eTutor-Online Classes
    © All rights reserved by GATE Forum Educational Services Pvt. Ltd. No part of this booklet may be reproduced or utilized in any form without the written permission.

[^5]:    $\uparrow$ Correspondence Course $\uparrow$ All India Test Series $\uparrow$ Classroom Coaching $\uparrow$ eTutor-Online Classes
    © All rights reserved by GATE Forum Educational Services Pvt. Ltd. No part of this booklet may be reproduced or utilized in any form without the written permission.

[^6]:    $\uparrow$ Correspondence Course $\uparrow$ All India Test Series $\uparrow$ Classroom Coaching $\uparrow$ eTutor-Online Classes
    © All rights reserved by GATE Forum Educational Services Pvt. Ltd. No part of this booklet may be reproduced or utilized in any form without the written permission.

[^7]:    $\uparrow$ Correspondence Course $\uparrow$ All India Test Series $\uparrow$ Classroom Coaching $\uparrow$ eTutor-Online Classes
    © All rights reserved by GATE Forum Educational Services Pvt. Ltd. No part of this booklet may be reproduced or utilized in any form without the written permission.

[^8]:    $\uparrow$ Correspondence Course $\uparrow$ All India Test Series $\downarrow$ Classroom Coaching $\uparrow$ eTutor-Online Classes
    © All rights reserved by GATE Forum Educational Services Pvt. Ltd. No part of this booklet may be reproduced or utilized in any form without the written permission.

[^9]:    $\uparrow$ Correspondence Course $\uparrow$ All India Test Series $\uparrow$ Classroom Coaching $\uparrow$ eTutor-Online Classes
    © All rights reserved by GATE Forum Educational Services Pvt. Ltd. No part of this booklet may be reproduced or utilized in any form without the written permission.

[^10]:    $\uparrow$ Correspondence Course $\downarrow$ All India Test Series $\uparrow$ Classroom Coaching $\uparrow$ eTutor-Online Classes
    © All rights reserved by GATE Forum Educational Services Pvt. Ltd. No part of this booklet may be reproduced or utilized in any form without the written permission.

[^11]:    $\uparrow$ Correspondence Course $\uparrow$ All India Test Series $\uparrow$ Classroom Coaching $\uparrow$ eTutor-Online Classes
    © All rights reserved by GATE Forum Educational Services Pvt. Ltd. No part of this booklet may be reproduced or utilized in any form without the written permission.

[^12]:    $\uparrow$ Correspondence Course $\uparrow$ All India Test Series $\uparrow$ Classroom Coaching $\uparrow$ eTutor-Online Classes
    © All rights reserved by GATE Forum Educational Services Pvt. Ltd. No part of this booklet may be reproduced or utilized in any form without the written permission.

[^13]:    $\uparrow$ Correspondence Course $\uparrow$ All India Test Series $\uparrow$ Classroom Coaching $\uparrow$ eTutor-Online Classes
    © All rights reserved by GATE Forum Educational Services Pvt. Ltd. No part of this booklet may be reproduced or utilized in any form without the written permission.

[^14]:    $\uparrow$ Correspondence Course $\uparrow$ All India Test Series $\uparrow$ Classroom Coaching $\uparrow$ eTutor-Online Classes
    © All rights reserved by GATE Forum Educational Services Pvt. Ltd. No part of this booklet may be reproduced or utilized in any form without the written permission.

[^15]:    \& Correspondence Course $\downarrow$ All India Test Series $\downarrow$ Classroom Coaching $\uparrow$ eTutor-Online Classes

