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Département de Mathématiques, B.P. 2390, Marrakech, Maroc.

E–mails: essaky@ucam.ac.ma, ouknine@ucam.ac.ma.

Abstract

We study the existence and uniqueness of Reflected Backward Stochastic Differential Equation
(RBSDE for short) with both monotone and locally monotone coefficient and squared integrable
terminal data. This is done with a polynomial growth condition on the coefficient. An application
to the homogenization of multivalued Partial Differential Equations (PDEs for short) is given.

1 Introduction

Let (Wt)0 ≤ t≤T be a r-dimensional Wiener process defined on a complete probability space (Ω,F , P ).
Let (Ft)0 ≤ t≤T denote the natural filtration of (Wt) such that F0 contains all P-null sets of F , and
ξ be an FT -measurable d-dimensional random variable. Let f be an Rd-valued process defined on
[0, T ] × Ω × Rd × Rd×r such that for all (y, z) ∈ Rd × Rd×r, the map (t, ω) −→ f(t, ω, y, z) is Ft-
progressively measurable. The BSDE we consider here is of the following type

Yt = ξ +
∫ T

t

f(s, Ys, Zs)ds−
∫ T

t

ZsdWs, 0 ≤ t ≤ T.

Such equations are a relatively recent subject of research, having leapt onto the stage only 12 years
ago with the publication of Pardoux and Peng’s paper [27]. Originally motivated by questions arising in
stochastic control theory, they have since found applications in both mathematical finance theory (e.g.
[13]), and in the vast subject of partial differential equations (e.g. [28, 30]). The connection between
Brownian motion and diffusions with partial differential equations has been a subject of intensive
research for over half a century, only limited to the types of PDEs one can consider (usually linear
elliptic type PDEs). Backwards SDEs allows the treatment of a heretofore non treatable type of PDE,
by probabilistic methods, and is therefore intrinsically interesting.

In [27], Pardoux and Peng have proved the existence and uniqueness of a solution under globally
Lipschitz coefficient by using the Itô’s martingale representation theorem and a suitable Picard approx-
imation procedure. Afterwards, many efforts have been done in relaxing the Lipschitz conditions and
the growth of the generator function, (see [17, 18, 12, 23, 24, 2, 9]).

The existence and uniqueness of reflected backward stochastic differential equation in a convex
domain, via penalization method, have been proved by Gegout-Petit and Pardoux [16] under Lipschitz
hypothesis on the coefficient. In the case where the solution is forced to remain above an obstacle, El
Karoui et al. [14] have derived an existence result for one dimensional reflected BSDE with Lipschitz
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conditions by using two methods: one uses Picard iteration, the other uses penalization argument (see
also [4, 20]). In this case, the solution is a triple (Y, Z,K), where K is an increasing process, satisfying

Yt = ξ +
∫ T

t

f(s, Ys, Zs)ds−
∫ T

t

ZsdWs + KT −Kt.

Those equations are also discussed in the case of globally lipschitz in z, globally monotone in y and the
generator f has a linear growth [29].

However, in many examples of semilinear PDEs, the nonlinearity is not of linear growth but instead,
it is of polynomial growth, see for instance the linear heat equation analyzed by Escobedo et al. [15] or
the Allen-Cahn equation (see Barles et al. [6]). If one attempts to extend those equations to the case
of multivalued PDE’s, then the problem of solving RBSDE with polynomial growth coefficient comes
up naturally.

The subject of the first part of this paper consists to solve this last problem by using the Yosida
approximation which is a penalization method. Our result gives, in particular, a probabilistic inter-

pretation of the multivalued PDE
∂u

∂t
+4u − u3 ∈ ∂φ, where φ is a lower semicontinuous proper and

convex function. Noticing that, since we allow the presence of obstacles, our result is also important
for applications to finance.

In the second part, we merely assume that the monotonic condition on the variable y as well as
the Lipschitz condition on the variable z are satisfied locally in y and z. We then show that if the
the monotonic constant µN and the Lipschitz constant LN , of the coefficient f in the ball B(0, N) of
Rd ×Rd×r, are such that µ+

N + L2
N = O(log N), then the corresponding RBSDE has a unique solution.

This is done with an unbounded terminal data. The proof is mainly based on the result of the first
part and a suitable approximation of the generator f by a sequence fn of Lipschitz functions. The idea
consists to use the result of the first part inside a fixed ball B(0, N) then to find a good control of the
solutions in Rd × Rd×r \B(0, N).

Finally, in the third part, we apply our result to homogenization of multivalued semilinear PDEs.

The paper is organized as follows. In Section 2, we study the existence and uniqueness of RBSDE
with monotone generator. The existence and uniqueness of one solution to RBSDE with locally mono-
tone coefficient is proved in Section 3. Section 4 is devoted to the study of an homogenization property
for multivalued PDE under locally monotone condition.

2 RBSDE with Monotone Coefficient and polynomial growth

2.1 Formulation of the problem

Let (Ω,F ,P) be a complete probability space and (Wt, t ∈ [0, 1] ) be a n-dimensional Wiener process
defined on it. Let (Ft, t ∈ [0, 1] ) denote the natural filtration of (Wt) augmented with the P-null sets
of F . We define the following three objects:
(A.1) A process f defined on Ω × [0, 1] × IRd × IRd×n with value in Rd which satisfies the following
assumptions:
There exist constants γ ≥ 0, µ ∈ R, C ≥ 0 and p ≥ 1 such that P− a.s., we have

(i) ∀(y, z) ∈ IRd × IRd×n : (ω, t) −→ f (ω, t, y, z) is Ft−progressively measurable
(ii) ∀t,∀y, ∀(z, z′), | f(t, y, z)− f(t, y, z′) |≤ γ | z − z′ |
(iii)∀t, ∀z, ∀(y, y′), (y − y′)(f(t, y, z)− f(t, y′, z)) ≤ µ | y − y′ |2
(iv)∀t, ∀y, ∀z, | f(t, y, z) |≤| f(t, 0, z) | +K(1+ | y |p)
(v)∀t, ∀z, y −→ f(t, y, z) is continuous.

(A.2) A terminal value ξ which is F1-measurable such that

E | ξ |2p +E
(∫ 1

0

| f(s, 0, 0) |2 ds

)p

< +∞.
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Define
Dom(φ) = {u ∈ Rd : φ(u) < +∞}

∂φ(u) = {u∗ ∈ Rd :< u∗, v − u > +φ(u) ≤ φ(v), ∀v ∈ Rd}

Dom(∂(φ)) = {u ∈ Rd : ∂(φ) 6= ∅}

Gr(∂φ) = {(u, u∗) ∈ Rd × Rd : u ∈ Dom(∂(φ)) and u∗ ∈ ∂φ(u)}.
(A.3) A proper lower semicontinuous convex function φ : Rd →]−∞, +∞].
We also assume that ξ ∈ Dom(φ) and E(φ(ξ)) < +∞.
Before stating our result, we recall some properties of a Yosida approximation of subdifferential operator.
For every x ∈ Rd, we put

φn(x) = min
y

(n

2
| x− y |2 +φ(y)

)
.

Let Jn(x) be the unique solution of the diffrential inclusion x ∈ Jn(x) + 1
n∂φ(Jn(x)) (see Barbu,

Precupanu [5]). Note that φn and Jn satisfiy the following:
j) φn: Rd −→ R is a convex and C1 class function with with Lipschitz derivative.
jj) For every x ∈ Rd, 5φn(x) = n(x− Jn(x)) := An(x).
jjj) For every x ∈ Rd, inf

y∈Rd
φ(y) ≤ φ(Jn(x)) ≤ φn(x) ≤ φ(x).

jV) There exist a ∈ interior(Dom(φ)) and positive numbers R, C such that for every z ∈ Rd

〈∇φn(z)∗, z − a〉 ≥ R | An(z) | −C | z | −C for all n ∈ N∗. (2.1)

v) For every x ∈ Rd An(x) ∈ A(Jn(x)).
The map Jn is called the resolvent of the monotone operator A = ∂φ. The operator An is called

the Yosida approximation of ∂φ. More details can be found in Cépa [10].

