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Abstract

In this paper we study one-dimensional reflected backward stochastic differential equation when
the noise is driven by a Brownian motion and an independent Poisson point process when the
solution is forced to stay above a right continuous left-hand limited obstacle. We prove existence
and uniqueness of the solution by using a penalization method combined with a monotonic limit
theorem.
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1 Introduction

Let (Bt)0≤t≤T be a d-dimensional Wiener process defined on a complete probability space (Ω,F ,P).
Let (Ft)0≤t≤T denote the natural filtration of (Bt) such that F0 contains all P-null sets of F , and
ξ be an FT -measurable one dimensional random variable. Let f be an IR-valued function defined
on [0, T ] × Ω × IR × IRd such that for all (y, z) ∈ IR × IRd, the map (t, ω) −→ f(t, ω, y, z) is Ft-
progressively measurable. We consider the following backward stochastic differential equation (BSDE
for short) associated with the coefficient f and the terminal value ξ

Yt = ξ +
∫ T

t
f(s, Ys, Zs)ds−

∫ T

t
ZsdBs, 0 ≤ t ≤ T. (1)

A solution for such equation is a couple of adapted processes (Y, Z) with values in IR × IRd which
mainly satisfies equation (1). This Kind of equations have been first introduced by Pardoux & Peng
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[13]. Their aim was to give a probabilistic interpretation of a solution of second order quasi-linear
partial differential equation. Since then, those equations have been intensively investigated due to
their connections with financial mathematics, optimal control and stochastic game, non-linear PDEs
and homogenization (see, for example, [5, 6, 7, 8, 14, 13, 2, 3] and the references therein).

The notion of reflected BSDE have been introduced by El Karoui et al [6]. A solution of such
equation, associated with a coefficient f ; terminal value ξ and a barrier S, is a triple of process
(Y, Z, K) with values in IR× IRd × IR+ satisfying

Yt = ξ +
∫ T

t
f(s, Ys, Zs)ds + KT −Kt −

∫ T

t
ZsdBs, Yt ≥ St ∀t ≤ T. (2)

Here the additional process K is continuous nondecreasing and its role is to push upwards the process

Y in order to keep it above the barrier S and moreover it satisfies
∫ T

0
(Ys−Ss)dKs = 0, this means that

the process K acts only when the process reaches the barrier S in a minimal way. The authors have
proved that equation (2) has a unique solution when ξ is square integrable, f is uniformly Lipschitz
with respect to (y, z) and S is continuous.

The extension to the case of reflected BSDE with jumps, which is a standard reflected BSDE driven
by a Brownian motion and an independent Poisson point process, have been established by Hamadène
& Ouknine [9]. A solution for such equation, associated with a coefficient f ; terminal value ξ and
a barrier S, is a quadruple of process (Y, Z, K, V ) of adapted solutions which satisfy the following
equation


(i) Yt = ξ +

∫ T

t
f(s, Ys, Zs, Vs)ds + KT −Kt −

∫ T

t
ZsdBs −

∫ T

t

∫
U

Vs(e)µ̃(ds, de),

(ii) ∀t ≤ T ; Yt ≥ St,

(iii)
∫ T

0
(Yt − St)dKt = 0.

(3)

Using two methods: the first one is based on the penalization argument and the second one on the
snell envelope theory, the authors have shown the existence and uniqueness of solutions if ξ is square
integrable, f is uniformly lipschitz with respect to y and z and the barrier S is right continuous left-
hand limited (rcll for short) whose jumping times are inaccessible stopping times. Note that this later
condition played a crucial role in their proofs. It is worth nothing also that, in this case, the jumping
times of the process Y come only from those of its Poisson process and then they are inaccessible.

The problem of existence and uniqueness of reflected BSDE when the noise is driven only by a
Brownian motion and the reflecting barrier S is rcll has been studied, first, by Hamadène [7] using the
snell envelope method and later by Lepeltier and Xu [12] using a monotonic limit theorem initially
introduced by Peng [15].

In this work, we study the problem of existence and uniqueness of solution to equation (3) when
the barrier S is just rcll and the jumping times of process Y come not only from those of its Poisson
process (inaccessible jumps) but also from those of the process S (predictable jumps), which means
that the process Y have two types of jumps: inaccessible and predicatable ones. The difficulty here
lies in the fact that since the barrier S is allowed to have predictable jumps then the process Y and
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then the reflecting process K are no longer continuous but just rcll. Roughly speaking, we consider
the following reflected BSDE with jumps

(i) Yt = ξ +
∫ T

t
f(s, Ys, Zs, Vs)ds + KT −Kt −

∫ T

t
ZsdBs −

∫ T

t

∫
U

Vs(e)µ̃(ds, de),

(ii) ∀t ≤ T ; Yt ≥ St,

(iii)
∫ T

0
(Yt− − St−)dKt = 0.

(4)

Note that the difference between equation (3) and (4) is in the Skorohod condition (iii).
In order to state the existence of solution for our reflected BSDE with jumps (4), we consider the
following penalized equation

Y n
t = ξ +

∫ T

t
f(s, Y n

s , Zn
s , V n

s )ds + Kn
T −Kn

t −
∫ T

t
Zn

s dBs −
∫ T

t

∫
U

V n
s (e)µ̃(ds, de) , t ≤ T,

where Kn
t = n

∫ t

0
(Y n

s −Ss)−ds. We prove that (Y n, Zn,Kn, V n) has, in some sense, a limit (Y, Z, K, V )

which satisfies our reflected BSDE with jumps (4). To get this convergence we need to state a
monotonic limit theorem, in the framework of filtration generated by a Brownian motion and Poisson
point processs, which generalizes a useful tool initially introduced by Peng [15].

At the same time, Hamadène & Ouknine [10] studied the same problem of existence and unique-
ness of reflected BSDE with jumps and rcll barrier using another proof based on a combination of
penalization and the snell envelope theorey.

Let us describe our plan. First of all, most of the material used in this paper is defined in Section 2,
uniqueness of solutions for our reflected BSDE with jumps is also given. A monotonic limit theorem is
proved in Section 3. In Section 4, we use the monotonic limit theorem in order to prove the convergence
of a our penalized equation. The proof of existence result of our reflected BSDE with jumps is stated
is Section 5.

