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Abstract In this paper we show that chlorophyll a
fluorescence signals analysed with the self-organizing
map (SOM) can be used as a routine tool for the
monitoring and classification of pea varieties (Pisum
sativum) according to their degree of resistance against
drought stress. Fluorescence kinetics measurements were
obtained from non-stressed plants. The aim of this study
is to evaluate the applicability of artificial intelligence
techniques in eco-physiological research. Our goal is to
provide a fast tool that will contribute to the knowledge
needed to develop strategies that would help to decrease
the impact of environmental stress in agriculture and
forestry.

Keywords Artificial neural networks · Chlorophyll a
fluorescence · Drought stress · JIP-test · O-J-I-P
fluorescence rise · Pea · Pisum sativum · Plants ·
Self-organizing map (SOM)

Introduction

Nowadays there is a need for fast methods in plant health
status survey, plant selection and classification tasks such
as breeding, somatic embryogenesis, and genetic engi-
neering. One such method is the analysis of the polypha-
sic chlorophyll a fluorescence rise (Strasser et al. 1995)
by the JIP-test (Strasser et al. 2000), which has proven to
be a valuable tool in plant vitality monitoring. Although
the data used are characteristic of the fluorescence

transient, the JIP-test does not exploit the whole infor-
mation stored in the kinetics of the curve. Here we present
a novel approach that makes use of the full characteristics
of the fluorescence rise. Recently, it has been shown that
fluorescence signals can be considered as a built-in
“barcode” of the physiological characteristics of plants
and can be used for taxonomic purposes (Tyystj�rvi et al.
1999). Hence, in this paper we proceeded to classify
chlorophyll a fluorescence induction curves on the basis
of the whole information they carry.

Artificial neural networks are ideal for analysing the
vast quantities of data provided by chlorophyll fluores-
cence measurements, and can make identifications in
near-real time. The Kohonen’s self-organizing map
(SOM; Kohonen 1982) is an unsupervised artificial neural
network that maps the input space data into clusters in a
topological form, whose organization is related to trends
in the input data, and can be used for reducing dimen-
sionality and revealing clusters in datasets. A plant
classifier based on a modified SOM method for classi-
fying reflectance patterns of crops and weeds was recently
proposed by Moshou et al. (2001).

In this paper we have used a self-organizing map to
classify fluorescence induction curves measured with a
portable fluorometer from eight, previously well-deter-
mined and physiologically characterized breeding lines of
pea plants (Sanchez et al. 1998). These eight lines were
classified according to their capability to resist against
drought stress into three classes: resistant, intermediate
and sensitive. Their capability to resist against drought
stress was determined by analysing the osmotic adjust-
ment and turgor maintenance of the studied pea cultivars
in order to characterise their physiological response. This
is a process that demands much experimental work and
consumes a lot of time.

On the other hand, measuring and processing fluores-
cence data is a fast routine. The fluorescence data from
the eight P. sativum varieties were used to generate a self-
organizing map. The neurons in the map show well-
defined patterns reflecting the varieties of peas grouped
according to their drought-stress resistance classes. The
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measured in-situ and in-vivo chlorophyll a fluorescence
signals are registered with a portable fluorimeter which
makes the analysis suitable for field applications. We
extracted geometric features contained in the fluorescence
transient for creating a self-organizing map in order to
generate natural clusters of the input data. The plant
samples were systematically and objectively identified
according to their resistance capability against drought
stress. It is noteworthy that the plant material used for the
fluorescence measurements was not exposed to drought
stress. The major goal of this study was to evaluate the
applicability of recently developed artificial intelligence
techniques in plant research, in order to provide a fast tool
that will contribute to the knowledge needed to develop
strategies that would decrease the impact of biotic and
abiotic stress in plants. In this frame, it can be used to
adapt agricultural and forestry practices to cope with
fluctuations of local environmental conditions as a result
of predicted global climate changes.

Experimental

Plant material

The experiments were performed with eight varieties of
pea plants (Pisum sativum). Plants were grown in 15-cm-
diameter pots containing vermiculite (three plants per pot,
six replicates for each assay) under greenhouse condi-
tions: 23/16 �C, day/night in a 14/10 h photoperiod, HFI
Hg lamps 400 W. The plants were watered every 2 days
with tap water.

