

1/2

Prof. Name: Abdul Ahad Naeemi Class/ Sem: F.Y. B.Sc. - CS / Sem – II (2023-2024)

Course Code: USCSP202 Subject Name: Advanced Python Programming

Sr.
No. Date INDEX Pg.

No. Sign.

 Theory 1: Working with files

1
Practical-1: Write a program to Python program to implement various file operations.
(IT Lab)

2
3

Example-1: Write a python program to read the file ‘new.txt’. (IT Lab)
Example 2: Write a python program to write multiple lines into the file. (Homework)

4

 Theory 2: Regular Expression
Practical 2: Write a program to Python program to demonstrate use of regular

5
expression for suitable application.
Example 1: Write python program to print ‘my first RE program ‘and display inverted

6 commas for each word. (IT Lab)
Example 2: Write a python program to print ‘my beautiful daughter without

 displaying [a-e] letters in it. (Homework)

 Theory 3: Threads in Python

7
8
9

Practical 3: Write a Program to demonstrate concept of threading and multitasking in
Python.
Example 1: Write a Program to demonstrate concept of Single thread
Example 2: Write a Program to demonstrate concept of multithreading.

 Theory 4: Database in Python

10 Practical 4: Write a Python Program to work with databases in Python to perform
operations such as

 a. Connecting to database
 b. Creating and dropping tables
 c. Inserting and updating into tables.

11 Example 1: Write a Python program to insert and delete a row in table.
13 Example 2: Write a Python program for exception handling in database

 Theory 5: Exception Handling

14
Practical 5: Write a Python Program to demonstrate different types of exception
handing(IT Lab)

15
Example 1: Write a python program to demonstrate exception handling from
‘myfile.txt’. (IT Lab)

16 Example 2: Write a python program to demonstrate exception handling from
‘sample.txt’. (Homework)

17

 Theory 6: Graphical User Interface
Practical 6 : Write a GUI Program in Python to design application that demonstrates

a. Different fonts and colors, b. Different Layout Managers
b. Event Handling (IT Lab)

Example 1: Write a python program to create line with rectangle having canvas width
=200 and height =100. (IT Lab)
Example 2: write a python program for creating two lines with canvas width 60
and height 80. (Homework)

18

19

2/2

20

21
22

 Theory 7: Date and Time in Python
Practical 7: Write Python Program to create application, which uses date and time in
Python.
Example 1: Write a Python Program for combining date and time.
Example 3: Write a Python Program to compare two dates

23

24

25

 Theory 8: Client Server information
Practical 8 : Write a Python program to create server-client and exchange basic
information
Example 1: write a python program to create a server client and exchange current-day
information. (IT Lab)
Example 2: write a python program to create a server-client and exchange
current time information. (Homework)

26

27

28

 Theory 9: Implementation of OOP concept
Practical-9 : Write a Python program to implement concepts of OOP such as

a. Types of Methods
b. Inheritance
c. Polymorphism

Example 1: Write a Python program to implement the concept of Inheritance with one
base class and two child classes.
Example 2: Write a Python program to implement polymorphism: Define methods in
the child class that have the same name as the methods in the parent class.

29

30

 Theory 10: Implementation of OOP concept
Practical-10: Write a program to Python program to implement concepts of OOP such
as a. Abstract methods and classes

b. Interfaces
Example 1: Write a program to create a abstract class with name ‘Bike’ and having
one method run().

 1 | Page

Theory- 1

 Implementation of File Operations

Creating a File

In Python, you can create a new file using the open() function. This function takes two
parameters: the file name and the mode. The mode parameter can be set to ‘r’ for read-only,
‘w’ for write-only, and ‘a’ for append. Depending on the mode chosen, the file will either be
opened or created.

Once you have created a file, you can write to it using the write() method. This method takes a
string as a parameter, which is then written to the file. Note that this method will overwrite any
existing content in the file.

Opening a File

In Python, you can open an existing file using the open() function. The first parameter is the
file name, and the second parameter is the mode.

 The mode parameter can be set to ‘r’ for read-only, ‘w’ for write-only, and ‘a’ for append. If
the file does not exist, the open() function will create it.

Once the file is open, you can read from it using the read() method. This method takes no
parameters and returns the entire contents of the file as a string. Alternatively, you can
readline() which returns one line at a time.

