
Top 10 Cool New Features
In SQL Anywhere 10
By Breck Carter

TopTen_WhtPaper2.qxd 6/14/06 3:53 PM Page 1

— 2 —

A lot of folks watch the Oscars, not to find out what the best movies are, but to see if their favorites got picked. The
same is true of any “Best Of” or “Top 10”list like this: folks like to see if they've picked the winners, and they get upset
if something really really good got left out.

So be it. Let's deal with that first; here are some of the S L Anywhere 10 new features that got left out of this Top 10
list, and why.

VERSION 10 IS REALLY REALLY BIG
First of all, this is a Top 10 list, not a Top 100 or Top 1000. Version 10 is a huge release, far more extensive than any

previous release of S L Anywhere or any other product in the history of iAnywhere Solutions, and that's counting the
Watcom days. So yes, intra-query parallelism is a really big deal, especially when it helps speed up a rogue OLAP query
that would otherwise bring an OLTP server to its knees... and no, it didn't make the Top 10.

Why not? Well, intra-query parallelism isn't cool in the same way that fuel injection isn't cool; both are great for per-
formance, but mention them to most people and watch their eyes glaze over. Mention cup holders, or 21-inch spinners,
or hot failover (which is on the Top 10 Cool list), and the reaction is completely different.

It might not be fair, but coolness has never been about fairness.
Well, how about those cup holders? If all the new enhancements to Sybase Central aren't cool, what is? What about

the Task List, the ER Diagram tab, the deadlocks display? What about table editor undo? Text completion? The answer
is, there are two kinds of database designers in the world, those who use GUI tools like Sybase Central to work on the
schema, and Old School folks who use text editors to write S L scripts. You guessed it, I'm a Notepad user... well, actu-
ally, I've upgraded to Wordpad in recent years.

But seriously, there have been an enormous number of enhancements made to Sybase Central, enough to convince me
to try using it as part of my regular workday. And you will see some Sybase Central screen shots in the Top 10 Cool list.

THE TROUBLE WITH 10
The real trouble with the number “10” is that it isn't bigger. If it was a bigger number, like “Top 20” or “Top 30”, there

might be room for some of these cool features in the Top 10 list:
• Control over how much BLOB data is stored inline versus separate extension pages.
• BLOB sharing, where two rows that contain the same BLOB value only cause one copy to be stored in the

database.
• Index sharing: no more warnings about redundant indexes because it's not a problem any more.
• MobiLink “Model Mode”, and why I don't want anyone to find out about this.
• Unicode data and the NCHAR data type.
• The CREATE TABLE column COMPRESSED keyword...
• ... and the CREATE TABLE ENCRYPTED keyword.
• The CREATE EXISTING TABLE ... EXISTS TRUE clause produced by dbunload to avoid reload errors.
• Applying all the transaction logs in a folder, without naming them, plus leaving the engine running when

recovery is complete.
• Passing the DEFAULT keyword as an argument in a CALL.
• SELECT * FROM sa_transactions() to see which connections have uncommitted transactions running.
• Web service sessions for maintaining state, plus keep-alive and connection pipelining.

TopTen_WhtPaper2.qxd 6/14/06 3:53 PM Page 2

— 3 —

Just like with the Oscars, you have

to sit through a comic monologue

before hearing who won. And just like

with the Oscars, this comic mono-

logue doesn't actually have to be

funny... you be the judge... here's the

list of the Top 5 Weird New Features in

SQL Anywhere 10:

New passwords are case-sensitive,

old ones are not.

When you create a new user id in

SQL Anywhere 10, or assign a new

password to an old user id, that pass-

word is case-sensitive even if the

database isn't; in other words, the

user ids DBA and dba might be the

same but the passwords SQL and sql

are different. That might qualify for a

Top 10 Most Annoying New Features,

but weird it isn't; this is weird: If you

upgrade an older database, any old

passwords brought over to the new

database remain case-insensitive. So

SQL is the same as sql... for a while...

until you change it. The reason for

this? Well, let's say you set up a pass-

word like sEcReT back in 1996, and

now you've just migrated that data-

base from 5.5 to 10. For ten years it

hasn't mattered if you typed in

SECRET or secret or SeCrEt, and you

surely don't remember what the origi-

nal was... you wouldn't want to be

locked out of your new database,

would you? So it's a good thing...

weird, but good (and the scary part is,

it didn't get fixed during testing, the

engineers thought about it from the

beginning.)

What language *is* that?

The demo database uses "GROUPO"

as the owner name for all the sample

tables like GROUPO.Contacts,

GROUPO.Customers and so on. That's

the letter "O", not a zero. For several

weeks I thought it was a zero. Then I

thought it sounded Spanish, but that

would be "GRUPO". There are 270,000

hits on "groupo" in Google but I still

don't have a clue what it means. Or

why "DBA" wasn't good enough. So it's

not a bad thing, but not a good thing

either, just weird.