Let us introduce our RBSDE. The solution is a triplet (Yt, Zt,Kt) , 0 ≤ t ≤ 1 of progressively measur-
able processes taking values in Rd × Rd×n × Rd and satisfying:





(1)Z is a predictable process and E
∫ 1

0

‖Zt‖2dt < +∞

(2) Yt = ξ +
∫ 1

t

f(s, Ys, Zs)ds−
∫ 1

t

ZsdWs + K1 −Kt, 0 ≤ t ≤ 1

(3) the process Y is continuous
(4)K is absolutely continuous,K0 = 0, and for every progressively measurable
and continuous processes (α, β) such that (αt, βt) ∈ Gr(∂φ), we have∫ .

0

(Yt − αt)(dKt + βtdt) ≤ 0

(5) Yt ∈ Dom(φ), 0 ≤ t ≤ 1 a.s.

Our goal in this section is to study the RBSDE (1)-(5) when the generator f satisfies the above as-
sumptions.

Consider the following sequence of backward stochastic differential equation

Y n
t = ξ +

∫ 1

t

(f(s, Y n
s , Zn

s )−An(Y n
s ))ds−

∫ 1

t

Zn
s dWs, (2.2)

where ξ, f satisfy the assumptions stated above and (An)n is the Yosida approximation of the operator
A = ∂φ. It is known, since An is Lipschitz and f is monotone, that the equation (2.2) has one and only
one solution. We set

Kn
t := −

∫ t

0

An(Y n
s )ds for t ∈ [0, 1] .
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2.2 Existence and uniqueness of solutions

The main result in this section is the following

Theorem 2.1. Assume that (A.1), (A.2), (A.3) hold. Then the RBSDE (1)-(5) has a unique
solution {(Yt, Zt, Kt) ; 0 ≤ t ≤ 1}. Moreover,

lim
n−→+∞

E sup
0≤t≤1

|Y n
t − Yt|2 = 0

lim
n−→+∞

E
∫ 1

0

|Zn
t − Zt|2 ds = 0

lim
n−→+∞

E sup
0≤t≤1

|Kn
t −Kt|2 = 0,

where (Y n, Zn) be the solution of equation 2.2.

In order to prove Theorem 2.1 we need the following lemmas.

Lemma 2.1. Let assumptions of Theorem 2.1 hold. Then

sup
n∈N∗

E
(

sup
0≤t≤1

| Y n
t |2 +

∫ 1

0

|Zn
s |2 ds +

∫ 1

0

|An (Y n
s )| ds

)
< +∞. (2.3)

Proof . By Itô’s formula we get

|Y n
t − a|2 +

∫ 1

t

|Zn
s |2 ds = |ξ − a|2 + 2

∫ 1

t

(Y n
s − a)∗ f(s, Y n

s , Zn
s )ds

−2
∫ 1

t

(Y n
s − a)∗ Zn

s dWs − 2
∫ 1

t

(Y n
s − a)∗An (Y n

s ) ds.

(2.4)

We Take expectation and use (2.1) to obtain,

E |Y n
t − a|2 + E

∫ 1

t

|Zn
s |2 ds ≤ E |ξ − a|2 + 2E

∫ 1

t

(Y n
s − a)∗ f(s, Y n

s , Zn
s )ds

− 2RE
∫ 1

t

| An (Y n
s ) | ds + 2C

∫ 1

t

| Y n
s | ds + 2C,

this implies that

E |Y n
t − a|2 + E

∫ 1

t

|Zn
s |2 ds + 2RE

∫ 1

t

|An (Y n
s )| ds

≤ E | ξ − a |2 +2CE
∫ 1

t

| Y n
s | ds + 2C

+ 2E
∫ 1

t

(Y n
s − a)∗ (f(s, Y n

s , Zn
s )− f(s, a, Zn

s ))ds + 2
∫ 1

t

(Y n
s − a)f(s, a, Zn

s )ds,

Using assumptions (A.1)(i)− (iii), we deduce

E
(
|Y n

t − a|2 +
∫ 1

t

|Zn
s |2 ds + 2R

∫ 1

t

|An (Y n
s )| ds

)

≤ E | ξ − a |2 +2µE
∫ 1

t

| Y n
s − a |2 ds + 2E

∫ 1

t

| Y n
s − a | (γ | Zn

s | +K(1+ | a |p))ds

+E
∫ 1

t

| Y n
s − a |2 ds + E

∫ 1

t

| f(s, 0, 0) |2 ds + C,
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where C is a constant which can change from line to line.

Since 2ab ≤ β2a2 +
1
β2

b2 for each a, b ≥ 0, we get

E
(
|Y n

t − a|2 +
∫ 1

t

|Zn
s |2 ds + 2R

∫ 1

t

|An (Y n
s )| ds

)

≤ E | ξ − a |2 +(2 | µ | +β2 + 1)E
∫ 1

t

|Y n
t − a|2 ds +

2γ2

β2
E

∫ 1

t

| Zn
s |2 ds + C.

If we take 2γ2

β2 = 1
2 , we obtain

E |Y n
t − a|2 + 1

2E
∫ 1

t

|Zn
s |2 ds ≤ C

(
1 + E

∫ 1

t

|Y n
s − a|2 ds

)
,

Hence by Gronwall’s lemma we have,

sup
0≤t≤1

E |Y n
t − a|2 ≤ C, ∀n.

So that
sup

0≤t≤1
E |Y n

t |2 ≤ C, ∀n.

Now, it is not difficult to show that,

sup
n∈N∗

E
(∫ 1

0

|Zn
s |2 ds +

∫ 1

0

|An (Y n
s )| ds

)
< +∞. (2.5)

We use equation (2.4) and Bulkholder-Davis-Gundy inequality to get,

sup
n∈N∗

E sup
0≤t≤1

|Y n
t |2 ≤ C. (2.6)

Lemma 2.1 is proved.

We state the following lemma which is essential for the convergence of the sequence (Y n, Zn)n∈IN∗ .

Lemma 2.2. Let assumptions of Theorem 2.1 hold. Then
a) sup

0≤t≤1
E | Y n

t |2p< +∞, ∀n.

b) sup
n∈N∗

E
∫ 1

0

|An (Y n
s )|2 ds < +∞.

Proof . a) Itô’s formula gives

|Y n
t − a|2 +

∫ 1

t

|Zn
s |2 ds = |ξ − a|2 + 2

∫ 1

t

(Y n
s − a)∗ f(s, Y n

s , Zn
s , Un

s )ds

− 2
∫ 1

t

Y n
s Zn

s dWs − 2
∫ 1

t

(Y n
s − a)∗An (Y n

s ) ds,

By assumptions (A.1)(i)− (iii), we have

|Y n
t − a|2 +

∫ 1

t

|Zn
s |2 ds + 2R

∫ 1

t

|An (Y n
s )| ds

≤| ξ − a |2 +2µ
∫ 1

t

| Y n
s − a |2 ds + 2

∫ 1

t

| Y n
s − a | (γ | Zn

s | +K(1+ | a |p))ds

+
∫ 1

t

| Y n
s − a |2 ds +

∫ 1

t

| f(s, 0, 0) |2 ds + C −
∫ 1

t

Y n
s Zn

s dWs,
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Taking the conditional expectation with respect to Ft of both sides, we get that

|Y n
t − a|2 ≤ E[ | ξ − a |2 /Ft

]
+ (2 | µ | +4γ2 + 1)E

[ ∫ 1

t

| Y n
s − a |2 ds/Ft

]

+E
[ ∫ 1

0

| f(s, 0, 0) |2 ds/Ft

]
+ 2CE

∫ 1

0

(1+ | a |p)ds + C.