2 Problem formulation, assumptions and uniqueness of the solution

for reflected BSDEs with jumps

2.1 Problem formulation and assumptions

Let (Ω,F , (Ft)t≤1)) be a stochastic basis such that F0 contains all P -null sets of F , Ft+ =
⋂
ε>0

Ft+ε =

Ft, ∀t ≤ 1, and suppose that the filtration is generated by the two following mutually independent
processes :

• a d-dimensional Brownian motion (Bt)t≤1,
• a Poisson random measure µ on IR+×U , where U := IRl \{0} is equipped with its Borel fields U ,

with compensator ν(dt, de) = dtλ(de), such that {µ̃([0, t]×A) = (µ− ν)([0, t]×A)}t≤1 is a martingale
for every A ∈ U satisfying λ(A) < ∞. λ is assumed to be a σ-finite mesure on (U,U) satisfying∫

U
(1 ∧ |e|2)λ(de) < ∞.
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We will need the following notations :

• P be the sigma algebra of Ft-progressively measurable sets on Ω× [0, 1].
• P̃ be the sigma algebra of predictable sets on Ω× [0, 1].
• S2 be the set of Ft-adapted rcll processes (Yt)t≤1 with values in IR and IE[sup

t≤1
|Yt|2] < ∞.

• H2,k be the set of P-measurable processes with values in IRk such that

IE[
∫ 1

0
|Zs|2ds] < ∞.

• L2 be the set of mappings V : Ω× [0, 1]× U → IR which are P̃ ⊗ U-measurable such that

IE[
∫ 1

0
ds

∫
U
(Vs(e))2λ(de)] < ∞.

• K2 be the set of Ft-adapted rcll increasing processes K such that K(0) = 0 et IE(K2
1 ) < ∞.

• For a given rcll process (wt)t≤1, wt− = lims↗t ws, t ≤ 1 (w0− = w0) ; w− := (wt−)t≤1 and
∆sw = ws − ws− 2

Let ξ be an F1-measurable one dimensional random variable and a function f : Ω × [0, 1] ×
IR1+d × L2(U,U , λ; IR) −→ IR which to (t, ω, y, z, v) associates f(t, ω, y, z, v) which is P ⊗ B(IR1+d)⊗
B(L2(U,U , λ; IR))-measurable and a real valued barrier {St, 0 ≤ t ≤ 1} which is P-measurable process.
For the problem of existence and uniqueness of solution for reflected BSDE with jumps, we introduce
the following assumptions:

(A.1) The terminal value ξ is square integrable, i.e. ξ ∈ L2(Ω, F1, P )

(A.2) The function f satisfies the following conditions :

(i) the process (f(t, 0, 0, 0))t≤1 belongs to L2(Ω× [0, 1], dP ⊗ dt)

(ii) f is uniformly Lipschitz with respect to (y, z), i.e., there exists a constant 0 < k < ∞ such
that for any y, y′, z, z′ ∈ IR and v, v′ ∈ L2(U,U , λ; IR),

P − a.s., |f(ω, t, y, z, v)− f(ω, t, y′, z′, v′)| ≤ k(|y − y′|+ |z − z′|).

(iii) there exist two constants −1 < C1 ≤ 0 and C2 ≥ 0 such that
∀y ∈ IR,∀z ∈ IRd,∀v, v′ ∈ L2(U,U , λ; IR), we have

f(ω, t, y, z, v)− f(ω, t, y, z, v′) ≤
∫

U
(v(e)− v′(e))γy,z,v,v′

t (e)λ(de),

where γy,z,v,v′

t : Ω× [0, T ]×U −→ IR is P ×U−measurable and satisfies C1(1∧x) ≤ γt(e) ≤ C2(1∧x).

(A.3) The barrier process {St, 0 ≤ t ≤ 1}, is right continuous left-hand limited and satisfying

IE[ sup
0≤t≤1

(St)
2] < +∞ and S1 ≤ ξ, a.s.
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Remark 2.1 Note that, under condition (A.2)(iii), the function f is Lipschitz with respect to v, i.e.,
there exists a constant 0 < Γ < ∞ such that for any y, z ∈ IR and v, v′ ∈ L2(U,U , λ; IR), P-a.s.,

| f(ω, t, y, z, v)− f(ω, t, y, z, v′) |≤ Γ
(∫

U
| v(e)− v′(e) |2 λ(de)

) 1
2

.

Now we introduce the definition of our reflected BSDE with jumps with a single lower obstacle S.

Definition 2.1 A solution for such an equation is a quadruple (Y, Z, K, V ) := (Yt, Zt,Kt, Vt)t≤1 of
processes with values in IR1+d × IR+ × L2(U,U , λ; IR) and which satisfies :

(i) Y ∈ S2; Z ∈ H2,d;V ∈ L2 and K ∈ K2,

(ii) Yt = ξ +
∫ 1

t
f(s, Ys, Zs, Vs)ds + K1 −Kt −

∫ 1

t
ZsdBs −

∫ 1

t

∫
U

Vs(e)µ̃(ds, de) , t ≤ 1,

(iii) Y dominates S, i.e. ∀t ≤ 1, Yt ≥ St,

(iv) the Skorohod condition holds :∫ 1

0
(Yt− − St−)dKt = 0, a.s.

(5)

In our definition, the jumping times of process Y come not only from those of its Poisson process
(inaccessible jumps) but also from those of the process S (predictable jumps).

Remark 2.2 It’s worth nothing that condition (iv) is equivalent to the following condition :
If K = Kc + Kd, where Kc (resp. Kd) is the continuous (resp. the discontinuous) part of K, then∫ 1

0
(Yt − St)dKc

t = 0 and for every predictable stopping time τ ≤ 1 ∆τY = Yτ − Yτ−

= −(Sτ−−Yτ )+1{Sτ−=Yτ−}. Moreover, since the jumping times of the Poisson process are inaccessible,
for every predictable stopping time τ ≤ 1, ∆τY = −∆τK = −(Sτ− − Yτ )+1{Sτ−=Yτ−}.

Now let us recall the Itô formula for rcll semimartingales.