You can look at ISYSTAB but

you can't see anything.

The system catalog tables

have been redesigned (that's

in the Top 10 Cool list) and

renamed from SYS.SYS* to

SYS.ISYS*. In some cases, the

renaming went further:

SYS.SYSTABLE is now SYS.ISYS-

TAB. So far, so good... the

weird part is, you cannot do

SELECT * FROM SYS.ISYSTAB.

Doesn't matter if you have

DBA authority, doesn't matter

if you hide it in a view. You

can't do it. That would be

very bad, except they've also

given us a whole set of views

that do work; just drop the "I"

from "ISYS*" as in SELECT *

FROM SYS.SYSTAB. And how

are those views defined?

Exactly like the view I tried to

create, but wasn't allowed:

"create view SYS.SYSTAB as select *

from SYS.ISYSTAB".

The way you upgrade databases

The first step in upgrading a data-

base to SQL Anywhere 10 is to shut

down all database engines that might

be running (and I mean all of them),

and the second step is to run dbun-

load... and that's it, there is no third

step, no other steps at all, except to

start the new database when dbun-

load is done. The dbunload step does

all the work, and it does it fast: 8 min-

utes to upgrade a 400MB database

on a 3.4Ghz laptop, that's not bad in

my opinion. Pretty good in fact... but

don't plan on using the computer to

do much else while this is going on, as

this Task Manager display indicates:

A Little Bit Of Legacy

Speaking of upgrading databases,

one of the new "features" in SQL

Anywhere 10 is that you cannot run

an old database file with the new

database engine. Some

would call that a "bug", but

because the benefits out-

weigh the costs (the

engineers will be able to

concentrate on improvements rather

than legacy support) I prefer to call it

a "gotcha". There is a little bit of lega-

cy built in, however: the version 10

dbunload program can, in fact, unload

directly from a version 9 database file.

To do that, it uses an undocumented

program called dbunlspt.exe, or the

"Adaptive Server Anywhere Database

Unload Support Engine". In the Beta, it

is marked as version 9.0.2.3290 rather

than 10.0.0.2089, and it doesn't have

one of the cool new icons like the

other engines, it still has the older

"SQL" with lightning bolt:

TOP 5 WEIRD NEW FEATURES

DBUNLOAD Makes The Most Of CPU And RAM

TopTen_WhtPaper2.qxd 6/14/06 3:53 PM Page 3

TOP 10 COOL NEW FEATURES
Here are the Top 10 Cool New Features In S L Anywhere and MobiLink list, in NO PARTICULAR ORDER...

1. REDESIGNED SYSTEM CATALOG TABLES
This one's pretty subtle, and just because it's Number 1 in this list doesn't mean it's the coolest feature. . .this list is

randomly ordered because SELECT TOP 10 WHERE cool = 'Y' was hard enough, ORDER BY coolness DESC was just plain
impossible (please, no letters about TOP 10 needing an ORDER BY to work properly, software might have to be deter-
ministic, but there's no such requirement for wetware).

Most folks don't care about the system tables, but they might notice one result: Figure 1 shows that primary and for-

eign key indexes are now included in the Sybase Central Indexes tab. In earlier versions, information about primary and
foreign key indexes was hidden away in dark recesses of the system tables, and not displayed by Sybase Central, but in
S L Anywhere 10 the new ISYSIDX table holds information about all the indexes.

2. SCRIPT-DRIVEN MOBILINK UPLOAD
There are many reasons why MobiLink is better than S L Remote for synchronizing databases. One of those reasons

is stability in the face of schema changes, at least on the consolidated database. And one of the reasons for Mobilink's
improved stability is that the download stream is generated by scripts you write rather than by a synchronization agent
that analyzes the consolidated database transaction log. Log-based synchronization is very easy to set up, but it isn't
very flexible, and it does have stability issues (like throwing a hissy fit when you lose a log file).

The trouble with all that is, until now MobiLink still generated the upload stream by analyzing the remote database
transaction log, just like S L Remote, so losing that log file is still a huge deal, and so is changing the schema on the
remote.

— 4 —

FIGURE 1:

Sybase Central

Shows All The

Indexes

TopTen_WhtPaper2.qxd 6/14/06 3:53 PM Page 4

Starting with S L Anywhere 10, however, you have the option to write stored procedures to generate the upload
stream instead of relying on the transaction log. Yes, I have wanted this for a long time. No, I haven't actually tried it
yet. . .did I say log-based synchronization was easy to set up? That means script-based synchronization is. . .not so
much. But I still think it's (going to be) very cool.

