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Abstract / Resumé

Abstract. In this thesis, we investigate a class of Backward Stochastic Differential
Equations (BSDE’s) and give some applications to the homogenization of semi-linear Partial
Differential Equations (PDE’s).

We first establish existence, uniqueness and stability results for reflected BSDE’s when the
coefficient f is locally Lipschitz and the terminal condition is only square integrable. Our
proofs are based on approximation techniques.

With the same spirit but different techniques, we extend our results on existence, uniqueness
and stability in many directions. First, the coefficient is ”almost” quadratic in its two
variables y and z, i.e. | f(t,w,y,2) [<K T+ M(|y |* + | 2 |*) for some o < 2. Second the
coefficient satisfies a locally monotonicity condition. Third, The coefficient is neither locally
Lipschitz in the variable y nor in the variable z. Moreover, the terminal data is assumed to
be square integrable only.

We finally prove some homogenization results for semi-linear PDE’s by using an approach
based upon the nonlinear Feynman-Kac formula developed in [74] and [68]. This gives a
probabilistic formulation for the solutions of systems of semi-linear PDE’s via the BSDE’s.
The problem then reduces to study the stability properties of BSDE’s.

Resumé. Dans cette these, nous étudions une classe des Equations Différentielles Stochas-
tiques Rétrogrades (EDSRs) et nous donnons quelques applications & ’homogénéisation des
Equations aux Dérivées Partielles (EDPs).

Dans un premier temps, nous établissons des résultats d’existence, d’unicité et de stabilité
quand le coefficient f est localement Lipschitzien et la condition terminale £ est seulement
de carré intégrable. Nos démonstrations sont basées sur des techniques d’approximation.
Dans le méme esprit mais avec des techniques différentes, nous généralisons nos résultats
d’existence, d’unicité et de stabilité dans plusieurs directions. d’une part, le coefficient
est a croissance presque quadratique par rapport a ses deux arguments y et z, i.e.
| f(t,w,y,2) KT+ M(|y|*+|2]% pour a < 2, et d’autre part, il vérifie une condition
de type monotonie locale en la variable y. En outre, la condition vérifiée par rapport a la
variable z est plus faible que la condition de Lipschitz locale.

Finalement, nous prouvons quelques résultats d’homogénéisation aux EDPs en utilisant une
approche basée sur la formule de Feynman-Kac généralisée et développée dans [74] et [68].
Ceci nous donne une représentation probabiliste pour les systemes d’EDPs via les EDSRs.
Le probléme est alors réduit a étudier la stabilité des EDSRs.

vii



Introduction

0.1 Backward stochastic differential equations

It was mainly during the last decade that the theory of backward stochastic differential
equations took shape as a distinct mathematical discipline. This theory has found a wide
field of applications as in stochastic optimal control and stochastic games (see Hamadeéne
and Lepeltier [40]) and at the same time, in mathematical finance, the theory of hedging and
non-linear pricing theory for imperfect markets (see El Karoui and Peng and Quenez [27]).
Backward stochastic differential equations also appear to be a powerful tool for constructing
I'—martingale on manifolds (see Darling [22]) and they provide probabilistic formulae for
solutions to partial differential equations (see Pardoux and Peng [67]).
Consider the following linear backward stochastic differential equation:

{ dYy = [YiBs + Z27s + ¢s|ds — Z2dW, ©1)

Y =¢.

As well known the equation was first introduced by Bismut [14, 16] when he was studying
the adjoint equations associated with the stochastic maximum principle in optimal stochastic
control. It is used in the context of mathematical finance as the model behind Black and
Scholes formula for the pricing and hedging options. The equation (0.1) tells how to price the
marginal value of the resource represented by the state variable in a random environment.
Here, we solve for Y and Z, Y stands for the price while Z stands for the uncertainty between
the present and terminal times.
The starting point of the development of general BSDE

{ —dYs = f(s,Ys, Zs)ds — Z;dW (0.2)

Ynga

is the paper of Pardoux Peng [67]. Since then, BSDEs have been extensively studied. Note
that, since the boundary condition is given at the terminal time 7', it is not really natural for
the solution Y; to be adapted at each time ¢ to the past of the Brownian motion W, before
time t. The presence of Z; seems superfluous. However, we point out that it is the presence
of this process that makes it possible to find adapted process Y; to satisfy (0.2). Hence, a
solution of BSDE (0.2) on the probability space of Brownian motion, as mentioned above, is
a pair (Y, Z) of adapted processes that satisfies (0.2) almost surely. There is a vast literature
on the subject (see, for example, Antonelli [2], Duffie and Epstein [26], Nualart and Schoutens
[57], Pardoux [66], Peng [74]).

viil
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In [67], Pardoux and Peng have established the existence and uniqueness of the solution of
equation (0.2) under the uniform Lipschitz condition, i.e. there exists a constant K > 0 such
that

| flw ity 2) = flw ity 2)ISK(ly—y | +]2-2"]), (0.3)

for all y,9 € RY, 2, 2/ € R*" and (w,t) € Q x [0,1].

The existence and uniqueness of reflected backward stochastic differential equation (RB-
SDE) in a convex domain, via penalization method, have been proved by Gegout-Petit and
Pardoux [36] under hypothesis (0.3) (see also Ouknine [61]). In the case where the solution
is forced to remain above an obstacle, El Karoui et al. [28] have derived an existence result
for reflected BSDE with Lipschitz conditions by Picard iteration method as well as a penal-
ization argument (see also [41]). In this case, the solution is a triple (Y, Z, K), where K is an
increasing process, satisfying

{ —dY, = f(s,Ys, Zs)ds — Z*dW, + dK, 0.4

Yr =¢&.
The existence and uniqueness of reflected backward stochastic differential equation (RB-
SDE) with jumps
—dYs = f(s,Ys, Zs)ds — ZrdWs + dK; + /Us (e) p(de, ds)
YT = 57

both in one-dimensional and multidimensional cases, have been proved by Hamadene and

(0.5)

Ouknine [41] and by Ouknine [61] under Lipschitz conditions on the coefficient via penaliza-
tion argument. Moreover, Tang and Li [78] have applied the idea of Pardoux and Peng [67]
for BSDE to get the first result on the existence and uniqueness of an adapted solution to a
BSDE with Poisson jumps for a fixed terminal time and with Lipschitzian coefficients.

The assumption (0.3) (Lipschitz) is usually not satisfied in many problems, for example in
finance (see Remark 2.3 of Chapter 2). So it is important to find weaker conditions, than
the Lipschitz one, under which the BSDE has a unique solution. Now the question is: Are
there any weaker conditions than the Lipschitz continuity under which the BSDE has a unique
solution?

0.2 Some answers

Since the result of Pardoux and Peng [67], several works have attempted to relax the Lipschitz
condition and the growth of the generator function, see Pardoux and Peng [69], Lepeltier and
San Martin [49], Hamadeéne [39], Dermoune et al [24], Barles and Kobylanski [44], N’zi
[58] and N’zi-Ouknine [59]. Most of these works deal only with real-valued BSDEs and the
terminal condition & is bounded because of their dependence on the use of the comparison
theorem for BSDEs (see Theorem 1.8), the uniqueness does not hold in general. Furthermore,
the multidimensional case is also studied even though the comparison theorem does not hold.
However, in general, the existence and uniqueness results are obtained only under weaker
condition with respect to Y and Lipschitz with respect to Z (see Bahlali et al [6], Briand and
Carmona [17], Darling and Pardoux [23], Hamadéne [38], Mao [53] and Pardoux [64]). Let us
mention nevertheless an exception: in [3], Bahlali has established an existence and uniqueness



result for the solution of BSDEs (without reflection) under locally Lipschitz condition with
respect to Y and Z.

0.3 Homogenization of PDE’s via BSDE’s

In [12], Bensoussan et al. studied the homogenization of linear second order partial differential
operators using a probabilistic approach, based upon the linear Feynman-Kac formula. They
left the question of studying the nonlinear case by the probabilistic method as an area open
to investigation.

Recently, Pardoux and Peng [67, 68] have generalized the Feynman-Kac formula to take
into account semi-linear PDE’s. This generalization is based upon the theory of backward
stochastic differential equations. More precisely, let u be the solution of the following system
of semi-linear parabolic PDEs:

?;:(t, x) + %TT(O’J*AU)(t, x) + bVu(t,z) + f(t, z,u(t,z), Vuo(t,z)) =0

u(T,x) = g(x).

Introducing {Y**, Z5%; s < t < T} the adapted solution of the backward stochastic differ-
ential equation

(0.6)

—dYy = f(t, X;", Vs, Zy)ds — ZFdW, (0.7)
YT = g(X%x)u '
where (X*®%) denotes the solution of the following stochastic differential equation
dX; = b(t, Xt)dt + U(t, Xt)th
(0.8)
Xs ==,
then we have, for each (¢,z) € [0,7] x R™,
u(t,z) =Y, (0.9)

both in the sense that any classical solution of the PDE (0.6) is equal to Y;, and Y; is —in
the case where all coefficients are continuous— a viscosity solution of the PDE (0.6). This
formula is the generalization of the well known Feynman-Kac formula.

It is then by now well known that systems of parabolic semi-linear are closely related to
BSDE’s. From the knowledge of BSDE’s, we can derive some results on systems of semi-
linear PDE’s (see Pardoux and Peng [67], [68]). This correspondence reduces Bensoussan et
al question to a question of stability of BSDEs. This last idea has been used in Pardoux,
Veretennikov [71] to give averaging results for semi-linear PDEs where the nonlinear term
is a function of the solution and not depend on the gradient, in Pardoux [65] and Ouknine,
Pardoux [73] to prove homogenization property for a system of semi-linear PDEs of parabolic
type, with rapidly oscillating periodic coefficients, a singular drift and a singular coefficient of
the zero-th order term. Furthermore, let us recall that other homogenization results have been
proved by Buckdahn and al. [18], Gaudron, Pardoux [37], and Lejay [48] where a divergence
operators has been involved. On the other hand, from the knowledge of systems of semi-linear
PDE’s, we can derive some results on BSDE’s (see Ma et al. [52] for more details). Now the
question is: How to obtain homogenization results for semi-linear variational inequalities and
for semi-linear PDE’s with singular coefficient?
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0.4 Results

In this thesis, we present some new results in the theory of BSDE’s and give some applica-
tions to the homogenization of semi-linear PDE’s. In particular, we provide answers to the
questions we have raised above.

First, we establish existence and uniqueness results for the following type of multidimen-
sional reflected backward stochastic differential equations, F (¢, f), with jumps

( (1) Z and U are predictable processes and
1 1
E(/ |Zt]2dt+/ /|Us(e)|2)\(de)ds><+oo
0 0o Ju
1 1 1
2 =¢ —|—/ f(s,Ys, Zs,Us)ds —/ ZsdWy — / /US (e) u(de,ds) + K1 — Ky
t t t

(3) the process Y is right continuous having left-hand limits (cadlag)

(4) K is absolutely continuous, Ky = 0, and / (Y, — ) dKy <0
0

for every ay, progressively measurable process, which is right continuous having
left-hand limits and takes values into ©

(5)Y; €6,0<t<1.as.,

for the case where the generator f is locally Lipschitz with respect to (y,z,u), that is: for
each N > 0, there exists Ly such that:

’ f(tvyazau) - f(tayazlau/) ‘S LN (| Yy _y, | + | Z = Z/ ’ +||u_ ul”) P— a.s.,a.e. te [07 1]
and Yy, 3y, 2,2/, u,u’ such that |y |[< N, |y |<N,|z|<N,| 2 |< N, |ul| <N,|d| < N.
We don’t impose any boundedness condition on the terminal data. It will be assumed square

integrable only and this is important for applications, while the Lipschitz constant L behaves
as y/log(N) or satisfies the following condition

I exp(L?v +2Ly)
i

-0,
N—oo (I3, + 2Ly ) N20-0)

for 0 < a < 1. Usually the method used to prove existence of solution to BSDE’s consists in
constructing a solution via successive approximations. Although this method is a powerful
tool under globally Lipschitz hypothesis on the coefficient, it fails when the assumptions
are only local. Thus, new techniques must be used. We adopt the following method: we
approximate f by a sequence of Lipschitz functions f,,, then we consider the sequence of
solutions (Y™, Z™ K™ U") of equation E(¢, f,) and finally we prove that (Y™, 2", K™, U™)
converges, for a suitable family of semi-norms, to the process (Y, Z, K, U) which is a solution
to equation F(¢, f). Using the same idea we also extend our result to the case when f is
locally monotone with respect to the state variable y and locally Lipschitz with respect to z.
More generally, we extend our results essentially in two directions. First, the coefficient
grow ”almost” in quadratic fashion in the two variables y and z, i.e. | f(t,w,y,2) |[<T+
M(|y|*+]z1%) for some a < 2. Second the coefficient may be no locally Lipschitz. For
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example, our coefficient can take the form: |z|\/|log|z|| or |y||log|y||]. The method we use
here develops the ones used previously: we approximate f by a sequence (f,)n>1 of Lipchitz
functions via a suitable family of semi-norms. Then we use an appropriate localization to
identify the limit as a solution of the equation (E/), where (E/) denotes the BSDE E(f,¢)
without reflection and no jumps part. The main difference idea here stays in the fact that we
apply It formula to (|[Y» —Y 7|2 4-¢)P for some 0 < 8 < 1 and € > 0, instead of |YF» —Y Fm |2
as usually done. This allows us to treat multidimensional BSDE with super-linear growth
coefficient in the both variables y and z. We prove the existence and uniqueness of solution
for a small time duration, then we use the continuation procedure to extend the result to an
arbitrarily prescribed time duration. The stability of the solution is established by similar
arguments.

To illustrate our result, let us consider the following example: Let € > 0 and
fl(tvwv Y, Z) = g(ta w, y) [|Z| \% | log ‘Z| ’1\z|<€ + h(z)15§\2|§1+€ + ’Z‘ \% log |Z’1\z|>1+s]
where g is a bounded function which is continuous in y such that g(¢,w,0) = 0 and
(y—1v',g(t,y) —g(t,y')) <0. his a lipchitz and positive function which is choosing such that
f1 is continuous.
Let fo(t,w,y, z) be a continuous function in (y, z) such that:
i) There exist M > 0, and n € L([0,T] x Q) : {(y, fa(t,w,y,2)) <n+ M|y]> + M | z |?
i1) There exist M >0,1<a<2and 7€ ]L%([O,T] xQ): | falt,w,y,0) [+ M |y |*.
i7i) There exists a constant C' > 0 :

<y_y/7f2(tayvz) _fQ(t’ylvzl»
<Cly—y POA+ogly—y [I]+Cly—y [[z—2"| [1+V[log|z—=[]].

Our work shows that equation (E/17/2) has a unique solution. It should be noted that this
example is not covered by the previous papers.

Second, we prove some homogenization results for semi-linear PDE’s by using an approach
based upon the nonlinear Feynman-Kac formula (0.9) developed in [74] and [68]. This gives
a probabilistic formulation for the solutions of systems of semi-linear PDE’s via the BSDE’s.
The problem then reduces to study the stability properties of BSDE’s. To be more precise,
let u® : [0,t] x R — R be a solution of the system of multivalued partial differential equations
associated to a lower semi-continuous, proper and convex function ¢ : R¥ — (—o0, +o0]

ou®
g(s,x) — Louf(s,z) — f(z,us(s,x)) € 0p(u®(s,x)), for s €0,1]
uf(0,7) = g(x),us(t,z) € Dom(¢),r € RY

where L. is a second order operator and f, g are given functions, then one has
u®(t,x) — u(t,z), as & goesto O,

where u is the viscosity solution of the system of multivalued PDEs

%(s,x) — Lu(s,x) — f(z,u(s,z)) € 0p(u(s,x)), for s € 0,t]

u(0, ) = g(x), u(t,z) € Dom(¢),z € RY.

In order to prove this result, we use the probabilistic interpretation (0.9). Then we establish
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the stability for the following reflected BSDE

t t
Y;t,z,a _ g(Xtt,:c,e) _|_/ f(X;f’x’a, Y;,t’x’a)dr - / Zﬁ’x’EdBr + Kf,m,s _ K;,x,a
s

s

t

in the Meyer and Zheng topology [56] via double approximation schemes: Yosida approxima-
tion on the reflection term and the usual homogenization approximation.

0.5 Outline of the thesis

The thesis is organized as follows.

In Chapter 1, we present, under classical assumptions and by means of a Picard approxi-
mation scheme, an existence and uniqueness theorem for solutions of BSDE’s. In particular,
we obtain a result for linear BSDE’s which are classical in finance. Then, we state various
properties concerning BSDE’s. A probabilistic interpretations for PDE’s is also presented.

In Chapter 2, we prove existence and uniqueness results of solution of reflected multi-
dimensional backward stochastic differential equation with jumps in d-dimensional convex
region. Our contribution in this topic is to weaken the Lipschitz assumption on the data
(&, f). This is done with locally Lipschitz coefficient f and an only square integrable terminal
condition £&. We give, under the same assumptions, a stability result: more precisely, let
(fn) be a sequence of processes which converges to f locally uniformly and (£") a sequence
of random variable which converge to ¢ in L?(€2), then the solutions Y™ of reflected BSDE
E(&", fn) converges to Y the solution of E(&, f) (see Theorem 2.14 of this chapter). We
also study the case when the generator f has a super-linear growth of the following type:
C(1+ |y | TTog [y ), €1+ | y | y/TTog [Tog [y TT)--.

We would like to mention here that the main device of our proof is an approximation tech-
nique. Such an idea was recently given in Bahlali [3].

Chapter 3 is devoted to the study of existence and uniqueness results for reflected back-
ward stochastic differential equation with monotone and locally monotone coefficient and
squared integrable terminal data. Precisely, let the generator f satisfying the following as-
sumptions:

(i) f is continuous in (y, z) for almost all (¢,w),
(ii) There exist M > 0 and 0 < o <1 such that | f(t,w,y,2) |< M(1+ |y |*+ | z |¥).

(iii) There exists gy such that:

=y fty,2) = ft,y,2) <pn |y — o % P—as.,aet €[0,1] and
Vy,y', z such that |y |< N,|y' |[< N,| 2z |< N.

(iv) For each N > 0, there exists Ly such that:
| f(tvyaz) _f(tvyazl) ’S Ly | z—2 |7 | z |a’ 2 |S N.
Then, if Ly satisfies

exp (LY + 2uy)
Noo (L2 TyN2(1-a)
too (L + 2uy)N
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the reflected BSDE E(¢, f) has a unique solution. In particular, if there exists a constant
L > 0 such that: L% + 2uf, < L +2(1 — a)log N the reflected BSDE E(¢, f) has also a
unique solution (see Theorem 3.6).

More generally, we extend our results essentially in two directions. First, the coeflicient
grow "almost” in quadratic fashion in the two variables Y and z, i.e. | f(t,w,y,2) |[< 7+
M(y|*+]z]% for some v < 2. Second the coefficient may be no locally Lipschitz. For
example, our coefficient can take the form: |z|\/|log|z|| or |y||log |y]|.

In chapter 4, we study the limit of solutions of multivalued semi-linear partial differential
equations involving a second order differential operator of parabolic type where the nonlinear
term is a function of the solution and does not depend on the gradient. Our basic tool is the
approach given by Pardoux [66] and Ouknine [61]. The weak convergence of the associated
reflected backward stochastic differential equation involving the subdifferential operator of a
lower semi-continuous, proper and convex function is proved in the sense of Meyer and Zheng
topology [56]. An homogenization result for solutions of semi-linear PDE’s in Sobolev spaces
is also established.

In Chapter 5, we combine BSDE with the theory of diffusion approximation, as in Papani-
colaou, Stroock, Varadhan [63], Pardoux, Veretennikov [71] and Ethier, Kurtz [32]. Firstly, in
order to prove averaging result for a system of semi-linear PDE’s of second order of parabolic
type, with rapidly oscillating periodic coefficients, a singular drift and singular coefficients of
the zero and second-th order term. Secondly, to prove averaging result of a singular Cauchy
problem by introducing BSDE with local time (see Dermoune et al [24]).

In Chapter 6, we prove the convergence of the viscosity solution of a semi-linear variational
inequality (SVI for short) involving a second order differential operator of parabolic type with
periodic coefficients and highly oscillating term, using again the Meyer and Zheng topology
and the weak convergence of an associated reflected backward stochastic differential equation.
Roughly speaking, let u® be the viscosity solution of the following semi-linear variational
inequality
(Vs € [0,t], z € RY

€ 2,.€ €
G52 = S (D)5 (5) — DL R + 2D G (0.2)
—(ze(2,u%(s,2)) — f(£,u%(s,2))) € Dp(u (s, x))

\ ’LLE(O,{L‘) = g(l‘), ua(sa l‘) € DOTI’L((}S) = Cl(@)a
where ¢ is a lower semi-continuous, proper and convex function. Then, we have
u®(t,x) — u(t,z), as & goesto O,

where u is the viscosity solution of the system of semi-linear variational inequality with some
constant coeflicients:

(Vs e [0,t], = € R?
u 2U u
Get0) = Ty Ay ) = T Cilaloa) S (5.0
~Dlu(s,2))] € lguls, )
ul0,) = gla).




Chapter 1

Introductory Material on Backward
Stochastic Differential Equations

This introductory chapter is intended to give a thorough description of BSDE’s and then we
present existence and uniqueness results under classical Lipshitz conditions. A probabilistic
interpretations for PDE’s is given. Some basic facts, which are widely used throughout the
thesis, are also presented.

1.1 A background on Backward stochastic differential equa-
tions

Let consider a filtered space (Q, F,P, Fy, Wy, t € [0,1]) be a complete Wiener space in R,
ie. (2, F,P) is a complete probability space, (F¢,t € [0,1]) is a right continuous increasing
family of complete sub o—algebras of F, (Wy,t € [0,1])

with respect to (F,t € [0,1]). We assume that

is a standard Wiener process in R"

Fr=0[Ws,s <t]VN,

where A denotes the totality of P-null sets. Now, we define the following two objects:
(A.1) A terminal value ¢ € L? (Q, Fy,P).

(A.2) A function process f defined on © x [0, 1] x R* x R¥*" with values in R* and satisfies
the following assumptions:

(1) for all (y, z) € R¥ x R¥*" . (w,t) — f (w,t,y, 2) is F;— progressively measurable
1

(ii)E/ | £(£,0,0) |? dt < 400
0

(#44) for some K > 0 and all y,3/ € R¥, 2,2/ € R¥*" and (w,t) € Q x [0, 1]
| fw,ty,2) = flw oy, ) IS K (ly—y [ +12-72]).

We denote by L the set of R¥ x R¥*" valued processes (Y, Z) defined on R, x © which are
Fi—adapted and such that:

1
v 2P = (s 11+ [ 12,705 ) < o
0<t<1 0



The couple (L, ||.||) is then a Banach space.
Let us now introduce our BSDE: Given a data (f, ) we want to solve the following backward
stochastic differential equation:

1 1
Yt—§+/ f(s,YS,ZS)ds—/ ZdW,, 0<t<l. (1.1)
t t

Definition 1.1. A solution of equation (1.1) is a pair of processes (Y, Z) which belongs to
the space (L, |.||) and satisfies equation (1.1).

We now make more precise the dependence of the norm of the solution (Y, Z) upon the

data (&, f).

Proposition 1.2. Let assumptions (A.1), (A.2)(i)—(iii) hold. Then there exists a constant
C, which depends only on K, such that

1 1
E sup |Yt|2+E(/ IZtht>§CE(!£!2+/ \f(t,o,o>2dt)
0 0

0<t<1

1
Y; P<E [ea“-t) e+ / "0 | £ (s,0,0) 2 ds/ft} |
0
where a = 1 + 2K + 2K?2.

Before proving Proposition 1.2, let us first prove the inequality

1
E sup |Y; > +E </ |ZS|2ds> < 0. (1.2)
0<s<1 0

Define for each n € IN, the stopping time
T, =inf {0 <t <1; |Y3| >n},

and the processes
Y;fn = E/\Tn'

By noting
21 =10y () Z2,

we have

1 1
Vr =t [ a9 f Y2~ [ ziaw,, 0<i<a,
t t

If we apply Ito’s formula to the process |Yt"]27 then
1 1 1
YrR e [Nz s = 162 42 [ 10 () 07) £ Y2 Z0ds — [ (v ziaw),
t t t
which implies
1 1
E (sz +/ |z ds> <E|¢ + IE/ (1£(5,0,0)P + (1 + 2K + 202) [ ds
t t

K 1 g
+2a2E/t 2z ds.



If we take % < %, we get

1 1 1
E|Y;"* + 2IE/ |Z7?ds < C <1 +E/ |YS"|2ds> .
t t
Now it follows from Gronwall’s lemma that

sup sup E|Y}"|? < C.
neN* 0<t<1

On the other hand,

1
sup E(/ |Z7|2ds) < +o0.
neN* 0

From Fatou’s lemma, we can see that

sup E|V;|? < +oo.
0<t<1

Burkholder-Davis-Gundy inequality implies that

E sup |V;|? < +oo.
0<t<1

It follows that 7, T 1 a.s. Using again Fatou’s lemma, we obtain

1
E </ | Z,|? ds) < 400.
0

1
Proof of Proposition 1.2. Since (Y, Z) satisfies (1.1) and (1.2), E/ (Ys, ZsdWs) = 0,
¢

t
because the local martingale, {IE / (Y, ZsdWy),0 < t < 1} is uniformly integrable martingale
0

from the Burkholder-Davis’s inequality for stochastic integrals (see M. T. Barlow and P.
Protter [11], proposition 3) and the fact that

1 1 1 3
E sup | [ (Yo)* ZsdWs) gC(E sup W) (IE/ \Zﬁds) < 0.
o<t<1 Jt 0<t<1 0
From It6’s formula, (A.2) (i) and Schwarz’s inequality,
1 1 1
|Yt|2+/ |Z,” ds = |g|2+2/ (YS)*f(s,YS,ZS)ds—2/ (Ys, ZsdW,).
t t t
1 1 1
< |£|2+/ (\f(s,O,O) ? +(1+2K+2K2>|Y3|2+2Zﬁ)ds—z/ (Y, ZsdW).
t t

Taking expectation and using Gronwall’s lemma we get
1 1
sup BV +E (/ | Z, |2 dt> <CE (| ¢ 2 +/ | £(t,0,0) ? dt> < +00.
0<t<1 0 0

Then the result follows from the Burkholder-Davis-Gundy inequality. The second result
follows by taking the conditional expectation in the following inequality

1 1 1 1
eatm\2+2/ ¢1* | 7,2 ds < ea\g|2+/ ¢ | £(s,0,0) 2 ds—2/ €95 (Y, ZodIW).
t t t



We shall now prove existence and uniqueness for BSDE (1.1) under conditions (A.1) and

(A.2).

Theorem 1.3. Under conditions (A.1), (A.2)(i) — (iii), there exists a unique solution for
equation (1.1).

Proof Theorem 1.3.
Existence. First, let us prove that the BSDE

Y, = £+/t1f(5)ds - /t1 Z,dW,

has one solution.
Let

1
V=B (et [ feasm),
0
and {Z;,0 <t < 1} is given by It6’s martingales representation theorem applied to the square

1
integrable random variable & + / f(s)ds, that is
0

- /0 ' fs)ds — E<£+ /O 1 f(S)dS> - /0 zaw,

Taking the conditional expectation with respect to F;, we deduce that

1 1
Y, = §+/ f(s)ds—/ ZdW. 0<t<l,
t t
ie. (Y,Z) is a solution of our BSDE.
Let us define the following sequence (Y™, Z™),, .y such that Y = Z% = 0 and (Y™, Z7*1)
is the unique solution of the BSDE

1
(1) Z"*! is a predictable process and E </ |zt |2 dt> < 400,
0

1 1
(2)  yrtt= §+/ f(s, Y, ZM)ds —/ ZM W, 0 <t < 1.
t t

We shall prove that the sequence (Y, Z") is Cauchy in the Banach space L.
Using It6’s formula, we obtain for every n > m

o0t Y)tn+1 o Y;m+1‘2 + /tl e ‘anﬂ . Z;nJrl‘Q ds + O{/tl e ’YSnJrl . Ysm+1‘2 ds
= 2/1 e (Y =YY [f(s, Y, 20) — f(s, Y, 2] ds
t
T 2/1 o0 (st+1 _ YSerl)* (Zg+1 _ Z;n+1) AW,
t
and then,
et P/tn—’—l . Y;m+1‘2 +E/t1 e ‘Z;I-i-l _ Z;n-l—l‘Q ds + aIE/tl e ‘st+1 _ Y;m+1|2 ds

1
§2KIE/t e [yt =y <!1;”—12’”!+|Z?—Z§"”>ds,



which implies

1
Eeo v, — v 4 E / | Zp ! — 20| ds
t

1 1
2
< (K2,62 —a)E/ %S }}/sn—&-l —Y;m+1‘2d8+ E/ s |}/Sn _}/sm|2 ds
t t

32
2 as | on m|2
+—62E t e ZY — ZT" ds.
. 2 1 2
Choosing o and § such that 7 =5 and @ — 4K* =1, then

1
Eeot ‘Y;n-&-l . Y;m—i—l‘Q —i—E/ e ‘Zg-‘rl - Z;n-‘rl‘Q ds
t
1 1 1
<3 <IE/ e”m"—nmEdHE/ ea5|Zg—Zy12ds>.
t t

It follows immediately that

1 1
C
2 2
IE/O e Y =Y -I—E/O P VAL d8§2—n.

