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Abstract

We deal with the unique solvability of multidimensional backward stochastic differential equa-
tions (BSDEs) with a p-integrable terminal condition (p > 1) and a superlinear growth generator.
We introduce a new local condition, on the generator (see Assumption (H4)), then we show that it
ensures the existence and uniqueness, as well as the Lp-stability of solutions. Since the generator
is of super linear growth, the uniform continuity is then not satisfied. Furthermore, the (local)
monotony condition in the y-variable as well as the (local) Lipschitz condition in the z-variable
are not needed. Since the assumptions we impose on the coefficient are local in the three variables
y, z and ω, we then also cover the BSDEs with stochastic Lipschitz and/or stochastic monotone
coefficient. Although we are focused on the multidimensional BSDEs, our uniqueness and stabil-
ity results are new even in one-dimensional case. As application, we establish the existence and
uniqueness of Sobolev solutions to systems of (possibly) degenerate semilinear parabolic partial dif-
ferential equations (PDEs) having a super linear growth nonlinear term and a p-integrable terminal
condition (p > 1). We cover certain systems of PDEs arising in physics, and in particular the loga-
rithmic nonlinearity u log(|u|). The proofs we give are rather non-standard. And in particular, we
introduce a new method which consists to show by using BSDEs that the uniqueness for a system of
non-homogeneous semilinear PDEs can be derived from the uniqueness for the homogeneous PDE
satisfied by its associated linear part.

1 Introduction
Let (Wt)0 ≤ t≤T be a r-dimensional Wiener process defined on a complete probability space (Ω,F , P ).
Let (Ft)0 ≤ t≤T denote the natural filtration of (Wt) such that F0 contains all P-null sets of F , and
ξ be an FT -measurable d-dimensional random variable. Let f be an Rd-valued function defined on
[0, T ] × Ω × Rd × Rd×r such that for every (y, z) ∈ Rd × Rd×r, the map (t, ω) 7−→ f(t, ω, y, z) is
Ft-progressively measurable. The BSDE under consideration is,

(E(ξ,f)) Yt = ξ +
∫ T

t

f(s, Ys, Zs)ds−
∫ T

t

ZsdWs 0 ≤ t ≤ T

The data ξ and f are respectively called the terminal condition and the coefficient or generator.
Since the paper [43], where the existence and uniqueness of solutions have been established for

equation (E(ξ,f)) under a uniformly Lipschitz generator f and a square integrable terminal data ξ,
the theory of BSDEs has found further applications and has become a powerful tool in many fields
such financial mathematics, optimal control, stochastic game, non-linear PDEs ... etc... The collected
texts [24] give a useful introduction to the theory of BSDEs and some of their applications. See also
[1, 2, 3, 4, 5, 6, 7, 9, 10, 16, 17, 25, 32, 37, 39, 40, 41, 42, 44, 45, 47] and the references therein.
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Recently, the link between the solution of BSDEs and the "Lp−theory of viscosity solution" for PDEs
with measurable coefficients ([18, 19]) has been established in [7].

It should be noted that, in contrast to the one dimensional case, a few results are known in multi-
dimensional BSDEs with local assumptions on the generator f . This is partly due to the two following
facts :

(i) The comparison methods which are the main tool in one dimensional BSDEs do not work in
multidimensional case.

(ii) The usual localization procedure (by stopping times) is ineffective, especially for the z-variable.
The first results which deal with the existence and uniqueness of solutions to multidimensional BSDEs
with local assumptions on the coefficient f have been established in [1, 2, 3].

This paper is a detailed and completed version of [4]. The first part of the paper constitute a natural
continuation and developments of our previous works [1, 2, 3]. It consists to establish the existence and
uniqueness as well as the Lp-stability of strong solutions for BSDE (E(ξ,f)) when the terminal datum
ξ is p-integrable (p > 1) [condition (H0)], the generator f is of superlinear growth in (y, z) [condition
(H3)] and satisfies a new local assumption [condition (H4)]. The conditions we impose on the generator
go beyond all existing ones in the literature of multidimensional BSDEs. For instance, we cover the
nonlinearities y log(|y|) and h(y)z

√
| log(|z|)| which are, in our knowledge, not covered by the previous

paper. Many other examples are listed in the second section of the paper. Actually, we allow to the
generator to have the strictly sub-quadratic growth

| f(t, y, z) | ≤ ηt+ | y |α + | z |α
′
,

for some 0 < α,α′ < 2 and some q−integrable process η with some q > 1.
Due to the local assumptions on the generator, the usual techniques of BSDEs do not work in our

situation. In the other hand, due to the superlinear growth of the generator, the techniques used in
[1, 2] no longer work. Our approach, consists to establish a non standard a priori estimate between
two solutions as follows : We consider two solutions (Y 1, Z1) and (Y 2, Z2) associated to suitable
parameters (ξ1, f1) and (ξ1, f1), then we prove that for every ε > 0 there exists Nε ∈ N such that for
every f satisfying our assumptions (see pp. 4 and 5 below for the assumptions),

E( sup
0≤t≤T

|Y 1
t − Y 2

t |β) + E
( ∫ T

0

|Z1
s − Z2

s |2ds
) β

2

≤ ε + Nε
[
E(|ξ1 − ξ2|β) + E

∫ T

0

(
sup

|y|,|z|≤Nε
(f1 − f) + sup

|y|,|z|≤Nε
(f2 − f)

)
(s, y, z)ds

]
where β ∈]1, 2[ is some constant.
The previous estimate allows to treat simultaneously the existence and uniqueness as well as, the
Lp-stability of solutions. For instance, the existence (of solutions) is deduced by using a suitable
approximation (ξn, fn) of (ξ, f) and an appropriate localization procedure which is close to those given
in [1, 2, 3]. However, in contrast to [3], we don’t use the L2-weak compactness of the approximating
sequence (Y n, Zn). Here, we directly show that the sequence (Y n, Zn) strongly converges in some Lq
space (1 < q < 2) and, the limit satisfies the BSDE (E(ξ,f)). Thus we can dispense both with weak
convergence and the non-constructive choice of weakly convergent subsequences. We first establish the
result for a small time duration, then for an arbitrary prescribed one.

To deal with the PDEs part, we start with the following example. Let a(t, x) ≥ 0 and consider the
following semilinear Cauchy problem,

∂u

∂t
− a(t, x)∆u+ u log |u| = 0 on (0, ∞)× Rd

u(0+) = ϕ > 0
(1.1)

If we try to solve this PDE (1.1) by mathematical analysis methods, the nonlinear term u log |u| leads
to difficulties that render ineffective the standard arguments, see e.g. [20, 31]. In the other hand, since
the coefficient a can vanish, the solutions of PDE (1.1) will not be smooth enough, and therefore the
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uniqueness is rather hard to establish. The approach we present in this paper, to treat this kind of
PDEs, is probabilistic and uses the BSDEs. The link between the strong solutions of BSDEs and the
Sobolev solutions of semilinear PDEs was firstly established in [10] in the case where the nonlinear term
F is at least uniformly Lipschitz and with sub-linear growth.

In this paper, we are concerned with the following system of (possibly degenerate) parabolic PDEs

(P(g,F ))

{
∂u(t, x)
∂t

+ Lu(t, x) + F (t, x, u(t, x), σ∗∇u(t, x)) = 0 t ∈]0, T [, x ∈ Rk

u(T, x) = g(x) x ∈ Rk

where L :=
1
2

∑
i,j

(σσ∗)ij∂2
ij +

∑
i

bi∂i And σ : Rk 7−→ Rkr, b : Rk 7−→ Rk , g : Rk 7−→ Rk and

F : [0, T ]× Rk × Rd × Rdr 7−→ Rd are measurable functions.
Our main purpose consists to establish the existence and uniqueness of Sobolev solutions for the

system of PDEs (P(g,F )), in the case where F is with super-linear growth in both u and ∇u, and
satisfies the same conditions that f . This is done with g in some Lp−space, p > 1. Our result cover in
particular the logarithmic nonlinearities u log(|u|) as well as h(u)(∇u)

√
| log(|∇u|)| where h is a suitable

function. The main feature consists to develop a method which allows us to prove that the uniqueness
of the system of PDEs can be derived from the uniqueness of its associated BSDE. We first prove the
existence and uniqueness in the class of solutions which are representable by BSDEs, and next we show
that any solution is unique. To do this, we prove that 0 is the unique solution to the homogeneous linear
PDE, then we use the BSDEs to derive the uniqueness for the non-homogeneous semilinear PDE. More
precisely, we prove that the system of semilinear PDEs{

∂u(t, x)
∂t

+ Lu(t, x) + F (t, x, u(t, x),∇u(t, x)) = 0, t ∈]0, T [, x ∈ Rk

u(T, x) = g(x), x ∈ Rk
has a unique solution if and only if 0 is the unique solution of the linear system{

∂u(t, x)
∂t

+ Lu(t, x) = 0, t ∈]0, T [, x ∈ Rk

u(T, x) = 0, x ∈ Rk

The paper is organized as follows. In section 2, we present the main result on BSDEs part and some
illustrative examples. Section 3 is devoted to the proof of the result of section 2. The main result on
PDEs part as well its proof, are treated in section 4.