Modifying a File

In Python, you can modify an existing file using the write() method. This method takes a string
as a parameter, which is then written to the file. Note that this method will overwrite any
existing content in the file.

The append method is another way of modifying files in Python. This method adds content to
the end of the file without overwriting the existing content. It can be used instead of write() if
you want to keep the content that is already in the file.

The append method takes a string as a parameter, which is then added to the end of the file.
Unlike the write() method, the append() method does not overwrite the existing content.
Instead, it adds the string to the end of the file.

You can also use the seek() method to move the pointer to a specific location in the file. This
method takes an integer as a parameter, which is the offset from the beginning of the file.

Closing a File

In Python, you can close a file using the close() method. This method takes no parameters and
will close the file.

 Note that once the file is closed, any changes made to the file will be lost unless the file is
saved.

 2 | Page

Practical-1: Write a Python program to implement various file operations.

Source code:

Output:

 3 | Page

Example-1: Write a python program to read the file ‘new.txt’.

Source code:

 Output:

Example-2: : Write a python program to read the full text from file ‘first.txt’.

Source code:

Output:

 4 | Page

Example 3: Program to write the file.

Source code:

Output:

Example -4: Write a python program to write into file.

Source code:

Output:

 5 | Page

Example-5: Write a python program to write multiple lines into the file.

Source code:

Output:

 6 | Page

Result and Discussion:

Learning Outcomes:

Course Outcomes:

Conclusion:

Viva Question:

1. How to open a file ?

2. How to write in file ?

3. How to read the text from file ?

4. How to close a file ?

For Faculty Use

Correction
Parameters

Formative Assessment
[]

Timely completion
of practical []

Attendance
Learning
Attitude[]

 7 | Page

Theory - 2

 Regular Expressions

Regular expressions, also known as regex or regexp, are powerful tools for performing
pattern matching on text. In essence, regular expressions are a tiny, highly specialized
programming language embedded inside a larger language such as Python, Perl, or Java.
Regular expressions are used to search, edit, and manipulate text based on patterns.

Regular expressions are commonly used for a wide variety of tasks such as validating user
input, searching and replacing text, and extracting specific data from large data sets. Regular
expressions are made up of a combination of literal characters and metacharacters.
Metacharacters are special characters that have a specific meaning to the regex engine.

The metacharacters are:

1) The dot (.) - The dot metacharacter is used to match any character.

2) The asterisk (*) - The asterisk metacharacter is used to match zero or more
occurrences of the preceding character or group.

3) The plus (+) - The plus metacharacter is used to match one or more occurrences of the
preceding character or group.

4) The question mark (?) - The question mark metacharacter is used to match zero or one
occurrence of the preceding character or group.

5) The pipe (|) - The pipe metacharacter is used to match either of two alternatives.

6) The backslash (\) - The backslash metacharacter is used to escape metacharacters and
other special characters.

7) The brackets ([]) - The brackets metacharacters are used to match one of many
characters.

8) The caret (^) - The caret metacharacter is used to match the beginning of a line.

9) The dollar sign ($) - The dollar sign metacharacter is used to match the end of a line.

10) The parentheses (()) - The parentheses metacharacters are used to group characters.

11) /s: Matches any whitespace character (space, tab, newline, etc.)

12) /w: Matches any word character (a-z, A-Z, 0-9, and underscore)

13) /d: Matches any digit character (0-9)

14) /S: Matches any non-whitespace character

15) /W: Matches any non-word character

16) /D: Matches any non-digit character

 8 | Page

17) /z: Matches the end of the string or line

There are various regex methods which are used to perform various operations on strings.
The seven regex methods are:

1) findall() - The findall() method is used to find all matches of a pattern in a string.

2) search() - The search() method is used to search for a match in a string.

3) split() - The split() method is used to split a string into a list of substrings.

4) sub() - The sub() method is used to replace a pattern in a string with a specified string.

5) match() - The match() method is used to match a pattern at the beginning of a string.

6) compile() - The compile() method is used to compile a regex pattern into a regex
object.

7) finditer() - The finditer() method is used to find all matches of a pattern in a string and
return an iterator.