Leaf water relations

When the plants were 21 days old, drought was imposed
by withholding water. At the onset and at various times
during the water-stress period, usually 4, 7, 10 and
14 days after the treatment was initiated, leaflets from the
first and second expanded leaf were sampled. The
genotypic variation in turgor maintenance was deter-
mined as the slope of the correlation line between turgor
potential and water potential of the investigated pea
varieties grown under drought-stress conditions. The
osmotic adjustment was measured as the difference
between the osmotic potential at saturation in watered
plants and the osmotic potential of plants with 70%
relative water content. The fresh weight, dry weight, and
turgid weight were used to measure the relative water
content. The environmental water potential and osmotic
potential was determined using psychrometric chambers
connected to a CR7 measurement and Campbell Scien-
tific control unit according to Sanchez et al. (1998). The
varieties were characterized and classified into stress
resistance classes according to their osmotic adjustment
and turgor maintenance response.

Chlorophyll a fluorescence

A fast chlorophyll fluorescence screening routine was
carried out with fully mature, attached leaves from each
plant on the fifth week after germination. No stress
treatment was applied for these experiments. All cultivars
were measured under identical conditions. The plants
were dark adapted for 60 min prior to measurements. The
chlorophyll a fluorescence kinetics measurements were
conducted with a portable fluorimeter. The measurements
were done on the top and bottom leaves of the plants and
analysed separately. The fluorescence transients O-J-I-P
were induced by excitation pulses (1-s duration) of red
light (peak at 640 nm), which was provided by an array of
six light-emitting diodes (600 W m�2) focused on an area
of 4-mm diameter of the sample surface (Strasser et al.
1995). The fluorescence signals were detected using a
PIN photodiode after passing through a long-pass filter
(50% transmission at 750 nm).

The JIP-test

The JIP-test is a screening procedure that is based on the
measurement of the fast fluorescence rise that all
oxygenic photosynthetic material investigated so far
shows. It provides information about the structure and
function of photosystem II (Strasser et al. 2000). From the
stored fluorescence points (data acquisition resolution
10 ms for the first 200 points and 1 ms afterwards) during
the first second, selected values are retained as data. They
are used for the calculation of several phenomenological
and biophysical expressions leading to a dynamic de-
scription of a photosynthetic sample at a given physio-
logical state. These values are the maximal measured
fluorescence intensity, FP, which can be denoted as FM
since the excitation intensity is high enough to permit the
closure of all reaction centres; the fluorescence intensity
at 50 ms, considered to be F0, i.e. the intensity when all
reaction centres are open; the fluorescence intensity at
150 ms, 300 ms, and 2 ms (denoted as FJ); the time to reach
the maximal fluorescence intensity (tFmax); the area
between the fluorescence transient and the level of
maximal fluorescence intensity. Based on the theory of
energy fluxes in biomembranes (Strasser 1978), formulae
for the specific energy fluxes (per photosystem II reaction
centre) and phenomenological energy fluxes (per excited
cross section, i.e. per active measured leaf area) as well as
for the flux ratios or yields have been derived using the
experimental values provided from the JIP-test.

Software

The JIP-test analysis was performed using the BIOLYZ-
ER software developed by R. Maldonado-Rodriguez and
freely available at www.unige.ch/sciences/biologie/bioen/
bioindex.html. For the generation of self-organizing
maps, each measured fluorescence curve was divided
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into 10 intervals and the geometric characteristics (slope
and intercept) of each interval were used to define a 20-
component vector of features for each fluorescence curve
using a computer-based program that we wrote specially
for this purpose. The feature vectors were fed into the
self-organizing map toolbox (T. Kohonen, J. Hynninen, J.
Kangas, J. Laaksonen, 2002, SOM_PAK available at
www.cis.hut.fi/nnrc/nnrc-programs.html) in order to gen-
erate a two-dimensional topological feature map (see
inset of Fig. 1). The clusters in the map were quantified
by their density distribution according to their stress
resistance class (Fig. 2).

Results and discussion

Screening with the JIP-test

Applying the JIP-test analysis to all of the measured O-J-
I-P chlorophyll a fluorescence transients (Fig. 1), it was
found that there is a strong dependency of each of the JIP-
test parameters on the energetic state of the photosyn-
thetic material (data not shown). As we observed a
differential behaviour of top and bottom leaves with
respect to these parameters, we used as criterion the ratio
of the performance index (PI) of the top leaves to the
performance index of the bottom leaves, and we found
two main drought stress-sensitivity classes: (PItop)/
(PIbottom) values around 1.65 correspond to plants with
high response (sensitive), and (PItop)/(PIbottom) values
around 1.1 correspond to plants with low response
(resistant).