3. APPROXIMATECPUTIME AND LOCKCOUNT CONNECTION PROPERTIES
Have you ever wanted to know, “Which connection is taking all the CPU time?” I sure have, and now we can get the

answer by using the “ApproximateCPUTime” connection property. Here is a query that displays all the connections in
decreasing order by CPU time:

SELECT Number AS connection_number,

CONNECTION_PROPERTY ('Name', Number) AS connection_name,

CONNECTION_PROPERTY ('Userid', Number) AS user_id,

CAST (Value AS NUMERIC (30, 2)) AS approximate_cpu_time

FROM sa_conn_properties()

WHERE PropName = 'ApproximateCPUTime'

ORDER BY approximate_cpu_time DESC;

Here's what the output looks like after “LongRunner” ran a huge SELECT with no WHERE clause:

connection_number connection_name user_id approximate_cpu_time

================= ================ ========== ====================

33 SQL_DBC_5071260 LongRunner 97.20

35 SQL_DBC_3aa4a78 DBA 2.09

12 Sybase Central 1 DBA 1.09

37 SQL_DBC_504b0f0 LotsOfLocks 0.00

How about the answer to, “Which connections have all the row locks?” Here is a query that uses the new
“LockCount” connection property to display all the current connections in decreasing order by the number of row locks
they are holding:

SELECT Number AS connection_number,

CONNECTION_PROPERTY ('Name', Number) AS connection_name,

CONNECTION_PROPERTY ('Userid', Number) AS user_id,

CAST (Value AS NUMERIC (30)) AS lock_count

FROM sa_conn_properties()

WHERE PropName = 'LockCount'

ORDER BY lock_count DESC;

Here's what the output looks like after “LotsOfLocks” ran an UPDATE with no WHERE clause:

connection_number connection_name user_id lock_count

================= ================ ========== ==========

37 SQL_DBC_504b0f0 LotsOfLocks 255

35 SQL_DBC_3aa4a78 DBA 0

33 SQL_DBC_5071260 LongRunner 0

12 Sybase Central 1 DBA 0

Now you know who to go after:

DROP CONNECTION 33;

DROP CONNECTION 37;

— 5 —

TopTen_WhtPaper2.qxd 6/14/06 3:53 PM Page 5

4. MOBILINK NAMED SCRIPT PARAMETERS, GLOBAL SCRIPT VERSION, SYNCHRONIZATION ID AND REMOTE ID
These four enhancements are standing in for all the other cool new features in MobiLink that the marketing folks

might not talk about but are really neat nonetheless.

Named script parameters let you dispense with all those positional “?” placeholders that you used to be forced to
use in all your MobiLink scripts. Now instead of writing this:

WHERE last_modified >= ? AND emp_name = ?

You can write this:

WHERE last_modified >= {ml s.last_table_download} AND emp_name = {ml s.username}

Since named parameters are not positional, you can write them in any order you want:

WHERE emp_name = {ml s.username} AND last_modified >= {ml s.last_table_download}

You can also refer to the same parameter more than once in a script, or leave one out like this (which was hard to do
before when it was the first “?” you wanted to leave out):

WHERE emp_name = {ml s.username}

The global script version allows you to create a new MobiLink script version that contains a new version of only the
connection scripts you have changed, without copying all the other connection scripts that haven't changed.

The synchronization id is a number assigned to each synchronization session; it starts at 1 when the MobiLink server
starts and goes up to 4,294,967,295. The synchronization id appears in the MobiLink diagnostic log so you can easily
tell which synchronization is which.

The remote id gives us something we thought we had all along, but really didn't: a single value that uniquely identi-
fies a remote database. We used to think the “MobiLink user name” did that, and most of the time we were right, but it
is possible to have more than one MobiLink user name on one remote database.

Tip: To simplify administrative duties when defining a straightforward one-user-per-remote database MobiLink
setup, use the same number 1, 2, 3, for all three MobiLink identifiers on each remote database. And there are now three
of them:

CREATE SYNCHRONIZATION USER "1" ... ; -- the MobiLink "user name"

SET OPTION PUBLIC.GLOBAL_DB_ID = '1'; -- the partition number for DEFAULT GLOBAL AUTOINCREMENT

SET OPTION PUBLIC.ml_remote_id = '1'; -- the MobiLink "remote id"

5. MATERIALIZED VIEWS
Before S L Anywhere 10, a view was just a shorthand version of a SELECT statement, just a kind of “macro” to be

plugged into a query when you reference the view. No data was stored in the database for a view, just the SELECT
statement itself, and every single time you used a view, the result set was computed from scratch.

Now, however, you can create a “materialized view” where actual data will be stored in the database. This is useful
when you have an expensive query that is repeatedly executed; if you create a materialized view for some or all of that
query, the optimizer will use the data that has been stored for the materialized view instead of recomputing the entire
query just as you have written it.

Application developers do not have to know anything about the materialized views; in particular, they do not have
to explicitly SELECT FROM any materialized view. If the optimizer sees that the S L for a materialized view matches
part or all of an application query, the optimizer will automatically use that view if it will improve performance. This is
particularly useful when the materialized views contain only a small number of rows when compared with the base
tables in the original query.

And if that isn't cool enough, you can also create indexes on materialized views.