We now give some motivations and short explanations for some topics which can be related to the
present work.
• In terms of continuous-state branching processes, the logarithmic nonlinearity u log u corresponds

to the Neveu branching mechanism. This process was introduced by Neveu in [38], and further studied
in [11, 27, 28]. For instance, the super-process with Neveu’s branching mechanism constructed in [27]
is related to the Cauchy problem (1.1). Therefore, our result can be seen as an alternative approach to
PDE (1.1), with possibly degenerate diffusion coefficient a.
• Since the degeneracy of the diffusion coefficient, our Proposition 4.2 (below) cover the PDE studied

in [48] which arises in studying the motion of a particle acting under a force field perturbed by a noise
(see e. g. Freidlin [30, 48] and Saintier [48]). Indeed, if y(t) ∈ Rd denotes such a motion acting under
a force field G(y, y′) and W be the standard brownian motion, then y(t) satisfies the SDE

y′′(t) = G(y(t), y′(t)) +W ′(t) with y(0) = y0, y
′(0) = x0

Setting x(t) = y′(t) in the previous SDE, we obtain the system

d

dt

(
x(t), y(t)

)
=
(
G(x(t), y(t)), x(t)

)
+
(
W ′(t), 0

)
with

(
x(0), y(0)

)
=
(
x0, y0

)
The Kolmogorov operator associated to the previous system is degenerate and enter in our conditions.
• The logarithmic nonlinearities appear in some PDEs arising in physics, see e.g. [12, 13, 20, 21,

22, 31, 46, 49]. For instance, in [12] the construction of nonlinear wave quantum mechanics, based on
Schrödinger-type equation, is with nonlinearity −ku log(|u|2).
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• The method we develop to study the systems of semilinear PDEs is based on BSDEs and the
proofs are rather non-standard, especially for the uniqueness.
• Since the system of PDEs associated to the Markovian version of the BSDE (E(ξ,f)) can be

degenerate, our result also covers certain systems of first order PDEs.
• The BSDEs as well as the PDEs which we consider are interesting in themselves since the nonlinear

part f(t, y, z) can be neither locally Lipschitz in z nor locally monotone in y. Moreover, f is of a super
linear growth than y and z, and hence it is also not uniformly continuous.
• It was proved recently (in [8]) that the BSDEs with logarithmic growth |f(t, y, z)| ≤ ηt +

K|z|
√
| log |z|| (for some process η) appear in stochastic control problems.

2 First main result and some examples.
Throughout this paper, p > 1 is an arbitrary fixed real number and all the considered processes are
(Ft)-predictable.

2.1 Definition.
A solution of equation (E(ξ,f)) is an (Ft)-adapted and Rd+dr-valued process (Y,Z) such that

E
(

sup
t≤T
|Yt|p +

( ∫ T

0

|Zs|2ds
) p

2 +
∫ T

0

|f(s, Ys, Zs)|ds
)
< +∞

and satisfies (E(ξ,f)).

2.2 Assumptions
We consider the following assumptions on (ξ, f):

There exist M ∈ L0(Ω; L1([0, T ]; R+)), K ∈ L0(Ω; L2([0, T ]; R+)) and γ ∈]0,
1 ∧ (p− 1)

2
[, such that

(with λs := 2Ms +
K2
s

2γ
) we have,

(H.0) E | ξ |p e
p
2

∫ T
0 λsds <∞,

(H.1) f is continuous in (y, z) for almost all (t, ω)

(H.2) There exist η and f0 ∈ L0(Ω× [0, T ]; R+) satisfying

E
( ∫ T

0

e
∫ s
0 λrdrηsds

) p
2 <∞ , E

( ∫ T

0

e
1
2

∫ s
0 λrdrf0

s ds
)p
<∞

and such that :

for every t, y, z, 〈y, f(t, y, z)〉 ≤ ηt + f0
t |y|+Mt|y|2 +Kt|y||z|

(H.3) There exist η ∈ Lq(Ω× [0, T ]; R+)) (for some q > 1) and α ∈]1, p[, α′ ∈]1, p ∧ 2[ such that:

for every t, y, z, | f(t, ω, y, z) | ≤ ηt+ | y |α + | z |α′ .

(H.4) There exist v ∈ Lq′(Ω× [0, T ]; R+)) (for some q′ > 0) and K ′ ∈ R+ such that
for every N ∈ N and every y, y′ z, z′ satisfying | y |, | y′ |, | z |, | z′ |≤ N

〈y − y′, f(t, ω, y, z) − f(t, ω, y′, z′)〉11{vt(ω)≤N} ≤ K ′ | y − y′ |2 logAN +
√
K ′ logAN | y − y′ || z − z′ |

+K ′
logAN
AN

where AN is a increasing sequence and satisfies AN > 1, limN→∞AN = ∞ and AN ≤ Nµ for some
µ > 0.
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2.3 The main result
Theorem 2.1. Assume that (H.0)-(H.4) hold. Then, (E(ξ,f)) has a unique solution (Y,Z) which
satisfies,

E sup
t
| Yt |pe

p
2

∫ t
0 λsds + E

[ ∫ T

0

e
∫ s
0 λrdr | Zs |2 ds

] p
2

≤C
{

E | ξ |p e
p
2

∫ T
0 λsds + E

( ∫ T

0

e
∫ s
0 λrdrηsds

) p
2 + E

( ∫ T

0

e
1
2

∫ s
0 λrdrf0

s ds
)p}

for some constant C depending only on p and γ.

We shall give some examples of BSDEs which satisfy the assumptions of Theorem 2.1. In our
knowledge, these examples are not covered by the previous works in multidimensional BSDEs.

2.4 Examples.
Example 1. Let f(y) := −y log | y | then for all ξ ∈ Lp(FT ) the following BSDE has a unique solution

Yt = ξ −
∫ T

t

Ys log | Ys |ds−
∫ T

t

ZsdWs.

Indeed, f satisfies (H.1)-(H.3) since 〈y, f(y)〉 ≤ 1 and | f(y) |≤ 1 +
1
ε
| y |1+ε for all ε > 0. In

order to verify (H.4), thanks to triangular inequality, it is sufficient to treat separately the two cases:

0 ≤| y |, | y′ |≤ 1
N

and
1
N
≤| y |, | y′ |≤ N .

In the first case, since the map x 7→ −x log x increases for x ∈]0, e−1], we obtain for N > e

|f(y)− f(y′)| ≤ |f(y)|+ |f(y′)|

≤ 2
logN
N

In the second case, the finite increments theorem applied to f shows that

|f(y)− f(y′)| ≤ (1 + logN) | y − y′ | .

Hence (H.4) is satisfied for every N > e with vs = 0 and AN = N .

Example 2. Let g(y) := y log
| y |

1+ | y |
and h ∈ C(Rdr; R+)

⋂
C1(Rdr − {0}; R+) be such that

h(z) =
{
|z|
√
− log |z| if |z| < 1− ε0

|z|
√

log |z| if |z| > 1 + ε0

where ε0 ∈]0, 1[. Finally, we put f(y, z) := g(y)h(z). Then for every ξ ∈ Lp(FT ) the following BSDE
has a unique solution

Yt = ξ +
∫ T

t

f(Ys, Zs)ds−
∫ T

t

ZsdWs.

It is not difficult to see that f satisfies (H1). We shall prove that f satisfies (H2)-(H4).

(i) Since g is continuous, g(0) = 0 and |g(y)| tends to 1 as |y| tends to ∞, we deduce that g is
bounded. Moreover, g satisfied 〈y − y′, g(y) − g(y′)〉 ≤ 0. Indeed, in one dimensional case it is not
difficult to show that g is a decreasing function. Since, −〈y, y′〉 log |y|

1+|y| ≤ −|y||y
′| log |y|

1+|y| (because
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log |y|
1+|y| ≤ 0), we can reduce the multidimensional case to the one dimension case by developing the

inner product as follows,

〈y − y′, g(y)− g(y′)〉 ≤ |y|2 log
|y|

1 + |y|
+ |y′|2 log

|y′|
1 + |y′|

− |y||y′|(log
|y|

1 + |y|
+ log

|y′|
1 + |y′|

)

= (|y| − |y′|)(|y| log
|y|

1 + |y|
− |y′| log

|y′|
1 + |y′|

)

= 〈|y| − |y′|, g(|y|)− g(|y′|)〉
≤ 0

(ii) The function h(z) satisfies for all ε > 0

0 ≤ h(z) ≤M +
1√
2ε
| z |1+ε, where M = sup

|z|≤1+ε0

| h(z) |

The last inequality follows since
√

2ε log |z| =
√

log |z|2ε ≤ |z|ε for each ε > 0 and |z| > 1. (H3)
follows now directly from the previous observations (i) and (ii). (H2) is satisfied since 〈y, f(y, z)〉 =
〈y, g(y)〉h(z) ≤ 0. To verify (H.4) it is enough to show that for every z, z′ such that | z |, | z′ |≤ N

| h(z)− h(z′) |≤ c
(√

logN | z − z′ | +logN
N

)
for N large enough and some positive constant c. This can be proved by considering separately the

following five cases, 0 ≤| z |, | z′ |≤ 1
N

,
1
N
≤| z |, | z′ |≤ 1 − ε0, 1 − ε0 ≤| z |, | z′ |≤ 1 + ε0 and

1 + ε0 ≤| z |, | z′ |≤ N .