Consequently, (Y, Z"), v is a Cauchy sequence in the Banach space of progressively mea-
surable processes L.
Let

Y= lim Y" and Z= Ilm Z".

n—-o0 n—-+o0o

It is easy to see that (Y, Z) is a solution of our BSDE.
Uniqueness. Let {(Y;, Z,); 0<t <1} and {(Y/,Z],); 0<t¢ <1} denote two solutions
of our BSDE, and define

{(AY;,AZ) 0<t <1} ={Y, Y/, Z, - Z}; 0<t<1}.

It follows from It0’s formula that
1 1
E [mm? +/ |AZS|2ds] = 2E/ (AYs, f(s, Y5, Zs) — f(s,Y], Zy)) ds.
t t

Hence . . .
1
E [\Am%/ yAZSdes] < CIE/ ]AYS|2ds+2IE/ |AZ,|? ds,
t t t
the result follows from Gronwall’s lemma. ]

Remark 1.4. It should be stressed that restrictions on the integrability of the solutions are
necessary to guarantee the uniqueness property.

Indeed, from the papers of Dudley [25], for any time ¢, there exists a stochastic integral
I = f(f ¢EdWs such that Iy = 1 and I; = 0, and fol | ¢s |* ds < +oo, P- a.s. This last
property does not hold in expectation. Now, Consider the elementary BSDE

1
Yi—¢- [ zzaw.
t



the square integrable solution (Y, Z) is given by the continuous martingale {Y; = E({/F)},
and the process Z is given by the martingale representation theorem. The processes
(Y + A\, Z + \¢) are also solutions of the BSDE, but the square integrability condition is
not satisfied by these solutions.

The following corollary shows, in particular, the existence and uniqueness result for linear
backward stochastic differential equation. The solution of such equation is well known in
mathematical finance as the pricing and hedging strategy of the contingent claim £ (see El
Karoui et al [27]).

Corollary 1.5. Let (8,7) be a bounded progressively measurable process, ¢ be a predictable
and square integrable process on € x [0,1]. Then the linear BSDE

dYy = (e + YViBy + Ziv)dt — ZidWy; Y1 =¢ (1.3)

has a unique solution (Y, Z) in 1L given explicitly by:

1
Iy, =E [€F1 +/ Fs@sds/ft:| ) (1.4)
t

where I'y is the adjoint process defined by the forward linear BSDE
dl's =T [Bsds +vy;dWs], To=1. (1.5)

In particular if & and ¢ are non-negative, the process Y is also non-negative. If in addition
Yo =0, then for anyt, Y; =0 a.s., £ =0 a.s. and p =0 dt ® dP-a.s.

Proof . From Theorem 1.3, there exists a unique solution to the BSDE (1.3). Using Itd’s
formula we deduce

t t t
Iy + / Lspsds =Yy + / Fs}/s'y;dWs + / FSY;Z:dWs
0 0 0

Since sup | Ys | and sup | 'y | are square integrable, the local martingale {I";Y; + fg Dspsds;
s<1 s<1

0<s< 1} is a unifarmly integrable martingale, whose t-time value is the F;—conditional
expectation of its terminal value. Hence, relation (1.4) is proved. In particular, if £ and
 are non-negative, Y; is also non-negative. If in addition Yy = 0, the expectation of the
non-negative variable I'1€ + fol T'spsds is equal to 0. Then, Y; =0 a.s., £ =0a.s. and ¢ =0
dt @ dP-a.s. [ |

For some given ty € [0, 1], we set
Flo =g {Wy — Wigito < s <t}, t € [to,1].

The following proposition, which is very important in PDEs, is an easy consequence of the
uniqueness of BSDE (1.1).

Proposition 1.6. We make the same assumptions as in Theorem 1.3. Furthermore we
assume that, for some given to € [0,1], f(.,y,2) is Fi°-adapted on the interval [to,1] and &
is Fi°- measurable. Let (Y, Z) be the solution of BSDE (1.1). Then (Y, Z) is Fi°-adapted on
[to, 1]. In particular (Yi,, Zy,) is a.s. constant.



Proof . We define a process (Y’, Z’) on the interval [tg, 1] as the F}°— adapted solution of
the BSDE

1
Y;—£+/ fs. 2 Zds — [ Zaw?, 0<i<1,
t

where WP = W; — Wy, . Obviously (W})
(Y, Z");,<1<1 are also Fi—adapted and

1 1
/Zywﬂ:/zym.
t t

It follows that, (Y’,Z’) coincides with the solution (Y, Z) on [tg, 1]. Consequently, (Y, Z) is
Flo— adapted on [tg, 1] . =

Now estimate the difference between two solutions in terms of the difference between the
data. Given two final conditions & and & € L? (Q, F1,P) and two coefficient processes f and f’
both satisfying the conditions above. Let {(Y, Z;); 0 <t <1} (resp. {(Y/,Z]); 0<t<1})
be the solution of the BSDE (¢, f) (resp. BSDE (¢, f') ). We have the following estimate for
the difference of the above solutions.

. to . .
ty<t<1 18 an F;°- Brownian motion on [to, 1] . But

Theorem 1.7. There exists a constant C, which depends upon the Lipschitz constant of f’,
such that

1
E sup ‘Y}—Y}"Q+E/ | Zy — 7] |? dt
0<t<1 0

1
<ce(le-¢ P+ [ 170v2)-r WYz Pa),
0
Proof . Using Itd’s formula for | Y; — Y} |?, yielding
2 ! 2
M—nﬂ+/\@—4\m
= e € 2 [ 00 YUY 20 - 16, 2
1
2 [y - Zyaw),

t

Taking expectation and using the fact that f’ is K’-Lipschitz we obtain
Mn—n?+E/\Z AR
_M¢{V+E/\Y WP@+E/yﬂ&nzg—ﬂ&nng@
¢
1
w2 [V =Y (K Y-V 4K 2~ 2 Y,

t

By a standard arguments we get
1
EM-&T+E/\@-4P@
t
1
:EK—{P+Q+2K+QK%E/)H@—ﬂﬁds
t

1
E / | (5, Ye, Z0) — f'(5, Y, Z4) |2 ds.
t

Using Gronwall’s lemma and Burkholder-Davis-Gundy inequality we get the desired result.
=



Another important think in the viscosity solutions of PDEs is the comparison theorem and
the non confluent property of solutions of BSDE. Also, we recall that this theorem gives a
sufficient condition for the wealth process to be nonnegative and yields the classical properties
of utilities. We restrict ourselves to the case k = 1 and we prove the following result:

Theorem 1.8. Suppose that k = 1,£ <& a.s. and f (t,y,2) < f' (t,y,2) dt x dP a.e. Then
Y; <Y/, 0<t<1, as. Moreover if Yy =Yy, thenY/ =Y;, 0 <t <1, a.s. In particular,
whenever either P (€ < &) >0 or f(t,y,2) < f' (t,y,2), (y,2) € R x RY, on a set of positive
dt x dP measure, then Yy < Yj.

Proof . Define
Vi=Yi—V), Zi=Z—7, E=¢—¢and U = f(tY], 2) - (6Y]. Z).
We can write
Vi=&+ [ (@V.+BZ+V)ds— [ Zaaw., 0<i<1
t t
where {ay; 0 <t <1} is defined by

o — (f(t. Y Ze) — f(6, Y], Z0)) (Ve = Y))™" if Vi #Y]
! 0 if V=Y,

and the R™ valued process {#;; 0 < t < 1} as follows. For 1 < i < n, let Zt(i) denote
the n-dimensional vector whose components are equal to those of Z,;, and whose n — ¢ last
components are equal to those of Z;. With this notation, we define for each 1 < i < n,

g [ (e ez @i-zyt w zi2
0 if zj =2z

Since f is a Lipschitz function, o and 3 are bounded processes, for 0 < s <t <1, let

t t 2
FS,t = €xXp |:/ <ﬁr7dWr> +/ (ar — m;) d7“:| .

It is easy to see that for 0 < s <t <1,

t t
Y, =T Y+ / Ly, Updr — / Lo, (Zr + 3,Y,) dW,.
S S

Hence

t
?S =E <Fs,th +/ FS7TUTCZT‘/.¢'S> .

S

The result follows from this formula and the negativity of € and U. [

Remark 1.9. (see Lepeltier and San Martin [49])
It should be noticed that there is an existence but not uniqueness result for one dimensional

BSDFE with continuous generator and with linear growth i.e. There exists k > 0 such that
forally e R, z€ R and t € [0, 1]

If (ty,2)l < k(14 [yl + |z2])-



1.2 BSDE related to SDE of Ito’s type

From now on, we consider the Markovian case. So, we introduce a class of diffusion processes.
Let b: [0,7T] x R%— R? and o : [0, T] x R4— R¥? be functions such that

| b(t,l') _b(t7$l) ’ + ’ O'(t,.’L') _U(t7$l) ’S L ’ IL'—(I?/ ‘7

and
b(t,2)| + o (t,z)| < C(1+|z]),

for some constant L > 0 and C > 0.
For each (t,z) € [0,T] x R, let {(XEI) ;s € [O,T]} be the unique solution of the stochastic
differential equation

tVs tVs
X4 = o4 / b (r, X7 dr + / o (r. X"%) dB,.
t t

Let us state some properties of the process {Xﬁ’x, s € [0, T]} which can be found in Kunita’s
book [46].

Proposition 1.10. For each t > 0 there exists a version of {Xﬁ’x, s>tz e ]Rd} such that
s— XlisaC (Rd) —valued continuous process. Moreover,
(i) Xt and X0, have the same distribution, 0 < t < s;
(i) Xff,Xg, - Xf:_l are independent, for allm € IN,0 <ty <t < ..... < tp;
(i) Xt = X350 Xt 0<t<s<r
Furthermore, for all p > 2 there exists a real Cy, such that for all0 <t <s, z,2' € R4
P
(iv) E < sup | X;" — x‘ > <Cp(s—1t) (14 |z|")

t<r<s

p
E ( sup ) .
t<r<s

In the sequel, we assume k = 1 and consider the BSDE with data (&, f) where

!/
¢ ¢ '
X0 =Xt — (ac —a:)

p) <Cp(s—1t) (‘:{:—x

§W) =g (X" @),
fsu2) = f(sX5w)02).
with g : R — R?, f:[0,7] x R? x R x R¥*! — R some functions such that
lg(@)| < CQA+[z"),

f t,2,0,0)] < C(1+][z["),

for some C,p > 0, f is globally Lipschitz in (y, z) uniformly in (¢, x).
Under our assumptions; Theorem 1.3 implies that for each (¢,z) € [0,7] x R? there exists a
unique F{—progressively measurable process (Y**, Z%*) such that

T T
Yo = g(X;l’>+ / f(r, X2 Y07, Z00) dr — / ZET AW,

S S
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We extend (YSt’x, Zﬁm) for s € [0, 7] by putting
yie =y Z4% =0 for 5 € [0,1] .
It follows that

T T
vir =g (X4) 4 [ N 007 (XY 2 dr - [ ziaw,
S

s

Proposition 1.11. For all t,t' € [0,7T], z,2' € R?, we have

D) E(sup |[v7") <O (14 o),
0<s<T
and

i) B( sup |V3 =Y ) < C[E [9(X5") — g(Xp") [
0<s<T

' L roy, ’o
B [ 11 030 28 < v ) X 20 ).

where p € N and C > 0 is a constant independent of t,t',x and z'.
Proof . From Proposition 1.2, we have

e (jvie?) < (Jo(xi)[ + | ' r0.0)%ar).

Since f (r,0,0) = f (T, Xﬁ’z,0,0) , by virtue of assumptions on f and g, we deduce that

2 T 2
E(jvief) <E (c<1+ P [ ) dT>,
t

and (i) follows by using Proposition 1.10. Now, (i) follows from Theorem 1.7. (]
Corollary 1.12. Under the above assumptions, the deterministic function u(t,x) :=
Y o 0,T] x RY — R is continuous in (t,x) and for some real C and p,|u(t,z)| <

C(1+|zfP),(t,z) €[0,T] x RY

1.3 Viscosity solution of partial differential equations

The notion of viscosity solution for nonlinear degenerate parabolic PDEs, is notions of solu-
tions which are not necessarily smooth enough to satisfy the equation in a classical sense.

It was introduced in Crandall and Lions [20] in order to solve first order Hamilton-Jacobi
equations and then extended to second order equations in Lions [50, 51].

Now, let us introduce the system of parabolic PDEs, for which u will be a solution. First,
we make a restriction, which is due to the fact that we want to consider viscosity solutions
of our system of PDEs. We assume that for each 1 < ¢ < k, f;, the i—th coordinate of f,
depends only on the i—th row of the matrix z, and not on the other rows of z. Consider the
system of semi-linear PDEs :

VY (t,x) € [0,T]x € RY,
Oui | Lu)(t,z) + fit, z,u(t, z), (Vuo)(t,z)) =0, 1 <i <k, (1.6)

( ot
u(T,z) = h(z), v € RY
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where

1 *
L_QZ(UU)i( Bxax]

First of all, we give a generalization of the Feynman-Kac formula stated by Pardoux and
Peng [67].

i=1

Proposition 1.13. Let u € C*2([0,1] x R%,R*) be a classical solution of (1.6) and assume
that there exists a constant C' such that, for each (s,x),

| u(s,z) | + | Vu(s,z)o(s,z) |< C(1+ | z |).

Then, for each (s,z), (Y& = u(s, X2"), ZE" = Vu(s, X,)o(s, Xy)), a.s., where (Y&*, ZL")
is the unique solution of BSDE (1.1).

Proof . For the sake of simplicity, we assume that £ = 1. By applying It6’s formula to
u(s, X, we obtain

ou
Ot (s,

Since u solves equation (1.6), it follows that

du(s, X5") = (= (s, X1*) + Lu(s, X5%))ds + Vu(s, X1%)o (s, X0T)dW.

du(s, X1") = f(s,u(s, X5"), Vu(s, X0 o (s, X17))ds — Vu(s, X5 o (s, XE*)dW.

Hence, for each (s, ), (u(s, Xt"), Vu(s, Xs)o(s, X)) is a solution to the BSDE (1.1) and the
result follows from uniqueness of BSDE (1.1). ]

Now we explain what we mean by a viscosity solution of PDEs. For a complete presentation
of this notion of solution, we refer the reader to Crandall, Ichii and Lions [21].

Definition 1.14. (a) u € C([0,T] x R, R¥) is called a wviscosity subsolution of (1.6) if
ui (T, x) < hi(z), » € RY, 1 <i <k, and moreover for any 1 <i <k, ¢ € C12([0,T] x
RY), whenever (t,z) € [0,T] x R? is a local mazimum of u; — ¢, then
Iy

_E(t z) — Lo(t, ) — fi(t,z,u(t,z), (Veo)(t,z)) <0, if z € R

(b) u € C([0,T] x R, R¥) is called a viscosity supersolution of (1.6) if ui(T,z) > hi(z),
r € RY 1 <i <k, and moreover for any 1 < i <k, ¢ € CL2([0,T] x R?), whenever
(t,x) € [0,T] x R? is a local minimum of u; — ¢, then

_aaf(t SC) LQO(t,[L‘) - fi(t,x,u(t,x), (V‘PU)(tan)) > 07 fo € Rd'

(c) u € C([0,T] x RLR¥) is called a viscosity solution of (1.6) if it is both a viscosity

subsolution and supersolution of 1.6.

It can be deduced from the uniqueness theorem for BSDEs that

t+h, X"

t,x t+h
Y=Y, o h>o.

This implies that Y&* = u(s,Xﬁ’I), t<s<T.
Now we can prove the following theorem:
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Theorem 1.15. u defined by Corollary 1.12, is a viscosity solution of the system of parabolic
PDEs (1.6).

Proof . Let us prove that u is a viscosity subsolution to the equation (1.6). Let ¢ €
CH2([0,T) x R%) and (t,z) € [0,T] x R? such that (¢, z) is a point of local maximum of u — ¢.
We assume without loss of generality that

u(t,x) = (t, x).

We suppose that
ou
ot
and we will find a contradiction.
Let 0 < a<T —tand z,y € R? are such that forallt < s <t+4a, |y—z|<a,

(t,z) + Lo(t,x) — fi(t,z,u(t,z), (Veo)(t,z)) <0,

Ui(S,y) < @(Svy)a

Ou

s (5,9) + Lo(s,y) — fi(s,y,u(s,y), (Veo)(s,y)) <0,

and define
r=inf{s>t;| X" —z |>a} A(t+ ).

Let now

(?5778) = ((}/;t/\gcr)la 1[0,7](3)(28)i)a t<s<t+o
(Y, Z) solves the one dimensional BSDE

t+o - t+a
Y= ui(Ta ijx) + / 1[077}(8)]61‘()(:@,’&(7“, Xﬁ7m)> ZT)dT - / ZpdWr t < s <t+a.
On the other hand, it follows from 1t6’s formula that

( £ Z\S) = (90(87 X;’/Q\ET% 1[0,7] (3)(V900)(5? X?x)):

)

solves the BSDE

R t+o 890 o t+a
Yy = (s AT, XP") — / 1[0771(8)(E + L) (r, X dr — / ZsdW,..

S S
From u; < ¢, and the choice of o and 7, we deduce with the help of the comparison the-
orem (see Theorem 1.8) that Y; < Y;, and then u;(t,z) < ¢(t,z), which contradicts our

assumptions. m

Remark 1.16. Consider the linear parabolic partial differential equation

%(t, z) + (Lu)(t, ) + c(t,z)u(t,z) + h(t,z) =0, 0 <t <1, z € RY

u(l,z) = g(z), z € RY,

where L is the infinitesimal generator of a time-homogeneous diffusion process {X;;t > 0},
and ¢, g € Cy(RY). The solution of this equation is given by the well known Feynman-Kac
formula

E[goqv) exp < /t et Xﬁ"’:)dr> + /t (s, X exp < /t e, X,’?“”)dr) ds}
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Example 1.17. Suppose k =1 and f(t,x,y,z) = c(t,x)y + h(t, ).
In this case the corresponding BSDE is linear and has the form

1 1
YiT = g(X]") + / [c(r, XPP)YH" + h(r, X0") ] dr — / ZEE AW,

S S

By the same argument as in the proof of Theorem 1.8 this equation has an explicit solution

1 1 T
VE® = g(X7") exp </ c(r, Xf:x)dr) +/ h(r, X}*) exp </ c(p, X;i’m)dp> dr

1 T
—/ exp </ c(p, X;’m)dp> ZEE AW,
S S
Since Y,'* = E(Y}™), we obtain

1 1 s
v/ =E [g(Xf) exp </ e(r, Xﬁ’x)dr> +/ h(s, X5") exp (/ c(r, X}f’x)dr> ds}
t t t

which is the classical Feynman-Kac formula (see Remark 1.16).

Remark 1.18. Theorem 1.15 can be considered as a nonlinear extension of the Feynman-Kac
formula.

Now we introduce another definition of viscosity solution. To do this we need some pre-
liminary definitions. Let Mg« stands for the set of d x d symmetric nonnegative matrices.

1.4 Reflected BSDE and viscosity solution of multivalued par-
tial differential equations

Here we briefly outline some results, which extend the results of Sections 1.2 and 1.3, and
therefore we just formulate them without proof. For more details and complete proofs the
reader may turn to the paper of Pardoux and Rascanu [70] (see also Ouknine and N’zi [60]).

1.4.1 Reflected backward stochastic differential equation

In this subsection, the assumptions on f and & are exactly those in Section 1.2. Let ¢ :
R? — R be a function which satisfies
(A.3) 1) ¢ is a proper (¢ # +00), lower semi-continuous and convex function.

i) B | ¢(§) [< +o0
In the sequel, we assume without loss of generality that ¢(y) > ¢(0) = 0.
Now, let us recall some properties of a Yosida approximation of subdifferential operator. We
put

Dom(¢) = {ueRF:¢(u) < +oo}
0o (u) = {u* e RF i< wu* v —u>+¢(u) < ¢(v), Vo € RF}
Dom(9(¢)) = {u€R":0(¢) # 0}

Gr(99) = {(u,u*) €R" xR¥:u € Dom(d(¢)) and u* € d(u)}.

By virtue of Ouknine and N’zi [60] (see also Pardoux and Rascanu [70]), we have the
following theorem
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Theorem 1.19. Let assumption (A.1)-(A.83) hold. Then, for each (t,x) € [0,1] x R,
there exists a unique triple (Y5%, Zb% UY) which solves the reflected backward stochastic
differential equation with data (€, f, ), that is

1
a) E/ AV )dr < +o0,
0

b) E(p(YS™")) < 400, Vs € [t, 1],
c) (Y52, UMY € 0¢, dP x dt a.e. on 2 x [0,1],

1 1 1
d) Yh* —l—/ Ub¥dr = ¢ —|—/ flr, Y5 28 dr — / ZEdW,, Vs € [t,1]  a.s.

s

We shall extend Yi*, Zb® UL®, for all s € [0,1] by choosing Y&* = Y ZL* = 0,
Ub* =0, for all s € [0, 1.

1.4.2 Viscosity solution to variational inequalities

We deal with the connection between the reflected BSDE studied in the Markovian framework
and the following multivalued parabolic partial differential equation

0

o (62) & Lu(t,2) + f (b, (t,2), (Fuo) (t2)) € 96 (u (t,7)

t€0,T], z € R (1.7)
uw(T,z) =g (z), z€R

Definition 1.20. Let u € C ([0,7] x R) and (t,x) € [0,T] x R. We denote by P*Tu (t,z) (the

parabolic superjet of u at (t,x)) the set of triple (p,q, X) € R x R x Myyq which are such

that

w(sy) < uwltw)+pls—0+{gy—a)+5 X -2y -2 +o(lt— sl +1y - )

P2 u(t,x) (the parabolic subjet of u at (t,x)) is defined similarly as the set of triples
(p,q, X) € R x R? x Mgyq which are such that

w(s,y) > wlta) +pls—0)+ oy —a)+ 5 (X (g —a),y o) +o (|t —s|+ly— ).

Example 1.21. Suppose that ¢ € CY2([0,T] x RY). If u — ¢ has a local mazimum at (t,z),
then

0 2
<8(’:(t, QZ‘), vl‘@(ta 1:)7 T;g(t I‘)) € P2+U (t, QZ‘) .

If w — ¢ has a local minimum at (t,x), then

aQO 82@ 2
(5.0 Vaptt. o) G5 00) ) € P uta).

Definition 1.22. Let u € C ([0, T] x R?) which satisfies u (T, z) = g ().
a) u is a viscosity subsolution of (1.7) if

u(t,z) € Dom(e), ¥ (t,x) € [0,T] x RY,

and at any point (t,x) € [0,T] x R?, for any (p,q, X) € P*Tu (t,x)
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b) u is a viscosity supersolution of (1.7) if
u (t,z) € Dom(¢), ¥ (t,z) € [0,T] x R?

and at any point (t,x) € [0,T] x R, for any (p,q, X) € P>~ u(t,x)

b= 5T (00" (t,2) X) = (b(6,2) )

—f(t,zu(t,2), g0 (t2) > =6 (u(t,2)). i
¢) u is a viscosity solution of (1.7) if it is both a viscosity sub- and super-solution.
We define
u(t,z) =Y, (t,z) €[0,T] x RY, (1.10)

which is a deterministic quantity since Y;t’x is Fy-adapted, and F; is trivial o-algebra.

Theorem 1.23. The function defined by (1.10) is a wviscosity solution to equation (1.7).
Furthermore, if we suppose in addition that, for each R > 0, there exists a continuous function
Vg Ry — Ry such that ¢¥r(0) =0 and

| f(t7$ayaz) - f(tvxlvyaz) |§ ¢R(| IL’—$/ | (1+ | z |))7

forallt € [0,T], |z |, |2 |<R,|z]|<R, z€R", then u is the unique viscosity solution of
PDE (1.7).

Corollary 1.24. The function u satisfies:
a) u(t,r) € Dom(¢),V (t,x) € [0,T] x R,

b) sup|u(t,z)| < C,Vt € [0,T7],
z€R

¢)ueC([0,T] x RY),

where C > 0 is a constant independent of ¢ and x.

1.5 Meyer and Zheng Tightness Criterion

In this section, we introduce the notions of pseudo-path topology and quasi-martingales (see
Meyer and Zheng [56]). We put
e ([0, ], R¥) the space of cadlag functions of [0,¢] with values in R¥.
e 1.2([0, T, R¥) the space of (equivalence classes of) Borel measurable functions.

To begin with, note that D C L°. For any u € L", we define the pseudo-path of u to be a
probability measure on [0,¢] x R:

U ;/OT 1a(t,u(t))dt, VA e B([0,1] x R).

It can be shown that the mapping ¢ : u — P" is one to one. Thus we can identify all
u € LY with the pseudo-path; and we denote all pseudo-path by M. In particular, using the
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mapping v, the space D can then be embedded into the compact space P of all probability
laws on the compact space [0,t] x R (with the Prohorov metric). Clearly

DcMcCP.

The induced topology on M and D are known as the pseudo-path topology or Meyer and
Zheng toplogy. We have the following

Lemma 1.25. (see Meyer and Zheng [56]) The pseudo-path topology on M is equivalent to
the convergence in measure.

The most significant application of the Meyer and Zheng topology is a tightness result for
quasi-martingales, which we now briefly described. Let Y be an F := {F;,t > 0}-adapted,
cadlag process defined on [0, t], such that E | Y; |< oo for all £ > 0. Let us define

Vt(Y) = E(Z ‘ E(ni+1 - thz/ftz) ‘ )a

and define
CVt(Y) = supE(Z ‘ E(Y;fi-u - Y;fz/ftz) ‘ )7

with ”sup” meaning that the supremum is taken over all partitions of the interval [0,¢]. If
CVi(Y) < 0o, then Y is called a quasi-martingale. We have the following

Theorem 1.26. (See Meyer-Zheng [56] or Kurtz [47]).
The sequence of quasi-martingale {V];0 < s < t} defined on the filtred probability space
{Q; Fs,0 < s < t;P} is tight on D whenever

sup ( sup E | V" | +CV, (V")) < +oc.

n o 0<s<t



Chapter 2

Reflected Backward Stochastic
Differential Equations with Jumps
and Locally Lipschitz Coeflicients

The chapter is organized as follows. In Section 2.1, we prove an existence and uniqueness
result for reflected BSDE with locally Lipschitz coefficient. In Section 2.2 we deal with a
reflected BSDE with monotone condition with respect to the state variable Y and locally
Lipschitz with respect to the variable Z. In Section 2.3, we study the continuous dependence
result, or the stability property, for reflected BSDE’s. Existence and uniqueness of reflected
BSDE, under super-linear growth, is given in Section 2.4.

2.1 Reflected BSDE with jumps and locally Lipschitz coeffi-
cient

In this section, we prove existence and uniqueness results of solution for reflected multidimen-
sional backward stochastic differential equation with jumps in d-dimensional convex region.
Our contribution in this topic is to weaken the Lipschitz assumption on the data (&, f). This
is done with locally Lipschitz coefficient f and an only square integrable terminal condition

.

2.1.1 Preliminaries

Let (Q, F, IP, Fy, Wy, e, t € [0,1]) be a complete Wiener-Poisson space in IR" x IR™\ {0},
with Lévy measure A, i.e. (2, F, IP) is a complete probability space, (F,t € [0,1]) is a right
continuous increasing family of complete sub o—algebras of F, (Wy,t € [0,1]) is a standard
Wiener process in IR™ with respect to (Fi,t € [0,1]), and (u, t € [0,1]) is a martingale
measure in IR™\ {0} independent of (Wi, t € [0,1]), corresponding to a standard Poisson
random measure p(t, A), namely, for any Borel measurable subset A of IR™\ {0} such that
A(A) < o0, it holds :
o (A) = p(t, 4) — A (A)

9 A part of this work is published in Random Operators and Stochastic Equations, Vol. 10, N3, pp. 273-288,
(2002).

17
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where
E(p(t,A)) =tA(A)

A is assumed to be a o—finite measure on IR\ {0} with its Borel field, satisfying

/ (1 A |x]2) A (dz) < +00.
Rm™\{0}

In the sequel U denotes IR™\ {0} and U its Borel field. We assume that

ftzal/ p(ds,dz);s <t,AeU| Vo [Wss<t]VN,
Ax(0,s]

where N denotes the totality of IP-null sets and o1 V o9 denotes the o-field generated by
o1 Uos.