Regular expressions are a powerful tool for pattern matching and text manipulation. They are
made up of literal characters and metacharacters which have special meaning to the regex
engine. There are 10 metacharacters and 7 regex methods which are used to perform various
operations on strings. Regular expressions can be used for a wide variety of tasks such as
validating user input, searching and replacing text, and extracting specific data from large
data sets.

Regular expressions are a powerful tool for pattern matching and text manipulation. They are
made up of literal characters and metacharacters which have special meaning to the regex
engine. There are 10 metacharacters and 7 regex methods which are used to perform various
operations on strings. Regular expressions can be used for a wide variety of tasks such as
validating user input, searching and replacing text, and extracting specific data from large
data sets.

Regular expressions are incredibly powerful tools for searching, editing, and manipulating
text. They can be used to quickly find patterns in text, to check for valid input, and to extract
useful data from large datasets. They are composed of literal characters as well as special
metacharacters that have a particular meaning to the regex engine.

 9 | Page

Practical-2: Write a program to Python program to demonstrate use of regular expression for

suitable application.

Source code:

Output:

Example-1: Write python program to print ‘my first RE program ‘and display inverted
commas for each word.

Source code:

 10 | Page

Output:

Example-2: Write a python program to print ‘my beautiful daughter without displaying [a-e]
letters in it.

Source code:

Output:

 11 | Page

Result and Discussion:

Learning Outcomes:

Course Outcomes:

Conclusion:

Viva Question:

1. What is regular expression ?
2. Which module supports regular expression ?
3. What are metacharacters ?
4. What are the various regex functions ?

 For Faculty Use

Correction
Parameters

Formative Assessment
[]

Timely completion
of practical []

Attendance
Learning
Attitude[]

 12 | Page

Theory - 3

Threads in Python
Threads are used in programming to allow multiple tasks to be executed in parallel. Each
thread has its own memory space, so data is not shared between threads. This means that
threads can be used to simplify the process of running multiple tasks at the same time, as each
thread can be dedicated to a single task. Threads are also useful for improving the
performance of applications, as each thread can be used to perform a different task, so the
overall speed of the application is increased.

In Python, threads are implemented using the threading module. This module contains a
number of functions that allow you to create, manage and control threads. The most
important functions are the threading.Thread() class, which is used to create a new thread,
and the threading.Lock() class, which is used to protect shared resources from being accessed
by multiple threads at the same time.

To use threads in Python, you first need to create an instance of the threading.Thread() class.
This class takes a function as its only argument, which is the code that will be executed by
the thread. Once the thread has been created, it needs to be started by calling the start()
method. Once the thread has started, it will execute the code until it is finished or until it is
stopped by calling the join() method.

Threads can also be used to execute code in a specific order. This is done by creating a queue
of functions that will be executed in order. Each time a thread is created, it will take the next
function in the queue and execute it. This allows you to ensure that certain code is executed
before other code, which can be useful for tasks such as data processing.

Threads can also be used to achieve concurrency in Python. Concurrency is when two or
more threads are executing concurrently, which can be useful for applications that need to
respond to multiple requests at the same time. In Python, concurrency is achieved using the
threading.ThreadPoolExecutor() class, which allows you to create a pool of threads that can
be used to execute code concurrently.

Threads can also be used to improve the performance of Python applications. By using
multiple threads, the application can be split into multiple pieces, allowing each piece to be
processed in parallel. This can result in a significant performance improvement, as the
application can take advantage of multiple cores, instead of just one.

In summary, threads are an important feature of Python that can be used to improve the
performance and efficiency of applications. Using threads, code can be executed in parallel,
code can be executed in a specific order, and concurrency can be achieved. Threads are also
useful for protecting shared resources from being accessed by multiple threads at the same
time. With the help of the threading module, Python developers can easily take advantage of
the power of threads in their applications.

 13 | Page

Practical-3: Write a Program to demonstrate concept of threading and multitasking in
Python.

Source code:

Output:

 14 | Page

Example 1: Write a Program to demonstrate concept of Single thread

Source code:

Output:

 15 | Page

Example 2: Write a Program to demonstrate concept of multithreading.

Source code:

Output:

 16 | Page

Example 3: Write a Program for thread synchronization.