2.2 Itô’s formula for rcll semi-martingales

Let X = {Xt : t ∈ [0, T ]} be a rcll semimartingale, its quadratic variation is denoted by [X] =
{[X]t : t ∈ [0, T ]} and let F be a C2 real valued function, then F (X) is also a semimartingale, and the
following formula holds:

F (Xt) = F (X0) +
∫ t

0
F ′(Xs−)dXs +

1
2

∫ t

0
F ′′(Xs)d[X]cs

+
∑

0<s≤t

{F (Xs)− F (Xs−)− F ′(Xs−)∆Xs}.
(6)

where [X]c (sometimes denoted by 〈X〉) is the continuous part of the quadratic variation [X]. We
also note that in the case where F (x) = x2, the formula (6) takes the form

X2
t = X2

0 +
∫ t

0
2Xs−dXs +

∫ t

0
d[X]s. (7)
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Moreover if X and Y are two càdlàg semimartingales then we have

XtYt = X0Y0 +
∫ t

0
Xs−dYs +

∫ t

0
Ys−dXs +

∫ t

0
d[X, Y ]s.

where [X, Y ] stands for the quadratic covariation of X ,Y also called the bracket process. For a
complete survey in this topic we refer to Protter [17].

After these preliminaries, we are going to show the uniqueness of the solution for the reflected
BSDE with jumps (5) under the above assumptions on f , ξ and S.

2.3 Uniqueness of the solution for reflected BSDE with jumps.

Proposition 2.1 Assume that assumptions (A.1), (A.2) and (A.3) on f , ξ and (St)t≤1 are satisfied.
Then the reflected BSDE (5) associated with (f, ξ, S) has a unique solution.

Proof : Assume (Y, Z, K, V ) and (Y ′, Z ′,K ′, V ′) are two solutions of equation (5). Using Itô’s formula
(7) with the discontinuous semi-martingale Y − Y ′ yields

|Yt − Y ′
t |

2 +
∫ 1

t
|Zs − Z ′s|2ds +

∫ 1

t

∫
U

(
Vs (e)− V ′

s (e)
)2

λ(de)ds

= 2
∫ 1

t
(Ys − Y ′

s )(f(s, Ys, Zs, Vs)− f(s, Y ′
s , Z ′s, V

′
s ))ds

+2
∫ 1

t
(Ys− − Y ′

s−)(dKs − dK ′
s)− 2

∫ 1

t
(Ys − Y ′

s )(Zs − Z ′s)dBs

−2
∫ 1

t

∫
U
[(Ys− − Y ′

s− + Vs(e)− V ′
s (e))2 − (Ys− − Y ′

s−)2]µ̃(ds, de).

(8)

Thanks to the Skorohod condition (iv), we obtain∫ 1

t

(
Yt− − Y ′

t−
) (

dKt − dK ′
t

)
=
∫ 1

t
(Yt− − St−) dKt +

∫ 1

t

(
St− − Y ′

t−
)
dKt +

∫ 1

t

(
Y ′

t− − S′t−
)
dK ′

t +
∫ 1

t

(
S′t− − Yt−

)
dK ′

t ≤ 0.

Now since
∫ 1

t

∫
U
[(Ys−−Y ′

s−+Vs(e)−V ′
s (e))2− (Ys−−Y ′

s−)2]µ̃(ds, de) and
∫ .

0

(
Ys − Y ′

s

) (
Zs − Z ′s

)
dBs

are (Ft, P )-martingales, then taking the expectation in both sides of equality (8) yields, for any t ≤ 1,

IE

[
|Yt − Y ′

t |
2 +

∫ 1

t
|Zs − Z ′s|2ds +

∫ 1

t

∫
U

(
Vs (e)− V ′

s (e)
)2

λ (de) ds

]
≤ 2IE

∫ 1

t

(
Ys − Y ′

s

) (
f(s, Ys, Zs, Vs)− f(s, Y ′

s , Z ′s, V
′
s )
)
ds

= 2IE

∫ 1

t

(
Ys − Y ′

s

) (
f(s, Ys, Zs, Vs)− f(s, Y ′

s , Z ′s, Vs)
)
ds

+2IE

∫ 1

t

(
Ys − Y ′

s

) (
f(s, Y ′

s , Z ′s, Vs)− f(s, Y ′
s , Z ′s, V

′
s )
)
ds
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Using assumptions (A.2)(ii)− (iii) we have

IE

[
|Yt − Y ′

t |
2 +

∫ 1

t
|Zs − Z ′s|2ds +

∫ 1

t

∫
U

(
Vs (e)− V ′

s (e)
)2

λ (de) ds

]
≤ 2IE

∫ 1

t
| Ys − Y ′

s |
(
k | Ys − Y ′

s | +k | Zs − Z ′s | +Γ‖Vs − V ′
s‖)
)
ds

≤ (2k + kα2 + Γβ2)IE
∫ 1

t
| Ys − Y ′

s |2 ds +
k

α2
IE

∫ 1

t
| Zs − Z ′s |2 ds

+
Γ
β2

IE

∫ 1

t
‖Vs − V ′

s‖2ds,

where α and β are two constants. Now, if we choose k
α2 = 1

2 = Γ
β2 it follows that

IE

[
|Yt − Y ′

t |
2 +

1
2

∫ 1

t
|Zs − Z ′s|2ds +

1
2

∫ 1

t

∫
U

(
Vs (e)− V ′

s (e)
)2

λ (de) ds

]
≤ (2k + 2k2 + 2Γ2)IE[

∫ 1

t

(
Ys − Y ′

s

)2
ds].

With this estimate and using Gronwall’s lemma and the right continuity of (Yt−Y ′
t )t≤1, we get Y = Y ′.

Consequently (Y, Z, V, K) = (Y ′, Z ′, V ′,K ′) whence the uniqueness of the solution of (5).

We now make more precise the dependence of the norm of the solution (Y, Z, K, V ) upon the data
(ξ, f, S). Using the same technique as in the proof of uniqueness we have also the following estimate :

Proposition 2.2 Under the above assumption, there exists a constant C which depends only on k

and Γ such that

IE sup
0≤t≤1

|Yt|2 + IE sup
0≤t≤1

|Kt|2 + IE

∫ 1

0
| Zt |2 dt + IE

∫ 1

t

∫
U

(Vs (e))2 λ (de) ds

≤ CIE

(
| ξ |2 +

∫ 1

0
| f (t, 0, 0, 0) |2 dt + sup

0≤t≤1
(St)

2

)
.