Jensen’s inequality shows that for every p > 1,

E |Y n
t − a|2p ≤ Cp

[
E

[ | ξ − a |2p
]
+ (2 | µ | +4γ2 + 1)pE

[ ∫ 1

t

| Y n
s − a |2p ds

]

+ E
( ∫ 1

0

| f(s, 0, 0) |2 ds
)p + 1

]

≤ Cp(1 + E
∫ 1

t

|Y n
s − a|2p

ds).

Gronwall’s lemma implies that
sup

0≤t≤1
E | Y n

t |2p< +∞, ∀n. (2.7)

Assertion a) is proved.
b) We assume without loss of generality that φ is positive and φ(0) = 01. Note that φn is a convex

C1-function with a lipschitz derivative, and put ψn =
φn

n
.

By convolution of ψn with a smooth function, the convexity of ψn and Itô’s formula, one can show that,

ψn(Y n
t ) ≤ ψn(ξ) +

∫ 1

t

∇ψn(Y n
r )(f(r, Y n

r , Zn
r )−An(Y n

r ))dr

−
∫ 1

t

∇ψn(Y n
r )Zn

r dWr,

thus

Eψn(Y n
s ) ≤ Eψn(ξ) + E

∫ 1

t

∇ψn(Y n
r )(f(r, Y n

r , Zn
r )−An(Y n

r ))dr

= Eψn(ξ) + E
∫ 1

t

∇ψn(Y n
r )f(r, Y n

r , Zn
r )dr − 1

n
E

∫ 1

t

| An(Y n
r ) |2 dr.

Hence, using the inequality 2ab ≤ na2 + 1
nb2 we deduce,

Eψn(Y n
s ) +

1
n
E

∫ 1

t

| An(Y n
r ) |2 dr ≤ Eψn(ξ) +

1
2n
E

∫ 1

t

| An(Y n
r ) |2 dr

+
1
2n
E

∫ 1

t

| f(s, Y n
s , Zn

s ) |2 ds.

We use assumptions (A.1)(iv), (ii), to get

Eψn(Y n
s ) +

1
n
E

∫ 1

t

| An(Y n
r ) |2 dr

≤ Eψn(ξ) +
1
2n
E

∫ 1

t

| An(Y n
r ) |2 dr +

2γ2

n
E

∫ 1

t

| Zn
s |2 ds

+
2
n
E

∫ 1

t

| f(s, 0, 0) |2 ds +
2K2

n
E

∫ 1

t

(1+ | Y n
s |2p)ds.

1This assumption is not a restriction since we can replace φ(y) by φ(y + y0)− φ(y0)− 〈y∗0 , y〉 where 〈y, y∗0〉 ∈ Gr(∂φ).
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The relations (2.5), (2.6) and (2.7) allowed us to prove that

Eψn(Y n
s ) +

1
n
E

∫ 1

t

| An(Y n
r ) |2 dr ≤ C

n
,

which implies that

sup
n
E

∫ 1

0

| An(Y n
r ) |2 dr < +∞. (2.8)

Lemma 2.2 is proved

Lemma 2.3. Let assumptions of Theorem 2.1 hold. Then

E sup
0≤t≤1

| Y n
t − Y m

t |2 +E
∫ 1

t

| Zn
s − Zm

s |2 ds ≤ C(
1
n

+
1
m

)

Proof . Using Itô’s formula, we get

|Y n
t − Y m

t |2 +
∫ 1

t

|Zn
s − Zm

s |2 ds

= 2
∫ 1

t

(Y n
s − Y m

s )∗ [f(s, Y n
s , Zn

s )− f(s, Y m
s , Zm

s )] ds

+ 2
∫ 1

t

(Y n
s − Y m

s )∗ (Zn
s − Zm

s ) dWs

− 2
∫ 1

t

(Y n
s − Y m

s )∗An (Y n
s ) ds + 2

∫ 1

t

(Y n
s − Y m

s )∗Am (Y m
s ) ds.

and then,

|Y n
t − Y m

t |2 +
∫ 1

t

|Zn
s − Zm

s |2 ds

= 2
∫ 1

t

(Y n
s − Y m

s )∗ [f(s, Y n
s , Zn

s )− f(s, Y m
s , Zn

s )] ds

+ 2
∫ 1

t

(Y n
s − Y m

s )∗ [f(s, Y m
s , Zn

s )− f(s, Y m
s , Zm

s )] ds

+ 2
∫ 1

t

(Y n
s − Y m

s )∗ (Zn
s − Zm

s ) dWs

− 2
∫ 1

t

(Y n
s − Y m

s )∗An (Y n
s ) ds + 2

∫ 1

t

(Y n
s − Y m

s )∗Am (Y m
s ) ds.

Thus

E |Y n
t − Y m

t |2 + E
∫ 1

t

|Zn
s − Zm

s |2 ds

≤ 2µE
∫ 1

t

|Y n
s − Y m

s |2 ds + 2γE
∫ 1

t

|Y n
s − Y m

s | | Zn
s − Zm

s | ds

−2E
∫ 1

t

(Y n
s − Y m

s )∗ (An (Y n
s )−Am (Y m

s )) ds.

Since, Id = Jn +
1
n

An = Jm +
1
m

Am, (Am (Y m
s ) , An (Y n

s )) ∈ A(Jm (Y m
s )) × A(Jn (Y n

s )) and xy ≤
1
4
x2 + y2 , ∀ x ≥ 0 ∀ y ≥ 0, we can show that

−〈Y n
s − Y m

s , An (Y n
s )−Am (Y m

s )〉 ≤ 1
4m

|An (Y n
s )|2 +

1
4n
|Am (Y m

s )|2 .

7



Hence

E |Y n
t − Y m

t |2 + E
∫ 1

t

|Zn
s − Zm

s |2 ds

≤ (2 | µ | +β2)E
∫ 1

t

|Y n
s − Y m

s |2 ds +
γ2

β2
E

∫ 1

t

|Zn
s − Zm

s |2 ds

+E
∫ 1

t

(
1

4m
|An (Y n

s )|2 +
1
4n
|Am (Y m

s )|2
)

ds.

If we choose β such that
γ2

β2
<

1
2
, we obtain

sup
0≤t≤1

E |Y n
t − Y m

t |2 +
1
2
E

∫ 1

t

|Zn
s − Zm

s |2 ds ≤ C

(
1
n

+
1
m

)
.

Using the Burkholder-Davis-Gundy inequality, we get

E sup
0≤t≤1

|Y n
t − Y m

t |2 +
1
2
E

∫ 1

0

|Zn
s − Zm

s |2 ds ≤ C

(
1
n

+
1
m

)
.

Lemma 2.3 is proved.

Lemma 2.4. (see Saisho [31]) Let (kn)n∈N be a sequence of continuous and bounded variation functions
from [0, 1] to Rd, such that :
(i) supn V ar (kn) ≤ C < +∞.
(ii) limn→∞ kn = k uniformly on [0, 1].
(iii) Let (fn)n∈N be a sequence of càdlàg functions from- [0, 1] to Rd, such that limn→∞ fn = f uni-
formly on [0, 1].
Then for every t ∈ [0, 1] we have:

lim
n→∞

∫ t

0

〈fn (s) , dkn (s)〉 =
∫ t

0

〈f (s) , dk (s)〉 .

Proof of Theorem 2.1
Existence. By Lemma 2.3, (Y n, Zn)n∈N∗ is a Cauchy sequence in the Banach space of progressively
measurable processes L defined by,

L =
{

(Y, Z) / E( sup
0≤t≤1

|Yt|2) +
1
2
E

∫ 1

0

|Zs|2 ds) < ∞
}

.

