Département Maths-Info. Filière SMIA(S3) (2011)

Exercice 1: (Rappels sur les limites des suites et fonctions monotones)

- 1. Montrer qu'une suite réelle $(u_n)_n$ croissante (resp. décroissante) à partir d'un certain rang, majorée (resp. minorée) est convergente majorée (resp. minorée) par sa limite.
- 2. Montrer qu'une suite réelle $(u_n)_n$ croissante (resp. décroissante) à partir d'un certain rang, non majorée (resp. non minorée) admet $+\infty$ (resp. $-\infty$) pour limite.
- 3. Soit f une fonction croissante sur]a,b[. Montrer que les limites de f à droite en a et à gauche en b existent et on a

$$\lim_{x \to a^+} f(x) = \inf (f(]a, b[)) \quad \text{et } \lim_{x \to b^-} f(x) = \sup (f(]a, b[)).$$

Exercice 2 : (e est un irrationnel)

Soient $(u_n)_n$ et $(v_n)_n$ les suites définies sur \mathbb{N}^* par :

$$u_n = 1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!}$$
 et $v_n = u_n + \frac{1}{n \cdot n!}$.

- 1. Montrer que $(u_n)_n$ et $(v_n)_n$ sont adjacentes. En déduire qu'elles convergent vers une même limite ℓ .
- 2. Déduire que la série de terme général $w_n = \frac{1}{n!}$ est convergente.
- 3. On admet que $\ell = e$ et on propose de monter que e est un irrationnel.
 - i. Supposer que e est un rationnel c-à-d $e = \frac{p}{q}$ avec $p, q \in \mathbb{N}^*$ et montrer que l'on a $u_q q! < p(q-1)! < u_q.q! + 1$.
 - ii. Dire si cette inégalité est-elle possible? Conclure.

Exercice 3 : Calculer la somme des séries dont le terme général u_n est donné ci-dessous :

$$a)u_n = \ln\left[\frac{n(n+2)}{(n+1)^2}\right] (n \ge 1) \qquad b)u_n = \frac{1}{(n+1)(n+2)(n+3)} (n \ge 0) \qquad c)u_n = \frac{n^2}{n!} (n \ge 1)$$

$$d)u_n = \frac{n^3}{n!} (n \ge 1) \qquad e)u_n = \frac{3^n}{7^{n-2}} (n \ge 2) \qquad f)u_n = \ln(1 - \frac{1}{n^2}) (n \ge 2).$$

Exercice 4 : Etudier la nature des séries dont le terme général u_n est donné par :

$$a)u_n = \frac{\sqrt{n}}{n^2 + 2n + 2} \quad (n \ge 0) \quad b)u_n = \frac{2n^2 + 1}{n^3 + 2} \quad (n \ge 0) \quad c)u_n = \frac{\sin n}{n^{\frac{3}{2}}} \quad (n \ge 1)$$

$$d)u_n = \frac{n}{3^n} \quad (n \ge 1) \quad e)u_n = \frac{3^n + n^4}{5^n - 3^n} \quad (n \ge 0) \quad f)u_n = \left(\frac{1}{2} + \frac{1}{2n}\right)^n \quad (n \ge 1).$$

Exercice 5: Etudier la nature des séries dont le terme général u_n est donné ci-dessous:

$$a)u_n = \frac{n!}{a^n} (a > 0) \qquad b)u_n = \frac{n!}{n^n} \qquad c)u_n = \frac{a^n}{n^a} (a > 0)$$

$$d)u_n = (a + \frac{1}{n})^n (a > 0) \quad e)u_n = \frac{1}{\ln(n!)} \qquad f)(1 - e^{\frac{1}{n^2}})\sqrt{\ln n}.$$

Exercice 6: Pour $n \ge 1$, on pose

$$u_n = \frac{\ln(1+n^{\alpha})}{n^{\beta}}.$$

Déterminer les couples $(\alpha, \beta) \in \mathbb{R}^2$ pour lesquels la série numérique de terme général u_n est convergente (on étudiera séparément les cas $\alpha < 0, \alpha = 0$ et $\alpha > 0$).

Exercice 7: Soit $\sum_{n\geq 0} v_n$ une série à termes positifs convergente.