In the first case (i.e. 0 ≤| z |, | z′ |≤ 1
N ), since the map x 7→ x

√
− log x increases for x ∈ [0, 1√

e
],

we obtain |h(z)− h(z′)| ≤ |h(z)|+ |h(z′)| ≤ 2
1
N

√
− log

1
N
≤ 2

1
N

logN for N >
√
e.

The other cases can be proved by using the finite increments theorem.

Example 3. Let (Xt)t≤T be an (Ft)−adapted and Rk−valued process satisfying the forward stochastic
differential equation

Xt = X0 +
∫ t

0

b(s,Xs)ds+
∫ t

0

σ(s,Xs)dWs

where X0 ∈ Rk and σ, b : [0, T ]×Rk → Rkr×Rk are measurable functions such that ‖σ(s, x)‖ ≤ c and
|b(s, x)| ≤ c(1 + |x|), for some constant c.

It is known from forward SDE’s theory that there exist κ > 0 and C > 0 depending only on c, T, k
such that

E exp (κ sup
t≤T
| Xt |2) ≤ C exp(C | X0 |2).

Consider the BSDE

Yt = g(XT ) +
∫ T

t

| Xs |q Ys − Ys log | Ys |ds−
∫ T

t

ZsdWs.

where q ∈]0, 2[ and g is a measurable function satisfying | g(x) |≤ c exp c | x |q′ , for some constants
c > 0, q′ ∈ [0, 2[.
The previous BSDE has a unique solution (Y,Z) which satisfies: for every p > 1 there exists a positive
constant C such that

E sup
t
| Yt |p +E

[∫ T

0

| Zs |2 ds

] p
2

≤ C exp (C | X0 |2).
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Indeed, one can show that
i) 〈y, f(t, y)〉 ≤ 1+ | Xt |q| y |2
ii) Using Young inequality we obtain, for every ε > 0 there is a constant cε > 0 such, that

| f(t, y) |≤ cε(1+ | Xt |qcε + | y |1+ε)

iii) f satisfies assumption (H.4) with vs = exp | Xs |q and AN = N .

The following example shows that our assumptions enable to treat BSDEs with stochastic monotone
coefficient

Example 4. Let (ξ, f) satisfying (H.0)-(H.3) and

(H ′.4)



There are a positive process C satisfying E
∫ T

0

eq
′Csds <∞ (for some q′ > 0) and K ′ ∈ R+

such that:

〈y − y′, f(t, ω, y, z)− f(t, ω, y′, z′)〉 ≤ K ′ | y − y′ |2 {Ct(ω)+ | log | y − y′ | |}

+K ′ | y − y′ || z − z′ |
√
Ct(ω)+ | log | z − z′ | |.

In particular we have for all z, z′

|f(t, ω, y, z)− f(t, ω, y, z′)| ≤ K ′ | z − z′ |
√
Ct(ω)+ | log | z − z′ | |.

Therefore, the following BSDE has a unique solution

Yt = ξ +
∫ T

t

f(s, Ys, Zs)ds−
∫ T

t

ZsdWs.

To check (H.4), it is enough to show that for some constant c we have

〈y − y′, f(t, y, z)− f(t, y′, z)〉 ≤ c logN
(
| y − y′ |2 +

1
N

)
|f(t, y, z)− f(t, y, z′)| ≤ c

√
logN

(
| z − z′ | + 1

N

)
whenever vs := eCs ≤ N and | y | , | y′ |, | z |, | z′ | ≤ N .
These two inequalities can be respectively proved by considering the following cases

| y − y′ |≤ 1
2N

,
1

2N
≤| y − y′ |≤ 2N.

and
| z − z′ |≤ 1

2N
,

1
2N
≤| z − z′ |≤ 2N.

Example 5. Let (Xt)t≤T and ξ be as in example 3, let F (t, x, y, z) be such that
i) F (t, x, .) is continuous
ii) |F (t, x, y, 0)| ≤ C exp(C | x |q̂)+ | y |α, for some q̂, α ∈]0, 2[ and C > 0,
iii) 〈F (t, x, y, z)− F (t, x, y′, z′), y − y′〉 ≤ K ′ | y − y′ |2 +K ′ | y − y′ || z − z′ |.
Let q, q′, q” ≥ 0 such that q + q” < 2 and q′ + q” < 1, the following BSDE has a unique solution

Yt = ξ +
∫ T

t

|Xs|q”F (s,Xs, |Xs|qYs, |Xs|q
′
Zs)ds−

∫ T

t

ZsdWs.
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3 Proof of Theorem 2.1
We first give some a priori estimates from which we derive a stability result for BSDEs and next we
use a suitable approximation of (ξ, f) to complete the proof. The difficulty comes from the fact that
the generator f can be neither locally monotone in the variable y nor locally Lipschitz in the variable
z and moreover, it also may have a superlinear growth in its two variables y and z.

3.1 Estimates for the solutions of equation (E(ξ,f)).
In the first step, we give estimates for the processes Y and Z.

Proposition 3.1. Let Λt := |Yt|2et + 2
∫ t

0

esηsds+ (
∫ t

0

e
1
2
s f

0
s ds)

2 and et := exp
∫ t

0
λsds.

Assume that (H.2) hold and E( sup
0≤ s≤T

|Yt|p e
p
2
t ) <∞.

Then, there exists a positive constant C(p,γ) such that

E sup
0≤ s≤T

Λ
p
2
s + E

(∫ T

0

es|Zs|2ds

) p
2

≤ C(p,γ)EΛ
p
2
T .

To prove this proposition we need some lemmas.

Lemma 3.1. For every ε > 0, every β > 1 and every positive functions h and g we have∫ T

t

(h(s))
β−1

2 g(s)ds ≤ ε sup
t≤s≤T

| h(s) |
β
2 +ε1−β

(∫ T

t

g(s)ds

)β
.

Proof. Let ε > 0 and β > 1. Using Young’s inequality we get for every δ and δ′ such that 1
δ + 1

δ′ = 1∫ T

t

(h(s))
β−1

2 g(s)ds ≤ 1
δ
ε

(β−1)δ
β sup

t≤s≤T
| h(s) |

(β−1)δ
2 +

ε
(1−β)δ′

β

δ′
( ∫ T

t

g(s)ds
)δ′

We now choose δ = β
β−1 and use the fact that δ, δ′ > 1.

Lemma 3.2. If (H.2) holds then for every β > 1 +2γ there exist positive constants C(β,γ)
1 , C

(β,γ)
2 such

that for every ε > 0, every stopping time τ ≤ T and every t ≤ τ

Λ
β
2
t +

∫ τ

t

Λ
β−2

2
s es|Zs|2ds ≤ ε sup

t≤s≤τ
Λ
β
2
s + ε(1−β)C

(β,γ)
1 Λ

β
2
τ − C(β,γ)

2

∫ τ

t

Λ
β
2−1
s es〈Ys, ZsdWs〉.

Proof. Without loss of generality, we assume that η and f0 are strictly positives.
It follows by using Itô’s formula that for every t ∈ [0, τ ],

|Yt|2 et +
∫ τ

t

|Ys|2 λsesds = eτ |Yτ |2 + 2
∫ τ

t

es〈Ys, f(s, Ys, Zs)〉ds−
∫ τ

t

es | Zs |2 ds

− 2
∫ τ

t

es〈Ys, ZsdWs〉.

