Exercice 1 : Soit $\alpha \in \mathbb{R}$ et $(f_n)_n$ la suite de fonctions définie par :

$$\forall (n, x) \in \mathbb{N}^* \times [0, 1], \quad f_n(x) = n^{\alpha} x^n (1 - x).$$

Etudier la convergence simple puis uniforme de la suite de fonctions $(f_n)_n$.

Exercice 2 : On définit pour $n \in \mathbb{N}$ une fonction $(f_n)_n$ sur $[0, \pi]$ par

$$\forall (n,x) \in \mathbb{N}^* \times [0,\pi], \quad f_n(x) = \begin{cases} \frac{\sin x}{x(1+nx)} & \text{si } 0 < x \le \pi \\ 1 & \text{si } x = 0. \end{cases}$$

- 1. Etudier la convergence simple et uniforme sur $[0,\pi]$ de la suite de fonctions $(f_n)_n$.
- 2. Soit $a \in]0, \pi[$. Etudier la convergence uniforme sur $[a, \pi]$ de cette suite $(f_n)_n$.

Exercice 3:

- 1. Etudier la convergence simple et uniforme sur \mathbb{R} de la suite de fonctions $(f_n)_n$ où $f_n(x) = \cos(xe^{-nx^2})$.
- 2. En déduire la limite de la suite $(I_n)_n = (\int_0^1 f_n(x)dx)_n$.

Exercice 4 : Soit $(f_n)_{n\in\mathbb{N}^*}$, la suite de fonctions définie par

$$\forall (n,x) \in \mathbb{N}^* \times [0,+\infty[, \quad f_n(x) = \begin{cases} (1-\frac{x}{n})^n & \text{si } 0 \le x \le n \\ 0 & \text{si } x \ge n. \end{cases}$$

- 1. Montrer que f_n est continue sur $[0, +\infty[$, et que f_n est dérivable sur $[0, +\infty[$ si $n \ge 2$.
- 2. Montrer que la suite $(f_n)_{n\in\mathbb{N}^*}$ converge simplement sur \mathbb{R}_+ vers une fonction f à déterminer.
- 3. Pour $x \geq 0$, on pose $h(x) = xe^{-x}$. Montrer que la fonction h est bornée et calculer $\sup_{x \in [0,+\infty[} |h(x)|.$
- 4. Pour $x \in [0, n[$, on pose $g_n(x) = x + (n-1)\ln(1-\frac{x}{n})$.
 - (a) En étudiant la variation de la fonction g_n , montrer qu'il existe un unique réel $\alpha_n \in]1, n[$ tel que $g_n(\alpha_n) = 0$.
 - (b) En déduire le signe de $f' f'_n$ sur [0, n].
- 5. Montrer que : $f(\alpha_n) f_n(\alpha_n) = \frac{h(\alpha_n)}{n}$.
- 6. En déduire que la suite de fonctions $(f_n)_n$ converge uniformément vers f sur $[0, +\infty[$.
- 7. Soit a > 0. Déduire de ce qui précède que la suite $(\int_{0}^{a} f_{n}(x)dx)_{n}$ converge et donner sa limite.

Exercice 5 : Soit $(u_n)_{n\in\mathbb{N}^*}$ la suite de fonctions définie par :

$$\forall (n, x) \in \mathbb{N}^* \times [0, 1], \quad u_n(x) = nx^n e^{-nx}.$$

- 1. Déterminer, pour $\alpha \in \mathbb{R}$ et $x \in [0,1]$, $\lim_{n \to +\infty} n^{\alpha} u_n(x)$.
- 2. En déduire que la série de fonctions $\sum u_n(x)$ converge simplement.
- 3. Montrer que la série de fonctions $\sum u_n(x)$ converge normalement.

Exercice 6:

- 1. Etudier la convergence simple de la série $\sum u_n(x)$ où $u_n(x) = e^{-x\sqrt{n}}$ pour $n \in \mathbb{N}^*$. On note S la somme de cette série de fonctions.
- 2. La série $\sum u_n(x)$ converge-t-elle normalement sur $]0, +\infty[?]$
- 3. Soit a > 0. Montrer que la série $\sum u_n(x)$ converge normalement sur $[a, +\infty[$.
- 4. En déduire que S est continue sur $]0, +\infty[$.
- 5. Montrer que $\lim_{x \to +\infty} S(x) = 0$.
- 6. Etudier la convergence simple de la série $\sum v_n(x)$ où $v_n(x) = e^x u_n(x)$ pour $n \in \mathbb{N}^*$ sur $[1, +\infty[$.
- 7. En déduire $S(x) \underset{+\infty}{\sim} e^{-x}$.

Exercice 7: Pour $n \in \mathbb{N}$, on définit une fonction u_n sur \mathbb{R} par

$$u_n(x) = \frac{\arctan(nx)}{n^2}.$$

On note S la somme de la série de fonctions $\sum u_n(x)$ lorsqu'elle existe.

- 1. Etudier la convergence simple et uniforme de la série $\sum u_n(x)$ sur \mathbb{R} .
- 2. En déduire que S est continue sur \mathbb{R} .
- 3. La série $\sum u'_n(x)$ converge-t-elle normalement sur \mathbb{R}^* ?
- 4. Montrer que S est de classe C^1 sur \mathbb{R}^* .

Exercice 8:

1. Déterminer le domaine de définition de la fonction f définie par

$$f(x) = \sum_{n=0}^{+\infty} (-1)^n \frac{e^{-nx}}{n+1}$$

- 2. Montrer que f est continue sur $[0, +\infty[$ et de classe C^1 sur $]0, +\infty[$.
- 3. Montrer que f est solution de l'équation différentielle suivante

$$f(x) - f'(x) = \frac{1}{1 + e^{-x}}.$$

4. En déduire que f' est prolongeable par continuité en 0.