

Calculer les deux intégrales doubles suivantes:

$$I = \iint_{D} \frac{(x+y)^2}{x^2 + y^2 + 1} dx dy, \qquad J = \iint_{\Delta} (x^2 + y^2) dx dy,$$

où $D = \{(x,y) \in \mathbb{R}^2 | x^2 + y^2 \le 1\}$ et $\Delta = \{(x,y) \in \mathbb{R}^2 | x^2 + y^2 \le 1, x \ge 0, y \ge 0\}.$

Exercice 2: On note par $\Delta = [0,1] \times [0,1]$ et pour tout $n \in \mathbb{N}^*$ on pose :

$$I_n = \iint\limits_{\Lambda} \frac{(xy)^n}{1 + xy} dx dy.$$

- 1. Déterminer $\lim_{n\to+\infty} I_n$.
- 2. En déduire une expression de $I = \iint \frac{1}{1+xy} dxdy$, comme somme d'une série numérique.
- 3. Soit f la fonction 2π -périodique telle que : $\forall x \in [-\pi, \pi], f(x) = x^2$. Montrer que pour tout $x \in [-\pi, \pi]$ on a: $x^2 = \frac{\pi^2}{3} + 4\sum_{i=1}^{+\infty} (-1)^n \frac{\cos(nx)}{n^2}$. En Déduire la valeur de I.

Exercice 3: Calculer l'intégrale double suivante :

$$I = \iint\limits_{D} \frac{xy}{(x^2 + y^2 + 1)^2} dxdy,$$

où $D = \{(x, y) \in \mathbb{R}^2 | x^2 + y^2 \ge 1, \ 0 \le x \le 1, \ 0 \le y \le 1 \}.$

Exercice 4 : Soit D le domaine de \mathbb{R}^2 tel que

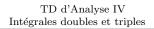
$$D = \left\{ (x, y) \in (]0, +\infty[)^2 \mid x \le y \le 2x \text{ et } \frac{1}{x} \le y \le \frac{2}{x} \right\}.$$

- 1. Tracer D.
- 2. Montrer que le changement de variable $\phi:(u,v)\in\Delta\mapsto(x=\sqrt{\frac{v}{u}},y=\sqrt{uv})\in D$ où Δ est un domaine à déterminer, est un C^1 -difféomorphisme.
- 3. Calculer l'aire de D.

Exercice 5 : Soit a un réel strictement positif, on définit les deux ensembles suivants :

$$K_a = [0, a] \times [0, a], \qquad D_a = \left\{ (x, y) \in ([0, +\infty[)^2 \mid x^2 + y^2 \le a^2) \right\}.$$

L'objectif de cet exercice est de calculer l'intégrale de Gauss suivante : $I = \int e^{-x^2} dx$



1. Montrer que :
$$I = \lim_{a \to +\infty} \iint\limits_{K_a} e^{-x^2 - y^2} dx dy$$
. Calculer $\iint\limits_{D_a} e^{-x^2 - y^2} dx dy$.

2. En remarquant que $D_a \subset K_a \subset D_{a\sqrt{2}}$, calculer I.

Exercice 6 : Soit l'intégrale $I = \int_{0}^{1} \frac{\ln(1+x)}{1+x^2} dx$.

1. Soit
$$D$$
 le pavé $[0,1] \times [0,1]$. Montrer que $I = \iint_D \frac{x dx dy}{(1+x^2)(1+xy)}$.

2. En intervertissant les rôles de x et y, montrer que

$$2I = \iint_{D} \frac{(x+y)dxdy}{(1+x^2)(1+y^2)}.$$

3. Déduire la valeur de I.

Exercice 7:

Soit
$$D = \{(x, y) \in \mathbb{R}^2 | 0 \le x \le 1, \ 0 \le y - x \le 1 \}$$
 et $A = \iint_D x^{y-x} dx dy$.

- 1. Montrer que A existe, puis que $A=\iint\limits_{[0,1]^2}u^vdudv.$
- 2. Soit $J = \int_{0}^{1} \frac{1-t}{\ln(t)} dt$. Montrer que J existe.
- 3. Calculer A en utilisant le Théorème de Fubini.
- 4. En utilisant dans un autre sens le Théorème de Fubini, montrer que $J=-\ln 2$.

Exercice 8:

- 1. Calculer le volume d'une sphère de \mathbb{R}^3 de centre 0 et de rayon R.
- 2. Calculer les deux intégrales triples suivantes:

$$I = \iiint\limits_{D} \cos(x) dx dy dz, \qquad J = \iiint\limits_{\Delta} \frac{z}{\sqrt{x^2 + y^2}} dx dy dz,$$
 où $D = \{(x, y, z) \in \mathbb{R}^3 | \ x^2 + y^2 + z^2 < 1\}$ et $\Delta = \{(x, y) \in \mathbb{R}^2 | \ x^2 + y^2 \le a^2, \ 0 < z < a\}.$

Exercice 9 : Calculer les deux intégrales triples suivantes:

$$I = \iiint_D (x+y)zdxdydz, \qquad J = \iiint_D \cos(x+y+2z+1)dxdydz,$$

où
$$D = \{(x, y, z) \in ([0, +\infty[)^3 | x + y + 2z \le 2\}.$$