We denote by L the set of R x R¥*™ x L2 (U,Z/{,)\; ]Rd)fvalued processes (Y, Z,U) defined
on Ry x  which are F;—adapted and such that:

1 1
H(Y,z,mu%—E(sup iR+ [izpas [ [ 1o 12A<de>ds)<+oo.
0<t<1 0 0o Ju

The couple (L°, ||.|[p) is then a Banach space. If U = 0, L stands for L°
Let us introduce our reflected BSDE with jumps: Given a data (f,&) we want to solve the
following backward stochastic differential equation:

Y, = £+/nst;Zyﬁ—L‘ZﬂV+Jﬁ K, — /L/ p(de,ds).  (2.1)

Definition 2.1. A solution of reflected BSDE with jumps (2.1) is a quadruple
(Yy, Zy, K, Uy), 0 <t <1 of progressively measurable processes taking values in R? x R x
R? x L? (U,Z/{,)\; ZRd) and satisfying:

1 (YZU)e]LO

(1)

(2) ;= f—{—/fSYS,ZS,U)dS—/ZdW // (e) p(de,ds) + K1 — K;
t

(3) the process Y is right continuous having left-hand limits (cadlag)

(4) K is absolutely continuous, Koy =0, and / (Y; — ) dK; <0

0
for every oy progressively measurable process which is right continuous having
left-hand limits and takes values into ©
(5)Y;€0,0<t<1.a.s.

We define the following three objects:
A.1 A terminal value & € L? (Q, Fy, IP).
A.2 A function process f, which is a map:

f:Qx[0,1] x R x R™ x L2 (U,L{,A;Rd) — RY,

such that

(i) f is continuous in (y, z,u) for almost all (¢,w).
(i) There exist K > 0 and 0 < o < 1 such that | f(t,w,y,z,u) |[< K(1+ |y |+ |2z | +|u])®
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A.3 A open subset © of IR? convex. We assume that ¢ € ©.

We denote by Lipj,. (resp. Lip) the set of processes f satisfying (i) and which are
locally Lipschitz (resp. globally Lipschitz) with respect to (y, z,u).

Let Lipjoc,o (resp. Lip,) denote the subset of processes which belong to Lipje. (resp. Lip)
and satisfy A.2(ii).

In the sequel Ly denotes the Lipschitz constant of the restriction of f to the ball of
R? x R™*" x L? (U,U \; RY) of radius N.

When the assumptions A.2(i), A.2(ii), are satisfied, we can define the family of semi norms

(o () 1
pulf) = (E / sup | sy, ) [ ds).
0

lyls|z],[[ull<n

2.1.2 Existence and uniqueness results
The main results are the following.

Theorem 2.2. Let f € Lipjocn and § be a square integrable random variable. Assume
moreover that Ly satisfies

lim exp(L?V +2Ly)

= 2.2
Ve (T2, + 2Ly N20-a) (2:2)

Then the reflected BSDE with jumps has one and only one solution {(Yi, Z, U, K¢);0 < t <
1}. In particular, if Ly < /(1 — «)log(N), the reflected BSDE with jumps has also a unique

solution.

Remark 2.3. It is well known that if the generator f is uniformly Lipschitz with bounded
Lipschitz constants, then there exists a unique solution of BSDE (see [67] or [61]). This
last assumption is usually not satisfied in many problems. For example, the classical pricing
problem is equivalent to solve a one dimensional linear BSDE

dYy = (rYs + Z;0y)dt — Z;dWy; Yy =€,

where £ is the contingent claim to price and to hedge. In this model, r is the short rate of
the interest and 0 is the risk premium vector. To suppose that the short rate r is uniformly
bounded is an assumption rarely satisfied in a market. The same remark for the risk premium
vector.

The following corollary shows, in particular, that our result can allow the linear growth to
the coefficient f (i.e @« = 1) and hence it cover the classical globally Lipschitz case.

Corollary 2.4. Assume that oo < 1 and there exists a positive constant L such that, Ly <
L+ /(1 —a)log(N). Then our reflected BSDE has a unique solution.

Proof of Corollary 2.4. If « = 1 it is the Lipschitzian case and the result follows from
Pardoux and Peng [67]. The case a < 1, can be proved by the technics which will be developed
in the proof of Theorem 2.2 below.

Remark 2.5. As a result, there is existence and uniqueness of a solution if we replace ©
with Domain(¢), where ¢ is a convezx, lower semi-continuous and proper function.
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It should be noted that the jump part behaves as the Brownian stochastic integral part
(see Ouknine [61]), therefore for the proof of Theorem 2.2 we will deal, for the simplicity,
with reflected BSDE without jump part.

Now, let us introduce our reflected BSDE. The solution is a triplet (Y;, Z;, K;), 0 <t <1
of progressively measurable processes taking values in R? x R¥>"™ x R? and satisfying:

(1r) (Y, Z) € )

2r)Y, =&+ stS,Z)ds—/ZdW—i—Kl K, 0<t<l1
t

(3r) the process Y is continuous

(47)

4r) K is absolutely continuous, Ky = 0, and / (Y, — ) dKy; <0
0
for every ay progressively measurable process which is continuous

and takes values into ©
(5r)Y; €0, 0<t<l1l.as.

\

In order to prove Theorem 2.2, we need the following auxiliary lemmas.

Lemma 2.6. Let f be a process which belongs to Lipjoc and satisfies the assumptions
A.2(i), A.2(ii). Then there exists a sequence of processes fy such that

(a) For each n, f, € Lip,.

(b) For every p, pp(fn, f) — 0 as n — oo.

Proof . Let v, be a sequence of smooth functions with support in the ball B(0,n + 1) and

such that ¢, = 1 in the ball B(0,n). It is not difficult to see that the sequence (f,) of

truncated functions, defined by f, = fi,, satisfies all the properties quoted in Lemma 2.6.

]

Let (fy) be the sequence of processes associated to f by Lemma 2.6. We get from Ouknine

[61] that there exists a unique triplet {(Y;"*, Z}", K;*;0 < t < 1)} of progressively measurable
processes taking values in R? x R¥" x R¢ and satisfying:

( 1
(1') Z™is a predictable process andE/ | Z7 |2 dt < +o0
1
2Nyr=¢ —l—/t fn(s, Y, Z)ds —/t Z3dWs + K{' — K[!
(3) the process Y™ is continuous
(4") K™ is absolutely continuous, K =0, and / (Y"—ay)dK] <0
0

for every a; progressively measurable process which is continuous
and takes values into ©
(5)Yr€©,0<t<1as.

We formulate uniform estimates for the processes (Y, Z", K™) in the following way.

Lemma 2.7. Let assumptions A.1, A.2 hold. Then, there exists a constant C depending
only in K and E | £ |2, such that

1
E( sup |V +/ 1Z*ds+ | K7 |?) < C, ¥ n e N*.
0<t<1 0
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Proof : Using It6’s formula we obtain,

1 1 1 1
Yrp [lzas =€ Pz [ gl vroznveds—2 [ ziviaw.ee [ vra,
t t t t
Note that we can assume, without loss of generality, that 0 € ©. Hence, by relation (4’), we

have )
/ YK <O0.
t

Taking expectation in both sides in the above equation, we get

1 1
EY7?+E / Z72ds <E| € +2E / Juls, YT, Z0)Y 2 ds.
t t

1
Hence, using the elementary inequality 2ab < 3%a® + @bQ and the fact that f, € Lip,, we

have
1
BNV HE [ |2 ds
t
2 | 22 ! 2
<B4 [ st g [ |ty 2 P
K 1
<B4 [ s e [ v 2
§E|§2+ﬁ21€/ |Y;L|2ds+—+ E/ Y22 ds + E/ |22 ds,
¢
where C is a constant which can be changed from line to line. Choosing < 5= %, we obtain
1 1
E Y72 +IE/ Zn P ds < C(1 +E/ Y2 ds), (2.3)
¢ ¢
Gronwall’s lemma applied to Y gives
sup E|Y,"|* < C, (2.4)
0<t<1

from this last inequality and (2.3), we obtain
1
sup(E/ 1272 ds) < oo. (2.5)
n t
Now, from (2)
1 1
K= Kp =Yr -6~ [ fasvrzs+ [ zvaw,
t t
then
1 1
B| KT - K7 P<OE|¢PHEYE+14E [ [¥7 Pds+E [ |20 ds),
t t
and from (2.4) and (2.5), we deduce that
supE | K7 *< C.
n
Using the Burkholder-Davis-Gundy inequality, we obtain
1
E ( sup |Y;|? —|—/ |Z0? ds+ | KD ]2> <C,VneN~.
0<t<1 0

Hence, Lemma 2.7 is proved. [
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We shall prove the convergence of the sequence (Y™, Z" K"),, , n € N*.
Lemma 2.8. Under assumptions of Theorem 2.2, there exist (Y,Z,K) such that

1
lim E{ sup |Y{"-Y; >+ sup | K} — K 2+/ |Z" — Zy|* ds} = 0.
n—00 o<l 0<t<1 0

Proof : It follows from Itd’s formula that
1
vy +/ 1z~ Zm ds
t
1
—2 / (VI = YT (a5, Y, Z0) — fonls, Y2, Z))ds
t
1 1
9 / (YT~ YI) (Z0 — Z) AW, + 2 / (Y7 Y7 (KT — dK™).
t t

Since Y™, Y™ € © are progressively measurable and continuous processes, then from (4’) it
follows that

1 1
/ (Y = Y™)dK{ < 0 and / (Y —Y™M)dK™ <0,
¢ t
then
1 . .
/ (¥Y5" = YJ") (dKY — dK{") = / (Y = Y") dKY + / (Y™ — Y dK™ < 0.

For an arbitrary number N > 1, let Ly be the Lipschitz constant of f in the ball B(0, N).
We put AY,, = {(s.w):| Y|+ Z0 | +| ¥ | + | 20" |> N}, AN, o= 2\ AY,,.
Taking the expectation in the above equation, we deduce that

1
E\Yﬁ—i@mmﬁf | Zn— Z | ds
t
1
<28 [V L Y2 — s Y ZE) Ly, ds
. ,m

1
P28 [V YD ZD) — S5 Y 20y ds
t

n,m

A

n,m

1
+ 2E/ <Y-sn - }/sm’ f(s’Y;n’ Zg) - f($7Y:9m7Z;n)>1*N ds
t

1
2B [V F VI~ s Y2y ds
t

n,m

= Jl(n7m7 N) + JQ(TL,T)’L,N) + J3<TL, m7N) + J4(TL, m, N)

It is not difficult to check that,

n,m

1
Ta(n,m, N) :2E/ Y2 =Y, fls, Y2, Z0) = f(5, Y2, Z0)1n ds
t

1
<E / Y Y Rds 4 0% (fa — ).
t

Likewise we show that,

n,m

1
T, N) =28 [ (Y2 VI sV Z) ~ s, Y 2O ds
t

1
< E/ Y Y Rds + e — 1)
t
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Now
1
Jl(”ﬂ m,N) = 2E/ <szn - Y., fn(s7}/;n7zg) - fm<S,Y;m, Z;n»lAﬁy ds
‘ ,m

1 1
1
< BE / Y YLy, ds + E / [ Jal. YT Z0) — funls, Y, Z0) P Lay ds

ﬂQ
2 ! 2 2K ! 2
<@ [V VPl ds b S5 B [ (YD 2D Y] 20 )Ly, ds
t ’ t ’
1 Ci(K 1
2 2 1( 76) 2
S N R =1 R R R PR A ER P
1
Co(K, )
2 2 2 3
Hence
1
Co(K.€)
2 2 2 )
Ji(n,m,N) < 3 E/t Y =Y 1Aﬁmd5+m-

Since f is Ly-locally Lipschitz we get

1
Jg(n,m,N):2E/ (Y=Y, f(s, Y Z0) — f(s, Y, 20 ds
t

n,m

1 2 1
L
< (2Ly + fy?)E/t = lezlzg’mds + ;;E/t |Z — Z™)|2ds.
If we choose (3% = L?\, + 2Ly and 7% = L%V then we use the above estimates we have

1 1
E(]Y" — Y{"?) + E/ |Z — Z™|2ds < (L3 + 2Ln + 2>E/ Y — Y, *ds
t t

03(K7 g)
(I3 4 2Ly)N?0a)

+ [p?\f(fn_f) +p%\/(fm_f)} +

It follows from Gronwall’s lemma that, for every t € [0, 1],

C4(K7§)
(L3, + 2Ly)N2(1-)

BV = YP) < |l = )+ el — 1]+ exp(z} +20 +2)
Using Burkholder-Davis-Gundy inequality, we show that there exists a universal positive
constant C' such that,

E( sup | ¥ — Y™ [2) < c[[p?v<fn )t el £
0<t<1

05(K7 g)
(I, + 2Ly)N?0)

+ ] exp(L% + 2Ly +2).

1
B [ |z - zrias c[m(fn )t R )

05(K7 6)

* (L% 4+ 2LN)N2(1-2)

] exp(L3 + 2Ly + 2).
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Passing to the limit on n,m and on N, we show that (Y, Z"), . is a Cauchy sequence in
the Banach space of progressively measurable processes L.
We set

Y= lim YY", and Z= lim Z™

n—s—+o00 n——+o00

If we return to the equation satisfied by the triple (Y™, Z", K™),en+, we see that

E sup | Kf - K}" \QSC[E sup | ¥y — Yy P
0<t<1 0<t<1

1
+E / | Fa(5. Y2, Z0) — fu(s, Y, Z7) 2 ds
0
1
+IE/ | 20— Z™ |2 ds]|.
0

We shall prove that the sequence of processes f(.,Y", Z"), converges to f(.,Y,Z) in
L3([0,1] x Q)

1
E / | Fals, YT, Z0) — f(5,Ya, Zs) |2 ds
0
1
<E / | fa(5, Y2 Z0) = f(5,Yer Z0) [2 Ly _ds
0 ,m

1
28 [l Y22 — 5.7 22) P gy ds

A

n,m

1
L oE / (Y Z0) = f(5,Ye Z) P 1w ds
0

C 1
< Faam B [ 0 12 P 20 Y Ve s
n 0

1
F2R = D)+ 2URE [ (20— 20 dst | V7 -V, P) s
0
Hence
1
E/ |fn(87Y:9nvzg)_f(37}/8728) ‘2 ds
0

' C(K,¢)

n __ 2 MW S)
’ Zs ZS | dS) + N2(17a)'

1
gzp?v<fn—f>+2L%V(E/o |Y;"—Y;|2ds+1a/0

Passing to the limit successively on n and N, we obtain
1
B[] £l Y21 20) ~ J(s Y Z0) P ds — 0, s — o
0

Now

E sup | K}' — K" |*— 0, asn, m — oo.
0<t<1

Consequently there exists a progressively measurable process K such that

E sup | KJ' — K; |*— 0, asn — oo,
0<t<1

and clearly (K) is increasing (with Ky = 0) and a continuous process. [
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Proof of Theorem 2.2: Combining Lemmas 2.6, 2.7, 2.8 and passing to the limit in the

RBSDE (2’), we show that the triplet {(Y;, Z;, K¢);0 < ¢ < 1} is a solution of our RBSDE.
In order to finish the proof of Theorem 2.2, it remains to check (1r), (4r) and (5r).
From Lemma 2.7, we have

1
E/<mnr?+zsw2>dssc.
0

from which (1r) follows by using Lemma 2.8 and Fotou’s Lemma.
Let a be a continuous process with values in ©, it holds that

(Y™ (t) —a(t),dK™ (1)) <0,
by Shaisho [75] (see also Lemma 3.5 of Chapter 3), we obtain
(Y (t)—a(t),dK (t)) <0.
To finish the proof of our existence result, we shall show that,
P{Y; €0;0 <t < +o0} =1.
Since the process (Y;) is continuous, it suffices to prove that
P{v;e®}=1 Vi>0.

Since, Y™ € ©, and Y™ converges to Y in L?, there exists a subsequence Y™ such that
Y™ — Y as, hence Y € O. [ |

Uniqueness : Let {(V, Z;, K;); 0 <t <1}and {(Y/,Z],K]); 0 <t < 1} be two solutions
of our BSDE. Define

{(AY;, AZ;, AKy); 0<t<1}={(Vs - Y/, Z, - Z,,K; — K[); 0<t<1}.

It follows from It0’s formula that

1
E @AY;F +/ |AZS|2ds]
t

1 1
_ 215:/ (AYy, f(s,Ys, Zs) —f(s,y;’,zg)>ds+2E/ (AY,,dAK,) .
t t
By Shaisho [75], we get
1
E/ (AYs, dAK,) <O0.
t

Now, for N > 1, let Ly the Lipschitz constant of f in the balls B(0, N), Ay := {(s,w);| Ys |
F Y+ Zs |+ | Zg |> N}, AY = Q\ An.

1 1

E [ymg%/ \AZS\st} gﬂzE/ | AY, |2 14,ds
t t

1 1
+ B / | (5. Ye, Z0) — f(, Y1, Z0) P Layds

1
+ E/ <AY;7 f(37}/;728) - f(S,Y-SI, Z§)>1Af\jd57
t
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as in the proof of Lemma 2.8, we obtain that

C(K,¢)

1 1
2 2 2 2 el St VA
E [\AYA +/t |AZ] dS] <p E/t |AY|" 1ayds + FN21-a)

1 2 1
L
+(2LN+72)IE/ ]AY;|21A?Vds+fy]2VIE/ |AZ)? ds.
t t

If we choose 3 and ~ such that % = L?V + 2Ly and 72 = L?V , and using Gronwall’s and
Burkholder-Davis-Gundy inequality, we get

K
E sup |AY;5|2 < 5 C( 76) eL?\,+2LN'
0<t<1 (L% + 2LN)N2(1-2)
and )
IEJ/ |AZS|2ds < C(Kaf) eLi,—i—QLN’
0 (L% + 2Ly ) N2(1-2)

from which the uniqueness follows.
Now let us prove the second result. If Ly = /(1 — «a)log(N), arguing as above and using
that 2Ly < %L?\, + 16, to show that

_ C(K.¢)
E YR =Y 2) < C|pk(fo = f) + p% (fm — [INZE a>+’} 18).
(s Y7 =¥ ) < C Ikl = )+ sl 1) syl
! C(K¢)
E gn _ gm 2 ds < 2 = 2 o — N2(170¢) ) 1
[ vz =z as < € [l = D+ A= DN+ 2 S )
from which the result follows. Theorem 2.2 is proved. [

Remark 2.9. Assume that the gemerator f is locally Lipschitz in Y with locally Lipschitz
constant Ly and globally Lipschitz in Z. Then, if Ly behaves as log(N) or satisfies the

following condition
exp(2Ly)
im ———————=0.
N=+oo (2L N)N2(1-a)

Then, our reflected BSDE with jumps has a unique solution.

2.2 Monotone case

The aim of this section is to prove similar results in the case where the generator f is
monotone on its Y-variable and locally lipschitz on its Z-variable. The existence and
uniqueness results was established by Pardoux in [66] in the case where the generator is
globally Lipschitz with respect to Z . Our results can be seen as a localization of the ones
given by Pardoux in [66].

In the sequel, the following assumptions will be fulfilled:

(i) f is continuous in (y, z) for almost all (¢,w).
(ii) There exist K > 0 and 0 < a < 1 such that

| ftw,y,2) [S K+ [y [+ ]2 ])"
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iii) For each N > 0, there exist L and Ly such that:

<y_y/7f(t7y>z) - f(@?/,z» <L ‘ y_y, |27

| f(ty,2) = f(ty,2) IS Ly [ 2= 2" [ Lyl [ 2 |,| & |< N
Theorem 2.10. Let f as above and & be a square integrable random variable. Suppose that
Ly satisfies

N
N—Foo L?VN2(1_O‘)

Then the reflected BSDE has one and only one solution {(Y:, Z, K3);0 <t < 1}.

Example 2.11. If Ly < /(1 — «a)log(N), then our equation has a unique solution.

0. (2.6)

Proof of Theorem 2.10: Using the same approximating sequence, one can prove that the
approximating solutions converge in mean square to the right solution . The only problem is
to show that

1
IE/ | fu(s, Y, Z0) — f(s,Ys, Zs) |2 ds — 0, asn — oo.
t

But this is a consequence of the convergence in probability and the uniform integrability of
the sequence f,(s, Y, Z?) (see Chapter 3). [ ]

Remark 2.12. Theorem 2.2 and Theorem 2.10 remain true if
Ly = \/(1 — a)log(N) + 1 logloglog(N).

Remark 2.13. What we have shown is the link between the smoothness of the generator and
its growth at infinity. Our results, on existence and uniqueness, remains true if we impose a
weaker condition on the growth of f namely

t
(1|£(| ’Ti’ r) ||) converges to 0 when (| y | + | z |) converges to co; (1 — ) log(N) must be
Yy P

| f(t,w,y,2) |
replaced by log ¥ (N) where, 1»(N) =  sup .
wl+z>8 I+ Ty [+ 12])

2.3 Stability result for reflected BSDE’s

In this section, we prove a stability result for reflected backward stochastic differential equa-
tions under locally Lipschitz coefficient. Let f,, be a sequence of processes which satisfies
A.2(ii) for each n € N and £" be a sequence of random variables such that E | £ |2< +oo.
Consider the following BSDE’s

( 1
(In) Z™is a predictable process and]E/ | Z |2 dt < 400
0
1 1
(2n) Yr =& +/ (s, Y, Z0)ds — / Z}dWs + K{' — K}’
t t
(3n) the process Y™ is continuous
(4n) K™ is absolutely continuous, K§ = 0, and / (Y" —ap)dK] <0
0

for every a; progressively measurable process which is continuous
and takes values into ©
(5n) V' €0©,0<t<1l.a.s.
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where Y™, Z" K" take values in R%, R%*" and R¢ respectively.
Let consider the following assumptions:

Adfor NeN, pn(fn—f) —0,

ABE | —¢12— 0, as n — +oo.

We assume also that equation (1n)-(5n) has a solution.

Theorem 2.14. Let A.4, A.5 be satisfied and f € Lipjoc,n. Assume that Ly satisfies
Ly < /(1 —«)log(N). Then, we have the following strong convergence for all t € [0, 1]

1
E\Yt”—YtIQJrE/ (20— 2, P ds +E| KP — K, [P— 0, as 1 — +oo.
0

Remark 2.15. It should be noted that Theorem 2.14 remains true if Ly satisfies condition

(2.2).

Proof of Theorem 2.14: By It6’s formula we have
1
Yr-vifs [ 120 - zifas
t
1
=g =2 [ Y s Y 22 - £(5.Yau Ze))ds
t
1 1
o [ oo vy @ - zyawe v [ - Y (KT - dK),
t t

Since Y™, Y € ©, progressively measurable and continuous processes, then by (4r) we have

S

1 1
/ (Y)' —Ys)dK? <0 and / (Ys —Y")dKs <0,
t t
thus . . .
/ (Y7~ Y.) (dKD — dK,) = / (Y7 — Y) dK” +/ (Y, — Y7 dE, < 0.
t t t

For an arbitrary number N > 1, let Ly be the Lipschitz constant of f in the ball B(0, N).
We put By v = {(s,w); | V' [+ [ Z3 | +|Ys | +[Zs |> N}, By, v :==Q\ By n.
Taking the expectation in the above equation, we show that

1
E|y;"—Yt|2+E/ | Z" — Z, |* ds
t
1
<E |£n - £|2 + 2E/ (Y;n - }/S)* (fﬂ(sa sta Z?) - f(S, Ys, ZS))an,NdS
t

1
4 9E / (Y7 = Ya)* (fuls, Y2 Z0) — £(5, Ve Zo))1pe  ds.
t |
Hence

1
E\Y[‘—Y;]QHE/ | 2" — Zs |* ds
t

1
<Ele" ¢ 2B / (V2 — V) (fuls, Y2, Z0) — (5, Yo, Z))15, v ds
t

1

+2E C(fals, YY" Z8) = £, Y, Z9)1Be  ds

J o

1
+2]E/
t

Ya) (f(s, Y, Z7) — f(s,YS,ZS))lgszs.



29

Therefore

1
E|Yt”—Yt|2+IE/ | 20 — Z, | ds
t

C(K,¢)

1
< n __ ¢ |2 2 n _ 2 R St VA
SB[+ [ Y=Y P L, vds+ i

1 1
B V-V s+ Al — )+ 8 [ 1V Y L s

2L2 1 2L2 1
+ﬂ2NIE/ 11@"—1@|2ds+ﬁ;VE/ | 20 — Z4 |? ds.
t t

2L3
If we choose 8 such that —2 = 1, we obtain

/32

1
BV - VPP +E [ 20— 2P ds
t

1
SB[~ 6 + T + A — 1)+ L+ DE [ 117 -¥2 s

L?V N2(1-«a
and thus, from Gronwall inequality, we get

C(K,¢)

2
RS p?\[(fn —f) LN,
L?VNQ(1 ) ]

1
By, - YR +E [ 1202 Pds< [EE - ¢+
t

Using the fact that Ly = /(1 — «) log(N) and passing to the limit successively on n and N,

we obtain

1
E!Yt”—YtlerE/ | 20— Z, | ds — 0, Vte[0,1].
0
If we return to the equation satisfied by the triple (Y™, Z™ K™),cn+, we see that
E|K] - K |P<CEE"-¢*+E|Y - Y, |”
1
B [ sV Z) 16, Ye 2 P ds
0
1
+E/ | 20 — Z | ds].
0

We shall prove that the sequence of processes fn(.,Y"™, Z"), converges to f(.,Y,Z) in
L2([0,1] x Q).

1
E/ ’ fn($7}/;n7Z.?) - f(S,Y;,ZS) |2 ds
0
1 1
S2E/ |fn(S7szn7Zg)_f<37Ytsn7Zg) |2d8+2E/ ’f(S,Y;n,Zg)—f(S,Y;,ZS) ’2d8
0 0

C ! n n
<= 1)+ sz s [ (1| 22 P 32 P
1

1
+2L§VE/ (| z — Z, \2ds+E/ | Y — Y [2)ds
0 0

+

1
Ny SR [ (L 20 P 2P Y P | s,
n 0
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Hence
1

E/ |f7‘b(87szn7Zg)_f<saYrSaZS) ‘2 ds
0

1

1
C
< 2p%(fn — f) +2L% (E/O Y —Y, )P ds+E/0 | 27 — Z, | ds) + ~aiay
Passing to the limit successively on n and N, we obtain
1
E/ | fu(s, Y, Z™) — f(s,Ys, Zs) | ds — 0, asn — oo.

0

Now
vt €[0,1], E| K — K; |*— 0, asn,m — oo.

Theorem 2.14 is proved. u

2.4 Reflected BSDE with super-linear growth

Let (2, F,P) be a complete probability space and (W3, ¢ € [0,1]) be a n-dimensional Wiener
process defined on it. Let (F3,t € [0,1] ) denote the natural filtration of (W;) augmented with
the P-null sets of F.
In this section, we are concerned with the existence and uniqueness results for reflected
BSDE with super-linear growth of the following type: C(1+ |y | v/|log |y ]), C(1+ | y |
| log | log | ¥ ||])... We state the following assumptions:
(A.1) A function process f, which is a map:

f:x[0,1] x R x R>*" — R%,

such that

(i) f is continuous in (y, z) for almost all (¢,w).
(7i) There exists a constant M > 0 such that,

<y, flt,w,y,2) >< M+ |y]® +|yl|lz]) P —a.s., aetc|01].
(73t) There exist M > 0 and « € [0, 1] such that,

lf(t,w,y,2)| < M1+ |y|v/|log |yl +|2|%) P —a.s., ae.t €0,1].

(tv) There exists M > 0 such that,

|f(t,w,y,2)| < M1+ |y|v/|log |yl +|2]) P —a.s., a.e.t €[0,1].

(v) For each N > 0, there exists Ly such that:

‘f(t7w7yvz)_f(t7wayvzl) ‘SLN (|y_y/ | + | z— 2 ‘)
Ly, 1Y || 2],| 2| N P—as., aetel01]

(vi) There exist M > 0 and « € [0, 1] such that,

|f(t,w,y,2)| < M(1+ |y||log|yl| +|2|%) P —a.s., ae.te€0,1].
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(vii) There exists M > 0 such that,
[f(t,w,y, 2)| < M(1+[yl[log |yl + |z[) P —a.s., ae.te0,1].

(A.2) A open and convex subset © of IR

The main results are the following.

Theorem 2.16. Let (A.1)(i) — (éii), (v) and (A.2) be satisfied. Assume moreover
that E(|¢|°) < oo. Then the reflected BSDE (Ir)-(57) has one and only one solution
{(Ys, Zy, Ky); 0 < t < 1} if one of the following two conditions is satisfied:

1
(a) a<l and ]\}gnooLT(N + N2i—a) NQ) exp(2L) =0

(b)) «a<1 and 3L>0, 2L% <L+2(1-a)logN.

Theorem 2.17. Let (A.1)(i) — (i7), (iv) — (v) and (A.2) be satisfied. Assume moreover
that E(|€]*) < oo and Ly satisfies the following relation,

A}gnoo \/» exp(2L%) = 0.

Then the reflected BSDE (1r)-(51) has one solution.
Arguing as in the prove of Theorem 2.2 one can show the

Remark 2.18. The hypothesis (a) can be slightly relaxed in

, 1 1
(a) Oé<1 cmd ]\;Enoom(]\]—*—NQ(l 04) NQ)eXp(LN+2LN)—O

In order to prove Theorem 2.16, we need the following auxiliary lemmas.