Let (Y, Z) be the limit of (Y n, Zn) in L.
Coming back to the equation satisfied by (Y n, Zn)n∈N, we can show that (Kn)n∈N converges uniformly

in L2 (Ω) to the process K. = lim
n−→+∞

∫ .

0

An (Y n
s ) ds, that is

E sup
0≤t≤1

|Kn
t −Kt|2 = 0.

The relation (2.8) can be written in the form

sup
n∈N∗

E ‖Kn‖2H1(0,1;Rd) < +∞,

where H1
(
0, 1;Rd

)
is the classical Sobolev space consisting of all absolutely continuous functions with

derivative in L2 (0, 1). Hence the sequence (Kn) is strongly bounded in the Hilbert space L2
(
Ω; H1

(
0, 1;Rd

))
,

and there exists then a subsequence of (Kn) which converges weakly. The limiting process K belongs
to L2

(
Ω; H1

(
0, 1;Rd

))
and for a.s.ω K. (ω) ∈ H1

(
0, 1;Rd

)
. Hence K is absolutely continuous and

8



dKt

dt
= Vt, where −Vt ∈ ∂φ(Yt).

We shall prove that (Y, Z, K) is the unique solution to our equation. Taking a subsequence, if necessary,
we can suppose that:

sup
t∈[0,1]

|Kn
t −Kt| −→ 0, a.s.

sup
t∈[0,1]

|Y n
t − Yt| −→ 0, a.s.

It follows that Kt and Yt are continuous. Let (α, β) be a continuous processes with values in Gr(∂φ).
It holds that

〈Jn(Y n
t )− α (t) , dKn

t + βtdt〉 ≤ 0.

Since Jn(Y n
t ) converge to pr(Yt), where pr denotes the projection on Dom(φ), then we use Lemma 2.4

to show that 〈pr(Yt)− α (t) , dK (t) + βtdt〉 ≤ 0.
Since the process (Yt, 0 ≤ t ≤ 1) is continuous, the proof of existence will complete if we show that

P
{

Yt ∈ Dom(φ)
}

= 1 ∀ t ≥ 0.

Assume that there exist 0 < t0 < ∞ and B0 ∈F such that P (B0) > 0 and Yt0 (ω) /∈ Dom(φ) ∀
ω ∈ B0. By the continuity, there exist δ > 0, B1 ∈F such that P (B1) > 0, Yt (ω) /∈ Dom(φ) for every

(ω, t) ∈ B1 × [t0, t0 + δ]. Using the fact that supn∈N∗ E
∫ 1

0

|An (Y n
s )| ds < +∞, and Fatou’s lemma, we

obtain ∫

B1

∫ t0+δ

t0

lim inf
n−→+∞

|An (Y n
s )| ds dP < +∞,

which contradict the fact that lim inf
n−→+∞

|An (Y n
s )| = +∞ on the set B1 × [t0, t0 + δ] . This complete the

existence proof.

Uniqueness. Let {(Yt, Zt,Kt) ; 0 ≤ t ≤ 1} and {(Y ′
t , Z ′t,K

′
t) ; 0 ≤ t ≤ 1} denote two solutions of our

BSDE. Define

{(∆Yt, ∆Zt,∆Kt) ; 0 ≤ t ≤ 1} = {(Yt − Y ′
t , Zt − Z ′t,Kt −K ′

t) ; 0 ≤ t ≤ 1} .

It follows from Itô’s formula that,

E
[
|∆Yt|2 +

∫ 1

t

|∆Zs|2 ds

]
= 2E

∫ 1

t

〈∆Ys, f(s, Ys, Zs)− f(s, Y ′
s , Zs)〉 ds

+2E
∫ 1

t

〈∆Ys, f(s, Y ′
s , Zs)− f(s, Y ′

s , Z ′s)〉 ds + 2E
∫ 1

t

〈∆Ys, d∆Ks〉 .

By assumptions (A.1)(ii)− (iii), we get

E
[
|∆Yt|2 +

∫ 1

t

|∆Zs|2 ds

]

= (2µ + β2)E
∫ 1

t

| ∆Ys |2 ds +
γ2

β2
E

∫ 1

t

| ∆Zs |2 ds + 2E
∫ 1

t

〈Ys, d∆Ks〉 .

Since ∂φ is a monotone operator and
−dKt

dt
∈ ∂φ(Yt),

−dK
′
t

dt
∈ ∂φ(Y ′

t ), then

E
∫ 1

t

〈∆Ys, d∆Ks〉 ≤ 0.
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Hence, taking
γ2

β2
=

1
2
, we have

E
[
|∆Yt|2 +

∫ 1

t

|∆Zs|2 ds

]
≤ CE

∫ 1

t

|∆Ys|2 ds +
1
2
E

∫ 1

t

|∆Zs|2 ds.

The result follows from Gronwall’s lemma.

3 Reflected Backward Stochastic Differential Equation with
Locally monotone Coefficient

The aim of this section is to extend the previous results to the case where the generator f is locally mono-
tone on the y-variable and locally lipschitz on the z-variable. Similar result on existence and uniqueness
(without reflection) has been proved in Pardoux [26] for BSDE in the case where the generator f is
globally monotone w.r.t. the variable y and Lipschitz w.r.t. the variable z, and more recently in Bahlali
et al. [2] for BSDE with reflection and jumps in the case where the generator is locally Lipschitz w.r.t.
the variables y and z. Our result is, in particular, an extension of these two works.
Consider the following assumptions:
(i) f is continuous in (y, z) for almost all (t, ω),
(ii) There exist M > 0 and 0 ≤ α < 1 such that | f(t, ω, y, z) |≤ M(1+ | y |α + | z |α).
(iii) There exists µN such that:

〈y − y′, f(t, y, z)− f(t, y′, z)〉 ≤ µN | y − y′ |2; P− a.s., a.e.t ∈ [0, 1] and
∀y, z such that | y |≤ N, | y′ |≤ N, | z |≤ N.

(iv) For each N > 0, there exists LN such that:

| f(t, y, z)− f(t, y, z′) |≤ LN | z − z′ |; | z |, | z′ |≤ N ; P− a.s., a.e.t ∈ [0, 1] and
∀y, z, z′ such that | y |≤ N, | z |≤ N, | z′ |≤ N.

When the assumptions (i), (ii), are satisfied, we can define the family of semi norms (ρn(f))n

ρn(f) = (E
∫ 1

0

sup
|y|,|z|≤n

| f(s, y, z) |2 ds)
1
2 .

The main result of this section is the following

Theorem 3.1. Let (i)-(iv) hold and ξ be a square integrable random variable.
-(a)- Assume moreover that

lim
N→+∞

exp(L2
N + 2µ+

N )
(L2

N + 2µ+
N )N2(1−α)

= 0, (3.1)

where µ+
N := sup(µN , 0). Then equation (1)− (5) has a unique solution.

-(b)- If there exists a constant L ≥ 0 such that

L2
N + 2µ+

N ≤ L + 2logN,

then equation (1)− (5) has also a unique solution.

Remark 3.1. It should be noted that there is existence and uniqueness if we replace condition (ii) by
the following
(ii’) There exists M > 0 and 0 ≤ α < 1 such that | f(t, ω, y, z) |≤ M(1+ | y | + | z |α).

To prove Theorem 3.1 we need the following lemmas.
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Lemma 3.1. Let f be a function which satisfies (i), (ii), (iii), (iv). Then there exists a sequence of
functions (fn) such that,
-(a)- For each n, fn is globally Lipschitz in (y, z) a.e. t and P -a.s.ω.
-(b)- For every N ∈ N∗, |fn(t, ω, y, z)− fn(t, ω, y, z′)| ≤ L(N+ 1

n )|z − z′|, for n large enough
and for each (y, z, z′) such that |y| ≤ N , |z| ≤ N , |z′| ≤ N .