— 6 —

TopTen_WhtPaper2.qxd 6/14/06 3:53 PM Page 6

6. SNAPSHOT ISOLATION
The coolest thing about snapshot isolation is that folks who grew up thinking “database” means “Oracle” will feel a

bit more comfortable when their employers decide to stop spending all that money and switch to S L Anywhere.

Simply put, snapshot isolation is when you select a row that has been updated by someone else but not committed, you
see the old (snapshot) version of that row before it was updated. Before S L Anywhere 10, you had two choices. First, the
default was isolation level zero where you would see the updated row, also known as the “dirty row” because you are look-
ing at a change that might be rolled back. The alternative, higher isolation levels that prevent retrieval of dirty rows, meant
that your connection would be blocked until the other connection committed or rolled back the update.

Oracle developers might not believe the world is flat, but many of them do believe that snapshot isolation is the only kind
to have. The rest of us now have another choice, one that is more efficient in some situations and less so in others.

7. LOAD TABLE ROW DELIMITED BY
Before S L Anywhere 10, LOAD TABLE interpreted '\x0d\x0a' as the end-of-row delimiter for the input file. That

meant if you wanted to store multi-line blocks of text in a single row, you had to jump through hoops to pre-process
the text file before it hit the LOAD TABLE, or manipulate the data after it was loaded one-line-per-row.

Now you can specify a different delimiter for each row, for example, if your input file contains a separate line of
'=====' between each block of text, you can use the ROW DELIMITED BY option to store one block per row regardless
of the number of embedded line breaks inside each block.

Here is an example of code that loads such a file into a table, and then writes the same data back out to a file that is
identical to the input file:

CREATE LOCAL TEMPORARY TABLE raw_text (

block_number BIGINT NOT NULL DEFAULT AUTOINCREMENT,

block_text LONG VARCHAR NOT NULL DEFAULT '',

PRIMARY KEY (block_number))

NOT TRANSACTIONAL;

LOAD TABLE raw_text (block_text)

FROM 'c:/temp/xxx.txt'

DEFAULTS ON DELIMITED BY '' ESCAPES OFF QUOTES OFF ROW DELIMITED BY

'\x0d\x0a=====\x0d\x0a' STRIP OFF;

UNLOAD SELECT STRING (block_text, '\x0d\x0a=====')

FROM raw_text

ORDER BY block_number

TO 'c:/temp/yyy.txt'

DELIMITED BY '' HEXADECIMAL OFF ESCAPES OFF QUOTES OFF;

8. NEW ARCHITECTURE FOR PROFILING AND TRACING
Just for fun, I threatened to leave this one off the list. Woohoo! Sure got the reaction I expected! Because folks at

iAnywhere have put a great deal of effort into this, and if I left it off the list I'd have to go into hiding. So it's a good
thing I agree that it should be on the list, and so will you, when you get past the initial shock.

By shock, I mean that you may have to go through “The Five Stages Of Application Profiling and Diagnostic Tracing”
(with apologies to Elisabeth Kubler-Ross):

• Denial: I can't get this thing to run at all!
• Anger: If it isn't one thing, it's another!
• Bargaining: I ran it, now how do I get it to show anything?
• Depression: Holy Cow! What am I going to DO with all this data?
• Acceptance: This thing is GREAT!

— 7 —

TopTen_WhtPaper2.qxd 6/14/06 3:53 PM Page 7

To make a long story short, the application profiling and diagnostic tracing feature does many things, but one of the
coolest is that it can capture enormous amounts of information from a running production database (call it the “source”
database) and send it via TCP/IP directly to a separate “tracing” database. The tracing database can be on a separate com-
puter, and when you start analyzing all this data you won't be affecting performance of the source database.

Some of this functionality was delivered earlier, as described in the article LogExpensiveQueries: A Little Bit Of Jasper In 9.0.2 .
In S L Anywhere 10, however, it has become much easier to use as well as covering a much broader scope of diagnostic data.

There isn't room in this article to touch on the “broader scope,” but the following step-by-step demonstration will
show the “easier to use” part. These steps show how to manually create and use a tracing database via commands and
S L scripts, then use Sybase Central to analyze the results.

8.1 Start the “source” database from which you want to capture profiling and diagnostic data.

"%SQLANY10%\win32\dbeng10.exe" -x tcpip sniffer.db

Tip: When starting your source database for the purposes of application profiling or diagnostic tracing, be sure to
specify -x tcpip. Do the same if you are creating and starting your own separate “tracing” database manually. If you are
using the Sybase Central wizard to create a tracing database, do not specify -gd none when starting your source data-
base. But don't try to memorize all of that, just remember this: When you're trying to do some profiling or tracing and
nothing works, come back and re-read this tip.