3 Monotonic limit theorem for reflected BSDE with jumps.

In this section, we will prove a convergence theorem for a monotonic sequence of processes. It is a
generalized version, in the framework of filtration generated by a Brownian motion and Poisson point
processs, of a monotonic limit theorem obtained in [15]. This theorem is the following :

Theorem 3.1 We assume that f satisfies condition (A.2), ξ ∈ L2(Ω, F1, P ) and Kn is continuous
process with IE(Kn

1 )2 < ∞ and Kn
0 = 0, for any n ∈ IN . Let (Y n, Zn, V n) be the solution of the

following BSDE

Y n
t = ξ +

∫ 1

t
f(s, Y n

s , Zn
s , V n

s )ds + Kn
1 −Kn

t −
∫ 1

t
Zn

s dBs −
∫ 1

t

∫
U

V n
s (e)µ̃(ds, de) , t ≤ 1,

such that IE

∫ 1

0
|Zn

s |2ds < ∞ and IE

∫ 1

0

∫
U

(V n
s (e))2 λ(de)ds < ∞, for all n ∈ IN . If (Y n) converges

increasingly to Y with IE sup
0≤t≤1

|Yt|2 < ∞, then there exist Z ∈ H2,d, K ∈ K2 and V ∈ L2, such that,
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the triple (Z,K, V ) satisfies the following equation

Yt = ξ +
∫ 1

t
f(s, Ys, Zs, Vs)ds + K1 −Kt −

∫ 1

t
ZsdBs −

∫ 1

t

∫
U

Vs(e)µ̃(ds, de) , t ≤ 1.

Here Z is the weak limit in H2,d, K is the weak limit of (Kn
t ) in L2(Ft) and V is the weak limit in

L2. Moreover, for every p ∈ [1, 2[, the following strong convergence hold

IE[
∫ 1

0
|Y n

s − Ys|2ds] + IE[
∫ 1

0
|Zn

s − Zs|pds +
∫ 1

0

(∫
U
|V n

s − Vs|2λ(de)
) p

2

ds] → 0.

Proof. From the hypothesis, the sequences (Zn)n≥0, (V n)n≥0 and (f(., Y n, Zn, V n)n≥0 are bounded
in the respective Hilbert spaces H2,d, L2 and L2([0, 1] × Ω). Then we can extract sequences which
weakly converge in the related spaces. We call Z, V and g the respective weak limits. Thanks to the
martingale representation theorem, for every stopping time τ ≤ 1, the following weak convergence
hold in L2(Fτ ) ∫ τ

0
f(s, Y n

s , Zn
s , V n

s )ds ⇀

∫ τ

0
g(s)ds,

∫ τ

0
Zn

s dBs ⇀

∫ τ

0
ZsdBs,

and ∫ τ

0

∫
U

V n
s (e)µ̃(ds, de) ⇀

∫ τ

0

∫
U

Vs(e)µ̃(ds, de), when n → +∞.

Since
Kn

τ = Y n
0 − Y n

τ −
∫ τ

0
f(s, Y n

s , Zn
s , V n

s )ds +
∫ τ

0
Zn

s dBs +
∫ τ

0

∫
U

V n
s (e)µ̃(ds, de),

thus we have also the following weak convergence in L2(Fτ )

Kn
τ ⇀ Kτ = Y0 − Yτ −

∫ τ

0
g(s)ds +

∫ τ

0
ZsdBs +

∫ τ

0

∫
U

Vs(e)µ̃(ds, de).

Since the process (Kn
t )0≤t≤1 is increasing predictable process Kn

0 = 0 the limit process K remains an
increasing predictable (K is equal to its dual predictable projection) process with IE(K1)2 < ∞ and
K0 = 0. Moreover the processes K and Y are rcll processes (see Lemma 2.2 in [15]) and then Y has
the form

Yt = ξ +
∫ 1

t
g(s)ds + K1 −Kt −

∫ 1

t
ZsdBs −

∫ 1

t

∫
U

Vs(e)µ̃(ds, de) , t ≤ 1.

It remains to prove that, for all p ∈ [1, 2[,

∫ t

0
g(s)ds =

∫ t

0
f(s, Ys, Zs, Vs)ds, and IE[

∫ 1

0
|Zn

s − Zs|pds +
∫ 1

0

(∫
U
|V n

s − Vs|2λ(de)
) p

2

ds] → 0.

Let Nt =
∫ t

0

∫
U

Vs(e)µ̃(ds, de) and Nn
t =

∫ t

0

∫
U

V n
s (e)µ̃(ds, de), then ∆s(Y n−Y ) = ∆s(Nn−N +K).

Applying Itô’s formula to (Y n
t − Yt)2 on each given subinterval ]σ, τ ], here 0 ≤ σ ≤ τ ≤ 1 are two
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predictable stopping times, we obtain

(Y n
σ − Yσ)2 +

∫ τ

σ
|Zn

s − Zs|2ds +
∑

σ<s≤τ

(
∆s(Nn −N + K)

)2

= (Y n
τ − Yτ )2 + 2

∫ τ

σ
(Y n

s − Ys)dKn
s − 2

∫ τ

σ
(Y n

s− − Ys−)dKs

+2
∫ 1

t
(Y n

s − Ys) (f(s, Y n
s , Zn

s , V n
s )− f(s, Ys, Zs, Vs)) ds

−2
∫ τ

σ
(Y n

s− − Ys−)(Zn
s − Zs)dBs − 2

∫ τ

σ

∫
U
(Y n

s− − Ys−)(V n
s (e)− Vs(e))µ̃(ds, de)

= (Y n
τ − Yτ )2 + 2

∫ τ

σ
(Y n

s − Ys)dKn
s + 2

∫ τ

σ
∆s(Nn −N)dKs + 2

∫ τ

σ
∆sKdKs

−2
∫ τ

σ
(Y n

s − Ys)dKs + 2
∫ 1

t
(Y n

s − Ys) (f(s, Y n
s , Zn

s , V n
s )− f(s, Ys, Zs, Vs)) ds

−2
∫ τ

σ
(Y n

s− − Ys−)(Zn
s − Zs)dBs − 2

∫ τ

σ

∫
U
(Y n

s− − Ys−)(V n
s (e)− Vs(e))µ̃(ds, de)

Taking the expectation and using the fact that IE
∑

σ<s≤τ

∆s(Nn − N)∆sK = IE

∫ τ

σ
∆s(Nn − N)dKs

and IE
∑

σ<s≤τ

(∆sK)2 = IE

∫ τ

σ
∆sKdKs (see Lemma A.1 in M. Royer [16]), we get

IE(Y n
σ − Yσ)2 +IE

∫ τ

σ
|Zn

s − Zs|2ds + IE
∑

σ<s≤τ

(
∆s(Nn −N)

)2

= IE(Y n
τ − Yτ )2 + 2IE

∫ τ

σ
(Y n

s − Ys)dKn
s + IE

∑
σ<s≤τ

(∆sK)2 − 2IE

∫ τ

σ
(Y n

s − Ys)dKs

+2IE

∫ τ

σ
(Y n

s − Ys) (f(s, Y n
s , Zn

s , V n
s )− g(s)) ds.