Source code:

Output:

 17 | Page

Result and Discussion:

Learning Outcomes:

Course Outcomes:

Conclusion:

Viva Question:

1. What are the threads ?
2. Which module is used to create a thread ?
3. Which method is used to count number of threads ?
4. Which method is used to find the time taken by the threads ?

 For Faculty Use

Correction
Parameters

Formative Assessment
[]

Timely completion
of practical []

Attendance
Learning
Attitude[]

 18 | Page

Theory 4

Database in Python

MySQL Connector/Python is a standardized database driver for Python platforms and
development. This module is designed to be used with MySQL Server version 8.0 and higher
and supports the Python Database API Specification v2.0. The MySQL Connector/Python is
written in pure Python, and it is self-contained, meaning no additional libraries are needed for
it to work.

MySQL Connector/Python provides an interface for connecting to a MySQL database by
creating a connection object. The syntax for this is as follows:

connection = mysql.connector.connect(user='username', password='password',
host='hostname', database='database_name')

In this statement, the user parameter is the username of the MySQL user, the password
parameter is the password of the MySQL user, the host parameter is the hostname of the
MySQL server, and the database parameter is the name of the database to be used. Once the
connection is established, the connection object can be used to execute SQL statements
against the database.

MySQL Connector/Python provides a cursor object that can be used to execute SQL
statements and fetch data from the database. The syntax for creating a cursor object is as
follows:

cursor = connection.cursor()

This statement creates a cursor object that can be used to execute SQL statements against the
database. The cursor object provides several methods for executing SQL statements, such as
the execute() method. This method can be used to execute any SQL statement, such as
SELECT, INSERT, UPDATE, and DELETE.

The cursor object also provides several methods for retrieving data from the database, such as
the fetchall() method. This method retrieves all the rows from the result set and returns them
as a list of tuples. The fetchone() method retrieves a single row from the result set and returns
it as a tuple.

Finally, the cursor object also provides a method for committing changes to the database, the
commit() method. This method is used to commit any changes that have been made to the
database.

Creating a Database:

MySQL Connector/Python allows users to create a database through a simple command. To
create a database, the CREATE DATABASE statement is used. The syntax for this statement
is as follows:

CREATE DATABASE database_name;

In this statement, the database_name parameter is the name of the database to be created.

Creating a Table:

 19 | Page

MySQL Connector/Python provides a simple way to create a table. To create a table, the
CREATE TABLE statement is used. The syntax for this statement is as follows:

CREATE TABLE table_name (column1 datatype, column2 datatype, ...);

In this statement, the table_name parameter is the name of the table to be created. The
column1 and column2 parameters are the names of the columns in the table. The datatype
parameters are the data types of the columns.

Insert Rows:

MySQL Connector/Python allows users to insert rows into tables. To insert rows, the
INSERT INTO statement is used. The syntax for this statement is as follows:

INSERT INTO table_name (column1, column2, ...) VALUES (value1, value2, ...);

In this statement, the table_name parameter is the name of the table into which the rows will
be inserted. The column1 and column2 parameters are the names of the columns into which
the values will be inserted. The value1 and value2 parameters are the values to be inserted.

Update Row:

MySQL Connector/Python allows users to update rows in tables. To update a row, the
UPDATE statement is used. The syntax for this statement is as follows:

UPDATE table_name SET column1 = value1, column2 = value2, ... WHERE condition;

In this statement, the table_name parameter is the name of the table in which the row will be
updated. The column1 and column2 parameters are the names of the columns to be updated.
The value1 and value2 parameters are the new values to be set. The condition parameter is
the condition that must be met for a row to be updated.

Delete Table:

MySQL Connector/Python allows users to delete tables. To delete a table, the DROP TABLE
statement is used. The syntax for this statement is as follows:

DROP TABLE table_name;

In this statement, the table_name parameter is the name of the table to be deleted.

 20 | Page

Practical-4: Write a Python Program to work with databases in Python to perform operations
such as

a. Connecting to database
b. Creating and dropping tables
c. Inserting and updating into tables.

Source code:

 21 | Page

Outputs:
a)Connecting to database

b)Creating and dropping tables

c) Inserting and updating into tables.