Again Itô’s formula, applied to the process Λ, shows that

Λ
β
2
t + β

∫ τ

t

Λ
β
2−1
s

(
1
2
|Ys|2 λses + esηs + f0

s e
1
2
s

[∫ s

0

f0
r e

1
2
r dr

])
ds

= Λ
β
2
τ + β

∫ τ

t

Λ
β
2−1
s 〈esYs, f(s, Ys, Zs)〉ds−

β

2

∫ τ

t

Λ
β
2−1
s |Zs|2 esds

− β
∫ τ

t

esΛ
β
2−1
s 〈Ys, ZsdWs〉 − β(

β

2
− 1)

∫ τ

t

e2
sΛ

β
2−2
s

r∑
j=1

(
d∑
i=1

Y isZ
i,j
s

)2

ds

8



Observe that
r∑
j=1

(
d∑
i=1

Y isZ
i,j
s )

)2

≤ |Ys|2|Zs|2 ≤ e−1
s Λs |Zs|2 then use the assumption (H.2) to get

Λ
β
2
t +

β

2
(1− 2γ − (2− β)+)

∫ τ

t

Λ
β
2−1
s es |Zs|2 ds

≤ Λ
β
2
τ + β

∫ τ

t

Λ
β
2−

1
2

s f0
s e

1
2
s ds− β

∫ τ

t

Λ
β
2−1
s 〈esYs, ZsdWs〉.

It follows from Lemma 3.1 with g(s) = f0
s e

1
2
s , since

(∫ τ

t

f0
s e

1
2
s ds

)β
≤ Λ

β
2
τ , that for every ε > 0

∫ τ

t

Λ
β
2−

1
2

s f0
s e

1
2
s ds ≤ ε sup

t≤s≤τ
Λ
β
2
s + ε1−βΛ

β
2
τ

Since β > 1 + 2γ implies that 1− 2γ − (2− β)+ > 0, Lemma 3.2 is proved.

Lemma 3.3. Let (H2) be satisfied and assume that E(sup0≤s≤T |Yt|
p
e
p
2
t ) <∞.

Then,
1)There exists a positive constant C(p,γ) such that for every ε > 0, we have

E
∫ T

0

Λ
p−2
2

s es|Zs|2ds ≤ εE( sup
0≤s≤T

Λ
p
2
s ) + ε(1−p)C

(p,γ)
1 E(Λ

p
2
T ).

2) There exists a positive constant C(p,γ) such that

E
( ∫ T

0

es|Zs|2ds
) p

2 ≤ C(p,γ)E( sup
0≤s≤T

Λ
p
2
s ).

Proof. The first assertion follows by a standard martingale localization procedure. To prove the
second assertion, we successively use Lemma 3.2 (with ε = 1 and β = 2), the Burkholder-Davis-Gundy
inequality, the fact that es|Ys|2 ≤ Λs and Young’s inequality to obtain

E
( ∫ T

0

es|Zs|2ds
) p

2 ≤ C(p,γ)
1 E

(
sup

0≤s≤T
Λ
p
2
s

)
+ C

(p,γ)
2 E

(
|
∫ T

t

es〈Ys, ZsdWs〉|
p
2
)

≤ C(p,γ)
1 E

(
sup

0≤s≤T
Λ
p
2
s

)
+ C

(p,γ)
2 E

(
|
∫ T

0

e2
s|Ys|2|Zs|2ds|

p
4
)

≤ C(p,γ)
1 E

(
sup

0≤s≤T
Λ
p
2
s

)
+ C

(p,γ)
2 E

(
|
∫ T

0

Λses|Zs|2ds|
p
4
)

≤ C(p,γ)
1 E

(
sup

0≤s≤T
Λ
p
2
s

)
+ C

(p,γ)
2 E

[
( sup
0≤s≤T

Λ
p
4
s )(
∫ T

0

es|Zs|2ds)
p
4
]

≤
[
C

(p,γ)
1 + +2(C(p,γ)

2 )2
]
E( sup

0≤s≤T
Λ
p
2
s ) +

1
2

E
[
(
∫ T

0

es|Zs|2ds)
p
2
]

≤ [2C(p,γ)
1 + 4(C(p,γ)

2 )2] E( sup
0≤s≤T

Λ
p
2
s ).

Lemma 3.3 is proved.

Lemma 3.4. Let the assumptions of Lemma 3.3 be satisfied. Then, there exists a constant C(p,γ) such
that

E( sup
0≤s≤T

Λ
p
2
s ) ≤ C(p,γ)E(Λ

p
2
T ).
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Proof. Lemma 3.2 and the Burkholder-Davis-Gundy inequality show that there exists a universal
positive constant c such that for every ε > 0 and t ≤ T

E sup
0≤s≤T

Λ
p
2
s ≤ εE( sup

0≤s≤T
Λ
p
2
s ) + ε(1−p)C

(p,γ)
1 E(Λ

p
2
T )

+ cC
(p,γ)
2 E

( ∫ T

0

Λp−2
s (|Ys|2es)es|Zs|2ds

) 1
2 .

Young’s inequality gives, for every ε′ > 0,

E( sup
0≤s≤T

Λ
p
2
s ) ≤ εE( sup

0≤s≤T
Λ
p
2
s ) + ε(1−p)C

(p,γ)
1 E(Λ

p
2
T )

+ ε′E( sup
0≤s≤T

Λ
p
2
t ) +

[
cC

(p,γ)
2

]2
ε′

E
∫ T

0

Λ
p−2
2

s es|Zs|2ds.

Applying Lemma 3.3, we get for every ε” > 0

E( sup
0≤s≤T

Λ
p
2
t ) ≤ (ε+ ε′ +

[
cC

(p,γ)
2

]2
ε”

ε′
)E( sup

0≤s≤T
Λ
p
2
s )

+ (ε(1−p)C
(p,γ)
1 +

[
cC

(p,γ)
2

]2
C

(p,γ)
1 (ε”)(1−p)

ε′
)E(Λ

p
2
T ).

A suitable choice of ε, ε′, ε” allows to conclude the proof.

Proof of Proposition 3.1. It follows from Lemma 3.3 and Lemma 3.4.

Proposition 3.2. If (H.3) holds then,

E
∫ T

0

|f(s, Ys, Zs)|β̂ds ≤ 9p+q(1 + T )
[
1 + E

∫ T

0

ηqsds+ E sup
0≤s≤T

|Ys|p + E(
∫ T

0

|Zs|2ds)
p
2
]

where β̂ :=
2
α′
∧ p

α
∧ p

α′
∧ q.

Proof. We successively use Assumption (H.3), Young’s inequality and Hölder’s inequality to show that

E
∫ T

0

|f(s, Ys, Zs)|β̂ds ≤ E
∫ T

0

(ηs + |Ys|α + |Zs|α
′
)β̂ds

≤ 3β̂E
∫ T

0

(ηβ̂s + |Ys|αβ̂ + |Zs|α
′β̂)ds

≤ 3β̂E
∫ T

0

((1 + ηs)
β̂ + (1 + |Ys|)αβ̂ + (1 + |Zs|)α

′β̂)ds

≤ 3β̂E
∫ T

0

((1 + ηs)
q + (1 + |Ys|)p + (1 + |Zs|)p∧2)ds

≤ 3β̂3p+qE
∫ T

0

(1 + ηqs + |Ys|p + |Zs|p∧2)ds

≤ 3β̂3p+q
[
T + E

∫ T

0

ηqsds+ TE sup
0≤s≤T

|Ys|p + T
2−(p∧2)

2 E(
∫ T

0

|Zs|2ds)
p
2
]

≤ 9p+q(1 + T )
[
1 + E

∫ T

0

ηqsds+ E sup
0≤s≤T

|Ys|p + E(
∫ T

0

|Zs|2ds)
p
2
]
.

Proposition 3.2 is proved.
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3.2 Estimate of the difference between two solutions.
The next proposition gives an estimate which is a key tool in the proofs.

Lemma 3.5. Let (ξi, fi)i=1,2 satisfy (H.3) (with the same η, α and α′) and let (Y i, Zi) be a solution
of (E(ξi,fi)). Then, there exist β = β(p, q, α, α′) ∈]1, p ∧ 2[, r = r(p, q, α, α′,K ′, µ, q′) > 0 and a =
a(p, q, α, α′,K ′, µ, q′) > 0 such that for every u ∈ [0, T ], u′ ∈ [u, T ∧ (u+ r)], N > 0 and every function
f satisfying (H.4)

E( sup
u≤t≤u′

|Y 1
t − Y 2

t |β) + E
∫ u′

u

|Z1
s − Z2

s |2

(1 + |Y 1
s − Y 2

s |2)1− β2
ds

≤ NA
1+ β

2
N

[
E(|Y 1

u′ − Y 2
u′ |β) + E

∫ T

0

ρN (f1 − f)s + ρN (f2 − f)sds

]

+
1
AaN

[
1 + Θ1

p + Θ2
p + E

∫ T

0

ηqsds+ E
∫ T

0

vq
′

s ds

]
.

where
ρN (fi − f)(t, ω) := sup

|y|,|z| ≤ N

|f(t, ω, y, z)− fi(t, ω, y, z)|

and

Θi
p := E(sup

t
|Y it |p) + E

(∫ T

0

|Zis|2ds

) p
2

.