8.2 Create the “tracing” database as an empty copy of the source database (all schema, no data).

"%SQLANY10%\win32\dbunload.exe" -an sniffer_tracing.db -c "ENG=sniffer;DBN=sniffer;UID=dba;PWD=sql" -k -n

8.3 Start the tracing database.

"%SQLANY10%\win32\dbeng10.exe" -x tcpip sniffer_tracing.db

8.4 Run these commands on the source database to set the tracing level:

CALL sa_set_tracing_level (3);

UPDATE dbo.sa_diagnostic_tracing_level

SET trace_condition = 'absolute_cost',

value = 500

WHERE trace_type = 'plans_with_statistics';

COMMIT;

8.5 Run this command on the source database to start a “tracing session”:

ATTACH TRACING TO 'ENG=sniffer_tracing;DBN=sniffer_tracing;UID=dba;PWD=sql';

8.6 Run a workload on the source database; e.g., run some time-consuming queries.

8.7 Run this command on the source database to stop the tracing session and save the data to the
tracing database:

DETACH TRACING WITH SAVE;

8.9 Look at the tracing data in Sybase Central:

• Start Sybase Central and double-click on “S L Anywhere 10” in the Plug-ins folder;
• The Mode menu item will appear in the menu bar.
• Click on Mode - Application Profiling.
• The Application Profiling menu item will appear in the menu bar.
• Click on Application Profiling - Open Analysis File or Connect to a Tracing Database.
• Select “In a tracing database” and click on Open.
• Connect to your tracing database. Note that you do not have to connect to the source database from Sybase

Central, all the data required for analysis has been copied to the tracing database, just one of the things that
makes this feature so cool!

• Choose the Database Tracing Data tab (at the bottom), then the Details tab.

— 8 —

TopTen_WhtPaper2.qxd 6/14/06 3:53 PM Page 8

http://www.ianywhere.com/developer/sql_anywhere_developer_corner/logexpensivequeries_jasper.html

• Select a query you're interested in; Figure 8.1 shows that a query taking over 19 seconds has been selected.

• Click right mouse - View More S L Statement Details for the Selected Statement
• Choose the uery Information tab (at the bottom); Figure 8.2 shows the graphical plan that was actually used

for the long running query on the source database.

— 9 —

FIGURE 8.2:

The Graphical Plan

For The Long-

Running Query

FIGURE 8.1:

A Long-Running

Query Selected In

Sybase Central

TopTen_WhtPaper2.qxd 6/14/06 3:53 PM Page 9

9. ROWID() FUNCTION
Oh, boy, I'm in trouble over this one. Nobody wants to talk about ROWID, it isn't even described in the Help (as of the

first Beta). The fact that ROWID is on this Top 10 list is proof that I don't work for iAnywhere. . .and never will, now, even
if I applied for a position as part-time unpaid midnight-shift apprentice understudy.

The ROWID function can be used to answer questions like, “Which rows in table t1 are locked for update?” The
sa_locks procedure returns a new column, row_identifier, which uniquely identifies the row that's locked, and the
ROWID function lets you SELECT that row without knowing the primary key value:

SELECT t1.*

FROM DBA.t1,

sa_locks()

WHERE sa_locks.lock_class = 'Row'

AND sa_locks.lock_duration = 'Transaction'

AND sa_locks.table_name = 't1'

AND sa_locks.lock_type = 'Write'

AND ROWID (t1) = sa_locks.row_identifier;

Danger, Will Robinson! Finding locked rows is the only reason ROWID was added to S L Anywhere 10. It is not
intended for other purposes; in particular, ROWID values should not be copied and saved in other columns. To do so
would be to violate a fundamental principle of relational databases, Rule Number 8 of Codd's 12 Rules for Relational
Databases: Application programs must not be affected by changes in the physical data representation. And there is no
guarantee that a row's physical row_identifier will not change over time; e.g., after a database unload/reload.

Nevertheless, finding locked rows is really cool.

10. HOT FAILOVER (DATABASE MIRRORING)
Somehow, this one got shuffled to the end of the list. I didn't mean to do that, honest. . .saving the good part until

the end is not really in my nature. If this list was called “Top 1 Cool New Features,” hot failover would still be on it. Not
because it's something you will work with every day, or something that will let you easily create more sophisticated
applications, but because it kicks the door open for S L Anywhere to enter the world of “Enterprise Databases.” That
door has been ajar for several years, but now it's been slammed back against the wall and has fallen off its hinges.

Hot failover is one of the big features that Marketing talks about, it's Top 1 on their list too. It's also one of only two
features in this article that's getting the full code-and-demo treatment.

Three computers were used in testing hot failover for this article. It is possible to get away with two computers, or
even one, but that misses the point of “failover”: when one computer fails, you switch over to another.

Two of these computers were set up to run identical copies of a database, using the same configuration of the net-
work engine dbsrv10.exe. These two servers are called "partners" or "mirror partners" in the lingo, but only one of them
is visible to the outside world as the "primary server" that accepts client connections. The other (non-primary) server is
called the "mirror server" in the documentation, but I find that confusing because it sounds like"mirror partner," which
applies to both servers. You won't find"mirror server" mentioned again in this article; if I have to give it a name, I'll use
"secondary server.”