-(c)- For every N ∈ N∗, < y − y′, fn(t, ω, y, z)− fn(t, ω, y′, z) >≤ µ(N+ 1
n )|y − y′|2, for n

large enough and for each (y, y′, z) such that |y| ≤ N , |y′| ≤ N , |z| ≤ N .
-(d)- For every N , ρN (fn − f) −→ 0 as n −→∞.

Proof . Let ρn : Rd −→ R+ be a sequence of smooth functions with compact support which approximate
the Dirac measure at 0 and which satisfy

∫
ρn(u)du = 1. Let ϕn : Rd −→ R+ be a sequence of smooth

functions such that 0 ≤ ϕn ≤ 1, ϕn(u) = 1 for |u| ≤ n and ϕn(u) = 0 for |u| ≥ n + 1. Likewise we
define the sequence ψn from Rd×r to R+. We put, fq,n(t, y, z) =

∫
f(t, y−u, z)ρq(u)duϕn(y)ψn(z). For

n ∈ N∗, let q(n) be an integer such that q(n) ≥ M [n + nα]. It is not difficult to see that the sequence
fn := fq(n),n satisfies all the assertions (a)-(d).

Consider, for fixed (t, ω) the sequence fn(t, ω, y, z) associated to f by Lemma 3.1. We get from the
previous section that there exists a unique triplet {(Y n

t , Zn
t ,Kn

t ; 0 ≤ t ≤ 1)} of progressively measurable
processes which satisfy:





(1′)Zn is adapted process and E
∫ 1

0

|Zn
t |2dt < +∞,

(2′)Y n
t = ξ +

∫ 1

t

fn(s, Y n
s , Zn

s )ds−
∫ 1

t

Zn
s dWs + Kn

1 −Kn
t , 0 ≤ t ≤ 1,

(3′) the process Y n is continuous
(4′)Kn is absolutely continuous,Kn

0 = 0, and for every progressively measurable
and continuous processes (α, β) such that (αt, βt) ∈ Gr(∂φ), we have∫ .

0

(Y n
t − αt)(dKn

t + βtdt) ≤ 0.

(5′)Y n
t ∈ Dom(φ), 0 ≤ t ≤ 1 a.s.

Lemma 3.2. There exists a constant C depending only in M and E | ξ |2, such that

E( sup
0≤t≤1

|Y n
t |2 +

∫ 1

0

|Zn
s |2 ds+ | Kn

1 |2) ≤ C, ∀ n ∈ N∗.

Proof : Since |x|α ≤ 1 + |x| ∀α ∈ [0, 1], the proof follows by standard arguments for BSDE.

Lemma 3.3. There exist (Y,Z,K) such that

lim
n→∞

E{ sup
0≤t≤1

| Y n
t − Yt |2 + sup

0≤t≤1
| Kn

t −Kt |2 +
∫ 1

0

|Zn
s − Zs|2 ds} = 0.

Proof . By Itô’s formula we have,

E(|Y n
t − Y m

t |2) + E

∫ 1

t

|Zn
s − Zm

s |2ds

= 2E

∫ 1

t

〈Y n
s − Y m

s , fn(s, Y n
s , Zn

s )− fm(s, Y m
s , Zm

s )〉ds

+2
∫ 1

t

(Y n
s − Y m

s )d(Kn
s −Km

s )

= I0(n,m) + I1(n, m) + I2(n,m) + I3(n,m) + 2
∫ 1

t

(Y n
s − Y m

s )d(Kn
s −Km

s )

(3.2)

where

I0(n,m) = 2E

∫ 1

t

〈Y n
s − Y m

s , fn(s, Y n
s , Zn

s )− fm(s, Y m
s , Zm

s )〉1AN
n,m

ds

11



I1(n, m) = 2E

∫ 1

t

〈Y n
s − Y m

s , fn(s, Y n
s , Zn

s )− f(s, Y n
s , Zn

s )〉1
A

N
n,m

ds

I2(n, m) = 2E

∫ 1

t

〈Y n
s − Y m

s , f(s, Y n
s , Zn

s )− f(s, Y m
s , Zm

s )〉1
A

N
n,m

ds

I3(n,m) = 2E

∫ 1

t

〈Y n
s − Y m

s , f(s, Y m
s , Zm

s )− fm(s, Y m
s , Zm

s )〉1
A

N
n,m

ds.

Since Kn, Km are absolutely continuous, Y n, Y m ∈ Dom(φ) and the measures 〈Y n
t − αt, dKn

t − βtdt〉
〈Y m

t −αt, dKm
t −βtdt〉, are negatives, we deduce from Lemma 4.1 in Cépa [10] that 〈Y n

s −Y m
s , d(Kn

s −
Km

s )〉, is also negative.
We shall estimate I0(n,m), I1(n,m), I2(n,m), I3(n, m). Let β be a strictly positive number. For a

given N > 1, we put AN
n,m := {(s, ω); |Y n

s |2 + |Zn
s |2 + |Y m

s |2 + |Zm
s |2 ≥ N2}, A

N

n,m := Ω \ AN
n,m and

denote by 1E the indicator function of the set E. It is not difficult to see that,

I0(n,m) ≤ β2E
∫ 1

t

|Y n
s − Y m

s |21AN
n,m

ds

+
1
β2
E

∫ 1

t

| fn(s, Y n
s , Zn

s )− fm(s, Y m
s , Zm

s ) |2 1AN
n,m

ds

We use Hölder’s inequality (since α < 1) and Chebychev’s inequality to get,

I0(n,m) ≤ β2E
∫ 1

t

|Y n
s − Y m

s |21AN
n,m

ds +
K2(M, ξ)
β2N2(1−α)

. (3.3)

In another hand we have

I1(n,m) ≤ E
∫ 1

t

|Y n
s − Y m

s |2ds + E
∫ 1

t

| fn(s, Y n
s , Zn

s )− f(s, Y n
s , Zn

s ) |2 1
A

N
n,m

ds,

and then

I1(n,m) ≤ E
∫ 1

t

|Y n
s − Y m

s |2ds + ρ2
N (fn − f). (3.4)

Likewise we show that,

I3(n,m) ≤ E
∫ 1

t

|Y n
s − Y m

s |2ds + ρ2
N (fm − f). (3.5)

We use assumptions (iii) and (iv) to prove that,

I2(n,m) ≤ 2E

∫ 1

t

< Y n
s − Y m

s , f(s, Y n
s , Zn

s )− f(s, Y m
s , Zn

s ) > 1
A

N
n,m

ds

+ 2E
∫ 1

t

|Y n
s − Y m

s | |f(s, Y m
s , Zn

s )− f(s, Y m
s , Zm

s )|1
A

N
n,m

ds

≤ (2µN + γ2)E
∫ 1

t

|Y n
s − Y m

s |21
A

N
n,m

ds +
L2

N

γ2
E

∫ 1

t

|Zn
s − Zm

s |2ds.

We choose β and γ such that β2 = L2
N + 2µ+

N and γ2 = L2
N then we use (3.3), (3.4), (3.5) and the last

inequality to show that,

E(|Y n
t − Y m

t |2) + E
∫ 1

t

|Zn
s − Zm

s |2ds ≤ (L2
N + 2µ+

N + 2)E
∫ 1

t

|Y n
s − Y m

s |2ds

+ [ρ2
N (fn − f) + ρ2

N (fm − f)] +
K3(M, ξ)

(L2
N + 2µ+

N )N2(1−α)
.
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Hence Gronwall Lemma implies that,

E(|Y n
t − Y m

t |2) ≤
[
[ρ2

N (fn − f) + ρ2
N (fm − f)] +

K4(M, ξ)
(L2

N + 2µ+
N )N2(1−α)

]
exp(L2

N + 2µ+
N + 2).