Lemma 2.19. Let f be a process which satisfies assumptions of Theorem 2.16. Then there

exists a sequence of processes (fn) such that,

-(i)- For each n, f, is globally Lipschitz in (y,z) a.e. t and P-a.s. w.

-(i1)- For every N € N*, |fu(t,w,y,2) — fu(t,w,y/,2")] < L(N+%) (ly—9'|+ 1z —2]), forn

large enough and for each (y,y',z,2') such that |y|,|y'| < N, |z]| <N, |2/| < N.

-(ii)- There exists a constant K (M) > 0 such that for each (y,z) and for n large enough,
<y, fult,w,y,2) > K(M)(1+ |y]? + |yl|z]) P-a.s. and a.e. t € [0,1].

-(iv)- There ezists a constant K(M) > 0 such that for each (y, z),

supy (|fa(t, w,y, 2)|) < K(M)(1 + [y|y/[loglyl| + [2%)  P-a.s., a.e. t €[0,1].
-(vi)- For every N, pn(fn — f) — 0 as n — oo.

Proof . Let ¢, : RY — R be a sequence of smooth functions with compact support which
approximate the Dirac measure at 0 and which satisfy [ ¢, (u)du = 1. Let 1, : R — R,
be a sequence of smooth functions such that 0 < ¢, < 1, ¥,(u) = 1 for |u| < n and
Yn(u) = 0 for |u| > n 4+ 1. Likewise we define the sequence 1/, from R¥" to R,. We put,
fan(ty,2) = [ f(t,y—u, 2)pq(u)dupy, (y)i),(z). For n € N*, let g(n) be an integer such that
q(n) > M[4n? + 10n + 12]. Tt is not difficult to see that the sequence f,, := fq(n),n satisfy all
the assertions (i)-(vi). [
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Let (f,,) be the sequence of processes associated to f by Lemma 2.19. We get from Ouknine
[61] that there exists a unique triplet {(Y;", Z}", Ki*;0 < ¢ < 1)} of progressively measurable
processes taking values in R% x R¥" x R% and satisfying:

( 1
(1') Z™is a predictable process andE/ | Z" |? dt < 400
1
2Nyr=¢ +/t fn(s, Y, Z)ds — /t ZdWs + K{' — K[!
(3) the process Y™ is continuous
(4") K™ is absolutely continuous, K =0, and / (Y" —ay)dK] <0
0

for every ay progressively measurable process which is continuous
and takes values into ©
(5)Y"€0,0<t<1.a.s.

We formulate uniform estimates for the processes (Y™, Z", K™) as follows.

Lemma 2.20. (a) Let assumptions of Theorem 2.16 hold. Then there exists a constant C
depending only in M and £, such that

1
E < sup |Y;"|? —i—/ \Z;LIst) <O, VneN"
0<t<1 0

(b) Assume moreover that there exists an integer p > 1 such that E | € |*< co. Then, there
exists a constant C depending only in M, p and &, such that

E ( sup |[Y;[*! + | K7 |2> <C,, VneN",
0<t<1
Proof . Assertion (a) follows from Itd’s formula, assumption (A.1)(i¢), Gronwall’s lemma

and Burkholder-Davis-Gundy inequality. Let us prove (b).
Using It6’s formula we obtain,

1 1 1 1
R +/ 20 ds = ¢ +2/ fuls, Y, Z0)Y " ds — 2/ 20V AW, + 2/ YK,
t t t t
Without loss of generality we can assume that 0 € ©. Hence by relation (4’) we have

1
/ Y dK? < 0.
t

2 b2
We use (A.1)(i7) and the inequality ab < % + 5 to obtain

1 1
V12 =] € > +2C + (2C + 202)/ Y| ds — 2/ ZmY W,
t t
Taking the conditional expectation with respect to F; in both sides we deduce

1
Y <E <| €12 42C + (2C + 202)/t \Y'S"|2ds/}'t> .
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Jensen’s inequality shows that for every p > 1,
1
B < Gy (B 1€ ) + 0P + @0+ 2020 [ |77 7 as])
t

1
<G1+E [y as).
t
Gronwall’s lemma implies that

sup E | V" |*’< +o0, Vn € N*, (2.7)
0<t<1

It follows from Doob’s maximal inequality that

E sup |Y*|* < +o0, Vn € N*.
0<t<1

Now, from (2’) we have
1 1
KM KM =Y —¢— / Fuls, Y ZM)ds +/ Zrdw,,
t ¢
Thanks to assumption (A.1)(iii), we obtain
E| K] - K|
1 1
<CE[EP+EY +1 +E/ Y| ds+E/ |2 ds)
t t
and from assertion (a) and (2.4), we deduce that
supE | K7 < C, for all n € N*.
n

Hence, (b) is proved. (]

We shall prove the convergence of the sequence (Y™, 2" K"),, , n € N*.
Lemma 2.21. Under assumptions of Theorem 2.16, there exist (Y,Z,K) such that

1
lim E{ sup | Y{*—Y; >+ sup | K" — K; |? +/ |Z" — Zy|* ds} = 0.
n—0oo 0<t<1 0<t<1 0

Proof : It follows from Ito’s formula that
1
vy +/ iz~ Zm P ds
t
1
s / (Y =YY (ful5, Y, Z0) — fonls, Y7, Z0))ds
t
1 1
9 / (YT — Y (20— Z7) dW, + 2 / (Y7~ Y™) (K" — dKT).
t t

For an arbitrary number N > 1, let Ly be the Lipschitz constant of f in the ball B(0, N).
We put AN, = {(s,w);| Y2 [+ | 20 2 + | Y2 > + | 20" P> N2}, Ay, = 0\ A,
As in Lemma 2.8, we deduce that

1
B|Y) -V PAE [ | 20 -2 P ds
t

1 1
1
< °E / Y7 Y P ds / | Fals, Y2 Z0) — funls, Y, Z0) |2 ds.
t t
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Hence

1
EIYt”—thIQJrE/ |z~ Z | ds
t

<PE [ Y7 -¥PPdst E/ | Fus, Y2 Z0) = funls, Y% 20 2 1 ds
t

4 1
+ ﬁzE/ | fu(s, Y Z8) = £(s, Y, Z8) P 1w ds
t n,m

1
+E/ |f(S’YSn’Zg)_f(S7szm7Z:1) |21fN ds

+ E/|stmZm) fin(8, Y3 Z9) P 1w ds.

nm

Using the fact that f, satisfies (A.1)(ii7), Holder inequality, Chebychef inequality and Lemma
2.20, we obtain

1
E / | Fa($, Y, Z0) — funls, Y Z) P 1y ds

: ,m

1
SE/ (L (Y224 | 200+ | Y P 4 | 20 2 Lan ds
t ,m
1 1 1

< e T T
< C(e. D) (Nm_a) ML NQ) |

Since f is Ly-locally Lipschitz we get

1
E\Yt’"‘—Y{”\2+E/ |z~ Zm 2 ds
t

1
cE,M) 1 1 1 4
2 n__ ym |2 ) - 2
<oB [ v -y Pass S (g ) £ )
4 212 !
ﬁQp?V(f +—N / Y — Y™ |2 ds +NE/ | Z0 — Z™ |? ds.
2L
If we choose 3 such that 72 - = 1, we obtain
n_ ym 4 C,M 1 11
BV~ VP < (oA Un = 1)+ A~ ) + SE

32 (N2(1—o¢) + N ™ ﬁ)
1
(g [ e -y s
t
It follows from Gronwall lemma that, for every ¢ € [0, 1]

sup E Y, —Y,"*
0<t<1

2 9 2 C(¢, M) 1 1 1 2
< <L%V(pN(fnf)+pN(fmf))+ 217, (Ng(l,a) +N+ﬁ) exp(2Ly + 1).
Using Burkholder-Davis-Gundy inequality, we obtain

E sup |V =Y,
0<t<1

2 1 1 1 1
<C<L2 (p ?v(fn—f)+0%v(fm—f))+2L?v(NQ(1_a)+N+NQ)>GXP(2L?\/+1)
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1
Bswp [ |2 - 2
o<t<1.Jo

2

1 1

(a0 +

<0 (Gl = D)+ slln— )+ g1 sty + 3 + )

5 > exp(2L3; +1).
LN

_l’_ R
2L3%

Passing to the limit on n,m and on N, we show that (Y™, Z") is a Cauchy sequence in

neN*
the Banach space of progressively measurable processes L, which is defined as above.

We set
Y= lim Y" and Z= lim Z".

n—--400 n—---+00

If we return to the equation satisfied by the triple (Y™, Z™ K™),cn+, we see that

E sup | K} — K" P < C[E sup | V)"~ Y™ 2
0<t<1 0<t<1

1
LE / | Fa(s, Y, Z) = fu(s, Y, Z7) 2 ds
0
1
—HE/ | Z — Z" |* ds].
0

We shall prove that the sequence of processes fy(.,Y"™, Z"), converges to f(.,Y,Z) in
L3([0,1] x Q)

1
E / | Fals, Y Z0) — f(5,Ya, Z6) 2 ds
0

1 1
< 2E/ | fals, Y Z0) = f(s,Y, 27) P d8+2E/ | f(s. Y Z28) = f(s,Ys, Zs) [P ds
0 0

1 1 1

< 203 (fu = ) + O M) (355 + 5 + 73

1 1
V2RE [ (20 -z P ds+ [ vy - Y. Pyds
0 0
Hence

1
E / | Fa(s, YT 20 — f(s,Yar Z5) 2 ds
0

1 1
< 2% (fu — f) + 2L% (E/ YS”—Y;PdHE/ 7 - 7, 2ds>
0 0
1 1 1
+ (6 M) (g + 3 + 37

Passing to the limit successively on n and N, we obtain
1
IE/ | fu(s, Y2, Z0) — £(s,Ys, Zs) |? ds — 0, asn — oo.
0

Now

E sup | K — K" |>— 0, asn,m — oc.
0<t<1

Consequently there exists a progressively measurable process K such that

E sup | K — K; |>— 0asn — oo,
0<t<1

and clearly (K) is increasing (with Ky = 0) and a continuous process. [
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Proof of Theorem 2.16: Combining Lemmas 2.20, 2.21 and passing to the limit in the
RBSDE (2’), we show that the triplet {(Y;, Z;, K¢);0 < ¢ < 1} is a solution of our RBSDE.
The sequel of the proof can be performed as that of Theorem 2.2. Theorem 2.16 is proved.m

Corollary 2.22. Let (A.1)(i)-(ii), (vi) and (A.2) be satsfied. Assume moreover that the
generator f is locally Ly -Lipschitz in' Y and L-globally Lipschitz in Z and E(| £ |°) < oo.
Then if Ly satisfies

. 1 1 1
]\}gnoo <N2(1_O‘) + m + N) exp(QLN) = 07
our reflected BSDE (1r)-(5r) has a unique solution.
Proof . The arguments used in the proof of Lemma 2.21 lead to
1
BV -V PAE [ | 20 -2 P ds
t
1 1
SB[V VP P Ly ds 28 [ SV 20 = fe Y2 P Ly, ds
1
B [V Y| s Y Z2) = i Y 2 Ly d
t n,m
<E 1 yr—ym 2 ds + C (&, M ! Lyl
=%/ | Y=Y P 1y ds+C(E, M) Voo TN TN
| Y& =Y | fuls, Y, Z8) — f(s, Y ZY) | 1ngds
| st - Y:sm H f(S,Y;n,Zg) - f($7Y9m7Zg) | 1ngd$

|Y9n_Y:9m ||f(87}/;mjzg)_f(87}/5m’2‘;n) ’ 1ZN ds

| Y:Sn _Y;m || f((g’}/;m’Zg”) _fm(‘g?Ytsm?Zgn) | IZN ds,

1
EW—YJ"ME/ |z~ 7 | ds
t

1 1 1 1
< n __ m |2 _ N
_E/t | Y — Y™ |2 ds + O(&, M) (N2(1—a) + N + N2>

1
F 2R = D)+ 2R = P+ BB [ YV P ds
t
1 L2 1
+2LNIE/ |y —ym 2 ds+52E/ | 20— Z™ | ds.
t t
2
Choosing 2 = 1 then using Gronwall lemma and Burkholder-Davis-Gundy inequality, we
get

E sup | V" —Y{" |
0=t<1

<c (2p%v<fn D) 42— )

N2(1—«)

11
+5 N2> exp(2L% + L* +1).
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IE/ | Z — Z™ |2 ds
0

1 1

< c(zp%v<fn—f>+2p%v<fm—f)+w+ : )exp(2L%v+L2+1>.

NN
Passing to the limit on n,m and N, we get the desired result.

Proof of Theorem 2.17. Arguing as in the proof of Theorem 2.16 we show that
1
E|Y Y PAE [ |20 -2 P ds
¢
1
<28 [V YRl Y Z2) = il Y 20 Ly,
¢ ,m

1
+ﬂ2E/ Y —Y™ |2 1 v ds
t n,m

A ’
4 1
B [ Y = F Y2 P 1y ds
1
B[S Z) 62D Py ds
4 1
B [ LY Z) = s Y220 P gy ds.

We use Holder inequality, Chebychef inequality and Lemma 2.20 to show that
1
B[00 = Y £ Y220 — s,V 2Ly d
¢ ,m

1
§2E/ Y = Y fnls, Y Z8) = fn(s, Y™ Z8) L ay ds
t ,m

N|—=

1 1
< 2(E/ Y =Y P14 dS)é(E/ | ful(8, Y, Z0) = f(s, Y, Z7)Pds)
t o t

1 1
<2(B [ V2 -y (B [ 1y, 97006
t t ’

K(M,¢)
STUN
Therefore
BV — YP) < [L% (Belfa— )+ Pl — ) + K(\/j‘fN’f)] exp(2L2).
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Passing to the limit first on n,m and next on N then using the Burkholder-Davis-Gundy

inequality, we show that (Y™, Z") is a Cauchy sequence in the Banach space (L,|.||). The

sequel of the proof can be performed as that of Theorem 2.16. Theorem 2.17 is proved.

Corollary 2.23. Let (A.1)(i)-(ii), (vii) and (A.2) be satisfied. Assume moreover that the
generator f is locally Ly -Lipschitz in' Y and L-globally Lipschitz in Z and E(| € |*) < oo.

Then if Ly satisfies

1
lim ({ — | exp(2Ly) =0,
our reflected BSDE (1r)-(5r) has a unique solution.
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Proof . Arguing as in the proof of Corollary 2.22 we obtain

1
E sup | Y -Y" P<C (2p%v(fn — )+ 208 (fm = ) ) exp(2Lyy + L* +1).
0<t<1 VN

1 1
]E/O | Z7 = Z]" Pds < C <2p?v(fn — N +20%(fm — )+ \/ﬁ> exp(2L}, + L? +1).

From which the result follows. [

Let us give the following example

Example 2.24. For i = 1,....d let h; : R — R be the function defined by, hi(y) =
1 .
—g]l|y|§%+ |y | log | v | Lot and define the function g by g(t,z,y) := (h1(y)+ | z |

s hg(Y)+ | 2 ]). It is not difficult to check that g satisfies the assumptions of Corollary 2.23
and hence if E(| £ |*) < oo then our BSDE has a unique solution.



Chapter 3

Multidimensional Backward
Stochastic Differential Equations
with non-Lipschitz Coefficients

The chapter is organized as follows. In Section 3.1, we study the existence and uniqueness
of RBSDE with monotone generator. The existence and uniqueness of one solution to RBSDE
with locally monotone coeflicient is proved in Section 3.2. In Section 3.3, We prove existence,
uniqueness and stability of the solution for multidimensional backward stochastic differential
equation whose coefficient is neither locally Lipschitz in the variable Y nor in the variable Z.
This is done with super-linear growth coefficient and a square integrable terminal condition.

3.1 RBSDE with Monotone Coefficient and polynomial
growth

In many examples of semi-linear PDEs , the nonlinearity is not of linear growth but instead,
it is of polynomial growth, see e.g. the linear heat equation analyzed by Escobedo et al. [29]
or the Allen-Cahn equation (see Barles et al. [10]). If one attempts to study those equations
by means of the formula (0.9) one has to deal with BSDEs whose generators with nonlinear
(though polynomial) growth. The goal of this section is to study the reflected backward
stochastic differential equation (1)-(5) (see below) under monotone and polynomial growth
generator, via penalization technique in multidimensional case. Precisely, we prove that if
the generator is monotone and has a polynomial growth, the RBSDE (1)-(5) below has one
and only one solution.

3.1.1 Formulation of the problem

Let (2, F,P) be a complete probability space and (W, ¢ € [0,1]) be a n-dimensional Wiener
process defined on it. Let (F,t € [0, 1] ) denote the natural filtration of (W;) augmented with
the P-null sets of F. We define the following three objects:

(A.1) A process f defined on Q x [0,1] x R? x IR¥" with value in R? and satisfies the

YA part of this work is accepted for publication in Stochastic Analysis and Applications.
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following assumptions:
There exist constants v > 0, u € R, C > 0 and p > 1 such that P — a.s., we have

())V(y, z) € R x R>™: (w,t) — f (w,t,y,2) is Fy—progressively measurable
(M)W Vy, V(z,2), | f(ty,2) = flt,y,2) [Sv]z—2|

(@) VY2, Y(y,y), (=9 )(f(ty,2) = f(t.y2) Sply—y |?

() Vt,Vy,Vz, | f(ty,2) [<| f(2,0,2) [ +K(1+ [y ")

(v)Vt,Vz, y— f(t,y,z) is continuous.

(A.2) A terminal value { which is Fj-measurable such that

1 D
E|¢[*® +E </ | f(s,0,0) ? ds> < +o00.
0

(A.3) A proper lower semicontinuous convex function ¢ : R —] — oo, +00].
We also assume that £ € Dom(¢) and E(¢(§)) < +o0.
Before stating our result, we recall some properties of a Yosida approximation of subdiffer-

ential operator. We define

Dom(¢) = {u€R’:¢(u) < +oo}
0 (u) = {u* e R i< w0 —u> +¢(u) < ¢(v), Vo € R}
Dom(9(¢)) = {ueR?:9(¢) # 0}
Gr(9¢) = {(u,u*) R’ xRY:u € Dom(8(¢)) and u* € dp(u)}.
For every z € R?, we put
on(x) = min (5 | =~y [ +6()).

Let J,(z) be the unique solution of the diffrential inclusion z € Jyu(z) + 29¢(Jn(z)) (see
Barbu, Precupanu [8]). The map J,, is called the resolvent of the monotone operator A = 9¢.
Note that ¢, : R? — R is a convex and C! class function with \v¢, = A, is the Yosida
approximation of the operator d¢ defined by A,, = n(z — J,(x)). We also have

inf ¢(y) < ¢(Jn(2)) < Pn(2) < H(2).

yeR4

Moreover, one can show that there exist a € interior(Dom(¢)) and positive numbers R, C
such that for every z € R?

(Von(2)"(z—a)) > R| An(z) | =C | z | =C for all n € N*, (3.1)

more details can be found in Cépa [19].
Now, let us introduce our RBSDE. The solution is a triplet (Y;, Z;, K;), 0 < ¢t < 1 of
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progressively measurable processes taking values in R% x R¥" x R? and satisfying:
(1)Z is adapted process and E/ |1 Z:||?dt < +oo

(2)Y; = £+/sts,Z)ds—/ZdW+K1 K;,0<t<1
t

(3) the process Y is continuous
(4)K is absolutely continuous, Ky = 0, and for every progressively measurable
and continuous processes (o, 3) such that (ay, 8;) € Gr(d¢), we have

/0 (Y — ) (dE + Budt) < 0

(5)Y; € Dom(¢), 0 <t <1 as.

\

Our goal in this section is to study the RBSDE (1)-(5) when the generator f satisfies the
above assumptions.
Consider the following sequence of backward stochastic differential equation

1 1
Y=gt / (f(5, Y7, Z7) — Ay (Y7))ds — / Zraw,, (3.2)

where £, fsatisfy the assumptions stated above and (A,), is the Yosida approximation of
the operator A = d¢. It is known, since A, is Lipschitz and f is monotone, that the equation
(3.2) has one and only one solution. We set

t
K} = —/ Ap(YM)ds for te]0,1].
0

3.1.2 Existence and uniqueness results

The main result in this section is the following

Theorem 3.1. Under the assumptions (A.1), (A.2), (A.3) on &, f, ¢, the RBSDE (1)-(5)
has a unique solution {(Yy, Zy, Ky); 0 <t <1}. Moreover,

lim E sup |Y—Y;*=0
n——teo <<l

1
lim E/ \Z — Zy|*ds =0

n—--4oo

lim E sup |KP — K> =0

n——+o0 <<l
In order to prove Theorem 3.1 we need the following lemmas.
Lemma 3.2. Let assumptions of Theorem 3.1 hold. Then
1 1
sup E ( sup | Y |2 +/ yZ§|2ds+/ 1A, (YS")|ds> < o00. (3.3)
neN*  \0<t<1 0 0

Proof . By It6’s formula we get
1 1
Ve -+ [z =le—af 2 [ (7 -0 £ Y7 20
t t

1 1 (3.4)
9 / (Y7 — a)* Z0dW, — 2 / (Y7 — a)* A, (Y7) ds.
t t
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We Take expectation and use (3.1) to obtain,
1 1
EY, —al’ + E/ |Z?ds <E[¢ — al? + 2IE/ (Y7 —a) f(s, Y, Z)ds
t t
1 1
—2RE/ | A, (Y] | ds—|—2C/ | Y| ds + 2C,
t t
this implies that
1 1
EY7 — af +IE/ ]Z§\2d3+2RE/ Ay (V1) ds
t t
1
<E|é—al? +2CE/ | Y | ds +2C
t
1 1
9 [ (0 =) (.Y 28) = S0, Z)ds +2 [ (V7 = o] (5.0, 200,
t t
Using assumptions (A.1)(i) — (i4i), we deduce

1 1
IE(]Yt"—a|2—|—/ \zg|2ds+2R/ A, (Y;)\ds>
t t
1 1
§E|§—al2+2,uIE/ Hfs"—a|2ds+2E/ | Y —a|(y| Z2 | +K(1+ | a|P))ds
t t

1 1
—|—]E/ |Y:—a|2ds+uz/ | £(5,0,0) [2ds+ C,
t t

where C' is a constant which can change from line to line.

1
Since 2ab < 3%a® + @bQ for each a,b > 0, we get
1 1
E (mn qf? +/ |zg|2ds+23/ A, (Y.j)\ds)
¢ t

1 22 1
SE\&—a!2+(2|u\+ﬂ2+1)E/ \Yt”—ay?dergQE/ | Z" 12 ds + C.
t ¢
If we take %i; = %, we obtain

1 1
E|Ytn—a|2+;1[«:/ 122 ds < C <1+E/ |Ys”—a|2ds> ,
t ¢
Hence by Gronwall’s lemma we have,

sup E|Y* —al? < C, Vn.
0<t<1
So that

sup E|Y)? < C, Vn.
0<t<1

Now, it is not difficult to show that,

1 1
sup E (/ ]Z;"‘\st—i—/ A, (1@1);@) < 400, (3.5)
0 0

neN*
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We use equation (3.4) and Bulkholder-Davis-Gundy inequality to get,

sup E sup |Y*]* < C. (3.6)
neN*  0<t<1

Lemma 3.2 is proved. [

We state the following lemma which is essential for the convergence of the sequence
Y™, Z") e

Lemma 3.3. Let assumptions of Theorem 3.1 hold. Then

a) sup E|Y [*P< 400, Vn.
0<t<1

1
b) sup E/ |A, (Y)|? ds < +00.
0

neN*
Proof . a) Itd’s formula gives
1 1
Y-l [z =g -l w2 [ (07— ) s,V 22,07 ds
t t
1 1
_2/ ygzgdws_z/ (Y — a)* A, (Y1) ds,
t t

By assumptions (A.1)(i) — (iiz), we have

1 1
Y7 —af? + / 272 ds + 2R / Ay (V)] ds
t t
1 1
S!ﬁ—a\2+2u/ |Y:—a\2ds+2/ Y —al (v 20| 4K (14 |a P))ds
t t

1 1 1
+/ | Y —a ? ds+/ | £(5,0,0) |? d8+C—/ Y ZM AW,
t ¢ ¢
Taking the conditional expectation with respect to F; of both sides, we get that
1
Y- o SE[1€—al (F] + @ n| +472+ DE[ [ Y2~ af? ds/7]
t

1 1
+E[/O | £(s,0,0) 7 ds/Ft]+2cE/0 (1+ | a |P)ds + C.

Jensen’s inequality shows that for every p > 1,
1
BNV, —af < GE[|€—a P ]+ (2| n| +47? + 17E[ [ |V - ds
¢
1
+IE(/ | £(5,0,0) [2 ds)? + 1]
0
1
<C,+ IE/ Y7 — af?? ds).
¢
Gronwall’s lemma implies that

sup E | V" |*< +oo, Vn. (3.7)
0<t<1
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Assertion a) is proved.
b) We assume without loss of generality that ¢ is positive and ¢(0) = 0. Let us note that

¢n is a convex C'-function with a lipschitz derivative, and put v, = ~—.

By convolution of 1, with a smooth function, the convexity of 1, and 1t6’s formula, one can
show that,

1
) U@+ [ VU0 ZE) = A (Y)dr
t
1
_/ V%(K")Zder,
t
thus
1
B (V) < BGo(O) +E [ (V)0 Y 27) = Au(¥7)dr
t
1 1 1
B0, +E [ Veu(YF Y2, 20 - 2B [ A7) P
t t
Hence, using the elementary inequality 2ab < na® + %bz we deduce,
n 1 ! ny |2 1 ! ny |2
Epn(Y) + —E [ | Au(Y") [P dr <Eg(§) + —E [ | Au(Y") | dr
n J; 2n  J,
+1E/1]f(s Y, ZM) |2 ds
2n  J; TheTs ’
We use assumptions (A.1)(iv), (i), to get
1 1
BUu(V7) + 1B [ A7) [P dr
noJt
1 ! ny |2 2’72 ! n |2
SEYn(§) +o—E [ [AY) [Pdr+—E [ [Z] 7 ds
2n t n t
9 1 2K2 1
+E/ | £(5,0,0) 2 ds+E/ (14 | Y7 [22)ds.
noJt n t
The relations (3.5), (3.6) and (3.7) allowed us to prove that

C

R
n

1 1
BUu(Y?) + 1B [ A7) [P dr <
t
which implies that
1
supE/ | A (V) |2 dr < +oo. (3.8)
n 0
Lemma 3.3 is proved [ ]

Lemma 3.4. Let assumptions of Theorem 3.1 hold. Then

1
1
E sup |Y;"—th|2+E/ | Z0 — Z™ 2 ds < C(= 4+ —)
0<t<1 t n
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Proof . Using [t6’s formula, we get
1
ve-vep [z - zrpds
¢
1
:2/ (Y-sn_Y:sm)*[f(sayjsnaz?)_f(say;maz‘;n)] ds
t
1
vz [ oy -z,
t

1 1
9 / (Y7 Y A, (Y1) ds +2 / (Y7~ YIY Ap (V) ds,
t t

and then,
1
oY / iz~ Zm P ds
t
1
=2 / (Y2 — YT [f(s, Y, 20 — f(s, Y™, Z0)] ds
t
1
1 / (Y2 YI) [f(s, Y Z7) — f(s, Y™, Z2)] ds
t
1
vz [ oy - 2w,
t
1 1
2 [ Y A ds 2 [ (- Y A (V) ds,
t t
Thus

1
EW—WH@/ 27— Zm 2 ds
t
1 1
§2ME/ m"—nmﬁdswﬂa/ YR Y™ | 20— 2 | ds
t t

2R / LYY (A (V) — A (V) ds.
t

1 1
Since, Id = J, + ﬁAn =Jn+ EAW (A (YY), Ay (YD) € A(J (YY) X A(J, (YY) and
1
zy < 1:1:2+y2 , Vx>0V y>0, we can show that

1
[An (Y + - [Am (Y

- n __ym ny my\
(Y =Y An (V) — A (YJ)) < ™

i
and then )
E Yy — yy? +E/ 2~ 2 ds
t

1 2 1
<@ul +62)1E/ Y YR ds + gE/ 1z~ Zm 2 ds
t t

1
1 ny |2 i my|2
+8 [ (g A0 O0IP + 4 A O .
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2
1
If we choose (3 such that T < 3 we get

52

1 [t 11
sup IE]Y;”—th\2+2E/ 1Zn — ZM? ds < C<+>.
t

0<t<1 nom

Using Burkholder-Davis-Gundy inequality, we obtain

1t 11
E sup ]Yt”—thP+2E/ |Z — Z™|* ds < C’<+>.
0

0<t<1 n m

Lemma 3.4 is proved. [ |

Lemma 3.5. (see Saisho [75]) Let (k™), o be a sequence of continuous and bounded variation
functions from [0,1] to RY, such that :

(¢2) sup, Var (k") < C < +o0.

(79) limy,— 00 k™ = k uniformly on [0, 1].

(iii) Let (f™)nen be a sequence of cadlag functions from- [0,1] to RY, such that lim, . ™ =
f uniformly on [0, 1].