 22 | Page

Example 1: Write a Python program to insert and delete a row in table.
Source code:

 23 | Page

Output:

Example 2: Write a Python program to create a database table.
Source code:

 24 | Page

Output:

Example 3: Write a Python program for exception handling in database
Source code:

 25 | Page

Output:

 26 | Page

Result and Discussion:

Learning Outcomes:

Course Outcomes:

Conclusion:

Viva Question:

1. How to connect to a Database with Python sql.connector module ?
2. How to Create a Database with Python sql.connector module ?
3. How to Create a Table with Python ?
4. How to Insert a row in a table with Python?

 For Faculty Use

Correction
Parameters

Formative Assessment
[]

Timely completion
of practical []

Attendance
Learning
Attitude[]

 27 | Page

Theory 5

Exception Handling

Exception handling is a process of dealing with errors that occur during the execution of a
program. In Python, exceptions can be handled using try and except statements. The try block
contains code that may throw an exception. The except block is used to handle the exception
that is thrown.

The try statement is used to define a block of code to be tested for errors. The code within the
try block is executed first, and if an exception occurs, the except clause is executed.

The syntax of the try statement is as follows:

try:
 # code to be executed
except:
 # code to be executed if an exception occurs

For example,

try:
 print(x)
except:
 print("An exception occurred")

In this example, the try block contains code that attempts to print the value of the variable x.
If the variable does not exist, then an exception is thrown and the except clause is executed.

Using the try statement, errors can be caught and handled. This allows the program to
continue running, even if an exception is encountered.

The except statement can be used to catch specific types of exceptions. This allows different
exceptions to be handled differently. For example,

try:
 print(x)
except NameError:
 print("Variable x is not defined")
except:
 print("Something else went wrong")

In this example, the except statement has two clauses. The first clause catches NameError
exceptions and prints an error message. The second clause catches all other exceptions and
prints a different error message.

 28 | Page

The try statement can also be used with an else clause. The else clause is executed if no
exception is thrown. For example,

try:
 print(x)
except:
 print("Something went wrong")
else:
 print("Nothing went wrong")

The else clause is only executed if no exception is thrown.

Finally, the try statement can be used with a finally clause. The finally clause is executed no
matter what. It is used to perform clean-up tasks, such as closing files or releasing resources.
For example,

try:
 print(x)
except:
 print("Something went wrong")
finally:
 print("The 'try except' is finished")

The finally clause is executed regardless of whether or not an exception is thrown.

Exception handling is an important part of writing robust and reliable code. It allows errors to
be caught and handled gracefully, allowing the program to continue running. The try, except,
else, and finally statements can be used to handle exceptions in Python.

 29 | Page

Practical-5: Write a Python Program to demonstrate different types of exception handing.
Source code:

Output:

 30 | Page

Example-1: Write a python program to demonstrate exception handling from ‘myfile.txt’.
Source code:

Output:

 31 | Page

Example-2: Write a python program to demonstrate exception handling from ‘sample.txt’.
Source code:

Output:

 32 | Page

Result and Discussion:

Learning Outcomes:

Course Outcomes:

Conclusion:

Viva Question:

1. What is Exception Handling?
2. When does except block runs?
3. When does else block runs?
4. When does finally block runs?

 For Faculty Use

Correction
Parameters

Formative Assessment
[]

Timely completion
of practical []

Attendance
Learning
Attitude[]

 33 | Page

Theory 6

Graphical User Interface

Graphical user interface (GUI) is a type of user interface that allows users to interact with
electronic devices such as computers, smartphones, and tablets through graphical icons and
visual indicators such as secondary notation, instead of text-based command line interfaces,
typed command labels or text navigation.

Python is a great language when it comes to creating graphical user interfaces (GUIs). It
provides several options for developing graphical user interfaces, such as Tkinter, wxPython,
PyQt, Kivy, and PyGObject. Tkinter is the most commonly used and the most basic GUI
framework available in Python.

Tkinter is an inbuilt Python module used to create simple GUI applications. It is the most
commonly used module for designing Graphical User Interfaces (GUIs) with Python. Tkinter
is a powerful toolkit that provides a variety of controls, such as buttons, labels, text boxes,
checkboxes, and more, to create a graphical user interface for desktop applications.