Screening with the self-organizing map
neural network plots

Two self-organizing map plots containing 30�30 neurons
were generated using the measured fluorescence curves
corresponding to two levels of plant height; for illustra-
tion purposes we show only top and bottom leaf maps, but
the method could give more insights into the self-
organizing map response of the leaves at different levels
of plant height. Both maps presented highly ordered
groups reflecting pea varieties, as shown in the inset of
Fig. 1, where a self-organizing map generated with
fluorescence curves measured in bottom leaves is pre-
sented. It was observed that the pea varieties were
distributed in the map according to their pertaining to a
stress resistance class. The horizontal axis of the self-
organizing map in the inset of Fig. 1 is visually polarized
into more darkly shaded zones, showing resistant varieties
to the right, and lighter shading zones showing sensitive
varieties to the left of the map. Each class consists of 600
neurons, shown in dark shading areas for resistant, closed
areas for intermediate, and light shading areas for
sensitive. We calculated the distribution of the density
of the neurons, and their classification was done based on
the polarization of the map in three major blobs.

Figure 2 shows the cumulative appearance of the input
data grouped into three stress classes relative to their
distribution along the abscissa: lightly shaded circles
represent the sensitive group, closed triangles the inter-
mediate group, and darkly shaded squares the resistant
group. The position of the mean density value (300
neurons) is marked with big circles, and the standard

Fig. 1 Chlorophyll a fluorescence transients measured from eight
pea varieties. The inset shows the generated self-organizing map.
Darkly shaded areas correspond to stress-resistant groups, lightly
shaded areas to sensitive, and closed areas to intermediate-
resistance cultivars

Fig. 2 The figure shows the integrated area of self-organizing map
stress clusters according to their density distribution in the
topological feature map. The three mean density values are
extracted from this plot and used for quantifying stress resistance
of the studied pea cultivars
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deviation s=€33% is indicated with horizontal dashed
lines at the position 540 and 90 of the vertical axis.

Self-organizing map and leaf water relations

In Fig. 3 we plotted the response of the eight P. sativum
varieties, quantified by the ratio (osmotic adjustment)/
(turgor maintenance) (left vertical axis) versus the degree
of their resistance against drought stress. The mean value
of the integrated neural density for each drought resis-
tance class from Fig. 1 was also plotted for comparison
(see right vertical axis in Fig. 3). The plotted results in the
inset of Fig. 3 show a high linear correlation between the
drought-stress classes, determined by using the osmotic
adjustment and turgor maintenance responses of the
studied cultivars, and the mean values of the density
distribution of the groups, determined by topological
analysis of the self-organizing fluorescence features map.
This provides strong evidence of the high potential of the
self-organizing map for classifying pea varieties accord-
ing to their genetically inherited capability to resist
against drought stress. We also evaluated here the
response of the two sides of the leaves for all of the
studied varieties (data not shown). Fluorescence finger-
prints of the upper and lower surfaces of a leaf are
different in shape and intensity. Despite this fact, we
found similar classification results using fluorescence
signals sampled from the upper and lower leaf sides.

Our results show that the analysis and quantitative
determination of stress resistance in pea varieties is

possible using chlorophyll fluorescence techniques com-
bined with an artificial neural network approach. Based
on the idea that fluorescence signals intrinsically carry
information on the physiological state of vegetation
samples, we propose a neural network approach for
quantitative determination of resistance against drought
stress of pea plants, utilising the polyphasic fluorescence
transient of 1 second. Comparative studies for individual
samples, e.g. top versus bottom leaves or stressed vs. non-
stressed samples, have been conducted. Comparative
studies of whole groups of cultivars, e.g. here the varieties
1 to 8, are most efficiently analysed and quantified by
self-organizing map neural network. Since the geometric
features extracted from the fluorescence curves form the
input data for the self-organizing map, the capability of
the map to reflect plant varieties can be improved by
modifying or extending the experimental protocol for
collecting fluorescence signals, e.g. by using actinic light
of different duration, applying flash repetitions, and
comparing data from dark- and light-adapted leaves.

The photosynthetic potential of a plant can be used as
an environmental bioindicator because it reveals the
presence of stress factors affecting photosynthesis. In-
vivo fluorescence techniques have the advantage that they
are not invasive and that they can be done on all plants at
any time. In this work we show that the recorded
fluorescence signals of a plant reflect functional infor-
mation about the energetic state of the plant and its
genetically inherited capabilities to cope with environ-
mental stress. The actual state of a plant is always
influenced by the environment around it. The specific
response of different plant species to environmental
influences is determined by their genetic, morphological
and physiological characteristics.