Then for every t € [0,1] we have:

t
lim
n—oo 0

(" (), dk™ (s)) = /0 (f (), dk (5))

Proof of Theorem 3.1
Existence. By Lemma 3.4, the sequence (Y, Z"), - is a Cauchy sequence in the Banach
space of progressively measurable processes L. defined by,

1 1
L= {(Y,Z) / E( sup |Yi|*) + E/ | Z,|? ds) < oo}.
0<t<1 2 Jo

Let (Y, Z) be the limit of (Y™, Z"™) in L.

If we return to the equation satisfied by (Y, Z™), ., we can whow that (K™), . converges

n—---+o0o

uniformly in L? () to the process K. = lim / Ay, (Y]')ds, that is
0

E sup |K! — Ki|* =0.
0<t<1

The relation (3.8) can be written as

sup E HKnuip

) < 400,
neN*

(0,1;R4
where H! (0, I;Rd) is the usual Sobolev space consisting of all absolutely continuous func-
tions with derivative in L2 (0,1). Hence the sequence (K") is bounded in the Hilbert space
L? (Q; H' (O, 1;Rd)), and there exists then a subsequence of (K"™) which converges weakly.
The limiting process K belongs to L2 (Q; H? (0, 1; Rd)) and a.s. K (w) € H! (0, 1; Rd). Hence

dK.
K is absolutely continuous and d—tt = Vi, where —V; € 0¢(Y;).

We shall prove that (Y, Z, K) is the unique solution to our equation. Taking a subsequence,
if necessary, we can suppose that:

sup |K}' — K| — 0, a.s.
t€[0,1]
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sup |Y}" =Y — 0, a.s.
t€[0,1]

It follows that K; and Y; are continuous. Let (a, 3) be a continuous processes with values in
Gr(0¢). It holds that
(n(Y) = a (£) A} + fudt) <0

Since J,(Y;") converge to pr(Y:), where pr denotes the projection on Dom(¢), then we use
Lemma 3.5 to show that (pr(Y;) — a(t),dK (t) + Bidt) < 0.
Since the process (Y;, 0 <t < 1) is continuous, the proof of existence will complete if we show
that

IP’{Yt € Dom(¢)} —1 Vt>o.

Assume that there exist 0 < tg < co and By €F such that P (By) > 0 and Y3, (w) ¢ Dom(¢)
V w € By. By the continuity, there exist § > 0, By €F such that P(B;) > 0, Y; (w) ¢ Dom(¢)
for every (w,t) € By X [to,to + 0]. Using the fact that

1
sup IE/ |An (Y1) ds < o0,
neN* 0

and by Fatou’s lemma, we obtain

to+0
/ / liminf |4, (YJ")|dsdP < +o0,
By Jtg

n—-4o0o

which contradict the fact that lim Hlf |A, (Y]')] = +oo on the set By x [tg,to+ 6] . This
n—-r 0o
complete the existence proof. [ ]

Uniqueness. Let {(Y;, Z;, K;); 0 <t <1} and {(Y/,Z],K]); 0 <t <1} denote two so-
lutions of our BSDE. Define

{(AY;, AZy, AKy) ;0<t <1} ={(Y, - Y}, 2~ Z,, K, - K}) ;0<t<1}.

It follows from It6’s formula that,

1 1
E[mmh/ |AZS|2ds} :21@/ (AYs, f(s,Ye, Ze) — f(5,Y!, Z4)) ds
t t

1 1
+2E/ (AY, f(s,Y!, Zs) — f(s,yg,zg)>ds+21@/ (AY,, dAK,) .
t t

By assumptions (A.1)(ii) — (¢it), we get

1
E [mytﬁ +/ |AZ5|2ds]
t

1 1
:(Q/H—ﬁ?)]E/ | AY, 2 ds+ 2 IE/ | AZ, |2ds+2E/ (Y, dAK,) .
t

~IR € do(vi), S € 06(x}), then

Since 0¢ i ;lt

1
E/ (AY,,dAK,) <0
t
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2
b
= —, we have

32 2

Hence, taking

1 1 1 1
E [AY;\%/ ]AZS]st] < CIE/ yAifsy?derQE/ |AZ,|? ds.
t t t

The result follows from Gronwall’s lemma. [

3.2 Reflected Backward Stochastic Differential Equation with
Locally monotone Coefficient

The aim of this section is to extend the previous results to the case where the generator f is
locally monotone on the y-variable and locally lipschitz on the z-variable. Our existence and
uniqueness has been proved in Pardoux [66] for BSDE (without reflection) in the case where
the generator f is globally monotone w.r.t. the variable y and Lipschitz w.r.t. the variable z,
and more recently in Bahlali et al. [30] for BSDE with reflection and jumps in the case where
the generator is locally Lipschitz w.r.t. the variables y and z. Our result is, in particular, an
extension of the two results.

Consider the following assumptions:

(i) f is continuous in (y, z) for almost all (¢, w),

(1) There exist M > 0 and 0 < «a <1 such that | f(t,w,y,2) [< M1+ |y |* + ]| 2 |%).

(7i1) There exists py such that:

<y - ylaf(t7y7 Z) - f(ta ylvz)> < KN | Y= y, |2; P— a.s., a.et € [07 1] and
Vy, zsuch that |y |< N, |y |[< N, |z |<N.

(iv) For each N > 0, there exists Ly such that:

[ Fty2) = Fty ) | Lo [ 2= 2/ 5] 2],] 2/ 1< N P—as., aed € [0,1] and
Vy, z, Z'such that |y |< N, |z |< N, |2 |< N.

When the assumptions (i), (i), are satisfied, we can define the family of semi norms (p,(f))n

1
pul$)= (B [ s | fs.9.2) P ds).

lyl,|z[<n

The main result of this section is the following

Theorem 3.6. Let (i)-(iv) hold and & be a square integrable random wvariable. Assume
moreover that o < 1 and
exp(L% +2u}))
im
N=-too (L3 + 2u ) N2(1=0)

=0, (3.9)

where ,u} = sup(un,0). Then equation (1) — (5) has a unique solution.
In particular, if o <1 and there exists a constant L > 0 such that

L3 +2uk < L+2(1 — a)logN,

then equation (1) — (5) has also a unique solution.
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Remark 3.7. It should be noted that there is existence and uniqueness if we replace condition
(it) by
(ii’) There exists M >0 and 0 <« <1 such that | f(t,w,y,z) |[< M1+ |y |+ |z |%).

To prove Theorem 3.6 we need the following lemmas.

Lemma 3.8. Let f be a process which satisfies (i), (ii), (i), (iv). Then there ezists a
sequence of processes (fy) such that,
-(a)- For each n, f, is globally L -Lipschitz in (y, z) a.e. t and P-a.s.w.
-(b)- For each n, fy is i 1 -locally monotone in y a.e. t, P-a.s.w and for each z.
(N+—)
-(¢)- sup,, | fn(t,w,y, 2)| < \f?t,w,y,z)\ <M1+ |yl*+ 12|  P-a.s., ae. t €[0,1].
-(d)- For every N, pn(fn — f) — 0 as n — 0.

Proof . Let p, : RY — R be a sequence of smooth functions with compact support which
approximate the Dirac measure at 0 and which satisfy [ p,(u)du = 1. Let ¢, : R? — R,
be a sequence of smooth functions such that 0 < ¢, < 1, ¢,(u) = 1 for |u| < n and
@n(u) = 0 for [u| > n + 1. Likewise we define the sequence v, from R¥" to R,. We put,
fan(t.y,2) = [ f(t,y —u, 2) pg(u)dupn(y)n(z). For n € N*, let g(n) be an integer such that
q(n) > M[n + n®]. It is not difficult to see that the sequence f,, := fy(,), satisfies all the
assertions (a)-(d). Lemma 3.8 is proved. ]

Consider, for fixed (f,w) the sequence f,(t,w,y,2) associated to f by Lemma 3.8. We
get from the previous section that there exists a unique triplet {(Y;", Z*, K;*;0 <t < 1)} of
progressively measurable processes which satisfy:

1
(1")Z™is adapted process and E/ | Z]'2dt < +o0,
0

1 1
(2/)1@ﬂ:5+/ fn(s,ys”,zg)ds/ ZMdW, + KT — K0 <t <1,
t t

(3') the process Y is continuous
(4") K™ is absolutely continuous, K = 0, and for every progressively measurable
and continuous processes (o, ) such that (o, 8;) € Gr(9d¢), we have

/0 (Y — ay) (K} + Bedt) < 0.

(5")Y* € Dom(¢), 0 <t <1 as.

Lemma 3.9. There exists a constant C depending only in M and E | £ |, such that
1
E( sup |V +/ 1Z*ds+ | K} |*) < C, ¥ n e N*.
0<t<1 0

Proof : Since |z|* <1+ |z| Ya € [0, 1], the proof follows by standard arguments for BSDE.
=

Lemma 3.10. There exist (Y,Z,K) such that

1
lim E{ sup | Y{" —Y; |+ sup | K} — K; |? +/ |z — Z*ds} = 0.
n—oo 0<t<1 0<t<1 0
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Proof . For a = 1, the result follows from [23]. We shall treat the case a < 1. By Itd’s

formula we have,
1
E(Yy—Y;"?) + E / 27— 2 2ds

t

1

—op / (Y Y, fuls. YD Z0) — fn(s, Y, Z0))ds
t
1

12 / (Y7 — Y)dK™
t

1
= Ip(n,m) + I1(n,m) + Iz(n,m) + Is(n,m) + 2/ (Y —-Y")d(KY — K)
t

where .
Io(n,m) = 2 / (VP =Y fols, Y Z0) — (s, Y27 27 gy ds
' ,m

1
Il(n)m) = 2E/ <}/sn - szm’ fn(svysnv Zg) - f(571/sn’Zg)>1zN ds
t

n,m

1
IQ(nvm) = 2E/ <szn - Ysmv f(sv}/snv Z;L) - f(S’ Ysm’ Z;n)>1ZN ds
t

n,m

n,m

I3(n,m) = 2E /tl(Ys" =Y (Y ZE) = f(s, Y Z0) g ds.
Since K™, K™ are absolutely continuous, Y™, Y™ € w and the measures
(V)" — oy, K" — Brdt)
(V" — ay, dK{" — Brdt),
are negatives, we deduce from Lemma 4.1 in Cépa [19] that
(V- Y d(KE — K™)

is also negative.

We shall estimate Io(n,m), I1(n,m), Ia(n,m), I3(n,m). Let § be a strictly positive number.
For a given N > 1, we put AY, = {(s,w); |[YI?+|Z[* + |Y"* +|Z? > N2}, Zﬁm =
Q\ AN and denote by 1 the indicator function of the set E. By standard arguments of

n,m

BSDE we have,

1
Io(n,m) < BE / Y7 Y ds
‘ ,m

1 1
B [l Y2 = £V 20 P Ly, ds
t

We use Holder inequality (since aw < 1) and Chebychev inequality to get,

K2<M7 5)

W- (3.10)

1
Io(n,m) < B [ ¥y - YRy ds
¢ ,m
Now

1 1
Bnm) < B [V =V Pds B[] Y220 = S Y22 P gy ds
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and then .
Binm) <B [ V2 <Y Pds 4 ok~ ), (3.11)
t

Likewise we show that,

1
Bnm) < B [ Y2~ Y"Pds + g~ ) (3.12)
t
We use assumptions (7i7) and (iv) to prove that,

1
IQ(nvm) SQE/ <Y;n_y;m’ f(87Y:9n7Z§L)_f(57Ysmaz?) > 121\’ ds
t

n,m

1
42 [V Y5, Y 2 — Y 2T gy ds
¢ n,m
2 ! 2 L?V ! 2
< (2pn +7 )E/t Y =YLy ds + 7zE/t |2 = Z"ds.

We choose 3 and « such that 5% = L?V + Q,u} and 72 = L%V then we use this last inequality
(3.10), (3.11) and (3.12) to show that,

1 1
E(Yy — Y;"?) + E / 27— 27 Pds < (L3 + 2% + 2)E / Y Y ds

KS(M7 5)

N n = )+ on = 1]+ 12 4 2u )N

Hence Gronwall Lemma implies that,

K4<M7 é)
(L3 + 2p ) N2(1—2)

E(Y — ¥"P) < [[p%vun Dt Pl P+ ] exp(L + 248, + 2).

Using Burkholder-Davis-Gundy inequality, we show that a universal positive constant C
exists such that,

E( sup | ¥ — ¥ P) < C [[p%wfn )t = D)
0<t<1

K4(M7 é)
(L3 + 2p ) N2(1—a)

] exp(Ly + 2u}; +2).

1
B [ 127 - 27 fds < C[[p?v(fn )t el £

K4(M7 5)
(L% + 2uy)N20=2)

} exp(L% + 2uj; +2).

Passing to the limit successively on n,m and on N, to show that (Y™, Z") is a Cauchy
sequence in the Banach space L.
Now, if we return to the equation satisfied by (Y, Z™), we obtain that

E sup | K — K" P <E sup [V " P
0<t<1 0<t<1

1
| CE / | Fa(8, Y20 = fouls, Y, Z) P ds
0

1
+IE/ | Z0 — 7™ % ds.
0
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We need to show that the sequence of processes f,,(., Y™, Z"), converges to f(.,Y,Z) in L.

We have
1
E/ ‘ fn(S,Y;n,Zg)—f(S,Y;,ZS) ’2 dS
0
1
—E [, Y720) — 5.V 2) P Lyyds
0
1
+ 2E/0 ’ fn(svifsn7zg) - f(s,YS”,Z;‘) ‘2 1221615
1
2B [ F6 VD20~ 5.V 2) P Ly
0 n
K,
S N2(1,a) + 210?V(fn - f) + I(n)’
where

1
Tn) =28 [ J0 20 = f6. Y Z) P 1y
We get for almost all w that
f(s, Y, Z0) — f(s,Ys,Zs), dt—a.e.asn goesto + 0o,
and for all € > 0

1
E / | F(s. Y Z0) = f(s,Yar Z5) [2F ds
0

1
SE/<2+rYs|a+|Ys"|a+|zs|a+|zs|a>2+6ds,
0

9 _
Put e = , we have
1
B[] (5, Y022) = Fls Y Z2) [P s
0
1
<E [ @+ |V P Y0 P4 | 2+ | 20 Plds
0
< +00.
Hence
nll)l_’I_looI(n) =0.
Therefore

1
lim E/ |f(S,Y;n,Zg)—f(s,sz,Zs) ’2d$:0'
0

n—-+oo

The proof of the existence, for the first result, is complete by passing to the limit successively

on m,n and N.

Let us prove the second result. If @ = 1, the result follows from [23]. Suppose that a < 1,

arguing as above and using the fact that L% + 2u} < L+ 2(1 — a)log(N) to show that

E( sup | V" =Y %) < C [0} (fu = ) + R (fn = N 4

K5(Ma 5) e
0<t<1 L% +2u%
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' Ks(M
E/ 122 — 27 Pds < C |[px(fo — f) + P (fm — £INZET) +5(7’§l e(2+L),
0 L?V—I—ZuN

We can assume that Ly or uy goes to infinity (if not, see Remark 3.11), passing to the limit
we get the desired result.

Uniqueness: Let {(Y;, Z;, K;) 0 <t <1} and {(Y/, Z],K/) 0 <t <1} be two solutions of
our BSDE, we put

{(AY;,AZy, AKy) 0<t<1}={(V} - Y/, Z — Z|,K; — K}) 0<t<1}

It follows from Ito’s formula that
E [mx%[ |AZS|2ds)] :2E/t1 (AY;, f(s,Ys, Zs) — f(5,Y], Z0)) ds
+ ZE/tl (AY;, dAKS)
By Saisho [75] (Lemma 3.5), we get
]E/1 (AYs, dAK,) <0.
t

For N > 1, let uy the monotony constant of f in the balls B(0, N), 14~ := {(s,w);| Ys |?
IV P+ 202 4] 2P N} A =0\ 4N,

1
B |laviP + [ 182, Pas| < 1)+ Bv)
t
where
1
I(N) = 2E / (A, f(5, Y, Z,) = (5. Y!, Z)) 1 pwds
t
1
28 [ AV £,V 2 — (5. Y], Z) s,
t
and
1 /
BN) = 26 [ (AY.. f(5. Y20 22) = J(s. Y Z) Ly,
t
We shall estimate I1(V) and I5(N). As above we obtain
1 L2 1
L(N) < (2uf + 72)1@/ | AY; [? 1nds + ﬁu-«:/ | AZ, |2 ds,
t t

and

C

1
2 2
Taking 32 = L% + 2u}, and v? = L3, and using the estimates for I;(N) and I5(N), we have

C
(L%, + 2u7,)N2(1—)’

1
E|AY; [ < (L% + 2;@)1@/ [AY[? ds +
t
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Using Gronwall’s and Burkholder-Davis-Gundy inequalities, we get

c
]ES AY2< e L2—|—2+7
oﬁ?ﬁ l (L3 +2uf)N2(1-a) xp(Ly + 2uy)
C

exp(Liy +24}),

1
E [ |AZ]?ds <
/0 | “ds < (L?V+2M+]\—])N2(1—a)

the uniqueness follows by passing to the limit on V. [

Suppose now that f is globally Lipschitz with respect to z, that is

| f(ty,2) = f(ty,2) [SL]z—2"]. (iv’)

Remark 3.11. Theorem 3.6 remains true under assumptions (i), (ii), (iii), (v’) and 2uj; <
L+ 2(1 — a)logN, for L > 0.

Indeed, if pn is also bounded the result of Theorem 3.6 follows from Pardouz [66]. FElse,
arguing as in the proof of Theorem 3.6 we obtain

n_ym —a) , Ke(M,
B sup 197 = Y77 ) < C([oh(fa = 1)+ el — NN 4 B0 E ot
0<t<1 2N
and
! Kg(M,
E/ |22 — 27" ds < 0([p%v(fn — )+ P& (fm — F)] N7 4 M)&.
0 2N
Passing to the limit, we get the desired result.
expz”ﬁ

Corollary 3.12. Assume that (i), (ii), (iii) and (iv’) hold. If li]gn
RBSDE (1)-(5) has one and only one solution.

W = 0, then th@

Example 3.13. For ezample if 2} < 2(1 — a)log(N), then (1)-(5) has one solution.

Proof of corollary 3.12. Arguing as in the proof of Theorem 3.6, we show that

K6(M7 5) > GQMX’

E( sup | Y7 — Y™ |?) < C([p?v(fn — )+ ok (fm = ] + St N2
N

0<t<1

and

1
B [ 123 - 20 Pds < ([ = 1)+ il = D] + 5y ),

2 NE N2(1-a
Passing to the limit on n, m, N and using the same arguments as in the proof of theorem
3.6, one has the desired result. [

3.3 Multidimensional BSDE with non locally Lipschitz coef-
ficient

Let (Wi)o<t<t be a r-dimensional Wiener process defined on a complete probability space
(Q,F, P). Let (Ft)o<t<r denote the natural filtration of (W) such that Fy contains all P-null
sets of F, and £ be an Fr-measurable d-dimensional square integrable random variable. Let
f be an R%-valued process defined on Ry x Q x R? x R¥" such that for all (y, z) € R? x R
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the map (t,w) — f(t,w,y,z) is Fi-progressively measurable. We consider the following
BSDE,

T T
(E)) Yt:§+/ f(s,Ys,Zs)ds—/ ZsdWs, 0<t<T.
t t

In this section, we extend our previous results essentially in two directions. First, the coeffi-
cient grow ”almost” in quadratic fashion in the two variables Y and z, i.e. | f(t,w,y,2) |[< 7+
M(|y|*+ ] z|% for some o < 2. Second the coefficient may be no locally Lipschitz. For
example, our coefficient can take the form: |z|\/|log |z|| or |y||log |y||.

3.3.1 The main result.
We denote by E the set of R? x R4*"-valued processes (Y, Z) defined on R, x  which are
T
Fr-adapted and such that: ||(Y,2Z)||?> = E( sup | Y; |? +/ |Zs|?ds) < +o0o. The couple
0<t<T 0
(E,||.||]) is then a Banach space.

Definition 3.14. A solution of equation (ET) is a couple (Y, Z) which belongs to the space
(E, ||.|]) and satisfies (ET).

Consider the following assumptions:
(H.1) f is continuous in (y, z) for almost all (¢,w).
(H.2) There exist M > 0,7 < % and n € L (Q; L*([0,77)) such that,

(y, f(t,w,y,2)) <n+ Mly]* ++|z]*> P—a.s., ae.tel0,T].
(H.3) There exist M} >0,0<a <2,a >1and7eL([0,T] x Q) such that:

| f(tw,y,2) ST+ My | +12]%).

(H.4) There exists a real valued sequence (Ayx)nys>1 and constants Ms > 1, r > 0 such that:
)VN>1, 1<Ay<N".

11) th—»oo AN = OQ.

iii) For every N € N, Vy, v/ z, 2/ such that |y |, |y |, | 2|, | 2/ |< N, we have

=y, fty,2) — ft Y, ) < My |y—y [PlogAn+ Mo |y —y || 2 — 2" | \log Ay + Mo AR

For a given f, the solutions of equation (E/) will be denoted by (Y, Zf). When the assump-
tion (H.3) is satisfied, we can define a family of semi-norms (pn(f)) ey bY:

T
pulf)=E [ sup |f(s,0.2)/ds.
0 |yllzl<n
The main result is the following

Theorem 3.15. Let £ be a 2-integrable random wvariable. Assume that (H.1)-(H.4) are
satisfied. Then equation (ET) has a unique solution.
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In the following, we give a stability result for the solution with respect to the data (f,&).
Roughly speaking, if f,, converges to f in the metric defined by the family of semi-norms
(pn) and &, converges to & in L?(2) then (Y™, Z™) converges to (Y, Z) in some reflexive
Banach space which we will precise below. Let (f,) be a sequence of processes which are
Fi-progressively measurable for each n. Let (&,) be a sequence of random variables which
are Fp-measurable for each n and such that E(|¢,]?) < co. We will assume that for each n,
the BSDE (E/»¢") corresponding to the data (f,,&,) has a (not necessarily unique) solution.
Each solution of the equation (Ef¢") will be denoted by (Y™, Z™). We suppose also that
the following assumptions (H.5), (H.6), (H.7) are fulfilled,

(H.5) Forevery N, pn(fn — f) — 0 as n — oc.
(H.6) E(|& —€*) —0asn— oo
(H.7) There exist M > 0,7 < 3 and n € L' (Q; L([0,71)) such that,

sup(y, fult,w,y,2)) <n+ Mly]* +7|2> P—as., ae.te0,T)
n

(H.8) There exist M; >0, 0<a <2, o >1and7ecL(0,T] x Q) such that:
sup | fu(t,w,y,2) [<T+Mi(ly |* +[2]%).
n

Theorem 3.16. Let f and £ be as in Theorem 3.15. Assume that (H.5), (H.6), (H.7)
and (H.8) are satisfied. Then, for all ¢ < 2 we have

T
lim (E sup \Y;"—Yt]q—i-E/ \Z?—ZJ"ds) =0.
n—+00 0<t<T 0

3.3.2 Proofs
To prove Theorem 3.15 we need the following lemmas.

Lemma 3.17. Let f be a process which satisfies (H.1)-(H.3). Then there exists a sequence
of processes (fr) such that,
(a) For each n, f, is bounded and globally Lipschitz in (y,z) a.e. t and P-a.s.w.
There exists M' > 0, such that:
(b) sup, |fnlt,w,y,2)] <T+M +M(|y|*+|2]%). P-as.,ae. tel0,T].
(¢)

sup <y, fult,w,y,2) ><n+ M + Mly[* + 7|z

n

(d) For every N, pn(fn — f) — 0 as n — oc.

Proof . Let p, : R? x R" — R, be a sequence of smooth functions with compact
support which approximate the Dirac measure at 0 and which satisfy [ p,(u)du = 1. Let
¢n : R — R, be a sequence of smooth functions such that 0 < ¢, < 1, @,(u) = 1 for
|u| < n and ¢, (u) = 0 for |u| > n+ 1. Likewise we define the sequence ), from R?*" to R.
We put, fyn(t,y,z2) = ﬂ{ﬁgq}ff(t, (y, 2) — u)pg(uw)dupn (y)n(2). For n € N*, let ¢(n) be
an integer such that g(n) > n +n®. It is not difficult to see that the sequence f, := fym)n
satisfies all the assertions (a)-(d). ]
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Using standard arguments of BSDEs one can prove the following estimates

Lemma 3.18. Let f and & be as in Theorem 3.15. Let (fy,) be the sequence of processes
associated to f by Lemma 8.17 and denotes by (YT, Zfn) the solution of equation (Ef»).
Then, there exits a universal constant £ such that

T T
a) E/ 2Ms’an| ds < ﬁ [€2MT]E | f |2 +2E/ €2Ms(7]+Ml)dS =K
0 0

b) E sup (M| Y/ [?) < (K, = K,
0<t<T

T T
¢) IE/ M| £ (s, VI, 20 |[%ds < 4571 {JE/ M (G + M + 4)ds + MPK| + TM{K,
0 0
T —
D) B [ (s, v 20 < K
0
2
where @ = min(a/, —).
[0

Proof . Using It6’s formula and Lemma 3.17 (c), we show that for all t < T

T T
€2Mt | }/;fn ’2 +(1 o 27)/ €2Ms ’ Zsfn ‘2 dS S €2MT ‘ § |2 +2/ €2M8(775 4 M/)ds
t t

T
—2/ My dn o zinawy).
t
Taking expectation we get assertion a). Assertion b) is a direct of the Burkholder Davis

Gundy inequality and assertion a). Finally, assertions ¢) and d) follow from Lemma 3.17 (b)
and and assumption (H.3). Lemma 3.18 is proved. [ ]

After extracting a subsequence, if necessary, we have

Corollary 3.19. There are Y € L?(Q, L>[0,T]), Z € L?(2x [0,T]), T € L¥(Q2 x [0,T]) such
that

Y/ Y, weakly star in1L2(€, L0, T])
ZIn — Z, weakly inL2(Q x [0,T))
ful YT 20y T weakly in LE(Q x [0,T]),

and moreover
T T
Yt:‘ﬁ—{—/ Fsds—/ ZsdWs, ¥t € [0,T].
t t

The following lemma which we will need below is a direct consequence of Holder’s and
Schwarz’s inequalities .

Lemma 3.20. For every § €]1,2], A >0, (y)i=1.a C R, (2)i=1.4,j=1.» C R we have,

—_

d

1 d r

= 1
22%2 52 zﬁfﬂZ 122%%
=1 j=1

1 j=1 =1 7j=1 =1
r

\V]

d
A [Z y?]
d

1 1 dz:
-1 A ;yf n Z 2121
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2
1

Proof . Using the inequality ab < %aQ + ﬁbQ we have

e

r

1 1 d d
AOIGEDIDIETEREI D IERES S Wi DN
J

=1 =1 j=1 =1 j=1 7j=1 =1
a2 1 d r 1 d r d
2 2 2 -1 2
SSAD WA Ed D A5 DAt Z Z[Zy 2]
=1 =1 j=1 =1 j=1 =1 =1 =1
By Hélder inequality we have Zle Yizij < (Zl L Y; )%(Zf L7 ZQJ)% Hence
a1 g 1 A o5 & rood
— 21—1 2
Zyl 12 Z Zzw 2_§Z 25+ 5 [Zyz] Z[Zyz Zij]
=1 j=1 =1 j=1 1=1 7j=1 =1
d d r d T r d
a? 1 1 o  2—0 9
S gad DA DAY T L) A
=1 i=1 gj=1 i=1 gj=1 Jj=11=1
The proof is finished by choosing « G-1) Lemma 3.20 is proved. [

The key estimate is given by,

. 2 ! . 1 3_%_6
Lemma 3.21. For every R€ N, f €]1,min (3 - 2,2) [, & < (8 —1)min (@’ 2TM§ﬂ> and
e > 0, there exists Ny > R such that for all N > Ny and T' < T':

2
T |28 - 2|
limsup E sup v/ v/ + E —ds
nm—+o00  (T7—§ )+ <t<T’ (T"—=5")+ (|stn _ stm’g 4 Z/R)T
<e+ ¢ e“NY limsup E|Y¥," - Yr_,f,m|’8.
-1 n,m—-+oo

where v = Sup{ (Anlog AN)~ LN > R} Cy = (ﬂ 1) log An and £ is a universal positive
constant.