Using the Burkholder-Davis-Gundy inequality, we show that a universal positive constant C exists such
that,

E( sup
0≤t≤1

| Y n
t − Y m

t |2) ≤ C

[
[ρ2

N (fn − f) + ρ2
N (fm − f)]

+
K4(M, ξ)

(L2
N + 2µ+

N )N2(1−α)

]
exp(L2

N + 2µ+
N + 2).

It follows from equation 3.2 that

E
∫ 1

0

|Zn
s − Zm

s |2ds ≤ C(M, ξ)
[
E

∫ 1

0

| Y n
t − Y m

t |2 ds
] 1

2

Passing to the limit successively on n,m and on N , we show that (Y n, Zn) is a Cauchy sequence in the
Banach space L.
Now, if we return to the equation satisfied by (Y n, Zn), we obtain that

E sup
0≤t≤1

| Kn
t −Km

t |2 ≤ E sup
0≤t≤1

| Y n
t − Y m

t |2

+ CE
∫ 1

0

| fn(s, Y n
s , Zn

s )− fm(s, Y m
s , Zm

s ) |2 ds

+ E
∫ 1

0

| Zn
s − Zm

s |2 ds.

In order to complete the proof, we need to show that the sequence of processes fn(., Y n, Zn)n converges
to f(., Y, Z) in L2.
We have

E
∫ 1

0

| fn(s, Y n
s , Zn

s )− f(s, Ys, Zs) |2 ds

= E
∫ 1

0

| fn(s, Y n
s , Zn

s )− f(s, Ys, Zs) |2 1AN
n

ds

+ 2E
∫ 1

0

| fn(s, Y n
s , Zn

s )− f(s, Y n
s , Zn

s ) |2 1
A

N
n

ds

+ 2E
∫ 1

0

| f(s, Y n
s , Zn

s )− f(s, Ys, Zs) |2 1
A

N
n

ds

≤ K1

N2(1−α)
+ 2ρ2

N (fn − f) + I(n),

where

I(n) = 2E
∫ 1

0

| f(s, Y n
s , Zn

s )− f(s, Ys, Zs) |2 1
A

N
n

ds.

Since (Y n, Zn) converges to (Y,Z) in L, we get for a subsequence, which still denote (Y n, Zn), that

f(s, Y n
s , Zn

s ) −→ f(s, Ys, Zs), dP× dt− a.e. as n goes to +∞.

But for ε =
2− 2α

α
, we have

E
∫ 1

0

| f(s, Y n
s , Zn

s )− f(s, Ys, Zs) |2+ε ds

≤ E
∫ 1

0

(2+ | Ys |2 + | Y n
s |2 + | Zs |2 + | Zn

s |2)ds

< +∞.
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Hence
lim

n→+∞
I(n) = 0.

Therefore

lim
n→+∞

E
∫ 1

0

| f(s, Y n
s , Zn

s )− f(s, Ys, Zs) |2 ds = 0.

Lemma 3.3 is proved.
Proof of Theorem 3.1.

Existence. The proof of assertion (a) can be derived from Lemma 3.3 by passing to the limit succes-
sively on n,m and N .
Let us prove assertion (b). Arguing as in assertion (a) and assume first that L2

N + 2µ+
N ≤ L + 2(1 −

α) log(N), we show that

E( sup
0≤t≤1

| Y n
t − Y m

t |2) ≤ C

[
[ρ2

N (fn − f) + ρ2
N (fm − f)]N2(1−α) +

K5(M, ξ)
L2

N + 2µ+
N

]
e(2+L)

(
E

∫ 1

0

|Zn
s − Zm

s |2ds
)2 ≤ C

[
[ρ2

N (fn − f) + ρ2
N (fm − f)]N2(1−α) +

K5(M, ξ)
L2

N + 2µ+
N

]
e(2+L).

We can assume that LN or µN goes to infinity (see Remark 3.2). Passing to the limit we get the desired
result. Assume now that L2

N + 2µ+
N ≤ L +

√
log(N). Let δ be a strictly positive number such that

δ < (1−α)
2 . Let ([ti+1, ti]) be a subdivision of [0, 1] such that |ti+1 − ti| ≤ δ. Applying Lemma 3.3 in all

the subintervals [ti+1, ti] we get the existence proof.

Uniqueness. Let {(Yt, Zt,Kt) 0 ≤ t ≤ 1} and {(Y ′
t , Z ′t,K

′
t) 0 ≤ t ≤ 1} be two solutions of our BSDE,

we put
{(∆Yt, ∆Zt,∆Kt) 0 ≤ t ≤ 1} = {(Yt − Y ′

t , Zt − Z ′t, Kt −K ′
t) 0 ≤ t ≤ 1}

It follows from Itô’s formula that

E
[
|∆Yt|2 +

∫ 1

t

|∆Zs|2 ds)
]

= 2E
∫ 1

t

〈∆Ys, f(s, Ys, Zs)− f(s, Y ′
s , Z ′s)〉 ds

+ 2E
∫ 1

t

〈∆Ys, d∆Ks〉

By Lemma 2.4 we get

E
∫ 1

t

〈∆Ys, d∆Ks〉 ≤ 0.

For N > 1, let µN denote the monotony constant of f in the balls B(0, N), 1AN := {(s, w); | Ys |2 + |
Y ′

s |2 + | Zs |2 + | Z ′s |2≥ N}, A
N

:= Ω \AN .

E
[
|∆Yt|2 +

∫ 1

t

|∆Zs|2 ds

]
≤ I1(N) + I2(N),

where

I1(N) = 2E
∫ 1

t

〈∆Ys, f(s, Ys, Zs)− f(s, Y ′
s , Zs)〉1A

N ds

+ 2E
∫ 1

t

〈∆Ys, f(s, Y
′
s , Zs)− f(s, Y ′

s , Z
′
s〉1A

N ds,

and

I2(N) = 2E
∫ 1

t

〈∆Ys, f(s, Ys, Zs)− f(s, Y ′
s , Z

′
s〉1AN ds.
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We shall estimate I1(N) and I2(N). As above we obtain

I1(N) ≤ (2µ+
N + γ2)E

∫ 1

t

| ∆Ys |2 1
A

N ds +
L2

N

γ2
E

∫ 1

t

| ∆Zs |2 ds,

and

I2(N) ≤ β2E
∫ 1

t

| ∆Ys |2 1AN ds +
C

β2N2(1−α)

Taking β2 = L2
N + 2µ+

N and γ2 = L2
N and using the estimates for I1(N) and I2(N), we have

E |∆Yt|2 ≤ (L2
N + 2µ+

N )E
∫ 1

t

|∆Ys|2 ds +
C

(L2
N + 2µ+

N )N2(1−α)
.

Using Gronwall’s and Burkholder-Davis-Gundy inequalities, we get

E sup
0≤t≤1

|∆Yt|2 ≤ C

(L2
N + 2µ+

N )N2(1−α)
exp(L2

N + 2µ+
N ),

E
∫ 1

0

|∆Zs|2 ds ≤ C

(L2
N + 2µ+

N )N2(1−α)
exp(L2

N + 2µ+
N ),

the uniqueness follows by passing to the limit on N .
Suppose now that f is globally Lipschitz with respect to z, that is

| f(t, y, z)− f(t, y, z′) |≤ L | z − z′ | . (iv’)

Remark 3.2. Theorem 3.1 remains true under assumptions (i), (ii), (iii), (iv’) and 2µ+
N ≤ L + 2(1−

α)logN , for L > 0.
Indeed, if µN is also bounded the result of Theorem 3.1 follows from Pardoux [26]. Else, arguing as in
the proof of Theorem 3.1 we obtain

E( sup
0≤t≤1

| Y n
t − Y m

t |2) ≤ C

([
ρ2

N (fn − f) + ρ2
N (fm − f)

]
N2(1−α) +

K6(M, ξ)
2µ+

N

)
eL

and

E
∫ 1

0

|Zn
s − Zm

s |2ds ≤ C

([
ρ2

N (fn − f) + ρ2
N (fm − f)

]
N2(1−α) +

K6(M, ξ)
2µ+

N

)
eL.