1. Soit $(u_n)_n$ une suite telle que $u_n = o(v_n)$. Montrer que la série $\sum_{n>0} u_n$ converge et

$$\sum_{k=n+1}^{+\infty} u_k \underset{+\infty}{=} o(\sum_{k=n+1}^{+\infty} v_k).$$

2. Soit $(u_n)_n$ une suite telle que $u_n \sim v_n$. Montrer que la série $\sum_{n>0} u_n$ converge et

$$\sum_{k=n+1}^{+\infty} u_k \sim \sum_{k=n+1}^{+\infty} v_k.$$

Exercice 8 : On veut démontrer le théorème suivant : Pour $n \in \mathbb{N}^*$, on pose $H_n = \sum_{k=1}^n \frac{1}{k}$.

Alors H_n admet le développement asymptotique suivant

$$H_n = \ln(n) + \gamma + \frac{1}{2n} - \frac{1}{12n^2} + o(\frac{1}{n^2}),$$

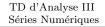
où γ est une constante strictement positive appelée constante d'Euler.

- 1. Montrer que $H_n \sim \ln(n)$.
- 2. On pose $u_n = H_n \ln(n)$.
 - (a) En trouvant un équivalent de $u_n u_{n-1}$, montrer que que la série de terme général $u_n u_{n-1}$ est convergente.
 - (b) En déduire que la suite $(u_n)_n$ est convergente vers un réel qu'on note γ et que

$$H_n = \ln(n) + \gamma + o(1).$$

- 3. On pose $w_n = u_n \gamma$.
 - (a) En trouvant un équivalent de $w_n w_{n-1}$, montrer que que la série de terme général $w_n w_{n-1}$ est convergente.
 - (b) En déduire que : $w_n \sim \sum_{k=n+1}^{+\infty} \frac{1}{2k^2}$.
 - (c) Pour $\alpha > 1$, montrer l'encadrement suivant

$$\frac{1}{\alpha - 1} \frac{1}{(n+1)^{\alpha - 1}} \le \sum_{k=n+1}^{+\infty} \frac{1}{k^{\alpha}} \le \frac{1}{\alpha - 1} \frac{1}{n^{\alpha - 1}}.$$



- (d) En déduire que : $\sum_{k=n+1}^{+\infty} \frac{1}{k^{\alpha}} \sim \frac{1}{\alpha 1} \frac{1}{n^{\alpha 1}}.$
- (e) En déduire que : $H_n = \ln(n) + \gamma + \frac{1}{2n} + o(\frac{1}{n})$,
- 4. On pose $x_n = w_n \frac{1}{2n}$.
 - (a) Montrer que $x_n x_{n-1} \sim \frac{1}{6n^3}$. En déduire que $-x_n \sim \sum_{k=n+1}^{+\infty} \frac{1}{6k^3}$.
 - (b) En déduire que : $H_n = \ln(n) + \gamma + \frac{1}{2n} \frac{1}{12n^2} + o(\frac{1}{n^2})$.

Exercice 9 : Construire deux séries $\sum_{n=0}^{+\infty} u_n$ et $\sum_{n=0}^{+\infty} v_n$ l'une convergente, l'autre divergente, telles que $u_n \underset{+\infty}{\sim} v_n$.

Exercice 10: Soit $u_n > 0$. On pose $v_n = \frac{u_n}{1 + u_n}$ et $w_n = \frac{u_n}{1 + u_n^2}$.

- a) Montrer que les séries $\sum_{n=0}^{+\infty}u_n$ et $\sum_{n=0}^{+\infty}v_n$ sont de même nature.
- b) Comparer la convergence des séries $\sum_{n=0}^{+\infty} u_n$ et $\sum_{n=0}^{+\infty} w_n$.

Exercice 11 : Soit $\alpha \neq 0$. Etudier la convergence de la série de terme général

$$u_n = \frac{(-1)^n}{n^\alpha + (-1)^n}.$$

Exercice 12 : Soit deux séries positives convergentes de terme général u_n et v_n . Quelle est la nature de la série dont le terme général est donné ci-dessous :

$$a)w_n = \sqrt{u_n v_n}$$
 $b)w_n = \frac{\sqrt{u_n}}{n}$ $c)w_n = \frac{u_n}{1 - v_n}$ $d)w_n = u_n^2$.