Proof . Let 0 < 7" < T. It follows from Itd’s formula that for all t < T,
2 T 2
t

_ydn b
- ’YT, — Y

2 T’
+2 / Y —vIn o (s, Y, 200 — fols, Y™, ZIm))ds
t

o [ vt (20— 2l aw).
t

For N € N* we set, A; := ‘Yf Yf ’ + (Anlog Ay)™!
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Let C >0and 1< 3 <min{(3— 2),2}. It&’s formula shows that,
Ct A T s pl
e"tA? +C/ e AZds
t

, B T 8_1
=eT'A2, +ﬁ/ eCSAZT (Y — I fu(s, Y, ZI0) — fou(s, YIm ) ZTm))ds
t

T 8
8
_ é eCsAsz
2 /i

2 T 8_
— 2| ds— 6 / NG Y =S (20 - 2l ) aw)
t

d 2
(Z(Yi{‘” izl - fo;';)) ds.

i=1

.
aG -y [ aity

=1

Put ®(s) = |YJ"| + [V |+ |Z{"| +|Z{"|. Then

, B T 8_
— CcT A%/ _ ﬁ/ eCsAsg 1<Y:9fn _ }/:Sfm’ (Zsfn _ Zsfm> dWS>
t

d 2
(Zm{‘" v, - Zf;z)) ds
+ J1+ Jo + J3 + Jy,
where

T B_4

Jl = /6/ €CSA32 <}/;fn _ Ytgfm’ fn(S’Y;fn’Zéfn) _ fm(s’ytgfm’Zsfm)>]1{q>(8)>N}dS_
T!

Jo = ﬁ/ CsAz <an - Yfm7 fn(s an an) - f(s?Y:sfn7Zgn»]l{@(s)SN}ds'

T/
J3 —ﬁ/ e“*A

T gil
Jy =0 / NG (Y =Y (s, Y ZI) — fo(s, Y, ZI)) g5y < vy s
t

C’Jmm

Y=Y f(s, Y ZE) = (s, Y ZI)) g <y ds.

We shall estimate Jy, Jo, J3, Jy. Let k =3 — : — . Since B 21) +5 + = =1, we use Holder

inequality we obtain

ZH

J]_ < ﬂecT/

T B—1
; / AsT @5 (3)| fuls, Y, 28) = fin(s, Y™, 287 ds
B—1 K

/tT/ Agyds 2 [/tT @(S)st] 2

T/
X [/ |fn(87}/:9fn,Z“9fn) _ fm($7Y9f7n’Zéfm|OédS]
t

1

cT!
< Be N

Rl
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1
Since |st" - stm| < A2, it easy to see that

Jo+ Jy < 28eCT [2N2 4 14) T U | ls‘u|p | fu(s,y,2) — f(s,y,2)|ds
t yl,|z|<N

T/
+/ sup ‘fm(S,y,Z)—f(S,y,Z)dS:|-
t o lyllz[sN
Using assumption (H.4), we get
r Cs A 51 2
J3 < M, / eCOAZ [!st" — Y/ *log An
t

A + |V - v 28— me|\/logTN] Ligp(s)<nyds

T 8_4
< ﬁMQ/ eC5A2 [As log Ay + Y = YIm||ZI» — ZIm|\/log AN} 1ip(s)<nyds.
t

2M?2
We choose C = Cy = 3 _25 log Ay, then we use Lemma 3.20 to show that
B — 7 B_ 2
€CNtA2 ﬁ(/84 1) fT CNSAQ 1 Zsfn N Zsfm’ ds
< 6C'NT AQ BIT CNSAQ <an . Yfm (Zgn . ng) dW5>
; K
+BeONT — [ S ads| T | e ]

Qfl=

% |:ftT |fn S’Y'an an) _ fm(s Y m me|5]1{q)(s >N}d8:|
LBONT 2N 4 1) [ft supyy o (s, 2) — Fls,9,2)ds

+ftT SUP|y|,|z|<N ’fm(s7yaz) - f(S)y7 Z)|d8:| :

Burkholder’s inequality and Holder’s inequality (since @ + 5+ % = 1) allow us to show
that there exists a universal constant ¢ > 0 such that V¢’ > 0,

c B T c ﬁ_l 2
E sup [e NtA2] —|—E/ e"NIAZ ‘Zg” —ng‘ ds
(T'—§/)+<t<T" (T —5")+

< 3 ﬁ leCNT’{[E [ATZ,] + % {]E A ds] [ ]2

T
X [E/ | fr(s, YT, ZIn) — fru(s, YIm me]“ds]
0

B T
L BRN? 4 Vl]%lm[ / Sup | fuls,9,2) — f(s,9, 2)lds
0 |yl|zI<N

T
+/0 sup \fm(s,y,z)—f(s,y,z)\ds}}.

lyl|2|<N

We use assumption (H.4)-i) and Lemma 3.2 to obtain,



VN > R,

E sup |
(T' ="+ <t<T"

T/
thn_Y;me_i_E/T, . ﬂds
( - ) (D/an _stm|2 +VR) 2

1
/ , B IK& _
B 16CN5 {(AN log Ay) % +f Ng (UTK, + T (STK; +8K))

2
zr — z{|

<

/37
RV - YirP 4 B2N? + )T

MBS

2[pN(fn_f)+pN(fm_f)]}
2M28'p
C onopiy s fmiBy L Ay
< e"NOE|Y A = YT 4+
G—-1 g r ﬁ_l(ANlogAN)g
2M35'8
2 1 — K A A1
+ LﬁKf (4T K- + Tf)% (8T Ky + 8K;)2 N =
1 (An) -
’ B-1
+ ﬁecf“S BRN?*+ 1] 2 [pn(fu = ) + o (f — )]

! — in (-1, —x__ i
Hence for ¢ < (f — 1) min <4M22, 2TM§5) we derive
2M26'
B—1
Ay

(AN log AN)E
and

v — "N—oo 0.
(An)™
We conclude the proof of Lemma 3.21 by using assertion (d) of lemma 3.17.

m
Proof of Theorem 3.15. Taking successively 7" =T, T' = (T — &), T = (T — 25 )*... in
2
Lemma 3.21, we obtain, for every § €]1, min <3 - =,2)]
a

T
lim | E sup |V — v/ +E/
;M—+00 0<t<T 0

2
2 -zl

s5ds | =0.
(‘stn _ }/’sfm|2 + VR) 2
But by Schwartz inequality we have

T T
E/ |ZIn—ZIm|ds < <IE/
0 0

2
zir - zi|
2_ﬁd$>
(Dfsfn _ }/Sfm‘Q + VR) 2
Hence

(NI

D=

T 2-8
(=] (e v
0

lim (E sup [V/" -V +E
n—+00 0<t<T

T
/ | Z{" — Z,|ds | = 0.
0

2ds>.
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In particular, there exists a subsequence, which we still denote (Yf " Zf”), such that

lim (|th" - Y+ |th" - Zt]) =0 ae (t,w).

n—-+00

On the other hand

T
E / Fuls, Yin, Z80) = f(s, Y, ZI)|ds
0

T
< E/o | fuls, Y, 2] = f(s, Y, Zgn)’ﬂ{|y5fn|+\zsfn|§]v}ds

(¥ +1zE) e

N D Qv+ 280> 0y 98

T
+ E/ (s, Y, ZI0) — f(s, Y, 2]
0

Rl

1
2KF [TKy + K1]'™

<pN(fa—f)+ N(Q_%)

Passing to the limit first on n and next on N we obtain
T
B [ (s, Y0 2 Js, Y 2E)]ds =0,
" 0
Finally, we use (H.1), Lemma 3.17 and Lemma 3.18 to show that,

T
i B [ (s, Y/ 20 = FsYiu Z2)ds = 0
n 0

The existence is proved.

Uniqueness. Let (Y, Z) and (Y, Z’) be two solutions of equation (Ef). Arguing as previ-
ously one can show that:

. 2 y . 1 3—%—,@
for every R > 2, # €]1, min <3 - a’2> [, 0/ < (B8 —1)min (W’ W) and e >0
there exists Ny > R such that for all N > Ny, VI" < T

2

, T Zs— Z,
E  sup \Y;—Yt\ﬁJrE/ —ds
(T 6"+ <t<T" (T80 (Vs = Y2 +vg) 2
14 / /
<e+ NI Y — Y|P
g—1

Again, taking successively 77" = T, T = (T — &), T' = (T — 2§')"..., we establish the
uniqueness of solution. Theorem 3.15 is proved. [

Proof of Theorem 3.16. Also as in the proof of Theorem 3.15, we show that,
2

For every R > 2,  €]1, min <3 — ,2> [, & <(B— 1)min<
a

exists Ny > R such that for all N > Ny, for all 7" < T

_2_
ﬁ,ﬁg) and e > 0, there
2 2
2
|Zg *Zs|

5 ds

T/
limsup E sup |Y;" —Ytlﬁ—i-IE/
n— 00 (T"=6")*+<t<T’ ( o)+ (’}/sn

14 /
<e+ ——eN limsupE|YV — Yy |5
p-1 n—+00
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Again as in the proof of Theorem 3.15, taking successively 77 =T, T = (T — ¢')", T' =
(T —24")"..., we establish the convergence in the whole interval [0, T]. In particular, we have
forevery g <2, limp—yoo (|Y"—=Y|?9) =0 and lim, .4 (|Z2"—Z|%) =0 in measure
P x dt. Since (Y™) and (Z™) are square integrable, the proof is finished by using an uniform
integrability argument. Theorem 3.16 is proved. [

To illustrate our results, let us consider the following example:

Example 3.22. Let e > 0 and

fl(tvwv Y, Z) = g(ta w, y) [|Z| \% | log ‘Z| ’1\z|<€ + h(z)15§\2|§1+€ + ’Z‘ V log |Z’1\z|>1+s]

where g is a bounded function which is continuous in y such that g(t,w,0) =0 and
(y—v',9(t,y) —g(t,y")) <0. h is a lipchitz and positive function which is choosing such that
f1 s continuous.

Let fo(t,w,y, z) be a continuous function in (y,z) such that:

i) There exist M > 0, and n € LY([0,T] x Q) : (y, fo(t,w,y,2)) <n+ My|> + M | z |?

i1) There exist M >0, 1 < a <2 and7 € IL%([O,T] x Q)| fo(t,w,y,0) [+ M|y |*.
iii) There ezists a constant C' > 0 :

(=1 f2(t,y,2) — falt, 9, 2))
<Cly—yPl+llogly—y[[]+Cly—yllz—2|[1+]log|z—2"]]].

Our work shows that equation (ET+12) has a unique solution.



Chapter 4

Homogenization of Multivalued
Partial Differential Equations via

Reflected Backward Stochastic
Differential Equations

The chapter is organized as follows. In Section 4.1, we introduce some notations and
assumptions to be used in the sequel. Section 4.2 is devoted to the proof of weak convergence
of RBSDE. In Section 4.3, we apply our result to the homogenization of a class of multivalued
PDE’s.

4.1 Problem formulation

Let {X;;t > 0} be a diffusion process with values in R, such that X¢ = X in C([0,¢],R%)
equipped with the topology of convergence on compact subsets of Ry, where X itself is a
diffusion with generator L. We suppose that the martingale problem associated to X is well
posed, and there exist p,q > 0 such that

¢
SIElpE(| X; | +/O | X2 % ds) < o0. (4.1)

Moreover, we assume that g : R — RF and f : R? x R¥ — R are continuous, and that

| g(x) [ C+ |z |P) (4.2)
| flz,y) SO+ |z |7+ |y [?) (4.3)
| flz,y) [ CA+ [z |+ [y [) (4.4)
\f(z,y)—f(x,y’) ’§K|y_y1’7 (45)

for some C' >0, K > 0,0 < a < 1 and for all z € R%, y, 1/ € R¥,
For each N > 0, there exists uy such that:

(flx,y) — @y y—v)<uvly—9 1% |yllyI<N (4.6)

9This work is accepted for publication in Stochastic Analysis and Applications.
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Let ¢ be a lower semi-continuous, proper and convex function. We assume that

d(g(x)) < C(14 | z |P),Va € R% (4.7)
Now, let us recall some properties of a Yosida opproximate of subdifferential operator. We
put
Dom(¢) = {ueRF:¢u) < +oo}
0p(u) = {u* e RF:<wu* v —u>+¢(u) < ¢(v), Vv € RF}
Dom(d(¢)) = {ueR":9(¢) # 0}
Gr(0¢) = {(u,u*) €R" xR*:u € Dom(d(¢)) and u* € dg(u)}.

For every = € R?
. n
dnla) = min (3 |2~y | +6(y).

and J,(z) is the unique solution of the inclusion x € J,(2) + 19¢(J,,(x)) (see Barbu, Pre-
cupanu [8]). The map J, is called the resolvent of the monotone operator A = d¢. Let
us note that ¢, : R¥ — R is a convex function of class C' with \v¢, = A, is the yosida
approximations of the operator d¢, defined by A,, = n(x — J,(z)). We also have

yieank ¢(y) < ¢(Jn(x)) < dn(z) < ¢().

Let {(YS,Z5,K5);0 < s <t)} be the unique solution of the reflected BSDE

t t
Y = g(XF) + / FXEYE)dr — / Z2dB, + K — K°©
" S S (48)
Ke—— / Usds, (Y,U°) € Gr(99),
0

where {B;,0 < s < t} is a Brownian motion. Next, we shall prove that the family of processes
(X¢&;Y¢; Z%; K¢) converges on law to the unique solution (X,Y, Z, K) of the RBSDE
t t
}/S:g(Xt)_F/ f(XT,YVT)d’I“—/ ZydBy + Ky — K
t S S
K, = —/ Usds, (Y,U) € Gr(9¢),
0

and then we shall apply this result to the homogenization of a class of multivalued PDE’s.

Theorem 4.1. (See Meyer-Zheng [56] or Kurtz [47]).
The sequence of quasi-martingale {V];0 < s < t} defined on the filtred probability space
{Q; Fs,0 < s < t;P} is tight whenever

sup ( sup E | V" | +CV,(V™)) < +oo,
n o 0<s<t

where CV,(V™), denotes the ”conditional variation of V™ on [0,t]” defined by

CVi(V™) =supEQ | E(Vi, = Vit /F) 1),

with ”sup” meaning that the supremum is taken over all partitions of the interval [0, t].
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We put
t
My = —/ ZdB,.
0

In the rest of thesis we denote by:

e C([0,t],R?) the space of functions of [0,¢] with values in R? equipped with the topology of
uniform convergence.

e D([0,],R¥) the space of cadlag functions of [0,#] with values in R¥ equipped with the
topology of Meyer-Zheng.

4.2 The main results.

The main results are the following

Theorem 4.2. Let assumptions (4.1)-(4.3), (4.5), (4.7) hold. Then, the family of pro-
cesses (X, YE, M?, K®) converges in law to (X,Y, M, K) on C([0,t],R%) x D(]0,t], R?) x
C([0, 1], R*).

M
Proposition 4.3. Let assumptions (4.1)-(4.2), (4.4), (4.6)-(4.7) hold. If hm L i)
0, then the family of processes (X¢,Y¢ M K¢%) converges in law to (X YM K) on
C([0,1], R?) x D([0, #], R*) x C([0, ], R).

To do the proofs of Theorem 4.2 and Proposition 4.3, we need the following lemmas

Lemma 4.4. Let U be a family of random variables defined on the same probability spaces.

For each ¢ > 0, we assume the existence of a family of random variables (U®™),,, such that

dist
o U™ == U™ s ¢ goes to zero

o US™" = U*® as n — +oo, uniformly in
e U0 —= U° as n — +o0.
Then, U¢ converges in distribution to U°.

Proof : This lemma is a simplified version of Theorem 4.2 in [Billingsley [13], p.25]. [ ]

Consider the backward stochastic differential equation

t t
Y;j,n — X& / f X&‘ Ya n / Zﬁ’ndBr _ / An(}/;‘z’-:,n)dr’ (49)

where A, (y) is defined as above.
Let (Y™, Z™) be the unique solution of the backward stochastic differential equation

t t t
Ve =X+ [ 1y - [ zpas, - [ auvar

We set . '
Mf” — _/ Z2"dB, and M = —/ Z'dB,.
0 0

Lemma 4.5. Let assumptions of Theorem 4.2 hold. Then, the family of processes
(Y ME™) converges in law to the the family of processes (Y™, M™) on D(]0,t], R?¥).
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Before proving this lemma, let us recall that there exist a € R¥ and (1,7y) a pair of positive
numbers such that for any z € R¥ and any n € N

(An(@),2 —a) =y [ An(2) | —p | 2 —a [ —yp; (4.10)

for more details, see Cépa thesis [19].
Proof . Stepl. A priori estimates for (Y*" M*").
Fix n and let a € R¥ satisfying (4.10). By Ito’s formula, one has

t
yirealt [ 1z Par
S
t
1 9(X7) —a P +2 [ (V" = ) O Y
t ’ t
- 2/ (Yo" —a)Z"dB, — 2/ <A, (Y0, Y5 —a > dr.
S S
It follows from Pardoux [66] that the expectation of the above stochastic integral is zero.

Moreover, from (4.5) and (4.10), we deduce

S

t t
E|YS" —a|? +E/ | Ze™ 12 dr + 27/ | A (Y™ | dr
t ° t
<E|g(X{)—al? +2E/ (Yo" —a) f(X7, Y2 )dr + ME/ Yo" —al?dr+C
t t
<E|g(Xf)—al? +(2K+1+2M)E/ | Yom —a ? dr+E/ | f(XE,a) |>dr +C.
s 0
Hence from Gronwall’s lemma

t t
sup E(|YE™ —a +/ | Z&™ |2 dr+2’y/ | A (Y,2") | dr)
0<s<t s s

t
<CE|g(Xf)—al* +E /O | F(XE,a) 2 dr) + C.

Finally, from this last inequality, assumptions (4.1), (4.3) and Burkholder-Davis-Gundy in-
equality, we get

t ¢
supE( sup | YE" —a |? —i—/ | Z&™ |2 dr + 27/ | Ap(Y,S™) | dr) < 4o0. (4.11)
e 0<s<t 0 s

Step2.Tightness.
Clearly, we have

t t
CVi(Y=™) < / | FXEYE) | dr + / | Au(YE") | dr,
0 0

and it follows from step 1 and assumptions (4.1), (4.3) and (4.5) that

¢
sup(CVi((Y*"™) +E sup | YS™ —a | +/ | ZE™ |2 dr)) < +o0, (4.12)
e 0<s<t 0

hence the sequence {(Ys™", Ms");0 < s < t} satisfies Meyer-Zheng’s tightness criterion for
quasi-martingales under P.
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Step.3. Convergence in law.
By step.2 there exists a subsequence (which we still denote (Y=™, M%™)) such that

(YE,’H,’ME,H) _— (YH7MTL)’

on (ID([0,¢], R¥))2, where the first factor is equipped with the topology of convergence in ds
measure, and the second with the topology of uniform convergence.

Clearly, for each 0 < s < t, (z,y) — f; f(z(r),y(r))dr is continuous for C([0,], R?) x
D([0, t], R¥) equipped with the same topology as above, and y — f; Ay (y(r))dr is continuous
in C([0,t], R¥) as ¢ goes to 0. We can now take the limit in (4.9), yielding

t t
Y7 = g(X,) + / FOG Y dr + M — M — / A (Y.

Moreover, for any 0 < 51 < s3 < t, ¢ € Cp° and v a function of X7, Yo", 0 < r <t, bounded
and continuous in C([0,¢], R?) x D([0, t], R¥), we have

E (16, (X5, Vo) (6(XE,) — 6(XZ,) — / " LO(XE)dr) — 0 as n— +oo,

S1

and for each n € N,

s+ S1

E(q/}sl(XE,YE’")/O (M5, — M )dr) = 0.

From the weak convergence and the fact that E( sup | M5" |*) < +o0, by dividing the
0<s<t
second identity by a and letting o go to zero, we have

B0, (X, Y")(6(X) — (%) = [ Lo(X)ar) — 0,

51
E(s, (X, Y") (Mg, — Mg ) = 0.
Therefore, both M™ and M*X -the martingale part of X- are ftx Y martingales.

Step.4. Identification of the limit.
Let (Y",U") denotes the unique solution of the BSDE

t t t
Y= g(X)) + / X YT dr / TraMX — / A, (V7 dr,

which satisfies ETr fstﬁf < M¥X >, Ul < +oo. Set also M = N
U" are .7-"tX adapted, and M~X is .7-"tX Y7 martingale, hence so is M™".

From Itd’s formula, it follows that

UrdMX. Since Y and

E|Y,—Y"|]?+EM" — M"], — E[M" — M"],

t
= 2/ < f(Xn, Y1) = f(X, Y)Y, =Y > dr

t
2 [ <A - AT >

S . _
gan/ 'Y =Y |? dr.
S

(We use the fact that the operator is n-lipschitz).
We conclude from Gronwall’s lemma that Y, = Y,*,0 < s < t, and M" = M™. ]
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Lemma 4.6. Under the assumptions of Lemma 4.5 the family of processes (Y™, M&™ K&™),
converges uniformly of € €]0,1] in probability to the family of processes (Y, M, K¢) as n
goes to +00.

Proof . By the same proof as in step.1 of Lemma 4.5, we have

t t
supsupE sup (| Y™ —a | +/ | ZE™ |2 dr + 27/ | Ap(Y,S™) | dr) < 400, (4.13)
€ 0 s

n 0<s<t

Now, we will prove that
t
supsup/ | Ap(YE™) |2 dr < 400,
n ¢ Jo

which is essential for the convergence of the sequence (Y=, Z5™),,. Without loss of generality

we may suppose that ¢ is positive and ¢(0) = 0. Let us note that ¢, is a convex C'-function

with a lipschitz derivative, and put ¢, = 2~ := %miny(g |2 —y |2 +o(y)).

n
By convolution of ¥, with a smooth function, the convexity of ¥, and It6’s formula, one has

Un(Ys") < 9nl9(X7)) +/ V(Yo" (F(X5 Y0") = An(Y,0"))dr

t
- [ Vo,
thus

t
Egpn(Y™) < En(g(X7)) + E/ Vb (V) (F (X5, Y1) = An(Y"))dr
t t
= Bu(o(XD) +E | Vi (V)X YEm)dr = 2B [ 40 P

2
Using the simple inequality ab < = a® + g b2, we get
n
1 [ 1 ¢
Eab, (YE™) + nE/ | Ap(YE™) ‘2 dr < E¢n(9(X7)) + %E/ | A (YE™) ’2 dr
S S

C 1 [ C
+ —FE sup | Yo" \2dr+ﬂ§/ | XE %P dr + —.
N 0<s<t n Js n

By relations (4.1), (4.7) and (4.11), we deduce that
C

)
n

1 t
BUu(YE™) + 1B [ | Au(¥e") P dr <
n S
and finally
t
supsupIE/ | A (V5™ |2 dr < +o0. (4.14)
e n 0

Now, let us prove the convergence of (Y™, Z&"), for every (n,m) € N*.
By It6’s formula, one has

t
yereven P [z -z P
S
t
- / (Yo" — Yo (F(XE,YEm — F(XE,YE™))dr
S
t
Lo / (YEm — YEm) (257 — Z5m)dB,
S

t
9 / (Y — VM) (An(YE™) — Ay (YE™))dr,
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we deduce from (4.5) that
t
E | Y;e,n _ sza,m |2 —HE/ | er,n _ Zf’m |2 dr
S

t t
< 2K/ | Yo =Y P dr — QE/ (Yo" = YoM) (An(Y") = A (Y, ) dr
S S

We set

A(e) = 6(2) = ggradimin] = — y [* +0(y)}.

By the relation
1 1
T= b A= Tt A An(VE) € AU (™), An(Y7T) € AC(YT),

where J,,(z) is the unique solution of the inclusion z € J,(z) + L A(J,(2)), we have

— (Y7 =Y (A (V") — Am(Y,™))
= = <Ap(Y7") = A (YV0), (V") = T (YV0) >

r

1 1
< = <A77 = An(Y0™), —An(YE") — — A (Y2™) >
n m
1 1 en e,m 1 en |2 1 g,my |2
S(ﬁ+a)<An(Y}’)7Am(Y;«’ )>_E‘An(Yr’ | _E‘Am(yr’ ) |
1 1
< LAY P | A (V) P
Hence, from Gronwall’s lemma, we deduce that
£,n e,m |2 ! £,n e,m |2 1 1
sup E(| V" — Y™ P4 [ | Z5m = Z5m P dr) < O(= + —).
0<s<t s n m
Using Bulkholder-Davis-Gundy inequality, we obtain
en em |2 ! e,n em |2 1 1
SupE( sup ‘}/37 _sz’ ’ + ‘Zr7 _Zr’ ‘ dT)SC(*—i_i)
€ 0<s<t 0 n o m
We set
lim Yo" =Y", lim Z°"=27".
n—-4o00 n—-4o00

If we return to the equation satisfied by the (Y=, Z5™), we find that (K*"), converges
uniformly in L2(€) to the limit K~ where

t
K, = lim/ Ap (Y5 dr.
" Jo
Condition (4.14) can be written as follows

sup EHKE’”H%Il([O,t],Rd) < 00,
e,n

where H'([0,t],R¢) is the Sobolev space. In this way, the sequence (K"), is bounded in-
dependently of e in L2(Q2; H'([0,¢],R?)) and there exists a subsequence of (K*"), which
converges weakly. The limiting process K- belong to L2(; H 1([0,t], R?)), hence K¢ is abso-
lutely continuous. By uniqueness of solution of the reflected BSDE (4.8) (see [61]), we can
find that Y° =Y*, Z° = Z¢, K- = K°*. n
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Lemma 4.7. Under the assumption of the above lemma, the family of processes (Y™, M"™, K™)
converges in probability to (Y, M, K) as n goes to +oo.

Proof . The proof of this lemma is similar to the Lemma 4.6. [

Now, we are ready for the proof of Theorem 4.2.
Proof of theorem 4.2
Combining the above lemmas, we find that (X, Y, M¢, K¢) converges in law to (X,Y, M, K)
in the sense defined as above, where

t t
Y's:g(Xt)—i_/ f(XT,Y;)d’I"—/ ZydB, + Ky — K.

Corollary 4.8. Under the assumptions of theorem, {Y§} converges to Yy as € goes to 0.

Proof : Since Yj is deterministic, we have
Yy =E(g9(X}) + /fX8 YS)ds — K7).

Put
9(Xy) /fXE YS)ds — K5,

we have
t t
E|A: |P<C(1+ | X5 |2p)+E/ | Y ? ds+E/ | XS M ds+E | Kf |*.
0 0
According to Lemma 4.6 and by assumption (4.1), we have
supE | A, |?< .
€
Since Theorem 4.2 states that A. converges in law, as € goes to 0, toward
¢
o)+ [ 06 Y + K
0
the uniform integrability of A, implies that
lim E(A4;) = E(lim A.).
e—0 e—0
This means that Yj converges to

t
Yo = g(X0) + [ 06 Yo)dr + Ko
0



72

Proof Proposition 4.3. Using the same arguments as in the the proof of theorem 4.2, one
can prove the result. The only problem is to identify the limit:

Let 3 be a strictly positive number. For a given N > 1, we put AY := {(s,w); |Y"|?> +
YI]2 > N?}, Zﬁ[ := 0\ AY and denote by 1g the indicator function of the set E. From
1t6’s formula, it follows that

E|Y)—Y"|?+E[M" — M"], — E[M" — M"],

n

t

=2 [ (0T = G YT = Y (g + Lay)dr
t

=2 [(Au(T]) - AV, T - ¥

Since A,, is monotone, we have for every z,z € R?
(Ap(z) — Ap(z),x — z) > 0.

Thus

. . t
BV, — ¥ [ +BM" — 57— B = M) < 28 [ 177 =¥ P dr+ sy

We conclude from Gronwall’s lemma that

—~ —~ +
E|Y,-Y" |2 +E[M" — M"); — E[M"™ — M"], < A e2int,
Passing to the limit on N we obtain, Y, = Y;>,0 < s < t, and M" = M. ]

4.3 Application to a class of PDEs

Now, we apply our result to the proof of an homogenization result for PDEs.

4.3.1 Application to the viscosity solutions of multivalued PDEs

Let u® be the solution of the PDE

a—f(s,x) — Louf(s,z) — f(z,us(s,z)) € dp(u®(s,x)), for s € ]0,t]

- (4.15)
u?(0,2) = g(a), w*(t,) € Dom(@).x € R,
and u be the solution of the PDE
O (s:0) — Lu(s,0) = f(ouls,0)) € 06(uls, ). Jor €00y

u(0,2) = g(x), u(t,z) € Dom(¢),z € R4

Theorem 4.9. Assume k = 1, under the conditions of Theorem 4.2 uf(t,x) converges to
u(t,z) for all (t,x) € [0,t] x R? as e goes to 0.

Proof . Let 2 € R? and {X{°;0 < s < t} be the diffusion process defined as above, starting
at . For all t € RT, we denote by ({Yst’x’s, Zﬁ’I’E,Kﬁ"r’E};O < s < t) be the solution of the
reflected BSDE

t t
Y;t,a:,e :g(XtZ,E) +/ f(Xf’E,K,t’x’E)dT—/ Zﬁ’x’adBr +Kz,m,s _Kg,m,a'
s

S
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By virtue of Pardoux, Rascanu [70] (see also Chapter 1), the function u® : RT x R — R
defined by u®(t,x) = Yot’x, (t,z) € Ry x RY, is the unique viscosity solution of the PDE
(4.15). Let {XZ;s > 0} be the diffusion process with infenitesimal L, strating at z € R and
({vH®, Zb" Kb"},0 < s < t) be the unique solution of the RBSDE

t
t, ,
YT = g(XT) / FXE, Y / ZdB, + K" — KU°.