Since
∫ τ

σ
(Y n

s − Ys)dKn
s ≤ 0 and IE

∑
σ<s≤τ

(
∆s(Nn − N)

)2

= IE

∫ τ

σ
ds

∫
U
|V n

s (e) − Vs(e)|2λ(de) , we

obtain
IE(Y n

σ − Yσ)2 +IE

∫ τ

σ
|Zn

s − Zs|2ds + IE

∫ τ

σ
ds

∫
U
|V n

s (e)− Vs(e)|2λ(de)

≤ IE(Y n
τ − Yτ )2 + IE

∑
σ<s≤τ

(∆sK)2 − 2IE

∫ τ

σ
(Y n

s − Ys)dKs

+2IE

∫ τ

σ
(Y n

s − Ys) (f(s, Y n
s , Zn

s , V n
s )− g(s)) ds.

(9)

Fix a nonnegative constants ε, δ, thanks to Appendix in [16] there exist predictable times σk, τk, k =
0, 1, ...N such that ]σj , τj ]∩]σi, τi] = ∅, ∀j 6= i and

i)IE
N∑

k=0

(τk − σk)(ω) ≥ 1− ε

2
,

ii)
N∑

k=0

IE
∑

σk<t≤τk

| ∆sK |2≤ εδ

3
.

9



Now for each σ = σk and τ = τk we apply estimate (9) and then take the sum, it follows that

IE
N∑

k=0

∫ τk

σk

|Zn
s − Zs|2ds + IE

N∑
k=0

∫ τk

σk

ds

∫
U
|V n

s (e)− Vs(e)|2λ(de)

≤ IE
N∑

k=0

(Y n
τk
− Yτk

)2 + IE
N∑

k=0

∑
σk<s≤τk

(∆sK)2 + 2IE

∫ 1

0
| Y n

s − Ys | dKs

+2 | IE
∫ 1

0
(Y n

s − Ys) (f(s, Y n
s , Zn

s , V n
s )− g(s)) ds | .

(10)

For the last term of the right hand of equation (10) we have

| IE
∫ 1

0
(Y n

s − Ys) (f(s, Y n
s , Zn

s , V n
s )− g(s)) ds |

≤
(

IE

∫ 1

0
| f(s, Y n

s , Zn
s , V n

s )− g(s) |2 ds

) 1
2
(

IE

∫ 1

0
(Y n

s − Ys)2ds

) 1
2

≤ C

(
IE

∫ 1

0
(Y n

s − Ys)2ds

) 1
2

−→ 0.

(11)

It follows also from dominated convergence theorem that

IE

∫
]0,1]

| Y n
s − Ys | dKs −→ 0. (12)

Taking into account the convergence results (11) and (12) we obtain from estimate (10) that

lim sup
n→∞

(
IE

N∑
k=0

∫ τk

σk

|Zn
s − Zs|2ds + IE

N∑
k=0

∫ τk

σk

ds

∫
U
|V n

s (e)− Vs(e)|2λ(de)
)

≤ IE
N∑

k=0

∑
σk<s≤τk

(∆sK)2 ≤ εδ

3
.

Hence, there exists N(ε, δ) ∈ IN such that ∀n ≥ N(ε, δ) we obtain

IE
N∑

k=0

∫ τk

σk

|Zn
s − Zs|2ds + IE

N∑
k=0

∫ τk

σk

ds

∫
U
|V n

s (e)− Vs(e)|2λ(de) ≤ εδ

3
.

Denoting by m the Lebesgue measure on [0, 1] one can prove that

m× P{(ω, s) ∈ Ω×
⋃

0≤k≤N

]σk(ω), τk(ω)]/ | Zn
s (ω)− Zs(ω) |2≥ δ} ≤ ε

2
,

m× P{(ω, s) ∈ Ω×
⋃

0≤k≤N

]σk(ω), τk(ω)]/
∫

U
|V n

s (ω, e)− Vs(ω, e)|2λ(de) ≥ δ} ≤ ε

2
,

and then
lim

n→∞
m× P{(ω, s) ∈ Ω× [0, 1]/ | Zn

s − Zs |2≥ δ} = 0,

lim
n→∞

m× P{(ω, s) ∈ Ω× [0, 1]/
∫

U
|V n

s (e)− Vs(e)|2λ(de) ≥ δ} = 0.

10



Thus, on [0, 1]×Ω (resp. [0, 1]×Ω×U), the sequence (Zn)n≥0 ( resp. (V n)n≥0) converges in measure
to Z (resp. V). Since (Zn)n≥0 and (V n)n≥0 are also bounded in H2,d and L2 respectively. Then, for
any p ∈ [1, 2[, the uniform integrability give us

IE[
∫ 1

0
|Zn

s − Zs|pds +
∫ 1

t

(∫
U
|V n

s − Vs|2λ(de)
) p

2

ds] → 0,∀p ∈ [1, 2[.

Moreover we have also, for any p ∈ [1, 2[

IE

(∫ 1

0
| f(s, Y n

s , Zn
s , V n

s )− f(s, Ys, Zs, Vs) |p ds

) 1
p

≤ IE

(∫ 1

0

((
k | Y n

s − Ys | +k | Zn
s − Zs | +Γ(

∫
U
|V n

s (e)− Vs(e)|2λ(de))
1
2

)p)
ds

) 1
p

≤ kIE

(∫ 1

0
|Y n

s − Ys|pds

) 1
p

+ kIE

(∫ 1

0
|Zn

s − Zs|pds

) 1
p

+ ΓIE

(∫ 1

0

(∫
U
|V n

s − Vs|2λ(de)
) p

2

ds

) 1
p

→ 0.