The terms “primary server” and “secondary server” are actually role names. When a failover occurs, the secondary
server automatically becomes the primary and it starts accepting connections. All current connections to the old pri-
mary server are lost, as are any uncommitted operations, but clients can immediately make new connections and
when they do, those connections go to the new primary server.

The client network connection parameters don't have to change depending on which mirror partner is the primary
server: there is only one combination of server name and database name visible to the outside world even though
there are two servers behind the scenes.

— 10 —

TopTen_WhtPaper2.qxd 6/14/06 3:53 PM Page 10

The third computer is used to run an “arbiter” server, which coordinates the other two and decides which one
becomes the primary when Bad Things Happen. The arbiter server also uses dbsrv10.exe, but doesn't run a database or
accept client connections.

The following table shows that the arbiter server was run on a computer called PAVILION2, and the two partner
servers were named server1 and server2 and they were run on RRHOST and TSUNAMI respectively. As far as client con-
nections were concerned, the ENG=mirtest_server and DBN=mirtest connection parameters remained constant.

dbsrv10

server Computer Client Client

name Name Operating System ENG= DBN=

======= ======== =================== ============== =======

arbiter PAVILION2 XP Media Center SP2 - -

server1 RRHOST 2003 Server SP1 mirtest_server mirtest

server2 TSUNAMI 2000 SP4 mirtest_server mirtest

The following sections are a step-by-step demonstration of failover using these three computers.

10.1 Create the second copy of the database
Perhaps the simplest way to copy an existing database is to use dbbackup.exe to take a full image backup of both

the database and transaction log files. Here are the commands used for this demonstration; the first one starts the
original database on the RRHOST machine, and the second command sends a full copy to the TSUNAMI machine:

"%SQLANY10%\win32\dbsrv10.exe" -c 100M -x tcpip mirtest.db

"%SQLANY10%\win32\dbbackup.exe" -c "ENG=mirtest;DBN=mirtest;UID=dba;PWD=sql" -r -y

\\TSUNAMI\C\mirtest

After copying the database, the original server was shut down and the real work started with the next step.

10.2 Start the arbiter server
It doesn't matter what order the three servers are started (the arbiter and two mirror partners), but to me it makes

sense to start the arbiter first because it's the boss. Here is the command line that was used to do that on the PAVIL-
ION2 computer, plus the contents of the “configuration file” used to simplify the command line by keeping the options
in a separate file:

"%SQLANY10%\win32\dbsrv10.exe"

@arbiter_config_file.txt

arbiter_config_file.txt

-n arbiter

-o C:\mirtest\dbsrv10_log_arbiter.txt

-os 10M

-qn

-x tcpip

-xa auth=dJCnj8nUx3Lijoa8;dbn=mirtest

-xf C:\mirtest\arbiter_sync_state.txt

Here is a description of each option and sub-parameter:

— 11 —

FIGURE 10.2:

Arbiter Console on Startup

TopTen_WhtPaper2.qxd 6/14/06 3:53 PM Page 11

comment line

-n Server name for use by connections from the mirror partner servers; required.

-o Where to put the server console display text file; suggested.

-os When to rename and restart the server console display text file; optional.

-qn Don't minimize the console window on startup; handy for demonstrations.

-x Protocol; required.

-xa Authentication list...

auth Authentication string to be matched against both mirror partners; required.

dbn The DBN= database name to be used when making client connections; required.

-xf Where to put the arbiter "state information" text file; required.

Some of the entries marked “required” actually have defaults, but everything is clearer when you give them
explicit values.

Figure 10.2 shows what the arbiter server console window looked like when it was started before the two mirror
partners. It said “Now accepting requests,” but that doesn't mean client connections since it isn't running an actual
database; it just means it's waiting to talk to the mirror partners.

10.3 Start the “server1” partner server
In this example, server1 on RRHOST was the first mirror partner to be started. Here is the command line that was

used to do that, plus the contents of the configuration file; note that the options are arranged alphabetically, except
that “server options” must appear first, followed by the database file spec C:\mirtest\mirtest.db, and finally the “data-
base options”:

"%SQLANY10%\win32\dbsrv10.exe" @server1_config_file.txt

server1_config_file.txt

-c 100M

-hx

-n server1

-o C:\mirtest\dbsrv10_log_server1.txt

-os 10M

-qn

-x tcpip(dobroadcast=no)

-xf C:\mirtest\server1_sync_state.txt

C:\mirtest\mirtest.db

-n mirtest

-sn mirtest_server

-xp

partner={eng=server2;links=tcpip{host=TSUNAMI;timeout=1}};mode=sync;auth=dJCnj8nUx3Lijoa8;

arbiter={eng=arbiter;links=tcpip{host=PAVILION2;timeout=1}}

Note: The “-xp ...” line is shown wrapped onto two lines at “arbiter=. . .” but in real life it has to be all on one line.