Proof. Let q be the number defined in assumption (H3) and q′,K ′, µ those defined in assumption

(H4). Let γ > 0 be such that 1 + 2γ < β̂ :=
2
α′
∧ p
α
∧ p

α′
∧ q and set K” := K ′+

K ′

4γ
. Let β ∈]1 + 2γ, β̂[

and ν ∈]0, (1− β

β̂
)(1 ∧ q′)[. Let r ∈]0,

ν

µβ̂K”
∧ 1

2K”
∧ 1[.

For N ∈ N, we set

et := (AN )2K”(t−u) and ∆t := {
∣∣Y 1
t − Y 2

t

∣∣2 + (AN )−1}et.

Using Itô’s formula, we show that for every stopping time τ ∈ [u, u′] and every t ∈ [u, τ ]

∆
β
2
t + 2 log(AN )K”

∫ τ

t

es∆
β
2
s ds+

β

2

∫ τ

t

es∆
β
2−1
s

∣∣Z1
s − Z2

s

∣∣2 ds
= ∆

β
2
τ − β

∫ τ

t

es∆
β
2−1
s 〈Y 1

s − Y 2
s ,
(
Z1
s − Z2

s

)
dWs〉

+β
∫ τ

t

es∆
β
2−1
s 〈Y 1

s − Y 2
s , f1(s, Y 1

s , Z
1
s )− f2(s, Y 2

s , Z
2
s )〉ds

−β(β2 − 1)
∫ τ

t

e2
s∆

β
2−2
s

r∑
j=1

(
d∑
i=1

(Y 1
i,s − Y 2

i,s)(Z
1
i,j,s − Z2

i,j,s)

)2

ds

= ∆
β
2
τ − β

∫ τ

t

es∆
β
2−1
s 〈Y 1

s − Y 2
s ,
(
Z1
s − Z2

s

)
dWs〉+ βI1 − β(

β

2
− 1)I2,

(3.1)

where
I1 :=

∫ τ

t

es∆
β
2−1
s 〈Y 1

s − Y 2
s , f1(s, Y 1

s , Z
1
s )− f2(s, Y 2

s , Z
2
s )〉ds
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and

I2 :=
∫ τ

t

e2
s∆

β
2−2
s

r∑
j=1

(
d∑
i=1

(Y 1
i,s − Y 2

i,s)(Z
1
i,j,s − Z2

i,j,s)

)2

ds.

In order to complete the proof of Lemma 3.5 we need to estimate I1 and I2.

Estimate of I1. Let Φ(s) := |Y 1
s | + |Y 2

s | + |Z1
s | + |Z2

s | + vs. Since 11{Φs ≤ N} ≤ 11{vs ≤ N} and f
satisfies (H4), then a simple computation shows that

〈Y 1
s − Y 2

s ,f1(s, Y 1
s , Z

1
s )− f2(s, Y 2

s , Z
2
s )〉

≤ e
−1
2
s ∆

1
2
s |f1(s, Y 1

s , Z
1
s )− f2(s, Y 2

s , Z
2
s )|11{Φs>N}

+ 2N [ρN (f1 − f)s + ρN (f2 − f)s]11{vs≤N}

+ [K” log(AN )e−1
s ∆s + γ

∣∣Z1
s − Z2

s

∣∣2]11{Φs ≤ N}

Therefore, using Lemma 3.1 with hs = ∆s, we get

I1 ≤
∫ τ

t

e
1
2
s ∆

β−1
2

s |f1(s, Y 1
s , Z

1
s )− f2(s, Y 2

s , Z
2
s )|11{Φs>N}ds

+ 2N
∫ τ

t

es∆
β
2−1
s [ρN (f1 − f)s + ρN (f2 − f)s]11{vs≤N}ds

+
∫ τ

t

es∆
β
2−1
s [K” log(AN )e−1

s ∆s + γ
∣∣Z1
s − Z2

s

∣∣2]11{Φs ≤ N}ds

≤ ε sup
s∈[u,u′]

∆
β
2
s

+ ε(1−β)e
β
2
u′

∫ u′

u

|f1(s, Y 1
s , Z

1
s )− f2(s, Y 2

s , Z
2
s )|β11{Φs>N}ds

+ 2N
∫ τ

t

es∆
β
2−1
s [ρN (f1 − f)s + ρN (f2 − f)s]11{vs≤N}ds

+
∫ τ

t

es∆
β
2−1
s [K” log(AN )e−1

s ∆s + γ
∣∣Z1
s − Z2

s

∣∣2]11{Φs ≤ N}ds

Estimate of I2. Since

r∑
j=1

(
d∑
i=1

(Y 1
i,s − Y 2

i,s)(Z
1
i,j,s − Z2

i,j,s)

)2

≤
∣∣Y 1
s − Y 2

s

∣∣2 ∣∣Z1
s − Z2

s

∣∣2 ≤ e−1
s ∆s

∣∣Z1
s − Z2

s

∣∣2
then

I2 ≤
∫ τ

t

es∆
β
2−1
s

∣∣Z1
s − Z2

s

∣∣2 ds.
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Now, coming back to equation (3.1) and taking into account the above estimates we get for every ε > 0,

∆
β
2
t +

β

2
(β − 1− 2γ)

∫ τ

t

es∆
β
2−1
s

∣∣Z1
s − Z2

s

∣∣2 ds
≤ e

β
2
τ |Y 1

τ − Y 2
τ |β +

e
β
2
u′

A
β
2
N

+ βε sup
s∈[u,u′]

∆
β
2
s

+βε(1−β)e
β
2
u′

∫ u′

u

|f1(s, Y 1
s , Z

1
s )− f2(s, Y 2

s , Z
2
s )|β11{Φs>N}ds

+2Nβe
β
2
τ A

1− β2
N

∫ τ

u

ρN (f1 − f)s + ρN (f2 − f)s11{vs ≤ N}ds

−β
∫ τ

t

es∆
β
2−1
s 〈Y 1

s − Y 2
s ,
(
Z1
s − Z2

s

)
dWs〉.

(3.2)

For a given ~ > 1, let τ~ be the stopping time defined by

τ~ := inf{s ≥ u, |Y 1
s − Y 2

s |2 +
∫ s

u

|Z1
r − Z2

r |2dr ≥ ~} ∧ u′,

Choose τ = τ~, t = u, then pass to the expectation in equation (3.2) to obtain, when ~→∞,

β

2
(β − 1− 2γ)E

∫ u′

u

es∆
β
2−1
s

∣∣Z1
s − Z2

s

∣∣2 ds
≤ e

β
2
u′E(|Y 1

u′ − Y 2
u′ |β) +

e
β
2
u′

A
β
2
N

+ βεE( sup
s∈[u,u′]

∆
β
2
s )

+βε(1−β)e
β
2
u′E

∫ u′

u

|f1(s, Y 1
s , Z

1
s )− f2(s, Y 2

s , Z
2
s )|β11{Φs>N}ds

+2Nβe
β
2
u′A

1− β2
N E

∫ u′

u

ρN (f1 − f)s + ρN (f2 − f)s11{vs ≤ N}ds.

(3.3)

Return back to (3.2) and use the Burkholder-Davis-Gundy inequality to show that there exists a uni-
versal constant c such that

E( sup
u≤t≤T

∆
β
2
t ) ≤ e

β
2
u′E(|Y 1

u′ − Y 2
u′ |β) +

e
β
2
u′

A
β
2
N

+ βεE( sup
s∈[u,u′]

∆
β
2
s )

+ βε(1−β)e
β
2
u′E

∫ u′

u

|f1(s, Y 1
s , Z

1
s )− f2(s, Y 2

s , Z
2
s )|β11{Φs>N}ds

+ 2Nβe
β
2
u′A

1− β2
N E

∫ u′

u

ρN (f1 − f)s + ρN (f2 − f)s11{vs ≤ N}ds

+ cβE(
∫ T

u

e2
s∆

β−2
s

r∑
j=1

[
d∑
i=1

(Y 1
i,s − Y 2

i,s)(Z
1
ij,s − Z2

ij,s)]
2ds)

1
2 .
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But, there exists a positive constant Cβ depending only on β such that

cβE(
∫ u′

u

e2
s∆

β−2
s

r∑
j=1

[
d∑
i=1

(Y 1
i,s − Y 2

i,s)(Z
1
ij,s − Z2

ij,s)]
2ds)

1
2

≤ 1
4

E( sup
u≤t≤u′

∆
β
2
t ) + CβE

∫ u′

u

es∆
β
2−1
s |Z1

s − Z2
s |2ds.

Use (3.3) and take ε small enough to obtain the existence of a positive constant C = C(β, γ) such that

E( sup
u≤t≤u′

∆
β
2
t ) + E

∫ u′

u

es∆
β
2−1
s |Z1

s − Z2
s |2ds

≤ C

e β2u′E|Y 1
u′ − Y 2

u′ |β +
e
β
2
u′

A
β
2
N

+ e
β
2
u′ sup

i
E
∫ u′

u

|fi(s, Y is , Zis)|β11{Φs>N}ds

+Ne
β
2
u′A

1− β2
N E

∫ u′

u

ρN (f1 − f)s + ρN (f2 − f)s11{vs ≤ N}ds

]
.