(13)
Henceforth ∫ t

0
g(s)ds =

∫ t

0
f(s, Ys, Zs, Vs)ds.

The proof of Theorem 3.1 is completed.

4 The penalization method for reflected BSDE with jumps

Before giving the main result of this section, it is worth nothing that, in general, we do not have a
comparison theorem for solution of BSDE driven by Brownain motion and an independent Poisson
process. However, if we consider the following BSDE with jumps

Yt = ξ +
∫ 1

t
f(s, Ys, Zs, Vs)ds−

∫ 1

t
ZsdBs −

∫ 1

t

∫
U

Vs(e)µ̃(ds, de) , t ≤ 1, (14)

and suppose, in addition, that f satisfies (A.2)(iii) we have the following

Theorem 4.1 (see M. Royer [16]) Let us give two pair (f1, ξ1) and (f2, ξ2) where ξ1, ξ2 ∈ L2(Ω,F1, P ).
Denote by (Y 1, Z1, V 1) and (Y 2, Z2, V 2) the solutions of BSDEs with jumps (14) associated respec-
tively with (ξ1, f1) and (ξ2, f2). Assume that (A .2) is fulfilled for f1 and f2, ξ1 ≤ ξ2 a.s. and
f1
(
t, Y 1

t , Z1
t , V 1

t

)
≤ f2

(
t, Y 1

t , Z1
t , V 1

t

)
dt× dP a.e. Then Y 1

t ≤ Y 2
t , for t ∈ [0, 1], a.s.

Note that this comparison theorem will be used only in Step 2 of the proof of Theorem 4.1 below.
Now let us introduce the following penalized equation

Y n
t = ξ +

∫ 1

t
f(s, Y n

s , Zn
s , V n

s )ds + Kn
1 −Kn

t −
∫ 1

t
Zn

s dBs −
∫ 1

t

∫
U

V n
s (e)µ̃(ds, de) , t ≤ 1,

where Kn
t = n

∫ t

0
(Y n

s − Ss)−ds. Note that this equation has a unique solution (see, for example,

Hamadène & Ouknine [9] or Barles et al [1] or Tang & Li [18]).
We have the following theorem :

11



Theorem 4.2 The sequence of processes (Y n, Zn, V n), n ∈ N has a limit (Y, Z, V ) such that Y n

converges to Y ∈ S2 and Z is the weak (resp. strong) limit in H2,d (resp. Hp,d, 1 ≤ p < 2), K is the
weak limit of (Kn

t ) in L2(Ft) and V is the weak (resp. strong) limit in L2 (resp. Lp, 1 ≤ p < 2).

Proof. First, let us prove that there exists a constant C ≥ 0 such that

∀n ≥ 0 and t ≤ 1, IE[|Y n
t |2 +

∫ 1

0
|Zn

s |2ds +
∫ 1

0
ds

∫
U
(V n

s (e))2λ(de) + (Kn
1 )2] ≤ C. (15)

By Itô’s formula we obtain,

Y n
t

2 +
∫ 1

t
|Zn

s |2ds +
∑

t<s≤1

(∆sY
n)2 = ξ2 + 2

∫
]t,1]

Y n
s f(s, Y n

s , Zn
s , V n

s )ds

+2
∫
]t,1]

nY n
s (Y n

s − Ss)−ds− 2
∫
]t,1]

Y n
s−Zn

s dBs − 2
∫
]t,1]

Y n
s−

∫
U

V n
s (e)µ̃(ds, de), t ≤ 1.

Then, by taking the expectation in both sides and since IE
∑

t<s≤1

(∆sY
n)2 = IE

∫
]t,1]

ds

∫
U
(V n

s (e))2λ(de),

we get

IE[|Y n
t |

2 +
∫ 1

t
|Zn

s |2ds +
∫
]t,1]

ds

∫
U
(V n

s (e))2λ(de)]

≤ IE[ξ2] + 2IE[
∫
]t,1]

Y n
s f(s, Y n

s , Zn
s , V n

s )ds] + 2IE[
∫
]t,1]

nY n
s (Y n

s − Ss)−ds]

≤ IE[ξ2] + IE[
∫
]t,1]

(Y n
s )2ds] + IE[

∫
]t,1]

(f(s, 0, 0, 0))2ds] + IE[
∫
]t,1]

[
k|Y n

s |(| Y n
s |

+ | Zn
s |) + Γ|Y n

s |‖V n
s ‖
]
ds + γ−1IE[ sup

t≤s≤1
(Ss)2] + γIE[(Kn

1 −Kn
t )2];

where γ is a universal non-negative real constant. But for any t ≤ 1 we have,

IE[(Kn
1 −Kn

t )2] ≤ C{IE[ξ2 + |Y n
t |2 + (

∫ 1

t
|f(s, Y n

s , Zn
s , Un

s )|ds)2 + (
∫ 1

t
Zn

s dBs)2

+(
∫
]t,1]

∫
U

V n
s (e)µ̃(ds, de))2]}

≤ C{IE[ξ2 + |Y n
t |2 + (

∫ 1

t
|f(s, 0, 0, 0)|ds)2 +

∫ 1

t
|Zn

s |2ds)

+
∫
]t,1]

ds

∫
U
|V n

s (e)|2λ(de)]}

where C is a constant. Now plugging this inequality in the previous one yields,

IE[|Y n
t |

2 +
∫ 1

t
|Zn

s |2ds +
∫
]t,1]

ds

∫
U
(V n

s (e))2λ(de)]

≤ (1 + γC)IE[ξ2] + γCIE[|Y n
t |2] + (1 + k + kα2 + Γβ2)IE[

∫
]t,1]

(Y n
s )2ds]

+(1 + γC)IE[
∫
]t,1]

(f(s, 0, 0, 0))2ds] + γ−1IE[ sup
t≤s≤1

(Ss)2]

+(γC + k
α2 )IE[

∫ 1

t
|Zn

s |2ds) + (γC +
Γ
β2

)
∫
]t,1]

ds

∫
U
(V n

s (e))2λ(de)], t ≤ 1.
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Choosing γC = 1/4 = Γ
β2 = k

α2 we obtain

IE[|Y n
t |

2 +
1
2

∫ 1

t
|Zn

s |2ds +
1
2

∫
]t,1]

ds

∫
U
(V n

s (e))2λ(de)] ≤ C̃(1 + IE[
∫ 1

t
(Y n

s )2ds]), t ≤ 1,

where C̃ is positive real constant. Finally applying Gronwall’s inequality we get the desired result for

IE[|Y n
t |2] and then also for IE[

∫ 1

0
|Zn

s |2ds], IE[
∫ 1

0
ds

∫
U
(V n

s (e))2λ(de)] and IE[(Kn
1 )2].