S
Again, in view of [70] (see also Chapter 1) the function u : [0,#] x R? — R defined by
u(t,z) = Yg* for (t,x) € Ry x R% is the unique viscosity solution of the PDE (4.16).
Therefore, the result follows from corollary 4.8. [

4.3.2 Application to the solutions of PDEs in Sobolev spaces

In this subsection, we prove an homogenization result for solutions of semi-linear PDEs with
obstacle h = 0 in Sobolev sense (see [9]), of the form

8(;; (s,x) — Leuf(s,z) — F(z,a%(s,x),u’(s,z)) =0,

us (0, ) = g(x),

where F(z,a,y) = f(z,y) + alyy—o [~ (z,y) with f~ = sup(-f,0) .
Now, let us introduce our assumptions.

Let X¢ be the diffusion defined as in Section 4.2 with smooth coefficients.
We assume that

(4.17)

e g:R? — R is continuous, positive and satisfies (4.2).
e f:R?x R — R is continuous, bounded and satisfies (4.5).
We consider the RBSDE

t
9(X?) /fo,Yf dr—/ZdeT—i—Kf—Kg,
S

t
where K = / s (r, X; ) lye—oy f~ (X7, Y )dr and Y > 0.

We will prove that the family of processes (X¢,Y*¢, Z¢ af) converges to the unique solution
(see [7]) (X,Y, Z,«) of the RBSDE

¢ t
Y =9(Xy) + f(X,, Y, )dr — / Z.dB, + K; — K,
S S

where K; = fo 7, Xo) gy, =0y f (X, Yy )dr and Y > 0.
Theorem 4.10. Under the above conditions, the family of processes (X, Y, M¢ af) con-
verges in law to (X,Y,M,a) on C([0,t],R?) x D([0,t],R?) x (C[0,t],R). Furthermore,
Yy — Yo in R.
Proof . Approximate the reflection term by

t

Ki7 = [ aimf (X5 YEmds, a7 = 0,(VE"),
0

where ¢, € C*° such that 0 < ¢, <1 and

dnly) =1 if |y|< g
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Using the same arguments as in Subsection 4.3.1, we get the result. Indeed, we need to prove
only that the limit Y™ of Y™ converges in probability to Y. In fact, it is easy to check that
‘2

supE sup | Y] |°< 4o0.

n 0<s<t

Since fy,(y) := ¢n(y)f~ (y) is decreasing, the comparison theorem yields that so is Y. Define
lim, oo Y" =Y.

By Lebesgue theorem, we have

t
E/ | Y Y, | ds — 0, as n — oo.
0

Now, let us apply our result to the homogenization of solutions of semi-linear PDEs in
Sobolev sense.
Let u be the weak solution (see Bally et al. [7]) of the reflected PDE

ou
55 (5:@) = Lu(s,z) = F(x,a(s, ), u(s, z)) = 0, (4.18)
U(va) = g(x),

Theorem 4.11. Under the conditions of theorem /.10, u®(t,x) the weak solution of PDE
(4.17) converges to u(t,x) the solution of (4.17) for all (t,z) € [0,t] x R? as € goes to 0.

Proof . Following of Bally et al. [7] u®(t,z) = Yot’m’a, and using the same arguments as in
Subsection 4.3.1 and Theorem 4.10, we get our assertion. [



Chapter 5

Averaging of Backward Stochastic
Differential Equations and
Homogenization of Partial
Differential Equations with Periodic
Coefficients

The chapter is organized as follows. In Section 5.1, we introduce some notations and
assumptions to be used in the sequel. Section 5.2 is devoted to the proof of averaging result
of BSDE. In section 5.3, we apply our result to the homogenization of a class of semi-linear
PDE’s. We give another application to the homogenization of nonlinear Cauchy problem in
Section 5.4.

5.1 Preliminary Results

Let us consider the singularity perturbed stochastic differential equation, defined on some
probability space (2, F,P)

(5.1)

dX3© = F(X$°, X2%)ds + e G(X3°, X2%)ds + K(X4°, X3°)dBE, Xy ° = a}
dX2° = e720(X2%)ds + e 1o (X2°)dBE, X0° = a2,

where X1¢ € RY, X2¢ ¢ RY {B2,0 < s < t} is a d;-Brownian motion, d; > d and F,G, K, 0, b
are a vector-functions.
We assume that I, G, K, o,b are periodic of period one in each direction of the variable xo,
so that the process { X2} can be considered as taking values in [-dimensional torus T'.
Moreover, we assume that o, b are continuous functions.
We suppose in addition that

a:=oc0">al >0, (5.2)

there exist A_, A, and ~ the best constants such that for any = € R%/{0}
0< A <(oc*z/|xl|,x/|x]) <Ay, Trooc*/l <~, (5.3)

(b(@),x/ [@]) < —rlal’, |o|> Mo, (5-4)

75
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with My > 0 and r > 0 .

| Fw1,w9) = F(ay,25) |+ [ Gz, w2) — Gan, 25) | +{|K (21, 22) — K21, 25)

<C(x1) |z —ah | . (5.5)

Note that (5.2), (5.3), (5.4) and (5.5) insure that the system (5.1) of SDEs is well posed (see
Pardoux, Veretennikov [72]).

2
We assume that for all z1 € RY, G(., z2) € C?(R?, R?), uniformly with respect to 2, a2 €
7
C(RH! R™) and the functions F, K and G satisfy the following conditions:
e I G and K are continuous in x; uniformly with respect to x5
e 1dC4 > 0 such that
oG 2q
K G — — <C
| K(z1,22) | + | Gz, 22) | + || 8961(9171,962) I+ R (1, m2) ||< Ch, (5.6)
V(l‘l,IL‘Q) S R x R,
e dC5 > 0 such that
| F(l‘l,ZL‘Q) ‘S 02(1—|— | T |),V(ZL‘1,.’L‘2) S R? x R'. (57)
We assume moreover that for all zo € R? and j =1, ...,d
Gj({L‘l,ZL'Q)[L(d:EQ) =0, Vrie€ Rd, (5.8)

T!
where pu(dz) denotes the unique invariant measure of the diffusion process {X2"'},0 < s < ¢
(see Pardoux, Veretennikov [72]). It then follows from [72] that the Poisson equation

LQGj(ZEl,{L‘Q) = —Gj(fl,‘l,l‘g), ] = 1, ..,d

has unique centred solution

~

+0o0
Gj(l'lal?) = / EIQGj(l'l’XE’l)dt,
0

where Ls is the generator of X?¢ when ¢ = 1.
It was shown in [72] that under the above conditions X ¢ converges in distribution to a
d-dimensional diffusion process with generator

1 ok - 9]
L=3) a i ;
5 izja J(xl)ﬁacuxlj + ;b (xl)&%li

where

b(x)

@)+ Y [ Gilay)onGla,y)n(dy)
+ 3 [ (Kol n)ondn o ity

and
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with

F(z) = / F(x,y)u(dy)
T(x) = / H(x, y)u(dy)
9(z) = / (G, )G (2 9) + GG (a0, ) u(dy)

K(z) = /((KU*)i,k(xvy)aykaj(x,y) + (Ko™); 1 (z, y) 0y G (w, y) p(dy).

In the sequel, we assume that d = 1.
Now, we can state the lemma which we will use below

Lemma 5.1. Vp € N/{0}
sup sup E(] X1° [*P) < 40.
£ 0<s<t
Proof . It follows from the equation (5.1), It6-Krylov formula (see Krylov [45] or more
precisely, Pardoux-Veretennikov [72]) and the fact that LoG = —G

X1 4 e(G(XEE, X2%) — G, 2d))

s oG G G oG
1 * il * _ 1,6 2,5
_$0+/0(F+8x1G+3$131‘20K +€8m%KK +€6:U1P)(XT , X0%)dr

B 8@ a@ l,e 2, e
+/O (K+87x20+€87mK)(Xr 7)(7, )dBT

Thanks to It6’s formula, assumptions (5.6), (5.7), the boundedness of the coefficients and the
fact that for each 1 <r <gq, |z |"< C(1+ | = |7), we deduce that

E| xle 2P dr),

S
<01 +IE/ | X 1e
0

hence the result follows from Granwall’s lemma. =

Now, for each ¢ > 0, let {(Y5,25);0 < s < t} be the R x R% valued progressively
measurable process solution of the BSDE

1 t t t
Vi g(xt) 42 [ et ey [ xE e - [ zass 69)
S S S

satisfying

t

E( sup ]Yf|2+/ | Z¢ |2 ds) < +oo.
0<s<t 0

The problem under consideration is the averaging of the process Y¢. A first application is

the homogenization of the following parabolic semi-linear PDE

ou® out

——(s,21,12) = e 2Lou® (s, 21, 22) + (e L F (21,22 + G(21,72)) = (8, 71, 72)
0s ) ox1
1>

0
+%KK*(561)W(S’ 1:15552) + (%€($1,$2,u8(8,3§‘1,$2)) + f(ml,xQ,ua(s, :Ela:EZ)) (510)
1
Vs € [0,t], (w1,72) € R x R

uf (0,21, 22) = g(x1), (21,22) € R x RL
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A second application is the averaging of non singular Cauchy problem, u® € C112((0,t) x
R x R)

( Ou® g . 1 out
E(s,xl,xg) = e “Louf(s,x1,x2) + & (F(x1, 22 + G(xl,xg))a—m(s,xl,mz)
32 €
+3KK*(21)—— e (s, 21, 2) + (2e(x1, 22, us (s, 21, 22)) + f(21, 22, U (s, 21, 22))

_ ou® (5.11)
+e7202%(2z2)h(u (s a:l,xg))(a—m(s,fcl,xg))Q Vs €10,t], (x1,72) €eRxR

u®(0,21,22) = g(z1), (x1,22) ERxR
uf(s,x) < C(1+ |2 |*), == (x1,22) ER xR, forsomeC >0, §>1.

\
We now formulate our assumptions on g, e and f .
g is continuous and there exists p € N such that

glz1) < C(A+ [z 7).

e and f are measurable from R x R! x R — R, which are periodic of period one in each
direction, in the second argument, continuous in z; (resp. y) uniformly with respect to o
and y (resp. z1 and z3) and that for all z; € R and y € R

/Tl e(xy1, o, y)u(dre) =0, (5.12)

and e is twice continuously differentiable in x; (resp. y) uniformly with respect to z9 and y
(resp. x1 and 25). Moreover, for some u € R, all (z1,20) € R xR, 5,9/ € R

(flz1,22,y) — frr 20,y ))y—y) <ply—y [? (5.13)

| f(z1,2,) |< C(1+ |y [%). (5.14)
We finally assume that there exists K such that V(x1,22) € R x T!,y € R

Oe Oe 03¢
| e(x1,22,y) | + | a*y(l"l,ﬂ%y) | + | 8761(951,90273/) [+ | @(w17x2ay) |

d%e

z(xl,JEQ,y) ’S K.

+ R
| Oxy

Remark 5.2. Assumptions 5.8 and 5.12 are standard in homogenization theory. The study
of the problem when those assumptions are not satisfied is largely open.

5.2 Statement of the result

Denote

oG 902G 0% o%e oG "
Aler,y) = / F+296+ 2% orr b 7 okt 0 50795 g e (daca)

0x1 8.%‘1833‘2 00y &Ug@y 0x9
8G 8G 8G oG "
D = KK* 4+ — —0ocK*4+ Ko"— .
(@)= [ KK+ 5200 50+ 20K +Ka" 52 Yo, ) (ai(drs)

e Oe* 0% Oef 0%e .
Clarg) = [ (= ge+ 3G+ Gioafie b 50K ar, ) az)(da).
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Let {(Ys, Zs),0 < s <t} be the unique solution of the BSDE
t t
Yo=g(xh)+ [ ot v~ [ z.ab,
where X! is the solution of SDE
X = a5+ / AX} Y, )dr + / A(X,)dB;,
0 0
with B is a Brownian motion and A\* = D.

Let u : [0,¢] x R* — R be the viscosity solution of the system of parabolic semi-linear PDE’s

ou 0%u ou
%(3,961) = %D(xl)aix%(saxl) + A(wl,u(svwl))aim(&m)
C(z1,,u(s,z1)) Vsel0,t], =z €R

w(0,21) = g(x1), x1 €R.

(5.15)

Recall that
1 t t t
Vi= g+ [ e(xbex v+ [ g xie v [ zzas
S S S

and

dX3© = F(X3°, X2%)ds + e ' G(X3°, X2%)ds + K (X&°, X3°)dBE, Xy ° = x}
dX2° = e 20(X2%)ds + e Lo (X2°)dBE, X0° = a3

We put
t
My = / Z5dB:.
0

The main result is the following.

Theorem 5.3. Under the above conditions, there exists a di-dimensional Brownian motion

S
B such that the family of processes (Y, M¢) converges in law to (Y, M := —/ ZsdBs) on
0
(D([0,#],IR))? equipped with the same topology as above. Moreover, Y§ — Yy, as € — 0.

The proof will be divided into a several steps.
Stepl. Transformation of systems (5.1) and (5.9).
It follows from It6-Krylov’s formula (see Krylov [45] or Pardoux, Veretennikov [72])

X1 4 e(G(X3*, X2%) — Gz}, a3))
° oG 892G 26 o6
— ol F+ — K* Z KK* Ty (xle x2e)g
xo+/0( jaleJrazlaxf e e P, X2 dr

s oG oG
K+ — —— K} (X ¢, X%5)dBe.
[+ S e R X

(5.16)
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Yf + 5(€(th757 Xt2787 K&a) - é\(XSLE’ X527€7 Yf))
¢ oe oe
=g (X)+ [ (= e = e X X Vo)
t a25 7% t
. 0-e K(X}’a,XZg Ye)Zde—i—/ (vxzé\(Xq},e,XQ,s Ye)o_(Xf,s)
s 0x10y s

T rooor rootr
Oe

ta/\
+687$1(Xr17€,X315’KE)K(X}venga) _ Zf)dBf +€/ F;(X7}787X3757K“5)Z7§d35
1% 1 2 2 tore 1 )
*
% ain(XTﬁ’XTvE’Y:f) | Z;:| dr—|—5/ 72KK (Xr787XT7E,YT.€)dT
g s

Ox
o e T8 ae oo
K*) (X5, X209, Y)d —— F(X}5, X2°,Yf)d
+/st(g~”£10x20 (X2, X2 >—(;A/ S FOX X2 Y
e (&
——G(X)}5, X5, YS)d /
+ s 833'1 ( T o T T) T+ 5(81'283/

(5.17)
+

o) (X1 X222 YE) ZEdr.

T ootr

Now define

~ . oe
Z; = Z§ - vxze(XsLa?XsQ’E:YSE)U(XSQ’E) - ET;K(Xsl’aan@?Yf)v 0<s<t,

note that the difference between Z¢ and Z°¢ is uniformly bounded process.
Hence, from (5.17) one has

Vi 4 e(@(X)5, XY — a(X)S, X4, YE)
t e e e e
— )(175 _ T, s F dye) Xl,e X?,a YE)d
g( ! )+/5(f 8ye 5ayf+5ax1 +a$1 )( o 7‘) T
t 82/6\ le 2,e £ 1, 2.\ 7€ t8€ 1e 2e o e .
i) a:Ulay(Xr’ , XS YO K(X5, X00%) Zidr + € S 8—y(XT’ X222 Ve Z5dBE

e [t o% .
3 ey KRR | 25 P2 [ S (X0 X2 Y

t 2 t 2~
0“e 0“e
K* )(1,5 )(2,6 YE)d
oKX ydr s 0120y

to%e
_|_

+

T )T T

t
(X1 X2 Y Zedr — / ZEdBE.
s 81‘161’2 s

We put
~ s 0% 0%e
B = B —
s *Jo {8x28y0+€8x18y

K}(X)e, X222 YE)dr.

T I T

It follows from Girsanov’s theorem that there exists a new probability measure ﬁ, under
which {B%;0 < s <t} is a Brownian motion. We have that

X +e(G(Xe°, X2°) = G(a},23))

s oG 902G 9°G oG 0%

=z} F4+ — Kte KK 4+e-—"F K*

Yot /0 {F+ Oz G 8:1:18@0 e Ox? * 88:51 * c%sgaya

o% oG " o% o% oG
+8x28y(m 0o i_gaxl@y + 56:3163/ ? 0y (5.18)

0% oG

2 KK~ V(X' X2° Ye)d

te 0x10y 8961}( ’ Y )dr

s oG oG -
K+ — K} (XY, X%4)dBe.
+ [0+ S0 e R X
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YE+e(@(X)5, X2 YE) — e(X  X2EYE))

oe oe oe 0%

1 € ~k

. o _ _ 7F _

=g(X /{f e 5 f+€8x1 +8m1G+8x28y aV,e
82/\ 82/\ oe 9 0%

Ko™V, e K+ 2€ KK —X VX722, YE)d
83:1 y Vi 696283/0 Oxq e Ox10y H i
/ o (X3, X2€, V) ZE(dBE + ( e 0 K)(X“ X227 )dr 19
a r iy 81'28 ax a roor
/ g (X}, X22,Y5) | 25 P dr 4 / gKmX X2EYE)dr
s xl
t 6 ¢

+

K*(XYe X2 YEdr — / ZEdBe.
s 8x18x20- ( ' ) T ) T‘) T s T '

Since aw 8y and 62 gy are bounded, the Radon-Nikodym derivative dg belong to all space
Lq(}P’) hence from Lemma 5.1, for any p € N/{0}, supeE | the |?P< +00, consequently,

sup, E | g(X;°) [2< +o0.
Step2. A priori estimates for (Y¢, Z°¢)

o*e 0%

l,e 2. €
Sy By )X XS V) dr

S

t
1
V= o)+ [ (e X2 ) - (23
t ~
/ fXhe X2 YVE)dr —/ ZdBE.
S
It follows from the same argument as in Pardoux [65] that
ot ot
sE/ e || 22 P2 dr§0(s—|—E/ Y2 2 dr). (5.20)
S S
We return to equation (5.19), let Y = Y7 — e(Xa°, X2°,YF), from Ito’s formula, we have

‘Ys |2 / |Z€_€7 Xlz—: X2€ Ys)Zs |2d7“

' Y '
_oe oo, oe
1, ol 2
=1 g(x!) - el X2 P [Tt - Se S
oe 0% 0% o oe
LA v Ko*V,,e e
T C T oy T gy T Vet +€8x28y0 prs

2 82€ de l,e 2, € € rze 5
+e KK* (XL1e, X232 YEYdr — 2 YZdB
8:U16y 8x1
+25/ Yf X“ X225 YO ZE(dBE + ( 8% o+e 0% K) (X} X2 Y )dr
0x20y 0x10y " roor

0%e
/ Ye Xle X26 Ys) | Za |2 d’l“+8/ YaiKK*(XIE st,Yf)d

/Yea ae oK* (X1, X2, YE)dr.
X102

58
From assumptions (5.7), (5.13), (5.20) and the fact that 1 — 68—6 > 1 for ¢ small enough and
Y

standard inequality, we deduce that

. 1 t . . t
BIY: Py [ 1ZPar<c+E [ v an.
S S
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Hence from Burkholder-Davis-Gundy inequality

~ t ~
sup E( sup | Y7 |? +/ | Z& |2 dr) < +oc.
e>0  0<s<t 0

Step3. Tightness
We write our BSDE in the form

Y= g(X ) + Vi = Vi 4+ M — M+ Nf = NS

S

where

s 86 e 0% 0%e
= . —_ - . ok Ko* Xl,z—: XZ,& YE)d
/O{f ay 8$1G+a$28yav 26 +8$18$2 g }( ro oo T 'r‘) r

S
M =— / ZEdBe
0

G <X“ XECVE) = XX V)

/ (- 5— f+s—F
1
82A ST o o%e , oe 2 o%e
(9:1:18y 0 Vi€ + &UgayaK 8TU1+ 0x10y
( 0% L 0%
(%cgayg 0x10y
o%e

SO X2 | P e [ S RAC 00 2 v
s 1

Xk, XX
x1

K) (X5, X25, Y, )dr)

T o T

T I TTr

+6/ 8 Xla X?E YE)sz(dBE
+

We can check that
E(sup [ Ng|)—0,
0<s<t

hence supg<,<; | N5 |[— 0 tend to zero in P probability, or equivalently in law.
Clearly (see Theorem 4.1 of Chapter 4)

ot
CVVe) < B[ | F0X, X255 | di),
0
and it follows from step2 that

sup(CVt(Ve) + sup E | YS | + sup E | Z:dBf |< +o0,
0<s<t 0<s<t

s ~
hence the sequence {(Y7, /0 Z5dB;);0 < s < t} satisfies Meyer-Zheng’s tightness criterion

under P.
Step4. Passage to the limit
After extraction of a suitable subsequence, which we still denote (X¢,Y¢, M¢), we have

(X5, Y, M®) = (X,Y, M)

weakly on C([0,t], R?) x (D([0,]))? equipped with the same topology as above.
Let us admits for a moment the following
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Lemma 5.4. Let h : R xR xR — R be measurable, periodic of period one in each direction
with respect to it’s second argument, continuous with respect to the first (resp. third) argument
uniformly with respect to the second and the third one (resp. first and second). Then

sup | [ hOGHXE Y~ [ ROEL Y dr | 0
0<s<t JO 0

inP probability as € — 0, where

h(z1,y) = /'Jl‘l h(z1, w2, y)p(dr2).

We can now passe to the limit in (5.18) and (5.19), we obtain that

L=l + /A LY, )dr + MX

where A and C are defined in Section 5.2, {M,,0 < s < t} is a martingale and M is the

martingale part of X
Step5. Identification of the limit

t
We need to show that Y; =Y;, M; = — / ZsdBs. Using the same argument as in Pardoux,
0

Veretennikov [72] (see also Pardoux [65]), one can prove that there exists a .7-'tX Y _Brownian
motion {B;} such that

L=axd+ /A Y dr—l—/o MNxHdB,,

where AXN* = D.
Let (Y, Z) the unique solution of the BSDE

t
g(X}) /0 dr—/ Z.dB,.
S

Since (Y, M) is ft —adapted M is a square integrable .7-" martmgale and

= / C Y d7"+M Mt,
t

if we denote M; := — / Z.dB,, we deduce from It6’s formula that
0

t
Y, - Y, !2+[M—M]t—[M—M]5:2/ (C(XLY,)—C(X Y)Y, —Y,)dr
t
+2/ <Y, -Y,,dM, —dM, > .

Taking the expectation and using Gronwall’s lemma, one obtain that Y =Y and M = M. m
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In order to prove Lemma 5.4, we need the following lemmas

Lemma 5.5. For any 6 > 0, there exist N € N and R-valued step functions z', ...,z such

that N
P((){ sup | X< —al [>6}) <6,V > 0.

=1 0<s<t
Proof . The result follows from the tightness of the sequence X'¢ and the separability of
C[0,t],R%) and the fact that for any continuous function we can associate a step function
which is arbitrarily close the former in sup norm (see Pardoux, Veretennikov [72]). (]

Lemma 5.6. (see Pardouz, Veretennikov [72]) For any § > 0, there exist No € N and
y', ...,y € D([0,t],RY) such that

N2
P((){MO < s <[V =yl > 6} [>6}) < 6,Ve >0,
k=1

where \ denotes the Lebesgue measure.

Now, let us prove Lemma 5.4.
Proof of Lemma 5.4. We can assume that h vanishes outside [~ K, K] x R% x [—M, M],
for some M > 0, and K > 0. We put h = h(z1,x2,y) — h(x1,y), we want to prove that

s~ ~
/ h(X ), X2 Y,S)dr — 0, in P probability.
0

From Lemma 5.5 and Lemma 5.6, V6 > 0, 3N, y!, ...y, N,z!, ..., 2" step functions
such that if A, := ﬂgil{/\{o < s <t Y — Yk > 8} > 6}, ]IT’(AE) < 6, and if
A = ﬂz]il{SUPogsgt | xle 7l |> 6}, @(Al) < 8. Now

A =N, BS where B = {M0 < s <#| Y —y¥ |> 6} <6},

and

Af = UIJL{SUPogsgt | Xo© —al [< 6} = Urs: B

we can rewrite A = Uszl Elf where E’f C B¥Vk, and the E’f are disjoint.

Then we have

| / (XS, X2 YE)dr |
0

T o T

s __ Na s
<| [ ek ey a o+ Y| [ RO XY ar |1
k=1

No s
<sCum,rla. + Z | / h(X}’E’vaE,Yf)dT ’ 132-
k=1 70
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Indeed

Ny e
S / R X2, YE)dr | 1
k=1 0

N N» s -
<SRk X2V = [ R X2 Y 1
=1 k=1 0 s k
N N s _ -
th X2,€ YEdr — h l XQ’E k d 1 B
+;;|/0 ( ro<ir o 7‘) r /S ($r> r 7y7") T| BZnBll
N N s _ N 5
ED 1 [ Rk X2 Ly kST [ ROGE X2 1
=1 k=1 “0 iNB =
N N2 5
< sWi(0) + War(0)s + 20Ck s + 3 /0 | Ay, X2% 98 )dr | +Crarlg: A -
=1 k=1

where Cr i = SUP[_ k. K] xRdx[—M,M] | h(x1,22,y) | and Wx (resp W) is the modulus for
continuity of hin it’s first (resp third) argument.
We have that

| /O (X1, X235 YE)dr | < Carrcla. + War(6)s + 20Ck ar + sWx (6) + sCu.x1p: Bt

N s _
#01 [heee v ar .
k=1 0
Now, ergodicity implies that for each k&,
s ~
| 1B X2 ylar — o,
0

in P-probability, also in Iﬁ—probability. Finally, for any § > 0 such that

1)
CM,KlAs + WM(5)S + 2(5CK7M + sWK(d) + SCK7MIBEﬂBi < 5

Then

s N2 N » s
B [ heete X2 var 1> 6 < 3OS B [ hGeh X gbyir |>
0 1=1 k=1 0

- 2NN2>7

and this tend to zero as ¢ — 0. [

5.3 Homogenization of parabolic PDE with periodic coeffi-
cients
Now, let us apply Theorem 5.3 to the averaging of the parabolic semi-linear PDE.

Theorem 5.7. Under the assumptions of Theorem 5.3 , u®(t,x1,x2) solution of (5.10) con-
verges to u(t,xz1) solution of (5.15) for all (s,x1,22) € [0,t] x R x R! as & goes to zero.
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Proof . Let x = (z1,22) € RxR! and {X§° = (Xsl’x’e, Xs’m’a); 0 < s < t} denote the solution
of the SDE (5.1), starting at . For all t € Rt, we denote by ({Y{™°, Z6°};0 < s < t) the
solution of the BSDE

1 t t
Y;t,z,e _ g(th,%E) + 5/ e(X}’x’a,Xz’;t’E,Y;tw’s) +/ f(X}’z’a,Xz’z’s,Y:’w’g)dT‘
S

S
t
- / Z"EdB;.
S

By virtue of Pardoux, Peng [67] (see also [65]), the function u® : R x R — R defined
by u®(t,z) = Yot’m, (t,z) € Ry x R is the unique viscosity solution of the systems of PDE
(5.10). Similarly, Let {X4+*"; s > 0} denote the solution of the SDE associated to the limiting
process X! starting at x; € R and ({Yst’xl,Zé’xl}; 0 < s <t) be the unique solution to the
BSDE

t t
vim =g+ [ oot vimar - [ zimas,

S
Again, in view of [67] the function u : [0,1] x R — R defined by u(t,z1) = Yy for
(t,z1) € Ry x R, is the unique viscosity solution of the PDE (5.15). Therefore, the result
follows from Theorem 5.3. ]

5.4 Application to the nonlinear Cauchy problem
Let (Y, Z%) be the solution of the BSDE
t
ve = g(x}9)+ 1 / e(X1, X2, Ve )dr + f (et X2 vy — [ Z5d;
s s (5.21)
+ [ (L) - v wida),
R

where L¢(Y®) stands for the local time of the semimartingale Y¢ at level a. Such equations
are introduced by Dermoune et al. [24].
In this section, we consider only the case of absolutely continuous measure v, i.e. v(da) =

h(a)da, / h(z)dx =1,h > 0.
R

From the equality d(Y®,Y®); =| Zf |? dt and occupation time formula, we have

[ ez 2 as= [ rormaaa
0 R

The equation (5.21), becomes
t t
ve =t e xes s [ roce e v - [ zas;
¢ S S
+ [ vy | 2z P ar
S

Now let (Y, Z) be the unique solution of the BSDE

/c dr—/ZdB /h )| Z, |? dr.

hand its first derivative are bounded. (5.23)

(5.22)

We assume that



87

Theorem 5.8. Under the conditions of Theorem 5.3 and assumption (5.23), there exists a
d-dimensional Brownian motion B such that the family of processes (Y, M€) converges in

law to (Y, M := —/ ZsdBs) on (D([0,t],R))? equipped with the same topology as above.