Tkinter is easy to use and understand. It provides a platform-independent interface to the Tk
GUI toolkit, which is available for most operating systems. It is also used for rapid
application development as it provides a set of standard widgets.

The basic components of a Tkinter GUI application are the root window, frames, widgets,
and geometry management. The root window is the main window in which all other
components are placed. The frames are used to divide the root window into sections. Widgets
are the graphical elements that allow a user to interact with the GUI application. Geometry
management is used to organize and arrange the widgets within the frames.

To create a GUI application using Tkinter, one must first import the Tkinter module. To
create the main window, the Tk() constructor is used. After creating the main window, one
can create frames and widgets, and organize them using geometry management.

To create buttons, labels, text boxes, and other widgets, the widget classes must be imported
from the Tkinter module. To create a simple button, the Button() class is used. For example,
to create a button with the text “Click Me”, the following code can be used:

btn = Button(root, text="Click Me")

The widget classes also provide options to configure the appearance of the widgets. For
example, to change the background color of a button, the bg option can be used.

The Tkinter module also provides support for creating menu bars and toolbars. To create a
menu bar, the Menu() class is used. To create a toolbar, the Toolbar() class is used.

 34 | Page

Practical-6 : Write a GUI Program in Python to design application that demonstrates
a. Different fonts and colors
b. Different Layout Managers
c. Event Handling

Source code:

Output:

 35 | Page

Example-1: Write a python program to create line with rectangle having canvas width =200
and height =100.
Source code:

Output:

Example-2: Write python program for creating line with canvas width=80 and height=40.
Source code:

Output:

 36 | Page

Example-3: write a python program for creating two lines with canvas width 60 and
height 80.

 Source code:

Output:

Example-4: write a python program to draw 2 rectangles of yellow and green colors.
Source code:

Output:

 37 | Page

Result and Discussion:

Learning Outcomes:

Course Outcomes:

Conclusion:

Viva Question:

1. What is GUI?
2. Which modules support GUI in python?
3. What is an event?
4. What is canvas?

 For Faculty Use

Correction
Parameters

Formative Assessment
[]

Timely completion
of practical []

Attendance
Learning
Attitude[]

 38 | Page

Theory 7
 Date and Time in Python

The Python date and time module is a powerful tool for managing dates, times, and
timestamps. It is a valuable resource for developers and provides many features that make
working with dates and times easier.

The Python date and time module is part of the standard library, so it does not need to be
installed separately. It provides a set of classes and functions for manipulating, formatting,
and converting dates and times. It can be used to convert strings to dates and times, to
compare dates, to add and subtract time from a given date, and to format dates and times into
strings.

The Python date and time module provides several classes for working with dates and times.
The most commonly used classes are the date, time, datetime, and timedelta classes. The date
class handles dates, the time class handles times, the datetime class handles date and time,
and the timedelta class handles differences in time.

The date class is the simplest of the four classes and can be used to store dates in the form of
year, month, and day. The time class is used to store time in the form of hour, minute, second,
and microsecond. The datetime class is used to store both date and time, and the timedelta
class is used to store differences in time.

The date and time module also provides several functions that can be used to manipulate and
format dates and times. The strftime() function can be used to format dates and times into
strings. The strptime() function can be used to convert strings to dates and times. The
strftime() and strptime() functions allow developers to specify the format of the date and time
strings and to convert the strings to and from different formats.

The date and time module also provides several functions for comparing dates and times. The
date and time comparison functions allow developers to compare dates and times and to
determine if a date or time is before or after another date or time. The date and time
arithmetic functions allow developers to add and subtract time from a given date and time.

The Python date and time module also provides several functions for calculating the amount
of time between two dates and times. The timedelta() function can be used to calculate the
amount of time between two dates and times, and the total_seconds() function can be used to
calculate the amount of time between two dates and times in seconds.

The Python date and time module is an invaluable tool for developers. It provides a set of
classes and functions for managing dates and times, and it provides functions for formatting
and converting dates and times. It also provides functions for comparing and calculating
differences in dates and times. With the Python date and time module, developers can easily
work with dates and times in their applications.