Passing to the limit, we get the desired result.

Corollary 3.1. Assume that (i), (ii), (iii) and (iv’) hold. If lim
N

exp2µ+
N

2µ+
NN2(1−α)

= 0, then the RBSDE

(1)-(5) has a unique solution. In particular, if µ+
N ≤ log(N), then (1)-(5) has also a unique solution.

Proof of Corollary 3.1. Arguing as in the proof of Theorem 3.1, we show that

E( sup
0≤t≤1

| Y n
t − Y m

t |2) ≤ C

([
ρ2

N (fn − f) + ρ2
N (fm − f)

]
+

K6(M, ξ)
2µ+

NN2(1−α)

)
e2µ+

N

and

E
∫ 1

0

|Zn
s − Zm

s |2ds ≤ C

([
ρ2

N (fn − f) + ρ2
N (fm − f)

]
+

K6(M, ξ)
2µ+

NN2(1−α)

)
e2µ+

N .

Passing to the limit on n, m, N and using the same arguments as in the proof of Theorem 3.1, one has
the desired result.
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4 Application to the perturbations of multivalued PDEs

Let {Xε
t ; t ≥ 0} be a diffusion process with values in Rd, such that Xε =⇒ X weakly in C([0, t],Rd)

equipped with the topology of convergence on compact subsets of R+, where X itself is a diffusion with
generator L. We suppose that the martingale problem associated to X is well posed, and there exist
p, q ≥ 0 such that

sup
ε
E(| Xε

t |2p +
∫ t

0

| Xε
s |2q ds) < ∞. (4.1)

Moreover, we assume that g : Rd −→ Rk and f : Rd × Rk −→ Rk are continuous, and that

| g(x) |≤ C(1+ | x |p) (4.2)

| f(x, y) |≤ C(1+ | x |q + | y |α) (4.3)

〈f(x, y)− f(x, y′), y − y′〉 ≤ µN | y − y′ |2, (4.4)

Let {(Y ε
s , Zε

s , Kε
s ); 0 ≤ s ≤ t)} be the unique solution of the reflected BSDE

{
Y ε

s = g(Xε
t ) +

∫ t

s
f(Xε

r , Y ε
r )dr − ∫ t

s
Zε

rdBr + Kε
t −Kε

s

Kε
t = − ∫ t

0
Uε

s ds, (Y ε, Uε) ∈ Gr(∂φ),
(4.5)

where {Bs, 0 ≤ s ≤ t} is a Brownian motion. Next, we shall prove that the family of processes
(Xε;Y ε; Zε; Kε) converges in law to the unique solution (X,Y, Z, K) of the RBSDE

{
Ys = g(Xt) +

∫ t

s
f(Xr, Yr)dr − ∫ t

s
ZrdBr + Kt −Ks

Kt = − ∫ t

0
Usds, (Y,U) ∈ Gr(∂φ),

and then we shall apply this result to the homogenization of a class of multivalued PDE’s.

Theorem 4.1. (See Meyer-Zheng [22] or Kurtz [21]).
The sequence of quasi-martingale {V n

s ; 0 ≤ s ≤ t} defined on the filtred probability space {Ω;Fs, 0 ≤
s ≤ t;P} is tight if

sup
n

(
sup

0≤s≤t
E | V n

s | +CVt(V n)
)

< +∞,

where CVt(V n), denotes the ”conditional variation of V n on [0, t]” defined by

CVt(V n) = supE(
∑

i

| E(
V n

ti+1
− V n

ti
/Fti) |

)
,

with ”sup” meaning that the supremum is taken over all partitions of the interval [0, t].

We put

Mε
t = −

∫ t

0

Zε
sdBr.

We denote by:
- C([0, t],Rd) the space of functions defined on [0, t] with values in Rd, equipped with the topology of
uniform convergence.
- D([0, t],Rk) the space of càdlàg functions defined on [0, t] with values in Rk, equipped with Meyer-
Zheng topology.
The main result is the following.

Theorem 4.2. Under the conditions quoted in the beginning of this section. If lim
N→∞

eµ+
N

N2(1−α)
= 0,

then the family of processes (Xε, Y ε,Mε,Kε) converges in law to (X, Y, M, K) on C([0, t],Rd) ×
D([0, t],R2k)× C([0, t],Rk).

To do the proof of this theorem, we need the following lemmas
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Lemma 4.1. Let Uε be a family of random variables defined on the same probability spaces. For each
ε ≥ 0, we assume the existence of a family of random variables (Uε,n)n, such that
• Uε,n dist=⇒ U0,n as ε goes to zero.
• Uε,n =⇒ Uε as n → +∞, uniformly in ε.
• U0,n =⇒ U0 as n → +∞
then, Uε converge in distribution to U0.

Proof : This lemma is a simplified version of Theorem 4.2 in [Billingsley [7], p.25].
Consider the following backward stochastic differential equation

Y ε,n
s = g(Xε

s ) +
∫ t

s

f(Xε
s , Y ε,n

r )dr −
∫ t

s

Zε,n
r dBr −

∫ t

s

An(Y ε,n
r )dr, (4.6)

where An(y) is defined as above.
Let (Y n, Zn) be the unique solution of the backward stochastic differential equation

Y n
s = g(Xs) +

∫ t

s

f(Xs, Y
n
r )dr −

∫ t

s

Zn
r dBr −

∫ t

s

An(Y n
r )dr.

We set

Mε,n
t = −

∫ t

0

Zε,n
r dBr and Mn

t = −
∫ t

0

Zn
r dBr.

Lemma 4.2. Under assumptions of Theorem 4.2, for every n the family of processes (Y ε,n,Mε,n)
converges in law to the the family of processes (Y n,Mn) on D([0, t],R2k).

Proof . Step1. A priori estimates. Using standard arguments and (2.1) to show that

sup
ε
E( sup

0≤s≤t
| Y ε,n

s − a |2 +
∫ t

0

| Zε,n
r |2 dr + 2γ

∫ t

s

| An(Y ε,n
r ) | dr

)
< +∞. (4.7)

Step2. Tightness.
Clearly, we have

CVt(Y ε,n) ≤
∫ t

0

| f(Xε
r , Y ε,n

r ) | dr +
∫ t

0

| An(Y ε,n
r ) | dr.

It follows from step 1 and (4.3) that

sup
ε

(CVt

(
(Y ε,n) + E sup

0≤s≤t
| Y ε,n

s − a |2 +
∫ t

0

| Zε,n
r |2 dr)

)
< +∞, (3.4)

hence the sequence {(Y ε,n
s ,Mε,n

s ); 0 ≤ s ≤ t} satisfies the Meyer-Zheng tightness criterion under P.
Step3. Convergence in law.
By step2 there exists a subsequence (which we still denote (Y ε,n, Mε,n)) such that

(Y ε,n,Mε,n) =⇒ (Y n, Mn),

on (D([0, t],Rk))2, where the first factor is equipped with the topology of convergence in ds measure,
and the second with the topology of uniform convergence.
Clearly, for each 0 ≤ s ≤ t, (x, y) −→ ∫ t

s
f(x(r), y(r))dr is continuous for C([0, t],Rd) × D([0, t],Rk)

equipped with the same topology as above, and y −→ ∫ t

s
An(y(r))dr is continuous in C([0, t],Rk). We

can now take the limit in (4.6), yielding as ε goes to 0

Y n
s = g(Xs) +

∫ t

s

f(Xr, Y
n
r )dr + Mn

t −Mn
s −

∫ t

s

An(Y n
r )dr.