Second, we prove that there exists a constant C ≥ 0 such that for any n ≥ 0 we have IE[ sup
0≤t≤1

|Y n
t |

2] ≤

C.

Indeed for n ≥ 0, using Itô’s formula we have,

Y n
t

2 +
∫ 1

t
|Zn

s |2ds +
∑

t<s≤1

(∆sY
n)2

= ξ2 + 2
∫
]t,1]

Y n
s f(s, Y n

s , Zn
s , Un

s )ds + 2
∫
]t,1]

nY n
s (Y n

s − Ss)−ds

−2
∫
]t,1]

Y n
s−Zn

s dBs − 2
∫
]t,1]

Y n
s−

∫
U

V n
s (e)µ̃(ds, de), t ≤ 1.

(16)

But

|
∫ 1

t
Y n

s f(s, Y n
s , Zn

s , Un
s )ds| ≤ (k + kα + Γβ)

∫ 1

t
|Y n

s |2ds +
k

α

∫ 1

t
|Zn

s |2ds

+Γ
β

∫ 1

t
‖V n

s ‖2ds +
∫ 1

t
{C1|Y n

s |2 + C−1
1 |f(s, 0, 0, 0)|2}ds,

and ∫ 1

t
Y n

s dKn
s ≤ C2 sup

t≤s≤1
|Ss|2 + C−1

2 (Kn
1 −Kn

t )2.

On the other hand using Burkholder-Davis-Gundy’s inequality ([4],p.304) we get,

IE[ sup
t≤s≤1

|
∫
]s,1]

Y n
r−Zn

r dBr|] ≤ C3IE[ sup
t≤s≤1

|Y n
s |2] + C−1

3 IE[
∫ 1

t
|Zn

r |2dr]

and

IE[ sup
t≤s≤1

|
∫
]s,1]

∫
U

Y n
r−V n

r (e)µ̃(dr, de)|]≤ CIE[{
∫
]t,1]

dr

∫
U
|Y n

r−V n
r (e)|2λ(de)}1/2]

≤ C4IE[ sup
t≤s≤1

|Y n
s |2] +

1
C4

IE[
∫ 1

t
ds

∫
U
(V n

s (e))2λ(de)].
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Here α, β, C1, C2, C3 and C4 are universal non-negative real constants. Now combining these inequal-
ities with (16) yields,

IE[ sup
t≤s≤1

|Y n
s |2 +

∫ 1

t
|Zn

s |2ds +
∫
]t,1]

ds

∫
U
(V n

s (e))2λ(de)]

≤ IE[ξ2] + 2(k + kα + Γβ)IE[
∫ 1

t
|Y n

s |2ds +
k

α

∫ 1

t
|Zn

s |2ds +
Γ
β

∫ 1

t
‖V n

s ‖2ds

+
∫ 1

t
{C1|Y n

s |2 + C−1
1 |f(s, 0, 0, 0)|2}ds + 2C2IE[ sup

t≤s≤1
|Ss|2]

+2C−1
2 IE[(Kn

1 −Kn
t )2] + 2C3IE[ sup

t≤s≤1
|Y n

s |2] + 2C−1
3 IE[

∫ 1

t
|Zn

r |2dr]

+2C4IE[ sup
t≤s≤1

|Y n
s |2] + 2C−1

4 IE[
∫ 1

t
ds

∫
U
(V n

s (e))2λ(de)],∀t ≤ 1.

Finally for choosing suitable constants we obtain IE[sup
t≤1

|Y n
t |2] ≤ C.

Now let Yt = lim inf
n→∞

Y n
t , t ≤ 1. Since fn(s, y, z, v) = f(s, y, z, v) + n(y − Ss)− satisfies condition

(A.2)(iii), it follows from comparison theorem (see Theorem 4.1) that for any n ≥ 0, Y n ≤ Y n+1

then, using Fatou’s lemma, IE[Y 1
t ] ≤ IE[Yt] ≤ lim inf

n→∞
IE[Y n

t ] ≤ C. It follows that for any t ≤ 1, Yt < ∞
and then P-a.s., Y n

t ↑ Yt as n →∞.
The proof of Theorem 4.2 will be finished by using Theorem 3.1.

5 Existence of the solution for reflected BSDE with jumps

Now we are in position to show the main result of this paper.

Theorem 5.1 The limit (Yt, Zt,Kt, Vt)t≤1 of (Y n
t , Zn

t ,Kt, V
n
t )t≤1 is the unique solution of the reflected

BSDE with jumps (5).

Proof. The uniqueness result is proved in Section 2. Let us now focus on the existence. We have
already proved that (Y, Z, K, V ) satisfy (i) and (ii) of equation (5). It remains to prove (iii) and (iv).
First observe that for each n, (Y n, Zn, V n) is the solution of the reflected BSDE with jumps and lower
barrier Y n

t ∧ St. We get from Hamadène & Ouknine [10], that

Y n
t = ess sup

v∈Tt

IE

[
ξ1{v=1} + Y n

ν ∧ Sν1{v<1} +
∫ v

t
f(s, Y n

s , Zn
s , V n

s )ds |Ft

]
, (17)

where Tt is the set of all stopping times valued between t and 1.
Therefore

Y n
t ≤ ess sup

v∈Tt

IE

[
ξ1{v=1} + Sv1{v<1} +

∫ v

t
f(s, Ys, Zs, Vs)ds |Ft

]
+IE

[∫ 1

0

(
k|Y n

s − Ys|+ k|Zn
s − Zs|+ Γ(

∫
U
| V n

s (e)− Vs(e) |2 λ(de))
1
2

)
ds | Ft

]
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By the convergence in Theorem 3.1, we can choose a subsequence such that the last term converges
to 0, a.s. It follows that