Artificial neural network for evaluation of plant stress

Our results demonstrate that different varieties of a same
plant species present differences in their photosynthetic
potential, whose quantification can be achieved with a
biophysical approach: chlorophyll a fluorescence mea-
surements independently analysed with the JIP-test and
the self-organizing map neural network provide well-
comparable results. The applicability of this approach was
also shown in a recent work, revealing the potential of the
self-organizing map to extract quantitative information on
nitrogen fixation and formation of nodules in Vigna
unguiculata plants using fluorescence characteristics as
input data. Generally, information on the specific action
of different stressors, such as light, water and mineral
availability, wind speed, soil and air temperatures, soil
compaction and heavy metals, at different plant levels,
e.g. roots, stems, buds, flowers, fruits and leaves, is
reflected in the functioning of their photosynthetic
apparatus at the level of leaf chloroplasts and can thus
be detected with the approach here presented.

The neural network approach proposed in this work
was based on the extraction of the full geometric

Fig. 3 The osmotic adjustment per turgor maintenance (open
triangles) and the neural network-based parameter (mean value of
the SOM neural density per stress resistance class, shaded dots) for
three drought-stress resistance classes: sensitive, intermediate and
resistant. The inset shows the correlation of the physiological
response parameter with the mean value of the integrated density
determined by the proposed neural network approach
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characteristics of the fluorescence curves from non-
stressed plants. Another approach could include the JIP-
test parameters calculated for each fluorescence transient
as input data or a combination of the geometric features
with the JIP-test parameters. As these parameters are
based on a theoretical consideration of the photosynthetic
apparatus, a self-organizing map generated with the JIP-
test parameters could also help for a better understanding
of the proposed mechanistic models of primary photo-
chemistry.

Conclusions

Chlorophyll a fluorescence has proven to reflect the
activity of primary photochemical reactions. This means
that information about stress effects on plants can be
gathered with fluorescence signals, provided that a
suitable method is applied to extract and reveal this
information. In this paper we report a method for
quantitative and qualitative evaluation of the stress
resistance characteristics of different varieties of one
and the same plant species (peas). The presented neural
network approach with self-organising mapping seems to
be a powerful tool for this purpose. It is fast and can be
fully automised. Our results provide new insights towards
the understanding of the relationship between the photo-
synthetic structure-function of plants and their specific,
genetically inherited characteristics for coping with
drought stress. Further developments of this work include
neural network mapping of biotic and abiotic stress
effects on different plant varieties, and application of the

self-organizing map to the analysis of spatial data
obtained by fluorescence imaging of vegetation.

Acknowledgements The authors thank Prof. L. Ayerbe, Dr. J.L.
Guerrero and Dr. J. Sanchez at the Phytogenetic Resource Centre-
INIA (National Institute for Food and Agriculture Research),
Madrid, Spain, for providing us with the pea seeds used for these
experiments. We are grateful to Dr. M. Tsimilli-Michael for critical
reading of the manuscript and valuable suggestions. This work was
supported by the Swiss National Foundation grant no. 3100-
057040.99, SCOPES 2000–2003 and INTERREG II Project.

References

Kohonen T (1982) Self-organized formation of topologically
correct feature maps. Biol Cybernetics 43:59–69

Moshou D, Vrindts E, De Ketalaere B, De Baerdemaeker J, Ramon
H (2001) A neural network based plant classifier. Computer
Electronics Agric 31:5–16

Sanchez F, Manzanares M, De Andres E, Tenorio J, Ayerbe L
(1998) Turgor maintenance, osmotic adjustment and soluble
sugar and proline accumulation in 49 pea cultivars in response
to water stress. Field Crops Res 59:225–235

Strasser RJ (1978) The grouping model of plant photosynthesis. In:
Akoyunoglou G, Argyroudi-Akoyunoglou JH (eds) Chloroplast
development. Elsevier, Amsterdam, pp 513–538

Strasser RJ, Srivastava A, Govindjee (1995) The polyphasic
chlorophyll a fluorescence transient in plants and cyanobacte-
ria. Photochem Photobiol 61:32–42

Strasser RJ, Srivastava A, Tsimilli-Michael M (2000) The fluores-
cence transient as a tool to characterize and screen photosyn-
thetic samples. In: Mohanty P, Yunus M, Pathre U (eds)
Probing photosynthesis: mechanism, regulation and adaptation.
Taylor & Francis, London, pp 445–483

Tyystj�rvi E, Koski A, Ker�nen M, Nevalainen O (1999) The
Kautsky curve is a built-in barcode. Biophys J 77:1159–1167

205