Moreover, for any 0 ≤ s1 < s2 ≤ t, φ ∈ C∞b and ψs a function of Xε
r , Y ε,n

r 0 ≤ r ≤ t, bounded and
continuous in C([0, t],Rd)× D([0, t],Rk)× C([0, t],Rd), we have

E
(
ψs1(X

ε, Y ε,n)(φ(Xε
s2

)− φ(Xε
s1

)−
∫ s2

s1

Lφ(Xε
r )dr)

) −→ 0 as n → +∞,
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and for each n ∈ N,

E(ψs1(X
ε, Y ε,n)

∫ α

0

(Mε,n
s2+r −Mε,n

s1+r)dr) = 0.

From the weak convergence of (Xε, Y ε,n,Mε,n) and the fact that E( sup
0≤s≤t

| Mε,n
s |2) < +∞, by dividing

the second identity by α and letting α go to zero, we have

E(ψs1(X, Y n)(φ(Xs2)− φ(Xs1)−
∫ s2

s1

Lφ(Xr)dr)
) −→ 0,

E(ψs1(X, Y n)(Mn
s2
−Mn

s1
) = 0.

Therefore, both Mn and MX -the martingale part of X- are FX,Y n

t martingales.
Step4. Identification of the limit.
Let (Y

n
, U

n
) denote the unique solution of the BSDE

Y
n

s = g(Xt) +
∫ t

s

f(Xr, Y
n

r )dr −
∫ t

s

U
n

r dMX
r −

∫ t

s

An(Y
n

r )dr,

which satisfies ETr
∫ t

s
U

n

r < MX >r U
n

r < +∞. Set also M̃n
s =

∫ s

0
U

n

r dMX
r . Since Y

n
and U

n
are FX

t

adapted, and MX is FX,Y n

t martingale, hence so is M̃n.
Let β be a strictly positive number. For a given N > 1, we put AN

n,m := {(s, ω); |Y n
s |2 + |Y m

s |2 ≥ N2},
A

N

n := Ω \AN
n and denote by 1E the indicator function of the set E. From Itô’s formula, it follows that

E | Y n

s − Y n
s |2 +E[Mn − M̃n]t − E[Mn − M̃n]s

= 2
∫ t

s

〈f(Xr, Y
n

r )− f(Xr, Y
n
r ), Y

n

r − Y n
r 〉(1A

N
n,m

+ 1AN
n,m

)dr

− 2
∫ t

s

〈An(Y
n

r )−An(Y n
r ), Y

n

r − Y n
r 〉dr.

Since An is monotone, we have for every x, z ∈ Rd

〈An(x)−An(z), x− z〉 ≥ 0.

Thus

E | Y n

s − Y n
s |2 +E[Mn − M̃n]t − E[Mn − M̃n]s ≤ 2µ+

NE
∫ t

s

| Y n

r − Y n
r |2 dr +

C

N2(1−α)
.

We conclude from Gronwall’s lemma that

E | Y n

s − Y n
s |2 +E[Mn − M̃n]t − E[Mn − M̃n]s ≤ C

N2(1−α) e2µ+
N t.

Passing to the limit on N we obtain, Y
n

r = Y n
r , 0 ≤ s ≤ t, and Mn = M̃n.

Using the same argument as in the proof of Theorem 4.2 to show the following lemmas

Lemma 4.3. Under the assumptions of Theorem 4.2 the family of processes (Y ε,n,Mε,n,Kε,n)n con-
verges uniformly in ε ∈]0, 1] in probability to the family of processes (Y ε,Mε,Kε) as n goes to +∞.

Lemma 4.4. Under the assumption of the above lemma, the family of processes (Y n,Mn,Kn) converges
in probability to (Y, M, K) as n goes to +∞.

Proof of Theorem 4.2
Combining the above lemmas, we find that (Xε, Y ε,Mε,Kε) converge in law to (X, Y,M,K) in the
sense defined as above, where

Ys = g(Xt) +
∫ t

s

f(Xr, Yr)dr −
∫ t

s

ZrdBr + Kt −Ks.
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Corollary 4.1. Under the assumptions of Theorem 4.2, {Y ε
0 } converge to Y0 as ε goes to 0.

Proof : Since Y ε
0 is deterministic, we have

Y ε
0 = E(g(Xε

t ) +
∫ t

0

f(Xε
s , Y ε

s )dr −Kε
t ).

Put

Aε = g(Xε
t ) +

∫ t

0

f(Xε
s , Y ε

s )ds−Kε
t ,

we have

E | Aε |2≤ C(1+ | Xε
t |2p) + E

∫ t

0

| Y ε
s |2 ds + E

∫ t

0

| Xε
s |2q ds + E | Kε

t |2 .

According to Lemma 4.3 and using assumption 4.1, we obtain

sup
ε
E | Aε |2< ∞.

Since Theorem 4.2 states that Aε converge in law, as ε goes to 0, toward

g(Xt) +
∫ t

0

f(Xr, Yr)dr + Kt,

the uniform integrability of Aε implies that

lim
ε→0

E(Aε) = E(lim
ε→0

Aε).

This means that Yε converges to

Y0 = g(Xt) +
∫ t

0

f(Xr, Yr)dr + Kt.

Now, we apply our result to the proof of a stability result for PDEs.

5 Application to the viscosity solutions of multivalued PDEs

Let uε be the solution of the PDE




∂uε

∂s
(s, x)− Lεu

ε(s, x)− f(x, uε(s, x)) ∈ ∂φ(uε(s, x)), for s ∈ [0, t]

uε(0, x) = g(x), uε(t, x) ∈ Dom(φ), x ∈ Rd,
(4.8)

and u be the solution the following variational inequality




∂u

∂s
(s, x)− Lu(s, x)− f(x, u(s, x)) ∈ ∂φ(u(s, x)), for s ∈ [0, t]

u(0, x) = g(x), u(t, x) ∈ Dom(φ), x ∈ Rd.
(4.9)

Theorem 5.1. Assume k = 1. Then, under conditions of Theorem 4.2, uε(t, x) converge to u(t, x) for
all (t, x) ∈ [0, t]× Rd as ε goes to 0.

Proof . Let x ∈ Rd and {Xx,ε
s ; 0 ≤ s ≤ t} the diffusion process defined as above, starting at x. for all

t ∈ R+, we denote by ({Y t,x,ε
s , Zt,x,ε

s ,Kt,x,ε
s }; 0 ≤ s ≤ t) the solution of the reflected BSDE

Y t,x,ε
s = g(Xx,ε

t ) +
∫ t

s

f(Xx,ε
r , Y t,x,ε

r )dr −
∫ t

s

Zt,x,ε
r dBr + Kt,x,ε

t −Kt,x,ε
s .
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By virtue of Pardoux, Rascanu [29] (see also [25]), the function uε : R+ × Rd −→ R defined by
uε(t, x) = Y t,x

0 , (t, x) ∈ R+ ×Rd, is the unique viscosity solution of the PDE (4.8). Let {Xx
s ; s ≥ 0} be

the diffusion process with infinitesimal generator L, starting at x ∈ R and ({Y t,x
s , Zt,x

s ,Kt,x
s }; 0 ≤ s ≤ t)

be the unique solution of the RBSDE

Y t,x
s = g(Xx

t ) +
∫ t

s

f(Xx
r , Y t,x

r )dr −
∫ t

s

Zt,x
r dBr + Kt,x

t −Kt,x
s .

Again, in view of [29] (see also [25]) the function u : [0, t] × Rd −→ R defined by u(t, x) = Y t,x
0 for

(t, x) ∈ R+ × Rd, is the unique viscosity solution of the PDE (4.9). Therefore, the result follows from
corollary(4.1).
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