 39 | Page

Practical-7: Write Python Program to create application, which uses date and time in Python.
Source code:

Output:

Example 1: Write a Python Program for combining date and time.
Source code:

 40 | Page

Output:

Example 2: Write a Python Program to find duration by using “Time Delta”

Source code:

Output:

Example 3: Write a Python Program to compare two dates.
Source code:

Output:

 41 | Page

Example 4: Write a Python Program to sort the dates
Source code:

Output:

 42 | Page

Result and Discussion:

Learning Outcomes:

Course Outcomes:

Conclusion:

Viva Question:

1. Which module supports date and time?
2. Which method is used to print current date and time?
3. Which method is used to print current date?
4. Which method is used to print current time?

 For Faculty Use

Correction
Parameters

Formative Assessment
[]

Timely completion
of practical []

Attendance
Learning
Attitude[]

 43 | Page

Theory 8
 Client Server information

The socket module can be used to create server applications that can handle multiple client
connections efficiently.

This module allows programs to create sockets, bind them to specific ports and listen for
incoming connections. It also provides methods for sending and receiving data over the
network.

The socket module in Python provides a set of methods and classes for working with TCP/IP
sockets.

Socket():

Socket() is used to create a socket object that can be used to establish a connection between
two machines. It takes the address family, socket type, and protocol type as arguments and
returns a socket object.

Bind():

Bind() is used to bind a socket to a specific network address. It takes the socket object and a
tuple containing an IP address and port number as arguments and binds the socket to that
address.

Accept():

Accept() is used to accept incoming connections. It takes a socket object as an argument and
waits for an incoming connection. When a connection is accepted, it returns a new socket
object that can be used to communicate with the connected client.

Encode():

Encode() is used to convert a string or a sequence of bytes into a unicode string. It takes a
string as an argument and returns a unicode string.

Decode():

Decode() is used to convert a unicode string into a string or a sequence of bytes. It takes a
unicode string as an argument and returns a string.

Send():

Send() is used to send data over a socket. It takes a socket object and a string or a sequence of
bytes as arguments and sends the data over the socket.

Close():

Close() is used to close a socket connection. It takes a socket object as an argument and
closes the connection.

 44 | Page

Practical-8 : Write a Python program to create server-client and exchange basic information
Source code:

 45 | Page

Output:

 46 | Page

Example-1: write a python program to create a server client and exchange current-day
information.
Source code:

 47 | Page

Output:

 48 | Page

Example-2: write a python program to create a server-client and exchange current time
information.
Source code:

 49 | Page

Output:

 50 | Page

Result and Discussion:

Learning Outcomes:

Course Outcomes:

Conclusion:

Viva Question:

1. What is a socket?
2. What is TCP/IP?
3. What does listen method do?
4. What does accept method do?

 For Faculty Use

Correction
Parameters

Formative Assessment
[]

Timely completion
of practical []

Attendance
Learning
Attitude[]

 51 | Page

Theory 9
 Implementation of OOP concept

Object-Oriented Programming (OOP) is an approach to programming which focuses on
objects and their interactions to solve problems. OOP is based on the concept of objects,
which are collections of related data and methods that work with that data. Objects can be
thought of as the physical representation of a real-world object, such as a car, a book, or a
person.

In OOP, programs are organized around objects, which are collections of data and related
methods. Objects encapsulate data, meaning that all of the data associated with an object is
contained within the object itself. This makes it easier to maintain and update programs,
since all the related data is packaged together. Objects also have methods, which are
functions that manipulate the data within the object.

When programming with OOP, objects are created from classes, which are templates that
define the data and methods associated with the object. Classes are like blueprints, and when
you create an object from a class, you are creating an instance of the class. Objects created
from the same class will have similar data and methods, but the data can be different for
each instance of the class.

OOP also makes use of inheritance, which allows one class to inherit the data and methods
of another class. This makes it easier to create objects that share a lot of the same
functionality. Inheritance also makes it easier to update and maintain code, since changes
only need to be made to the parent class, and all of the child classes will inherit the changes.

Polymorphism is a core principle of OOP that allows objects of different classes to be
treated the same way. This means that objects can respond differently when the same
methods are called on them, depending on the object's class.

Encapsulation is a principle of OOP that helps to protect data within an object. It prevents
external code from directly manipulating an object's data, and instead requires that access to
the data be done through the object's methods. This helps to ensure that objects maintain a
consistent internal state and that any changes to the data are done in a controlled and
consistent manner.