Here is a description of each option and sub-parameter:
-c Initial RAM cache size; optional.

-hx Needed for the Beta, won't be needed in the final version.

-n Server name for use by connections from the other partner; required.

-o Where to put the server console display text file; suggested.

-os When to rename and restart the server console display text file; optional.

-qn Don't minimize the console window on startup; handy for demonstrations.

-x Protocol; required, but "(dobroadcast=no)" won't be needed in the final version.

-xf Where to put the partner "state information" text file; required.

— 12 —

TopTen_WhtPaper2.qxd 6/14/06 3:53 PM Page 12

C:\mirtest\mirtest.db The database file to be started; required.

-n The database name; required.

-sn The alternate server name to be used when making client connections via ENG=; required.

-xp Partner and arbiter list; see sub-parameters. . .

partner Connection string to locate the other mirror partner; required.

mode Mirror synchronization mode, with "sync" being the safest; required.

auth Authentication string to be matched against the arbiter; required.

arbiter Connection string to locate the arbiter server; required.

Figure 10.3 shows what the arbiter and server1 console windows look like when the two servers have contacted each
other. The arbiter window shows that server1 has connected with it, and the server1 window makes two statements:
that it has connected with the arbiter, and that it is waiting to hear from the other partner.

10.4 Start the “server2” partner server
In this example, server2 on TSUNAMI is the second mirror partner to be started. Here is the command line that was

used to do that, plus the contents of the configuration file:
"%SQLANY10%\win32\dbsrv10.exe" @server2_config_file.txt

server2_config_file.txt

-c 100M

-hx

-n server2

-o C:\mirtest\dbsrv10_log_server2.txt

-os 10M

-qn

-x tcpip(dobroadcast=no)

-xf C:\mirtest\server2_sync_state.txt

C:\mirtest\mirtest.db

-n mirtest

-sn mirtest_server

-xp

partner={eng=server1;links=tcpip{host=RRHOST;timeout=1}};mode=sync;auth=dJCnj8nUx3Lijoa8;

arbiter={eng=arbiter;links=tcpip{host=PAVILION2;timeout=1}}

The option and sub-parameter values are all exactly the same as in the previous section, except the names “server1”
and “server2” are interchanged and the “RRHOST” is substituted for “TSUNAMI” as the location of the other partner.

— 13 —

FIGURE 10.3:

Arbiter and Server1 Consoles After Server1 Started

Note: Figure 10.3 might look like a screen capture from one computer but it's not. The two console windows were displayed by two different
computers, as you can see by the different styles (New XP on the left, Windows Classic on the right). They appear squished together here only
through the magic of Paintshop Pro.

TopTen_WhtPaper2.qxd 6/14/06 3:53 PM Page 13

Figure 10.4 shows all three console windows when everything has connected and things have settled down. The
arbiter window shows that server2 has connected with it, the server1 window shows that it is now officially the
“primary server,” and the server2 window indicates that it has successfully synchronized with the primary server.

10.5 Connect to “mirtest_server” with IS L
Here's the IS L command line used as a client in this article; note that ENG= specifies the alternate server name

“mirtest_server” defined earlier by the -sn option, rather than either of underlying server names “server1” or “server2”:

"%SQLANY10%\win32\dbisql.exe" -c

"ENG=mirtest_server;DBN=mirtest;UID=dba;PWD=sql;LINKS=TCPIP"

The following S L commands were used to create a simple table, insert one row, commit the insert, and then run a SELECT
to show two things: what the underlying server name is (“server1” or “server2”), plus the current contents of the table:

CREATE TABLE t (c VARCHAR (100));

INSERT t VALUES ('First row');

COMMIT;

SELECT PROPERTY ('ServerName'), * FROM t;

Figure 10.5 shows that server1 is the primary server; remember that
“primary server” is the one that actually accepts client connections
like this one from IS L:

— 14 —

FIGURE 10.5:

ISQL Shows That

Server1 Is The

Primary

FIGURE 10.4:

All Three Consoles

After Server2 Started

TopTen_WhtPaper2.qxd 6/14/06 3:53 PM Page 14

10.6 Stop server1
At this point, the question might arise, “Does table t exist on the secondary server, along with its data?” The answer

is “yes,” both the CREATE TABLE and committed INSERT were immediately synchronized to the secondary server, even
before the SELECT had a chance to run. That's what “-xp mode=sync” means in the earlier sections: primary server
transactions are immediately sent to the secondary server and must be acknowledged by the secondary server before
the primary can proceed.

To prove this point, the server1 process was stopped, effectively killed the IS L session started earlier. Figure 10.6
shows the arbiter and server2 console windows after server1 vanished from the scene; the arbiter window shows that
server1 has disconnected, and the server2 window indicates that it has now become the primary server.