Yt ≤ ess sup
v∈Tt

IE

[
ξ1{v=1} + Sv1{v<1} +

∫ v

t
f(s, Ys, Zs, Vs)ds |Ft

]
(18)

On the other hand, from Hamadène & Ouknine [9], we deduce that for every stopping time τ ≤ 1,
Yτ ≥ Sτ1{τ<1}+ξ1{τ=1}. From that and the section theorem (see [4]), we deduce that, Yt ≥ St1{t<1}+

ξ1{t=1}, ∀t ≤ 1 P − a.s. Moreover, since Yt +
∫ t

0
f(s, Ys, Zs, Vs)ds is a supermartingale then

Yt ≥ ess sup
v∈Tt

IE

[
ξ1{v=1} + Sv1{v<1} +

∫ v

t
f(s, Ys, Zs, Vs)ds |Ft

]
. (19)

Combining (18) and (19) we obtain

Yt = ess sup
v∈Tt

IE

[
ξ1{v=1} + Sv1{v<1} +

∫ v

t
f(s, Ys, Zs, Vs)ds |Ft

]
(20)

Let η := (ηt)t≤1 be the process defined as follows :

ηt = ξ1{t=1} + St1{t<1} +
∫ t

0
f(s, Ys, Zs, Vs)ds− IE

[
ξ +

∫ 1

0
f(s, Ys, Zs, Vs)ds |Ft

]
,

such that η1 = 0. Observe that η is rcll. Moreover

sup
0≤t≤1

|ηt| ∈ L2 (Ω) . (21)

The Snell envelope of η is the smallest rcll supermartingale which dominates the process η, it is given
by :

St (η) = ess sup
ν∈Tt

IE [ην |Ft] .

Now, by assumptions (A.1) and (A.2), we have IE[supt≤1 |St|2] < ∞ and then (St(η))t≤1 is of class
[D], i.e. the set of random variables {Sτ (η), τ ∈ T0} is uniformly integrable. Henceforth it has the
following Doob-Meyer decomposition

St (η) = Yt − IE[ξ +
∫ 1

t
f(s, Ys, Zs, Vs)ds|Ft] = M1

t + K1
t ,

where M1 is an Ft martingale and (K1 = K1,c + K1,d)t≤1 is a predictable rcll non-decreasing process
such that IE(K1

1 )2 < ∞ and K1
0 = 0. Through the representation theorem of martingales with respect

to (Ft)t≤1, applied to the martingale

M1
t + IE[ξ +

∫ 1

0
f(s, Ys, Zs, Vs)ds|Ft]

there exist two processes Z1 = (Z1
t )t≤1 and V 1 = (V 1

t )t≤1 which belong respectively to H2,d and L2

such that,

Yt = Y0 −
∫ t

0
f(s, Ys, Zs, Vs)ds +

∫ t

0
Z1

s dWs +
∫ t

0

∫
U

V 1
s (e)µ̃(ds, de)−K1

t .
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By identification with (ii) we see that K1 = K, Z1 = Z and V 1 = V .

Now let us show that
∫ 1

0
(Yt− − St−)dKt = 0, a.s.. We have St (η) = M1

t − K1,c
t − K1,d

t . Since

the filtration is generated by a Brownian motion and an independent Poisson measure, the jumping
times of (M1

t )t≤1 are those of the poisson part and then there are inaccessible. Therefore, when
K1,d jumps, the process S has the same jump. Then {∆K1,d > 0} ⊂ {S−(η) = η−} and ∆tK

1,d =

(ηt− − St(η))+1{ηt−=St− (η)}. Henceforth
∫ 1

0
(Yt− − St−)dK1,d

t = 0.

Now, since the supermartingale (St(η) + Kd
t )t≤1 is regular, i.e. p(S(η) + Kd) = S−(η) + Kd

− =
(S(η) + Kd)−, where p(S(η) + Kd) denote the predictable projection of (S(η) + Kd), using the same

argument as in Lepeltier & Xu [12] (see also [7]) we have also
∫ 1

0
(Yt− − St−)dK1,c

t = 0.

Finally ∫ 1

0
(Yt− − St−)dKt = 0.

The process (Y, Z, K, V ) is then the solution of our reflected BSDE with jumps.

Now, let us give a comparison theorem for reflected BSDE with jumps. Let (Y i, Zi,Ki, V i) (i =
1, 2) be two solutions of our equation with jumps (5) associated respectively with (ξ1, f1) and (ξ2, f2),
then we have the following

Theorem 5.2 Assume that (A .1), (A .2) and (A .3) are fulfilled for ξ1, ξ2, f1, f2 and S, ξ1 ≤ ξ2

a.s. and f1
(
t, Y 1

t , Z1
t , V 1

t

)
≤ f2

(
t, Y 1

t , Z1
t , V 1

t

)
dt× dP a.e. Then Y 1

t ≤ Y 2
t , for t ∈ [0, 1], a.s.

Proof. Consider the two penalized equations

Y 1,n
t = ξ1 +

∫ 1

t
f(s, Y 1,n

s , Z1,n
s , V 1,n

s )ds + K1,n
1 −K1,n

t −
∫ 1

t
Z1,n

s dBs −
∫ 1

t

∫
U

V 1,n
s (e)µ̃(ds, de),

Y 2,n
t = ξ2 +

∫ 1

t
f(s, Y 2,n

s , Z2,n
s , V 2,n

s )ds + K1,n
2 −K2,n

t −
∫ 1

t
Z2,n

s dBs −
∫ 1

t

∫
U

V 2,n
s (e)µ̃(ds, de),

where K1,n
t = n

∫ t

0
(Y 1,n

s −Ss)−ds and K2,n
t = n

∫ t

0
(Y 2,n

s −Ss)−ds. Since f1
n(s, y, z, v) = f1(s, y, z, v)+

n(y − Ss)− and f2
n(s, y, z, v) = f2(s, y, z, v) + n(y − Ss)− satisfy condition (A.2), f1

n(s, y, z, v) ≤
f2

n(s, y, z, v) and ξ1 ≤ ξ2, then by Theorem 4.1 we get Y 1,n
t ≤ Y 2,n

t , for t ∈ [0, 1]. Passing to the limit,
by Theorem 3.1 we have that Y 1

t ≤ Y 2
t , for t ∈ [0, 1], a.s.
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