Abstraction is a principle of OOP that allows programmers to hide the details of how an
object works and instead focus on how the object is used. Abstraction is used to simplify
complex tasks and make code more readable, and it is also used to reduce code duplication
by removing common code from multiple objects and placing it in a single location.

OOP is a powerful approach to programming that makes it easier to maintain and update
programs.

 52 | Page

Practical-9 : Write a Python program to implement concepts of OOP such as Types of
Methods, Inheritance, Polymorphism.
Source code:

Output:

 53 | Page

Example 1: Write a Python program to implement the concept of Inheritance with one base
class and two child classes.
Source code:

Output:

Example 2: Write a Python program to implement multilevel inheritance.
Source code:

 54 | Page

Output:

Example 3: Write a Python program to implement polymorphism: Define methods in the
child class that have the same name as the methods in the parent class.
Source code:

Output:

 55 | Page

Result and Discussion:

Learning Outcomes:

Course Outcomes:

Conclusion:

Viva Question:

1. What is a class?
2. What is an object?
3. What is Inheritance?
4. What is Polymorphism?

 For Faculty Use

Correction
Parameters

Formative Assessment
[]

Timely completion
of practical []

Attendance
Learning
Attitude[]

 56 | Page

Theory 10
 Implementation of OOP concept

Object-Oriented Programming (OOP) is an approach to programming which focuses on
objects and their interactions to solve problems. OOP is based on the concept of objects,
which are collections of related data and methods that work with that data. Objects can be
thought of as the physical representation of a real-world object, such as a car, a book, or a
person.

In OOP, programs are organized around objects, which are collections of data and related
methods. Objects encapsulate data, meaning that all of the data associated with an object is
contained within the object itself. This makes it easier to maintain and update programs,
since all the related data is packaged together. Objects also have methods, which are
functions that manipulate the data within the object.

An abstract method is a method that is declared, but not defined in a class. It is up to
subclasses to provide the concrete implementation of the method. The purpose of an abstract
method is to provide a common interface across all subclasses. It allows subclasses to provide
their own implementation of the method, while still offering the same interface for other
classes to use.

Abstract classes, on the other hand, are classes that cannot be instantiated. They contain one
or more abstract methods, but also can contain concrete methods. An abstract class is used to
provide a common definition of a base class that multiple subclasses can inherit from.

In Python, an interface is a way of defining a contract between classes to ensure that a certain
set of methods are implemented by all classes that implement the interface. This can be useful
for various types of applications, such as when writing a library of code that depends on a
certain set of methods being implemented by the classes that use it. By defining an interface,
a library can ensure that the code it uses will always have the same set of methods available,
regardless of what class implements it. This can help ensure that code written using the
library will always work, regardless of how the classes that implement the interface change
over time.

Interfaces are also useful for ensuring that certain classes are used in particular ways. For
example, if a particular class is intended to be used as a data structure, an interface can be
used to ensure that the class implements all the methods necessary to use it as a data
structure. This can help prevent code that uses the class from using it in a way that isn’t
intended.

In conclusion, abstract methods and classes, as well as interfaces, are all useful tools for
ensuring that code is written in a way that is maintainable and consistent. Abstract methods
and classes allow for code reuse, while interfaces help ensure that classes are used in the way
they were intended. By using these tools, code can be written in a way that is both
maintainable and readable.

 57 | Page

Practical-10:Write a program to Python program to implement concepts of OOP such
Abstract methods and classes,Interfaces
Source code:

Output:

 58 | Page

Example 1: Write a program to create a abstract class with name ‘Bike’ and having one method
run().
Source code:

Output:

Example 2: Create the instance of Rectangle class, draw() method of rectangle class will be
invoked.
Source code:

Output:

 59 | Page

Example 3: Write a Python program to create interface having two abstract method and one
subclass
Source code:

Output:

 60 | Page

Result and Discussion:

Learning Outcomes:

Course Outcomes:

Conclusion:

Viva Question:

1. What is an abstract class?
2. What is an abstract method?
3. What is an interface?
4. How to make an abstract class?

 For Faculty Use

Correction
Parameters

Formative Assessment
[]

Timely completion
of practical []

Attendance
Learning
Attitude[]