We shall estimate J := supi E
∫ u′

u

|fi(s, Y is , Zis)|β11{Φs>N}ds, i = 1, 2.

Using the fact that 11{Φs>N} ≤ 11{vs>5−1N}+11{|Y 1
s |>5−1N}+11{|Y 2

s |>5−1N}+11{|Z1
s |>5−1N}+11{|Z2

s |>5−1N}

and 11{a>b} ≤
aν

bν
for every a, b, ν > 0, we show that for every N > 1

J ≤
(

5
N

)ν
sup
i

E
∫ u′

u

|fi(s, Y is , Zis)|βvνsds

+
(

5
N

)ν
sup
i

E
∫ u′

u

|fi(s, Y is , Zis)|β |Y 1
s |νds

+
(

5
N

)ν
sup
i

E
∫ u′

u

|fi(s, Y is , Zis)|β |Y 2
s |νds

+
(

5
N

)ν
sup
i

E
∫ u′

u

|fi(s, Y is , Zis)|β |Z1
s |νds.

+
(

5
N

)ν
sup
i

E
∫ u′

u

|fi(s, Y is , Zis)|β |Z2
s |νds.

using Young’s inequality, one can prove that there exists a positive constant C such that for every
N > 1

J ≤ C

Nν

{
1 + Θ1

p + Θ2
p + sup

i
E
∫ u′

u

|fi(s, Y is , Zis)|
β( q′
q′−ν∨

2
2−ν∨

p
p−ν )

ds+ E
∫ u′

u

vq
′

s ds

}
.

where Θi
p := E(supt |Y it |p) + E

(∫ T

0

|Zis|2ds

) p
2

.

Using Proposition 3.2, we get (since β( q′

q′−ν ∨
2

2−ν ∨
p

p−ν ) ≤ β̂)

J ≤ C

Nν

{
1 + Θ1

p + Θ2
p + E

∫ T

0

|ηs|qds+ E
∫ u′

u

vq
′

s ds

}
.
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Hence, for a := ( νµ ∧
β
2 )− βrK” and N large enough we get (since AN ≤ Nµ by assumption {bf(H.4)),

E sup
u≤t≤u′

∆
β
2
t + E

∫ u′

u

es∆
β
2−1
s |Z1

s − Z2
s |2ds

≤ NA
1+ β

2
N

[
E|Y 1

u′ − Y 2
u′ |β + E

∫ T

0

ρN (f1 − f)s + ρN (f2 − f)s11{vs ≤ N}ds

]

+
1
AaN

[
1 + Θ1

p + Θ2
p + E

∫ T

0

ηqsds+ E
∫ T

0

vq
′

s ds

]
.

Lemma 3.5 is proved.
As a consequence of lemma 3.5, we have

Lemma 3.6. Let (ξi, fi)i=1,2 satisfies (H.3) (with the same η, α and α′) and let (Y i, Zi) be a solution
of (E(ξi,fi)). Then, there exists β = β(p, q, α, α′) ∈]1, p∧ 2[ such that for every ε > 0 there is an integer
Nε = Nε(p, q, α, α′,K ′, µ, q′, ε, (AN )N ) such that for every function f satisfying (H.4)

E( sup
0≤t≤T

|Y 1
t − Y 2

t |β) + E
∫ T

0

|Z1
s − Z2

s |2

(1 + |Y 1
s − Y 2

s |2)1− β2
ds

≤ Nε

[
E|ξ1 − ξ2|β + E

∫ T

0

ρNε(f1 − f)s + ρNε(f2 − f)sds

]

+ ε

[
1 + Θ1

p + Θ2
p + E

∫ T

0

ηqsds+ E
∫ T

0

vq
′

s ds

]
.

Proof. Let (u0 = 0 < ... < u`+1 = T ) be a subdivision of [0, T ] such that for every i ∈ {0, .., `}

ui+1 − ui ≤ r

From lemma 3.5 we have : for all ε > 0 there is an integer Nε such that for every function f satisfying
(H.4)

E( sup
u`≤t≤T

|Y 1
t − Y 2

t |β) + E
∫ T

u`

|Z1
s − Z2

s |2

(1 + |Y 1
s − Y 2

s |2)1− β2
ds

≤ Nε

[
E(|ξ1 − ξ2|β) + E

∫ T

0

ρNε(f1 − f)s + ρNε(f2 − f)sds

]

+ ε

[
1 + Θ1

p + Θ2
p + E

∫ T

0

ηqsds+ E
∫ T

0

vq
′

s ds

]
.

Assume that for some i ∈ {0, .., `} we have for all ε > 0 there is an integer Nε such that for every
function f satisfying (H.4)

E( sup
ui+1≤t≤T

|Y 1
t − Y 2

t |β) + E
∫ T

ui+1

|Z1
s − Z2

s |2

(1 + |Y 1
s − Y 2

s |2)1− β2
ds

≤ Nε

[
E(|ξ1 − ξ2|β) + E

∫ T

0

ρNε(f1 − f)s + ρNε(f2 − f)sds

]

+ ε

[
1 + Θ1

p + Θ2
p + E

∫ T

0

ηqsds+ E
∫ T

0

vq
′

s ds

]
.
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Then, for every ε′ > 0 there is an integer Nε′ such that for every function f satisfying (H.4)

E( sup
ui≤t≤T

|Y 1
t − Y 2

t |β) + E
∫ T

ui

|Z1
s − Z2

s |2

(1 + |Y 1
s − Y 2

s |2)1− β2
ds

≤ E( sup
ui≤t≤ui+1

|Y 1
t − Y 2

t |β) + E
∫ ui+1

ui

|Z1
s − Z2

s |2

(1 + |Y 1
s − Y 2

s |2)1− β2
ds

+Nε′

[
E(|ξ1 − ξ2|β) + E

∫ T

0

ρNε′ (f1 − f)s + ρNε′ (f2 − f)sds

]

+ ε′

[
1 + Θ1

p + Θ2
p + E

∫ T

0

ηqsds+ E
∫ T

0

vq
′

s ds

]
.

Using Lemma 3.5 we obtain; for every ε′, ε” > 0 there exist Nε′ > 0 and Nε” > 0 such that for every
function f satisfying (H.4)

E( sup
ui≤t≤T

|Y 1
t − Y 2

t |β) + E
∫ T

ui

|Z1
s − Z2

s |2

(1 + |Y 1
s − Y 2

s |2)1− β2
ds

≤ Nε”

[
E(|Y 1

ui+1
− Y 2

ui+1
|β) + E

∫ T

0

ρNε”(f1 − f)s + ρNε”(f2 − f)sds

]

+Nε′

[
E(|ξ1 − ξ2|β) + E

∫ T

0

ρNε′ (f1 − f)s + ρNε′ (f2 − f)sds

]

+ 2ε′
[

1 + Θ1
p + Θ2

p + E
∫ T

0

ηqds+ E
∫ T

0

vq
′

s ds

]
≤ Nε′Nε” E(|ξ1 − ξ2|β)

+ (Nε′Nε” + 2Nε′) E
∫ T

0

ρ(Nε′Nε”)(f1 − f)s + ρ(Nε′Nε”)(f2 − f)sds

+ (2ε′ + ε”Nε′)

[
1 + Θ1

p + Θ2
p + E

∫ T

0

ηqsds+ E
∫ T

0

vq
′

s ds

]
.

For ε > 0, let ε′ :=
ε

4
and ε” :=

ε

2N( ε4 )
, we then deduce that there exists an integer Nε such that for

every function f satisfying (H.4)

E( sup
ui≤t≤T

|Y 1
t − Y 2

t |β) + E
∫ T

ui

|Z1
s − Z2

s |2

(1 + |Y 1
s − Y 2

s |2)1− β2
ds

≤ Nε

[
E(|ξ1 − ξ2|β) + E

∫ T

0

ρNε(f1 − f)s + ρNε(f2 − f)sds

]

+ ε

[
1 + Θ1

p + Θ2
p + E

∫ T

0

ηqsds+ E
∫ T

0

vq
′

s ds

]
.

We complete the proof by induction

Proposition 3.3. Let (ξi, fi)i=1,2 satisfies (H.3) (with the same η, α and α′) and let (Y i, Zi) be a
solution of (E(ξi,fi)). Then, there exists β = β(p, q, α, α′) ∈]1, p ∧ 2[ such that for every ε > 0 there is
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an integer Nε = Nε(p, q, α, α′,K ′, µ, q′, ε, (AN )N ) such that for every function f satisfying (H.4)

E( sup
0≤t≤T

|Y 1
t − Y 2

t |β) + E

(∫ T

0

|Z1
s − Z2

s |2ds

) β
2

≤ Nε

[
E(|ξ1 − ξ2|β) + E

∫ T

0

ρNε(f1 − f)s + ρNε(f2 − f)sds

]

+ ε

[
1 + Θ1

p + Θ2
p + E

∫ T

0

ηqsds+ E
∫ T

0

vq
′

s ds

]
,

where Θi
p := E(supt |Y it |p) + E

(∫ T

0

|Zis|2ds

) p
2

.