10.7 Reconnect with ISQL

The IS L command line from section 10.5 was used again to con-
nect to “mirtest_server,” and these commands were used to insert
more data and display what's there:

INSERT t VALUES ('Second row');

COMMIT;

SELECT PROPERTY ('ServerName'), * FROM t;

Figure 10.7 shows that everything is fine: the table exists, so does
all the data, and it's all on the new primary server “server2.” That's it,
that's all there is to it: nobody had to do anything to switch over to
the second server except reestablish client connections, otherwise
everything happened automatically.

— 15 —

FIGURE 10.6:

Arbiter and Server2

Consoles After

Server1 Stopped

FIGURE 10.7:

ISQL Shows That Server2 Has Become The Primary

TopTen_WhtPaper2.qxd 6/14/06 3:53 PM Page 15

— 16 —

10.8 Restart server1

The next obvious question is, “How do I get back to normal?” With only one partner server running, there is no more
failover protection, and you need to get both partners running again.

The answer is as simple as “Start server1 again.” OK, that might sound glib, especially if your primary server has just
been wiped out by fire or flood, but once you do have a computer back up and running, and a copy of the current data-
base available (after running dbbackup if necessary), you just run the command line from section 10.3 again.

Figure 10.8 shows all three console windows after server1 on RRHOST was restarted. The arbiter window shows that
server1 has connected again, the server1 window shows that it has successfully synchronized with the primary server
(which is still server2), and the server2 window shows that it has connected with its partner.

10.9 Reconnect with ISQL

At this point, just because server1 has appeared on the scene again doesn't mean it immediately becomes the pri-
mary server; that would require all the current client connections to be dropped and reestablished, a complete waste
of time.

To prove this, the current IS L session was manually terminated
and then reestablished, and the SELECT shown earlier was run
again. Figure 10.9 shows that server2 was indeed still the primary.

10.10 Stop server2
What happens if server2 fails? The same thing as when server1

failed earlier, when it was the primary server: current client connec-
tions are lost, but not any of the committed transactions, and the
remaining mirror partner becomes the primary server.

FIGURE 10.8:

All Three Consoles

After Server1

Restarted

FIGURE 10.9:

ISQL Shows That Server2

Is Still The Primary

TopTen_WhtPaper2.qxd 6/14/06 3:53 PM Page 16

Figure 10.10 shows the console windows after server2 was stopped: the arbiter console shows that server2 has
disconnected, and the server1 console indicates that it
has now become the primary server.

10.11 Reconnect with ISQL
Figure 10.11 shows that a new IS L connection goes to the new primary server, which once again is server1. That's

what's so cool about hot failover, the data just keeps flowing back and forth as you bounce the servers.

AND IN CONCLUSION...
There you have it, just some of the cool new features in S L

Anywhere 10. The Help file has a long and well-written section
“What's New in Version 10.0.0” that I urge you read. I guarantee that
you will find at least 10 other features that should be in the Top 10
list but aren't even mentioned in this article.

... just like with the Oscars, where everyone has an opinion
about movies that weren't even nominated, but were better than
the winners.

Breck Carter is principal consultant at RisingRoad Professional
Services, providing consulting and support for S L Anywhere data-
bases and MobiLink synchronization with Oracle, DB2, S L Server
and S L Anywhere. He is also author of S L Anywhere Studio 9
Developer's Guide, now available in English, Japanese and Chinese;
see here for more information.

Breck can be reached at breck.carter@risingroad.com.

— 17 —

FIGURE 10.10:

Arbiter And

Server1 Consoles

After Server2

Stopped

FIGURE 10.11:

ISQL Shows That Server1 Has Again Become The Primary

TopTen_WhtPaper2.qxd 6/14/06 3:53 PM Page 17

http://www.risingroad.com/SQL_Anywhere_Studio_9_Developers_Guide.html

www.iAnywhere.com

iANYWHERE SOLUTIONS IS A SUBSIDIARY OF SYBASE, INC. COPYRIGHT © 2006 IANYWHERE SOLUTIONS, INC. ALL RIGHTS
RESERVED. iANYWHERE, SYBASE, AND THE SYBASE LOGO ARE TRADEMARKS OF SYBASE, INC. OR ITS SUBSIDIARIES. ALL OTHER
TRADEMARKS ARE PROPERTIES OF THEIR RESPECTIVE OWNERS. ® INDICATES REGISTRATION IN THE UNITED STATES OF AMERICA.
L0XXXX-0606

iANYWHERE SOLUTIONS, INC.
WORLDWIDE HEADQUARTERS
ONE SYBASE DRIVE
DUBLIN, CA 94568-7902
U.S.A.

North America
Advantageinfo@iAnywhere.com
1 800 801 2069

Germany
ADS-team@iAnywhere.com
+49 (0) 7032 / 798 - 200

United Kingdom
AdvantageUK@iAnywhere.com
+44 (0)117 333 9000

TopTen_WhtPaper2.qxd 6/14/06 3:53 PM Page 18

