Faculté Poly-disciplinaire Safi

Analyse I : TD N° 5 (SMA/SMI)

Exercice 1

Soit f la fonction définie sur [0, 3] par

$$f(x) = \begin{cases} 0 & \text{si } x = 0\\ x & \text{si } 0 < x < 1\\ 1 & \text{si } x = 1\\ -x + 2 & \text{si } 1 < x \le 2\\ 0 & \text{si } 2 < x \le 3. \end{cases}$$

- 1. Calculer $\int_{0}^{3} f(t)dt$.
- 2. Soit $x \in [0,3]$, calculer $F(x) = \int_0^x f(t)dt$.
- 3. Montrer que F est une fonction continue sur [0,3].

Exercice 2

Calculer une primitive des fonctions suivantes en les mettant sous la forme u'f'(u)

$$a. \quad \frac{1}{x^2 + 1}$$

$$b. \quad \frac{e^x}{e^{2x} + 1}$$

$$c. \quad \frac{x}{\sqrt{1-x^4}}$$

$$d. \quad \frac{1}{\sqrt{x-1}}.$$

$$e. \quad \frac{1}{(x+1)\sqrt{x}}$$

$$f. \quad \frac{e^x}{\sqrt{16 - e^{2x}}}$$

a.
$$\frac{1}{x^2 + 1}$$
 b. $\frac{e^x}{e^{2x} + 1}$ c. $\frac{x}{\sqrt{1 - x^4}}$ d. $\frac{1}{\sqrt{x - 1}}$ e. $\frac{1}{(x + 1)\sqrt{x}}$ f. $\frac{e^x}{\sqrt{16 - e^{2x}}}$ g. $\frac{\cos x}{\sqrt{9 - \sin^2 x}}$ h. $\frac{e^x}{\sqrt{4 - e^x}}$.

$$h. \quad \frac{e^x}{\sqrt{4 - e^x}}$$

Exercice 3

Calculer une primitive des fonctions suivantes en utilisant une intégration par parties

a.
$$\frac{1}{49 - 4x^2}$$

$$b. \quad \frac{5x-12}{x(x-4)}$$

a.
$$\frac{1}{49-4x^2}$$
 b. $\frac{5x-12}{x(x-4)}$ c. $\frac{37-11x}{(x+1)(x-2)(x-3)}$ d. $\frac{6x-11}{(x-1)^2}$ e. $\frac{-19x^2+50x-25}{x^2(3x-5)\sqrt{x}}$ f. $\frac{x-1}{x^2+x+1}$ g. $\frac{1}{(x^2+4x+5)^2}$ h. $\frac{1}{(x^2+1)^3}$

d.
$$\frac{6x-11}{(x-1)^2}$$

$$e. \quad \frac{-19x^2 + 50x - 25}{x^2(3x - 5)\sqrt{x}}$$

$$f. \quad \frac{x-1}{x^2+x+1}$$

$$g. \quad \frac{1}{(x^2 + 4x + 5)^2}$$

$$h. \frac{1}{(x^2+1)^3}$$

Exercice 4

Calculer une primitive des fonctions suivantes

$$a. \quad x^2e^{-x}$$

$$b. \quad e^{3x}\cos 2x$$

$$c$$
. $\arctan x$

$$d$$
. $\arcsin x$

a.
$$x^2e^{-x}$$
 b. $e^{3x}\cos 2x$ c. $\arctan x$ d. $\arcsin x$.
e. $\sin x \ln \cos x$ f. $x^3e^{x^2}$ g. x^3shx h. $x^3\cos x^2$.

$$f. \quad x^3 e^{x^2}$$

$$g. \quad x^3 sh x$$

$$h. \quad x^3 \cos x^2$$

Exercice 5

Calculer une primitive des fonctions suivantes

$$a. \sin^4 x$$

b.
$$\tan^3 x + 2\tan^2 x$$

a.
$$\sin^4 x$$
 b. $\tan^3 x + 2 \tan^2 x$ c. $\frac{\sin x}{\cos x (\cos x - 1)}$ d. $\frac{1}{2 \cos x}$ e. $\frac{1}{4 \sin x - 3 \cos x}$ f. $\frac{2 \cos^3 x}{\sqrt{1 + \sin x}}$ g. $\frac{2 \sin x}{\sqrt{1 + \sin x}}$ h. $\frac{1}{\cos^4 x}$.

$$d. \frac{1}{2\cos x}$$

$$e. \quad \frac{1}{4\sin x - 3\cos x}$$

$$f. \quad \frac{2\cos^3 x}{\sqrt{1+\sin x}}$$

$$g. \quad \frac{2\sin x}{\sqrt{1+\sin x}}$$

$$h. \quad \frac{1}{\cos^4 x}$$

Exercice 6

On considère la suite $(I_n)_{n\in\mathbb{N}}$ de terme général $I_n = \int_0^{\frac{\pi}{2}} \cos^n t \, dt$.

- 1. Calculer I_0, I_1 et I_2 et montrer que pour tout $n \in \mathbb{N}, I_n = \int_0^{\frac{\pi}{2}} \sin^n t \, dt$
- 2. En utilisant une intégration par parties, montrer que pour tout entier naturel non nul on a $(n+1)I_{n+1} = nI_{n-1}$. En déduire que pour $p \in \mathbb{N}$ on a

$$I_{2p} = \frac{\pi P_1(p)}{2P_2(p)}$$
 et $I_{2p+1} = \frac{P_2(p)}{P_1(p+1)}$,

où
$$P_1(p) = \prod_{k=1}^{p} (2k-1)$$
 et $P_2(p) = \prod_{k=1}^{p} (2k)$.

- 3. Justifier que pour tout $n \in \mathbb{N}^*$ et tout $t \in [0, \frac{\pi}{2}]$ on a $0 \le \cos^n t \le \cos^{n-1} t$. En déduire que la suite $(I_n)_{n \in \mathbb{N}}$ est positive et décroissante.
- 4. Montrer que la suite de terme général $u_p = \frac{I_{2p-1}}{I_{2p}}$ converge vers 1. En déduire la formule de Wallis,

$$\lim_{n \to +\infty} \frac{1}{n} \left[\frac{\prod_{k=1}^{n} (2k)}{\prod_{k=1}^{n} (2k-1)} \right]^{2} = \pi.$$

5. Montrer que la suite de terme général $w_n=(n+1)I_nI_{n+1}$ est une suite constante. En déduire que $I_n \underset{+\infty}{\sim} \sqrt{\frac{\pi}{2n}}$.

Exercice 7

Soit f une fonction continue d'un intervalle [a,b] à valeurs dans $\mathbb R$ telle que, pour tout $t\in [a,b]$

$$f(a+b-t) = f(t).$$

Montrer que

$$\int_{a}^{b} t f(t) dt = \frac{a+b}{2} \int_{a}^{b} f(t) dt.$$

Application: Calculer les intégrales suivantes

$$I_1 = \int_0^{\pi} \frac{t \sin t}{1 + \cos^2 t} dt, \quad I_2 = \int_0^{\frac{\pi}{2}} \frac{t \cos t \sin t}{\sin^4 t + \cos^4 t} dt.$$