Proof. Using Hölder’s inequality, Young’s inequality and the fact that
β

2
< 1, we obtain for all ε′ > 0

E

(∫ T

0

|Z1
s − Z2

s |2ds

) β
2

≤ E
{[∫ T

0

|Z1
s − Z2

s |2

(1 + |Y 1
s − Y 2

s |2)1− β2
ds

] β
2

sup
s≤T

(
1 + |Y 1

s − Y 2
s |2
)(1− β2 ) β2

}

≤

[
E
∫ T

0

|Z1
s − Z2

s |2

(1 + |Y 1
s − Y 2

s |2)1− β2
ds

] β
2 (

1 + E(sup
s≤T
|Y 1
s − Y 2

s |β)
) 2−β

2

≤

[
E(sup
s≤T
|Y 1
s − Y 2

s |β) + E
∫ T

0

|Z1
s − Z2

s |2

(1 + |Y 1
s − Y 2

s |2)1− β2
ds

] β
2

+

[
E( sup

0≤t≤T
|Y 1
t − Y 2

t |β) + E
∫ T

0

|Z1
s − Z2

s |2

(1 + |Y 1
s − Y 2

s |2)1− β2
ds

]

≤ ε′ + (1 + ε
′ β−2
β )

[
E( sup

0≤t≤T
|Y 1
t − Y 2

t |β) + E
∫ T

0

|Z1
s − Z2

s |2

(1 + |Y 1
s − Y 2

s |2)1− β2
ds

]
.

Use lemma 3.5 to conclude that for every ε′, ε” > 0

E

(∫ T

0

|Z1
s − Z2

s |2ds

) β
2

≤ ε′ + (1 + ε
′ β−2
β )Nε”

[
E(|ξ1 − ξ2|β) + E

∫ T

0

ρNε”(f1 − f)s + ρNε”(f2 − f)sds

]

+ ε”(1 + ε
′ β−2
β )

[
1 + Θ1

p + Θ2
p + E

∫ T

0

ηqsds+ E
∫ T

0

vq
′

s ds

]
.

Letting ε′ =
ε

2
and ε” =

ε

2(1 + ( ε2 )
β−2

2 )
, we finish this proof of proposition 3.3.

Remark 3.1. The uniqueness of equation (E(ξ,f)) follows by letting f1 = f2 = f and ξ1 = ξ2 = ξ in
Proposition 3.3.

The following stability result follows from propositions (3.3), (3.2) and (3.1)
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Proposition 3.4. Let (ξ, f) satisfies (H.0)-(H.4) and (ξn, fn)n satisfies (H.0)-(H.3) uniformly on
n. Assume moreover that

(a) ξn → ξ a.s. and supn E
(
|ξn|p exp(p2

∫ T
0
λsds)

)
<∞

(b) For every N ∈ N∗, limn ρN (fn − f) = 0 a.e.

(c) for every n ∈ N∗, the BSDE (E(ξn,fn)) has a solution (Y n, Zn) which satisfies,

supn E(supt≤T |Y nt |pe
p
2

∫ T
0 λsds) <∞.

Then, there exists (Y,Z) ∈ Lp(Ω; C([0, T ]; Rd))× Lp(Ω; L2([0, T ]; Rdr)) such that

i) E(sup
t
| Yt |p e

p
2

∫ t
0 λsds) + E

[∫ T

0

e
∫ s
0 λrdr | Zs |2 ds

] p
2

≤ Cp,γ
E(| ξ |p e

p
2

∫ T
0 λsds) + E

(∫ T

0

e
∫ s
0 λrdrηsds

) p
2

+ E

(∫ T

0

e
1
2

∫ s
0 λrdrf0

s ds

)p
ii) for every p′ < p, (Y n, Zn) −→ (Y, Z) strongly in Lp′(Ω; C([0, T ]; Rd))× Lp′(Ω; L2([0, T ]; Rdr)).

iii) for every β̂ <
2
α′
∧ p

α
∧ p

α′
∧ q, lim

n→∞
E
∫ T

0

|fn(s, Y ns , Z
n
s )− f(s, Ys, Zs)|β̂ds = 0

Moreover, (Y, Z) is the unique solution of (E(ξ,f)).

Proof. From Proposition 3.1, Proposition 3.2 and Proposition 3.3, we have

a′)

E(supt |Y nt |pe
p
2

∫ t
0 λsds) + E

(∫ T

0

e
∫ t
0 λsds|Zns |2ds

) p
2


≤ Cp,γ supn

E(| ξn |p e
p
2

∫ T
0 λsds) + E

(∫ T

0

e
∫ s
0 λrdrηsds

) p
2

+ E

(∫ T

0

e
1
2

∫ s
0 λrdrf0

s ds

)p
:= D.

b′) E
∫ T

0

|fn(s, Y ns , Z
n
s )|β̂ds ≤ C(1 +D +

∫
η̄qsds).

c′) There exists β > 1 such that for every ε > 0 there exists Nε > 0:

E(sup
t
|Y nt − Y mt |β) + E

(∫ T

0

|Zns − Zms |2ds

) β
2

≤ NεE

[
|ξn − ξm|β +

∫ T

0

ρNε(fn − f)s + ρNε(fm − f)sds

]

+ ε

[
1 + 2D + E

∫ T

0

ηqsds+ E
∫ T

0

vq
′

s ds

]
.

We deduce the existence of (Y,Z) ∈ Lp(Ω; C([0, T ]; Rd))× Lp(Ω; L2([0, T ]; Rdr)) such that

i) E(sup
t
| Yt |p e

p
2

∫ t
0 λsds) + E

[∫ T

0

e
∫ s
0 λrdr | Zs |2 ds

] p
2

≤ Cp,γ
E(| ξ |p e

p
2

∫ T
0 λsds) + E

(∫ T

0

e
∫ s
0 λrdrηsds

) p
2

+ E

(∫ T

0

e
1
2

∫ s
0 λrdrf0

s ds

)p
ii) for all p′ < p, (Y n, Zn) −→ (Y,Z) strongly in Lp′(Ω; C([0, T ]; Rd))× Lp′(Ω; L2([0, T ]; Rdr)).

Let us prove iii). Set a := lim supn→∞ E
∫ T

0

|f(s, Y ns , Z
n
s )− f(s, Ys, Zs)|β̂ds. Consider a subsequence

n′ of n such that a := limn′→∞ E
∫ T

0

|f(s, Y n
′

s , Zn
′

s )− f(s, Ys, Zs)|β̂ds and, (Y n
′
, Zn

′
)→ (Y,Z) a.e.

Assumption (H.3) and the continuity of f ensure that a = 0. It remains to prove that
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lim sup
n→∞

E
∫ T

0

|fn(s, Y ns , Z
n
s )− f(s, Y ns , Z

n
s )|β̂ds = 0

We use Hölder’s inequality, the previous claim b’), Proposition 3.2 and Chebychev’s inequality to get

E
∫ T

0

|fn(s, Y ns , Z
n
s )− f(s, Y ns , Z

n
s )|β̂ds

≤ E
∫ T

0

ρN (fn − f)β̂s ds+ (E
∫ T

0

|fn(s, Y ns , Z
n
s )− f(s, Y ns , Z

n
s )|rβ̂ds) 1

r (E
∫ T

0

1|Y ns |+|Zns |≥Nds)
r−1
r

≤ E
∫ T

0

ρN (fn − f)β̂s ds+
C(r)

N
(r−1)(p∧2)

r

,

for some reel r > 1 such that rβ̂ <
2
α′
∧ p

α
∧ p

α′
∧ q.

We successively let n −→∞ and N −→∞ to derive assertion iii). Proposition 3.4 is proved

3.3 Approximation
We shall construct a sequence (ξn, fn) which converges in a suitable sense to (ξ, f) and which has
good properties. With the help of this approximation, we can construct a solution (Y,Z) to the BSDE
(E(ξ,f)) by using Proposition 3.4.

Let ht is a predictable process such that 0 < ht ≤ 1 and set Λt := ηt + ηt + f0
t +Mt +Kt + 1

ht

Proposition 3.5. Assume that (ξ, f) satisfies (H.0)–(H.3). Then there exists a sequence (ξn, fn)
such that
(a) For each n, ξn is bounded, |ξn| ≤ |ξ| and ξn converges to ξ a.s.
(b) For each n, fn is uniformly Lipschitz in (y, z).
(c) |fn(t, ω, y, z)| ≤ 11{Λt ≤ n, |y|≤n, |z|≤n}{ηt+ | y |α + | z |α′ +2pht} ≤ 2p+ 3np.
(d) < y, fn(t, ω, y, z) > ≤ 11{Λt ≤ n}{ηt + f0

t |y|+Mt|y|2 +Kt|y||z|+ 10ht}.
(e) For every N , ρN (fn − f)(t, ω) −→ 0 as n −→∞ a.e (t, ω).
(f) For every N , ρN (fn − f)(t, ω) ≤ 2{ηt +Nα +Nα′ + 2pht}.

