A Basic Explanation of the Least Squares Method

By John VanSickle (evilsnack at hotmail dot com)
A common task in numerical analysis is the determination of a function of a predetermined type which provides the "best fit" for a given set of data, the data being specified as a set of ordered pairs of domain and range values. With the type of the function having already been determined, what remains is the determination of the various coefficients in that function.

In its most general form, the desired function has the form

$$
F=\sum_{\mathrm{i}=1}^{n} a_{i} f_{i}
$$

where n is the number of terms in the function, the values $a_{l}, a_{2}, \ldots a_{n}$ are the desired coefficients, and the functions $f_{1}, f_{2}, \ldots f_{n}$ are simpler functions of a pre-determined type (often integral powers of the argument) which comprise F.

The least squares technique takes the value of F for each of the domain values in the data set and subtracts from each result the corresponding range value. Each such difference is squared, and all of the squares are summed:

$$
\begin{equation*}
\sum_{j=1}^{m}\left(F\left(x_{j}\right)-y_{j}\right)^{2} \tag{2}
\end{equation*}
$$

where $x_{1}, x_{2}, \ldots x_{m}$ are the domain values in the data set, and $y_{1}, y_{2}, \ldots y_{m}$ are the range values of the data, and m is the number of data.

The method then determines the values of $a_{1}, a_{2}, \ldots a_{n}$ for which this sum has the smallest value. This is accomplished by differentiating the sum over each of the coefficients, and solving each such derivative for zero. This results in an system of n equations in n unknowns.
(2) is expanded somewhat to yield

$$
\sum_{\mathrm{j}=1}^{m}\left(F\left(x_{j}\right)^{2}-2 y_{j} F\left(x_{j}\right)+y_{j}^{2}\right)
$$

and we differentiate over each of $a_{1}, a_{2}, \ldots a_{n}$, and solve for zero,

$$
\begin{aligned}
& \frac{d}{d a_{i}} \sum_{\mathrm{j}=1}^{m}\left(F\left(x_{j}\right)^{2}-2 y_{j} F\left(x_{j}\right)+y_{j}^{2}\right)=0 \\
& \frac{d}{d a_{i}} \sum_{\mathrm{j}=1}^{m} F\left(x_{j}\right)^{2}-2 \frac{d}{d a_{i}} \sum_{\mathrm{j}=1}^{m} y_{j} F\left(x_{j}\right)+\frac{d}{d a_{i}} \sum_{\mathrm{j}=1}^{m} y_{j}^{2}=0
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{j=1}^{m} \frac{d}{d a_{i}} F\left(x_{j}\right)^{2}-2 \sum_{j=1}^{m} \frac{d}{d a_{i}} y_{j} F\left(x_{j}\right)+\sum_{j=1}^{m} \frac{d}{d a_{i}} y_{j}^{2}=0 \\
& \sum_{j=1}^{m} \frac{d}{d a_{i}}\left(\sum_{\mathrm{k}=1}^{n} a_{k} f_{k}\left(x_{j}\right)\right)^{2}-2 \sum_{j=1}^{m} \frac{d}{d a_{i}} y_{j}\left(\sum_{\mathrm{k}=1}^{n} a_{k} f_{k}\left(x_{j}\right)\right)+\sum_{j=1}^{m} \frac{d}{d a_{i}} y_{j}^{2}=0
\end{aligned}
$$

giving

$$
\begin{aligned}
& 2 \sum_{j=1}^{m}\left(f_{i}\left(x_{j}\right) \sum_{\mathrm{k}=1}^{n} a_{k} f_{k}\left(x_{j}\right)\right)-2 \sum_{j=1}^{m} y_{j} f_{i}\left(x_{j}\right)=0 \\
& \sum_{j=1}^{m}\left(f_{i}\left(x_{j}\right) \sum_{\mathrm{k}=1}^{n} a_{k} f_{k}\left(x_{j}\right)\right)=\sum_{j=1}^{m} y_{j} f_{i}\left(x_{j}\right)
\end{aligned}
$$

which results in the equation

$$
a_{1} \sum_{j=1}^{m} f_{1}\left(x_{j}\right) f_{i}\left(x_{j}\right)+a_{2} \sum_{j=1}^{m} f_{2}\left(x_{j}\right) f_{i}\left(x_{j}\right)+\ldots+a_{n} \sum_{j=1}^{m} f_{n}\left(x_{j}\right) f_{i}\left(x_{j}\right)=\sum_{j=1}^{m} y_{j} f_{i}\left(x_{j}\right)
$$

for each i from 1 to n. The characteristic matrix is

$$
\left[\begin{array}{cccc}
\sum_{k=1}^{m} f_{1}\left(x_{k}\right) f_{1}\left(x_{k}\right) & \sum_{k=1}^{m} f_{1}\left(x_{k}\right) f_{2}\left(x_{k}\right) & \ldots & \sum_{k=1}^{m} f_{1}\left(x_{k}\right) f_{n}\left(x_{k}\right) \\
\sum_{k=1}^{m} f_{2}\left(x_{k}\right) f_{1}\left(x_{k}\right) & \sum_{k=1}^{m} f_{2}\left(x_{k}\right) f_{2}\left(x_{k}\right) & \ldots & \sum_{k=1}^{m} f_{2}\left(x_{k}\right) f_{n}\left(x_{k}\right) \\
\vdots & \vdots & \ddots & \vdots \\
\sum_{k=1}^{m} f_{n}\left(x_{k}\right) f_{1}\left(x_{k}\right) & \sum_{k=1}^{m} f_{n}\left(x_{k}\right) f_{2}\left(x_{k}\right) & \ldots & \sum_{k=1}^{m} f_{n}\left(x_{k}\right) f_{n}\left(x_{k}\right)
\end{array}\right]
$$

and multiplying its inverse by

$$
\left[\begin{array}{c}
\sum_{j=1}^{m} y_{j} f_{1}\left(x_{j}\right) \\
\sum_{j=1}^{m} y_{j} f_{2}\left(x_{j}\right) \\
\vdots \\
\sum_{j=1}^{m} y_{j} f_{n}\left(x_{j}\right)
\end{array}\right]
$$

will yield the desired coefficients.
Note that where the determinant of the characteristic matrix is zero, the data set is inadequate in some way (generally, the cause is an insufficient number of data samples).

It is important to remember that the size of the matrix representing the system of equations is dependent on the number of coefficients sought, and not on the number of items in the data set. If only five coefficients are needed, but the data set numbers in the thousands, the characteristic matrix is still five by five; however, determining the contents of the matrix will involve a lot of calculating.

