

Exercice 1 Soient X et Y deux variables aléatoires indépendantes de loi $\mathcal{N}(0,1)$.

- 1. Montrer que X + Y et X Y sont indépendantes.
- 2. On pose U=2X et V=X-Y. Déterminer la densité du couple (U,V) puis les densités de U et V.

Exercice 2 Soit (X,Y) une variable aléatoire à valeurs dans \mathbb{R}^2 de loi de densité

$$(x,y) \mapsto f(x,y) = \frac{3}{4} \exp(-|x+2y| - |x-y|).$$

Calculer la densité de la loi de (X + 2Y, X - Y) puis les densités des lois de X et Y.

Exercice 3 Soit X une variable aléatoire à valeurs dans \mathbb{R} de loi de densité

$$x \mapsto f(x) = \frac{1}{\pi(1+x^2)}.$$

Montrer $\frac{1}{X}$ est de même loi que X.

Exercice 4 Soit $X_1, ..., X_n$ des variables aléatoires indépendantes de loi exponentielle $\mathcal{E}(\lambda)$ de paramètre $\lambda > 0$.

- 1. Calculer la loi de la variable aléatoire $Y = \max_{1 \le i \le n} X_i$.
- 2. Calculer la loi de la variable aléatoire $Z = \min_{1 \le i \le n} X_i$.

Exercice 5 Soient X et Y deux variables aléatoires réelles définies sur un espace de probabilité $(\Omega, \mathcal{F}, \mathbb{P})$.

- 1. On suppose que X=Y p.s. Montrer que X et Y ont la même loi. Montrer que la réciproque est fausse.
- 2. On suppose que X et Y ont la même loi. Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ une fonction borélienne. Montrer que les variables aléatoires f(X) et f(Y) ont la même loi.

Exercice 6 Soit $(\Omega, \mathcal{F}, \mathbb{P})$ un espace de probabilité. On considère la variable aléatoire réelle positive X de fonction de répartition F_X .

- $\begin{array}{ll} 1. \ \, \text{Montrer que la fonction} & f: & \Omega \times \mathbb{R}_+ \longrightarrow \mathbb{R} \\ & (\omega \ , \ t) \mapsto f(\omega,t) = 1_{\{X(\omega) > t\}}(\omega,t) \end{array} \text{ est mésurable.}$
- 2. Prouver que pour tout $n \in \mathbb{N}^*$, on a

$$\mathbb{E}(X^n) = \int_{0}^{+\infty} nt^{n-1} \mathbb{P}[X > t] dt = \int_{0}^{+\infty} nt^{n-1} (1 - F_X(t)) dt.$$

Exercice 7 Soit $(X_n)_{n\in\mathbb{N}^*}$ une suite de variables aléatoires indépendantes et de même loi de Poisson $\mathcal{P}(\lambda)$, $\lambda > 0$. On rappelle que, $\mathbb{P}[X = k] = e^{-\lambda} \frac{\lambda^k}{k!}$, pour tout $k \in \mathbb{N}$.

- 1. Calculer la fonction caractéristique φ_{X_1} de X_1 .
- 2. En déduire la loi de la somme $S = X_1 + X_2 + ... + X_n$.

Exercice 8 On considère la fonction Gamma définie sur \mathbb{R}_+^* par : $\Gamma(x) = \int e^{-t}t^{x-1}dt$.

On appelle loi $\gamma(a,\beta)$ de paramètres a et β (a>0 et $\beta>0)$ la loi sur $\mathbb R$ de densité

$$f_{a,\beta}(x) = \frac{\beta^a}{\Gamma(a)} e^{-\beta x} x^{a-1} 1_{\mathbb{R}_+}(x).$$

- 1. Soit X une variable aléatoire de loi $\gamma(a,\beta)$. Calculer $\mathbb{E}(X)$ et Var(X).
- 2. Soit $(X_n)_{n\in\mathbb{N}^*}$ une suite de v.a. indépendantes et de même loi exponentielle $\mathcal{E}(\beta)$, $\beta>0$. Montrer par récurrence que la loi de la somme $X_1 + X_2 + ... + X_n$ est la loi $\gamma(n, \beta)$.
- 3. Soit X et Y deux v.a. réelles indépendantes de loi $\gamma(a,\beta)$ et $\gamma(b,\beta)$ respectivement.
 - a. On pose $B(a,b) = \int_{0}^{1} x^{a-1} (1-x)^{b-1} dx$. Montrer que $\Gamma(a)\Gamma(b) = \Gamma(a+b)B(a,b)$.
 - b. En déduire que : $\forall u > 0$, $\int_{0}^{u} x^{a-1} (u-x)^{b-1} dx = u^{a+b-1} \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}$.
 - c. Déterminer la loi de X + Y.
- 4. Soit X et Y deux v.a. réelles indépendantes de loi $\gamma(a,\beta)$.
 - a. Déterminer la loi de βX et vérifier que la v.a. $\frac{X}{X+Y}$ est bien définie.
 - b. Montrer que X + Y et $\frac{X}{X + Y}$ sont des v.a. indépendantes.
- 5. Soit $(Y_n)_{n\in\mathbb{N}^*}$ une suite de v.a. réelles indépendantes et de même loi normale $\mathcal{N}(0,1)$.
 - a. Montrer que Y_1^2 suit la loi gamma $\gamma(\frac{1}{2}, \frac{1}{2})$.
 - b. Montrer que $Y_1^2+Y_2^2+\ldots+Y_n^2$ suit une loi $\gamma(\frac{n}{2},\frac{1}{2})$. La loi $\gamma(\frac{n}{2},\frac{1}{2})$ est également appelée loi Khi-deux à n degrés de liberté et notée $\chi^2(n)$.

Exercice 9 X une variable aléatoire dans \mathbb{R} est dite symétrique si -X a même loi que X.

- 1. Si X a une densité f, montrer que : X est symétrique si et seulement si f(x) = f(-x)pour presque tout $x \in \mathbb{R}$.
- 2. Donner un exemple de loi symétrique.
- 3. Montrer que X est symétrique si et seulement si le nombre $E(e^{iuX})$ est réel pour tout $u \in \mathbb{R}$.
- 4. Si Y et Z sont deux variables aléatoires réelles de même loi et indépendantes, montrer que Y - Z est symétrique.