0
Moreover Yy — Y in R.

Proof . We put

T

(V*,Z°) = (F(Y¥), Z°k(Y¥)),
y
where k(z) = exp(2/ h(y)dy) and F(y) = / k(z)dz.
—00 0
By virtue of Dermoune et al. [24], (Y¢, Z) is the unique solution of the BSDE

S s T

Ye = (X15)+1/t e(X1e X2 FYYE)R(YS)dr

v [ roae e e Gy RG - [ Zian,
with g(z) = g(F~(z)) and R(y) = k(F~'(y)). By condition (5.12), we have
/w e(1, x2, FH (y)) R(y)u(da2) = 0,

then the Poisson equation Lg]\Af(:vl, x2,Yy) + N(x1,x2,y) = 0 has one solution given by

~

+o00 91
N(l'lvx%y) :/ IEIQJV(xla‘Xt7 7y)dtv
0

where N(x1,z2,y) = e(z1, 72, F1(y))R(y). Thanks to assumption (5.23), N satisfy the same
conditions as e in Section 5.2. Hence, by Theorem 5.3 (YE Z£) converges in law to (Y, Z) on
(D([0,1]))2, where (Y, Z) is the unique solution of the BSDE

t
/C’ dr—/ 7.dB,,

where C(z,y) is the same as C(z,y) in Section 5.2, but we replace € by N and e by N. Now,
again by Dermoune et al. [24] and the continuity of F~!

= — V= (F'YV)=Y,—=2
) = =Y =)
where (Y, Z) satisfies the following BSDE

t
/CXl, /ZdB —l—/h(YT)|ZT|2dr.

Now, let us apply Theorem 5.8 to the homogenization of nonlinear Cauchy problem.
Consider the following PDE: u € C%2(]0, ¢[xR)

ou 9%u ou
s O 2(5 $1)+A($1, (S’$17x2))67x1(37x1)

+C(z1,,u(s,z1)) + /\2($1)h(u(8,$1))(§;(8,$1))2 Vs e [0,t], x1 €R (6.4)

u(0,21) = g(x1), =1 €R
| u(s,z1) |[< C(14 | 1 [¥),21 €R, for some C >0,6>1.

—-(s,21) = 3D(a1)
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Theorem 5.9. Under the assumptions of Theorem 5.8, if u®(t,x1,x2) is the unique solution
of (5.11) and u(t,x1) solution of (6.4), then u®(t,x1,x2) converges towards u(t,z1) as e goes
to zero for all (x1,22) € R x R.

Proof . Let # = (21, 22) € Rx R and {X¥° = (X+™°, X2™%);0 < s < t} denote the solution
of the SDE (5.1), starting at . For all t € Rt, we denote by ({Y&™°, Z"°};0 < s < t) the
solution of the BSDE

1 t t
Y;t,;v,e — g(th,%E) + 5/ e(Xg7m,6’X3,x,a’nt,x,a) _|_/ f(X:’I’a,XE’I’s,Y:’x’a)dT‘
S

S

t t
+ / WYY | 205 12 dr — / ZLEdBy.
S S

By virtue of Dermoune et al. [24], the function u® : RT x R — R defined by u(t,z) =
Y{®*, (t,x) € Ry x R, is the solution of the systems of PDEs (5.11). Let {X{™;s > 0}
denote the solution of the SDE associated to the limiting process X' starting at 1 € R and
(5™ Zb"11:0 < s < t) be the unique solution to the BSDE

t t t
vho = g(X}") + / C(X ™, Y, )dr + / RV, | ZE" |2 dr — / Zb"dB,.
S S S
Again, in view of [24] the function w : [0,¢{] x R — R defined by u(t,z1) = Yot’gﬁ1 for

(t,z1) € Ry x R, is the solution of the PDE (6.4). Theorem 5.8 implies that u®(t,z1,x2)
converges to u(t,z1) as € goes to 0. [



Chapter 6

Weak Convergence of Reflected
BSDE’s and Homogenization of
Semi-linear Variational Inequalities

The chapter is organized as follows. In Section 6.2, we give our standing assumptions
and some notations to be used in the sequel. Section 6.3 is devoted to the proof of weak
convergence of reflected BSDE. In Section 6.4, we apply our result to the homogenization of
a class of semi-linear variational inequalities with periodic coefficients.

6.1 Introduction

In this chapter, we shall study the stability properties of BSDE’s and their applications
to the homogenization of systems of semi-linear variational inequalities involving a second
order differential operator of parabolic type with periodic coefficients and highly oscillating
term. The approach is based upon the nonlinear Feynman-Kac formula, which gives the
probabilistic interpretation of the solutions of systems of semi-linear parabolic PDE’s, and
the weak convergence of an associated reflected backward stochastic differential equation in
the sense of Meyer and Zheng topology [56].

6.2 Preliminaries

Consider the following stochastic differential equation (SDE): for € > 0, 2 € R,

S 1 XS S X€ S X€
X: = x—i—/ b(”)dr%—/ c(—)dr + | o(—)dB,, (6.1)
o € € 0 € 0 3

where {B;; t > 0} is a d-dimensional Brownian motion , ¢ : R? — R? b : R? — R? and
o : RT — R¥*4 are measurable, bounded and periodic of period one in each direction. We

assume that a(x) := oo™ (z) is continuous and satisfies

a(z) > al >0, Vze RY, (6.2)

9This work is published in Bull. Sci. math. 126, 413-431, (2002).

89
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ISH

Z a” cL®®RY), j=1,..d. (6.3)

Note that the above conditions insure that the SDE (6.1) has a unique solution {X{; ¢t > 0}
(see Stroock-Varadhan [76]).

For all z € RY, & > 0, ¢t > 0, let {(YE,Z5,U%); 0 < s <t} be the R¥ x RF*? x RF-valued
progressively measurable process solution of the BSDE’s, depending on parameters {¢ > 0}:

1 t t
Yf:g(Xf)—l—E/ dr—l—/ f(—= dr—/ Zder—/ Usdr

(Y2,U%) € Gr(d¢) dP x dt on Q x [0,1],

(6.4)

where g is continuous with polynomial growth at infinity and takes values in a bounded, open
and convex © of R* and

P(x) == 0Ig(z) = { 0 if zecl(O)

400 otherwise,

where cl(©) denotes the closure of © and
0p(u) = {u* € R¥ : (u*, v —u) + ¢(u) < ¢(v), Vv € RF}
Dom(9(¢)) = {u € R : 96 (u) # 0}
Gr(9¢) = {(u,u*) € R" x R¥ : w € Dom(d(¢)) and u* € d¢(u)}.
We can verify that ¢ is convex, lower semi-continuous and proper with Dom(¢) = cl(©) and
A (z) = { y € R (y, 2 — 2) > 0,z € cl(0), for z € cl(O) } .

We put T? = d ¢ and assume that:
b satisfies the centering condition

bi(z)u(de) =0 i=1,...,d, (6.5)
Td

and a satisfies conditions (6.2) and (6.3).
e and f are measurable and R? x R¥ — RF-valued periodic functions with period one in
each direction and continuous in y, uniformly with respect to = and for all y € R*

/ e(,y)(dz) = 0, (6.6)
Td

and e is twice continuously differentiable in y, uniformly with respect to x.
Moreover, for some p € R, Vo € R?, y, ¢’ € RF,

(f@,y) = fl@y)y—y)<uly—y . (6.7)
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In addition, we assume that there exists a constant K’ > 0 such that

2

Ode 0%e
| €($,y) ’ + | @(xay) ’ + | aiyg(xvy) ‘S K/,VLL’ € Tdvy € Rk? (68)
and
| f(z,y) < K, (6.9)
and that
0€0o. (6.10)

Let {)N(t;t > 0} be a T?valued process with generator

d d
1 2

0 0
L= 9 Z aij(x)a?iamj + sz(x)(‘)ixz

ij=1 i=1
and p(dz) = p(x)dz its invariant probability (see Section 2 in Pardoux [65]).
From (6.5) and (6.6), we deduce that for all y € R*, the Poisson equations

Lbi(z) + bi(z) =0, i=1,...d
Lé(x,y) +e(x,y) =0, zeT? yeR",

have respectively a solution given by
~ S ~
bi(x) = / Eb(X)dt, zeT! i=1,..d
0

respectively
oo ~
/6\(1', y) = / E:ce(XSa y)d37
0

e o%e

and € satisfies: € € CO2(T?¢ x R¥), &(.,y), a—y(.,y), 9

(.,y) € W2P(T?), Vp > 1, y € R¥, and
for some K~ > 0,

~ oe 0%e »

e, v)llw2e ey + "@(-ay)||w27P(Td) + ||3T/2(-73/)||W27p(1rd) <K,

(see Pardoux-Veretennikov [72]). Put

A= / (I + Vb)a(l + VB)*(2)u(dz).
Td

o%er

Cly) = [ (T+D)(e a3 o (o)) wulda).

e e 2e e*
D) = [ 5o = Ga)elen) + 5 (aa (o) + F (@l

and . .
M = —/ Z:dBy; K; = —/ Urds.
0 0

Our objective is to prove that the family of processes (X, Y, M, K¢) converges in law to
(X,Y,M,K), where

Xs:x+/ C(Y;)dr + M7 with {MZ;s >0} (6.11)
0
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is a non standard Brownian motion satisfying << M® >>,= As, and
t
Y = g(Xy) +/ D(Y,)dr + My — My + K; — K.
S
From the stability of (X¢,Y¢ M, K*¢) one can deduce some homogenization results of the

following semi-linear variational inequality

Vs € [0,t], © € RY

u 2 u®
)~ 3 T (2 n0) = DL (KE) + @) g ()
0) - f(2

C(Le(® i (5,2)) — F(Eru (5, 7)) € DS (s, 7)) Z (6.12)

u®(0,2) = g(z), u(s,x) € Dom(¢) = cl(O).

6.3 The main result

The main result of this section is the following

Theorem 6.1. Under the above conditions, the family of processes (X, Ye M¢ K¢) con-
verges in law to the family of processes (X,Y,M,K) in C([0,t],R%) x (D([0,t],R¥))?
C([0,#],R¥). Moreover, Y§ — Yy in R.
Recall that {XZ, 0 < s <t} is the solution of the following SDE
3

1 Xs. Xe s Xe
X¢ —x+/0( b(—) +c(— . ))dr—l—/o o(—")dB,.

9 9 9

For each € > 0, let {(Y,Z5,U¢), 0 < s < t} be the R¥ x RF*? x RF-valued progressively
measurable process solution of the following reflected BSDE

Ve = g(X5) +1/ dr—i—/ Fr dr—/:Zder o

/ Ugdr.

The proof is detailed in several steps.
Proof .
Step 1. Transformation of the systems (6.1) and (6.13)

For every ¢ > 0, for every s < t, we let X, = (see Krylov [45]

as well as Pardoux-Veretennikov [72]) we get

Xg +e(b(X;) —b(%)

8 s o} —— 14
_g;+/ (I + Vb)e(X T)dr—k/ (I +VD)o(X5)dB,. (6.14)
0 0
Y;E + g(é\(Yi? Y;E) - é\(yza Yt;))
t oe oe
— g(X5) + / (Vatre) - Lot p— L pxe vo)ar
o s dy 0y
a € 5 ~€ €
+ / (Vs (Xi,i@e)a(fi)—Zf)dBr+e ge(x YE)ZEdr

82A € € |2 ! ae € €
+2 82 (XT,Y;) | Zr ‘ dr — . (1 _Eaiy)(Xvar)U dr.
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We put
7t =7 -V X, Yo (X)), 0<s<t.
Let us note that the difference between Z¢ and Z°¢ is a uniformly bounded process. Thanks
o0 (6.15), we get
Y5 4 e(@(X, YY) — e(X,, YY)

_ 08 oe. 0%
= oD+ [+ (V) - Ge D4

avxe V(X5 YE)dr

TYTT

b o%e 36
- / 2B, — 5 o o(X Vo)) + = | G (X0 Y7) Z2dB,
b5 [ G 2 e /:u—egexxwmmr
We let . e X .
=B~ [ (g (KoY )

It follows from Girsanov’s theorem that there exists a new probability measure P equivalent
to P under which {Bs, 0 < s <t} is a Brownian motion . We obtain

Xg +e(b(X;) —b(2)

0% s e~ (6.16)
:H/ (1+ VB (et ag o )(XT,Yf)dr+/ (I + Vo (X7)dB,
0 0
Ye+e(e (XuYa) — (X5, Y5))
. ge 98, 0% _
= g(X; )+/s(<Vxe c>78—y676—f+a 5 aVe")(X.,Y)dr
tZEdE + /ta (X5, V) ZE(dB, + ( 0% o) (X5, YE)dr)
c s Oy T Oxdy m e )07 (6.17)

[z e
tS

oe
— | (1 - )X, Yo Uzdr.
[a-em@yy)

The fact that {X%; ¢ > 0} is tight, as a random process of C([0,t],R?) equipped with the
2/\

_l’_

topology of uniform convergence, is clair, since

is bounded and the Radon-Nikodym
0xdy

oP
derivatives — € LP, for every p > 0. Hence

oP
supE | X7 P< oo Vp >0,
&€
from which we deduce
supE | g(X?) |F< 00 Yk > 0.
3

Step 2. Estimates of the processes Y° and Z°.
We need to prove some estimates of Y¢ and Z° under P, to do that we go back to equation
(6.13) and replace B with the new Brownian motion

t € 2"
V= g(5)+ [ (el Y0+ FOEYE) - 2 o) (R0 Y dr

t _ t
—/ Z;der—/ UZdr.
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It follows from Ito’s formula that
t
et | Yy !3+/ eTBIYS x| Z5 P 4v | Y |P)dr
vt €\ |3 3 ! vr € e _(vE €
= g(X9) P4 [ e | | Ve (XL
t
+3 / e | Y | Y F(XGLYE)dr

3/t e YE | YEZE( 0% VX5, YE)dr
— (o
. T r“r (%zay Ty

t ~
~3 [ e IYE 1Y Z2aB,
tS
- [Fem iy 1vevsar
S

The expectation of the above stochastic integral is zero (see Pardoux-Peng [67]). Moreover
thanks to (6.9) we have
| YE Y F(XGYE) < Y P e

Since (Y¢,U¢) € Gr(¢), we obtain (Y¢,U¢) > 0 and
=3 Y7 [(Y7,U;) <0.

Moreover
3. 0%

— 3
Y < SV 2 P+l

0%
oxdy

=3Y7 [ Y [ Z( olloo | Y77

Finally, taking the expectation and using the fact that e is bounded we have
- t 1~ t
B [ om | ¥e 112 Par <c+2E [ P an),
S € S
which is equivalent to
ot t
gE/ Ve || 25 dr < c(5+/ Y2 R dr). (6.18)
S S

Let us admits for a moment the following

Lemma 6.2. Under assumption of Theorem 6.1, we have

ot
supIE/ | US |? dr < .
> s
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We go back to equation (6.17) and let Y2 = Y7 —e(X, YF). From It&’s formula we obtain

VS + / | Z; - 6* X YO ZE P dr =] g(XF) - se(XE,YF) P

2/\
2 / TH(Vabic) = Goet (1= e300 + 5 a¥,e) (X, Y
0%
- € rze € €\ 7€ X°.VE)d
2/ YeZdB, +25/Y (X=,Y5)Z5(dB, +(8x6y o) (X5, YE)dr)
to%e 9
+e oy (XC, Y)Y | 25 |2 dr
t
de
_2/3 (1—5572)()( YU dr,
Exploiting (6.17) and (6.18), together with the fact that (1 — eg (X, Y5) > 1) for e

enough, standard inequalities and Lemma 6.2, we deduce that
" 1 t " t
E|Y; Py [ 12 Par<ca+ B[ v P an.
S S
Thanks to Gronwall’s lemma, we get
~ ~ t ~
sup ]EYSE\Q—HE/ | Z |2 dr < c.
0<s<t s
From Burkholder- Davis- Gundy inequality, we have

~ t ~
supE( sup | YS ]24—/ | Z5 |2 dr) < oo
0

e 0<s<t
Step 3. Convergence in law
We rewrite (3.5) in the following form
Y9 =g(X9) + Ve = Vi + My — Mg + Ny = Ny + K — K5,

where

2/\

c_ (T 0€ 0% .
Vs _/0 (<vxe’0>_87ye+f+8 oy aV e )(X“Y;n))d

MSE__/ Zidgﬁ
0

€ ~ € ° e ¢ € * e ENTTE
NE = —e(X,,YS)—¢e | —f(X,, Y )dr +¢ | —(X,,Y5)Usdr
0 Oy o Oy

25 25
+e/ 9 (X, Y5)ZE(dB, +(8e o) (X2, YE)dr) + o

0xdy rer
K = —/ U:dr.
0

It is easy to see that

2 0 82 ( Ty

E(sup | Ng|) —0,
0<s<t

small

(6.19)

X, Y5) | Z¢8 ? dr,
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as € — 0, then supy<s<; | N5 |) — 0 goes to 0 in probability or in law.
By Lemma (3.1), one can find that for all 0 < s <t

B( K~ Ki P)<Cls—t].

Thanks to Aldous’s criterion [1] (see also [42]), one can prove that the family of process
{K¢;e > 0} is tight.
In order to treat the other terms, we adopt the point of view of Meyer- Zheng topology [56]
(see also Kurtz [47] or Pardoux [66]) which gives tightness in D(][0,t]) equipped with the
topology of convergence in ds measure (see Theorem 4.1 of Chapter 4).
From (3.7), V¢ and M°® satisfy the Meyer-Zheng criterion. Therefore (Y2, M¢) is tight in the
sense of Meyer- Zheng topology [56] - under P-, since from relation (6.16), {X¢} is tight ”in
the usual sense”, then there exists a subsequence (which we still denote by (X¢,Y<, M, K¢))
such that

(X5, Y5, M°, K°) = (X,Y,M,K),
in C([0,t],RY) x (D([0,1]))? x C([0,t], R%).
To complete the proof, we need the following lemma (see Pardoux [65]):
Lemma 6.3. Let h: R? x R¥ — R* measurable, periodic with period one in each direction

in the first variable and continuous with respect to the second , uniformly with respect to the
first . Then

sup | [ HOCL Vo)~ [T |0,
0<s<t 0 0

in P-probability as ¢ — 0, with h(y) = / h(z,y)p(dx).
Td

Passing to the limit in (6.16) and (6.17) we get
Xs=z +/ C(Y,)dr + M,
0

where { M} is a non standard Brownian motion which satisfies
X —
<< M? >>.= As

and .
Y, = g(X,) +/ D(V,)dr + 3, — M, + K, - K.,
S

It follows from similar arguments in Pardoux [66] Section 4.c (see also Pardoux-Veretennikov
[71]) Theorem (6.1) that M~ and M are F;"""*-Martingales.

Step 4. Identification of the limit.

Let (Y, Z,U) be the unique solution of the reflected BSDE

t t t
Y, = g(X,) + / D(Y;)dr — / ZodMX — / U dr

S S S

(Y,U) € Gr(99),

such that .
ETT‘/ Zd < MX >, Z." < .
0
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By virtue of Lemma 6.2, we see that {K¢,& > 0} is bounded in L2(Q, H'([0,],R)) with

H ([0, ], R?) is the Sobolev space with absolutely continuous functions with derivatives in

L2([0,¢]). Therefore, {Ks,0 < s < t} is a process with bounded variation {U,,0 < s < t}
t

such that / | U, |? dr < co. Put
0

t t
M; = / ZydMX and K; = —/ Usds.
0 0
From It6’s formula we obtain
t
Yo = Vo [P+ = T, = (M = T0), =2 [ (D(Y;) = DV, Y, = V. )dr
St B B
+ 2/ (Y, —Y,,dM, — dM,)
St B B
+ 2/ Y, -Y,,dK, — dK,).

Now, since for every ¢ > 0, we have (Y¢,U®) € Gr(d¢), the Skorohod selection theorem
proves that (Y,U) € Gr(d¢), where (Y, M, K = — / t U,.dr) is the solution of the following
reflected BSDE . °
Ys=9(Xs)+ | DY, )dr+M;— M;+ K, — K.
s

t
Therefore, / (Y, =Y, dK, — dK,) < 0. Taking the expectation in the above equality we

find that

t
E|Y, Y, HE[MM]tE[MM}SgQME/ Y. Y. [ dr
S

Hence, from Gronwall’s lemma YV, =Y ,,0<s<t, M =M, U, =U,,0 < s < t. [

Before proving Lemma 6.2, let us recall some properties of the penalization technique (see
Menaldi [54]). Let

B(z) = %gmd(min{ lz—y|*},y€O).

Note that there exist a € R? and v > 0 such that

(x—a)B(z) > 7| B(x) |, Ve € R™.
Therefore
(An(z),z —a) =~ | An(2) | . (6.20)
Let
An(Y7) = n(Y] = Prg(Yy)),

where Prg is the projection on O.
Thanks to a technical approximation (see Gegout [37]), one can suppose that O is bounded,
2

convex and smooth i.e. p(x) := d*(z,0) =| z — Pr(x) |? is convex, twice differentiable and

@:{:UE]Rd,p>O}; 8@:{x€Rd,p:O},
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note that Vp(z) = 26(z) = 2(x — Pr(x))*.
Proof of Lemma 6.2.
Let (Y™, Z>") be the unique solution of the following BSDE

t 1 XE 62’\ Xz—:
en _ € - r e,n en en
Ve = o) + [ CelZYEm) 4 RPN = 2 (o) (S5 Y dr

. t
- / ZE"dB, — / A (YEM)dr,

supE/ | A (V2™ |2 dr < oo.

We first prove that

Let a € R* satisfies (6.20), it follows from It6’s formula that

t
CVS|Y:§’"—CL‘3 +/ CVT(3|Y;;€’TL—(Z‘ % ’Zf’n ‘2 _’_V’}/Tg,n_a‘B)dr
vt e\ |13 3 ¢ vr en en ~ € en
=" [ g(X) [P+ [ e IV —a | (V2" = a)e(X,, Y,")dr

t
+3/ evr ’ Yf’n —a ‘ ns,nf(yi?ns,n)dr

o*e

t
=3 [ eIV —a | (= )2 o) (K Y

t o~
3 / & YEN —a | (YO — a)Z5mdB,
S
t
3 / & VI —a | (YEP — a, An(YE™))dr.
S

From the above hypothesis we deduce:
Y —a | (V" - a) (X5, V) <[ V" —af? +e

T

Y —a | (V" - a, Ap(YE™) < —y | A(YE) || YE —a < 0.

Put v=1+3 32 8z8y H2 Since e is bounded, we may take the expectation to obtain
ot t
EE/ | Yo || Z5™ |2 dr < c(s—l—/ | YE™ 12 dr). (6.21)
S S

Return to equation (6.17) and let }755’" =YY" — 55(72, Ys™). Tt follows from Itd’s formula
that
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Vo —af / 25— S (L YEMZE P dr = 9(XF) 206G, V) P

A "
: [ <W’"—a><<vzac>—§§e+<1 SO V) (XL Y

t ~

—2 / (YF" — a)Z5"dBr

voe [ 8 yem zen(aB, + O Lo (X vEmar)
S 8y 8 Yy mer
: 828 &,n e,n |2

te . 8y8x( r?Y; )(Y )‘Zr | dr

t A~
2 / (1= 00 (X, M) (2 — a, An(YE)) i
s )

Since 0 € ©, A, (Y,"") = An(}Aff’”)’ we get
(VEm = a, An(VE™) 2 7 | An(TEm) |= | An(VE™) |

A~

It follows from the fact that (1 — 5%)(?? Y,>") > 1, standard inequalities and Gronwall’s
)

lemma that

~ t t
sup supE | Yo" —q |? —l—/ | Z&™ |* dr) —i—’y/ | Ap (Yo" | dr < oo. (6.22)
s 0

0<s<t g,n

Now, from Itd’s formula, the convexity of function p and with the notation Y,>" = Yo" —
g6(X.,YS™), we obtain

PV — ee(X,, Yo™) < plg(X7) — ee(Xy, Y))

2 1 o _ . oe e a%
= [ AT (Tt = e+ (1—c )f+ VL) (X YE)dr
2t ~
. / AT,
n S
toe 0% =
(X, Y™ A (Y™) Z5™ (B, X, yem
gy K YA 25 (d +8y(r,r>)dr
€ t82’\
< v A Yan Z&n 2
Saya(wr) )| 2 P dr

2 [ de en e,y en
— 2 =R AT AV

Thanks to assumption (6.10), ¢ small enough, we have

no( V5 >+/ | An(YE™) |2 dr
t 2~
<2 [ A (V7" ((Vae, c) — §e+ (1- ge)er o avxe )(X,, Y, dr
Y 6.23)
toe €n en\zen( In o°e en (
+2e/ a—yX YO ALY Z; (dBTJr(axayg)(X”Y’“ ))dr

f t 82€ . 5
—2 A, (Yo" ZandBT — (X YO AL YE™) | Z2™ | dr.
[ AvemzznaB, ve [ TRV ALYE) | 20 P ar
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Now we need to estimate this last integral. We get

~ 1t
p(YS") + 2/ trace(Z=" 25" Hess(p(Y,2™))dr
S

t € € 2’\ €
=[G Yo + FEYEm) = 25 ) YEm T o dr

€
/ 25N p(YE™)dB, / (VST p(YEM) dr
It follows from It0’s formula that

3 t
b (vem) 4 3 [ trace(2m 2 Hesslph (v ol
S

3 t B t
g [z PIVprEn) P o (vt [ ve ot (v ar
S S

t € € 25 € 1
=5 [ eI 4 FCE ) = 2 o) Y Vel b (v e
3

t
=5 [ Zenvpvmpt v,
S
3 [ !
B 2/ An(YE") Y p(Y™)p2 (Y dr.
S
Since | Ap(z) [= § | Vp(z) | et p%( ) =| x — Pr(z) |, we obtain
3 t
ne"*p(Y™)? + / trace(Z;" 25" Hess(p(Y;™))p? (V") dr
3 t ° t 3 3 t
b5 [z P AL dr / e gt (VEMdr 5 [ A [ ar
S S S
1 X: X: 0%e

3n r £,n e,n £ veEn eny 1 yven

- Se G Y o FEEYE) = 22 o) (XE YV p(Y ) o (Ve
t 1

—n [ 2 p(vEm g (VB

We also have

W2 o (X5 Y

< B2 ol | VoY)

—Z”a?;ax (VPO o o )
G o K Yl | 227 Pl An() |+ (e Y2 | W00 P
X Y e | 25 P A7) |+ 22107 (2 V)l | a2

where « satisﬁes the followmg conditions
<get-3

o*||OO < 2 for n large enough.
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q

: a? o a :
The relation ab < — 4+ —  for + = =1 gives
p q

1
q

T =

€

X
nf (S5 YV (Yl (V)

M\OJ

p2 (V")
3
nkK 3
—p2
3

2
<nK (5 | VoY) |2 +2
4

1
3n2

)

(¥,").

(| Ap(YE™) |2 +1) +

Moreover
Xy | € |oo

ne(—, Y (p2 V) (V") < | An(YE") 7

Hence, thanks to relation (6.22) and for n large enough we have

ot
E [ A, | 2 P ar
1~ [ emny |2 £, n 2
<C(1+=E [ | A (Y™ | dr+—E yA (YE™) 12 dr).
n S
For n large enough and ¢ small enough, inequalities (6.22) and (6.23) give
supE/ | A (V2™ |2 dr < oo. (6.24)

Now
lim E(sup | K&" — K< ) =0,

n——00  0<g<t

s

where K" = —/ Ap(Y,2™)dr (see [60] or [70]).

0
Due to inequality (6.24) and Fatou’s lemma we get the desired result. [ |

6.4 Application to semi-linear variational inequalities.

Let u be the solution of the following SVI

(Vs e0,1], z € RY
ou 1 —d - 0u d ou
[88 (va) -2 1,7=1 AU 81’18.%'] (S,IL') Zi:l CAU(S,.%’))B (S,JI)

z; (6.25)
—D(u(s,m))] € 0Ig(u(s,x))
u(0,2) = g(z), u(s,z) € Dom($) = cl(©).

Theorem 6.4. Assume k = 1. Under the hypothesis of Theorem 6.1 u®(t,x) converges to
u(t,x) for all (t,x) € [0,t] x R? as £ goes to 0.

Remark 6.5. Note that in this case © is an interval of R. Assume for ezample that © =]a, b],
we get

0 if ©¢6
Ol (x) = I{ROE ;{fif

R_ if xz=a.
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Proof of Theorem 6.4. Let 2 € R% and {X5°,0 < s < t} be the solution of the SDE (6.1).
For all t € R, we denote by {YI™°, Zb"*, Utx ©, 0 < s < t} the solution of the following
reflected BSDE

I X“
virt = g0+ [ e [
S

t
- / UL™<dr.
S

By virtue of Pardoux and Rascanu [70], the function u® : Ry x R — R defined by u®(t,z) =
Y™ is the unique viscosity solution of SVI (6.12). Let {Yy"", Z4°, UL*, 0 < s <t} be the
solution of the reflected BSDE

g(XF) /DW /Z””dB /U””dr

Again, in view of [70] (see also Chapter 1) the function u : [0,¢] x R? — R defined by
u(t,z) = Yot’x is the unique solution of SVI (6.25). Therefore, the result follows from Theorem
6.1 [

t
) dr — / ZL"EdB,
S
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