Proof. Let ψ : R −→ [0,
exp(−1)

c1
] defined by:

ψ(x) :=

{
c−1
1 exp (− 1

1− x2
) if |x| < 1

0 else

where c1 =
∫ 1

−1

exp (− 1
1− x2

)dx.

Let m :=
n2p

ht
. the sequence (ξn, fn) defined by : ξn := ξ1{|ξ|≤n} and

fn(t, y, z) =(c1e)211{Λt ≤ n}ψ(n−2|y|2)ψ(n−2|z|2)×

m(d+dr)

∫
Rd

∫
Rdr

f(t, y − u, z − v)Πd
i=1ψ(mui)Πd

i=1Πr
j=1ψ(mvij)dudv,

satisfies the required properties. Indeed, (a) is obvious. (e) follows from the definition of fn. (f)
follows from assumption (H.3) and assertion (c). We shall prove assertions (b), (c) and (d).

(b) For a fixed t and ω, fn(t, ω, ., .) is smooth and with compact support in [−n, n]d+dr. Moreover

| ∇y,zfn(t, ω, y, z) |≤ Cn2p+2,

where ∇ denotes the gradient and C is a positive constant.
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(c) For all (t, ω, y, z) such that Λt ≤ n, | y |≤ n and | z |≤ n we obtain, by using assumption
(H.3), that

| fn(t, y, z) |≤m(d+dr)

∫
Rd

∫
Rdr
| f(t, y − u, z − v) | Πd

i=1ψ(mui)Πd
i=1Πr

j=1ψ(mvij)dudv

≤ ηt+ | y |α + | z |α
′

+md

∫
Rd

(
| y − u |α − | y |α

)
Πd
i=1ψ(mui)du

+mdr

∫
Rdr

(
| z − v |α

′
− | z |α

′
)

Πd
i=1Πr

j=1ψ(mvij)dv

≤ ηt+ | y |α + | z |α
′

+α(n+
ht
n2p

)α−1 ht
n2p

+ α′(n+
ht
n2p

)α
′−1 ht

n2p

≤ ηt+ | y |α + | z |α
′

+2pht

(d) For all (t, ω, y, z) such that Λt ≤ n, | y |≤ n and | z |≤ n we obtain, by using assumptions
(H.2)− (H.3), that

〈y, fn(t, y, z)〉 ≤(c1e)2ψ(n−2|y|2)ψ(n−2|z|2)×

m(d+dr)

∫
Rd

∫
Rdr
〈f(t, y − u, z − v), y − u〉Πd

i=1ψ(mui)Πd
i=1Πr

j=1ψ(mvij)dudv

+m(d+dr)

∫
Rd

∫
Rdr
| f(t, y − u, z − v) || u | Πd

i=1ψ(mui)Πd
i=1Πr

j=1ψ(mvij)dudv

≤ ηt + f0
t |y|+Mt|y|2 +Kt|y||z|+ 10ht

Remark 3.2. Theorem 2.1 follows now from Proposition 3.4 and Proposition 3.5.

4 The second main result : Systems of degenerate PDEs
In this section, we consider the system of semilinear PDEs associated to the Markovian version of the
BSDE (Eξ,f)), for which we establish the existence and uniqueness of a weak (Sobolev) solution. In
particular, we introduce a new method of proving, by means of BSDE, that uniqueness to a system of
inhomogeneous semilinear PDE results from the uniqueness of its associated homogeneous system of
linear PDE.

4.1 Formulation of the problem.
Let σ : Rk 7−→ Rkr, b : Rk 7−→ Rk , g : Rk 7−→ Rk, and F : [0, T ] × Rk × Rd × Rdr 7−→ Rd be
measurable functions. Consider the system of semilinear PDEs

(P(g,F ))

{
∂u(t, x)
∂t

+ Lu(t, x) + F (t, x, u(t, x), σ∗∇u(t, x)) = 0 t ∈]0, T [, x ∈ Rk

u(T, x) = g(x) x ∈ Rk

where L :=
1
2

∑
i,j

(σσ∗)ij∂2
ij +

∑
i

bi∂i.

The diffusion process associated to the operator L satisfies,

Xt,x
s = x+

∫ s

t

b(Xt,x
r )dr +

∫ s

t

σ(Xt,x
r )dWr, t ≤ s ≤ T

We assume throughout this section that σ ∈ C3
b (Rk,Rkr), and b ∈ C2

b (Rk,Rk).

We define,

H1+ :=
⋃

δ≥0,β>1

{
v ∈ C([0, T ]; Lβ(Rk, e−δ|x|dx; Rd)) :

∫ T

0

∫
Rk
|σ∗∇v(s, x)|βe−δ|x|dxds <∞

}
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Definition 4.1. A (weak) solution of (P(g,F )) is a function u ∈ H1+ such that for every t ∈ [0, T ] and
ϕ ∈ C1

c ([0, T ]× Rd)∫ T

t

< u(s),
∂ϕ(s)
∂s

> ds+ < u(t), ϕ(t) >= < g,ϕ(T ) > +
∫ T

t

< F (s, ., u(s), σ∗∇u(s)), ϕ(s) > ds

+
∫ T

t

< Lu(s), ϕ(s) > ds

where < f(s), h(s) >=
∫

Rk f(s, x)h(s, x)dx.

Observe that an integrating by part shows that,

< Lu(s), ϕ(s) > = −
∫

Rk

1
2
〈σ∗∇u(s, x);σ∗∇ϕ(s, x)〉dx − < u(s), div(b̃ϕ)(s) >

where b̃i := bi −
1
2

∑
j

∂j(σσ∗)ij

4.2 Assumptions
Consider the following assumptions:

There exist δ ≥ 0 and p > 1 such that

(A.0) g(x) ∈ Lp(Rk, e−δ|x|dx; Rd)

(A.1) F (t, x, ., .) is continuous for a.e. (t, x)

(A.2)


There are η′ ∈ L

p
2∨1([0, T ]× Rk, e−δ|x|dtdx; R+)),

f0′ ∈ Lp([0, T ]× Rk, e−δ|x|dtdx; R+)), and M,M ′ ∈ R+ such that

〈y, F (t, x, y, z)〉 ≤ η′(t, x) + f0′(t, x)|y|+ (M +M ′|x|)|y|2+
√
M +M ′|x||y||z|

(A.3)


There are η′ ∈ Lq([0, T ]× Rk, e−δ|x|dtdx; R+)) (for some q > 1), α ∈]1, p[
and α′ ∈]1, p ∧ 2[ such that

|F (t, x, y, z)| ≤ η′(t, x) + |y|α + |z|α′

(A.4)


There are K, r ∈ R+ such that for every N ∈ N and every x, y, y′, z, z′

satisfying : er|x|, | y |, | y′ |, | z |, | z′ |≤ N,

〈y − y′;F (t, x, y, z)− F (t, x, y′, z′)〉 ≤ K logN
(

1
N

+ |y − y′|2
)

+
√
K logN |y − y′||z − z′|.

4.3 Existence and uniqueness for (P(g,F ))

Theorem 4.1. Let p ∈]α ∨ α′, p[ if M ′ > 0 and p = p̄ if M ′ = 0. Under assumption (A.0)-(A.4) we
have

1) The PDE (P(g,F )) has a unique (weak) solution u on [0, T ]

2) For every t ∈ [0, T ] there exists Dt ⊂ Rk such that

i)
∫

Rk
11Dct dx = 0 , where Dc

t := Rk \Dt.

ii) for every t ∈ [0, T ] and every x ∈ Dt, the BSDE (E(ξt,x,ft,x)) has a unique solution (Y t,x, Zt,x) on
[t, T ]
where ξt,x := g(Xt,x

T ) and f t,x(s, y, z) := 11{s>t}F (s,Xt,x
s , y, z)
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3) For every t ∈ [0, T ] (
u(s,Xt,x

s ), σ∗∇u(s,Xt,x
s )
)

=
(
Y t,xs , Zt,xs

)
a.e.(s, x, ω)

4) There exists a positive constant C depending only on δ,M,M ′, p, p̄, |σ|∞, |b|∞ and T such that

sup0≤t≤T

∫
Rk
| u(t, x) |p e−δ

′|x|dx+
∫ T

0

∫
Rk
| σ∗∇u(t, x) |p∧2 e−δ

′|x|dtdx

≤ C
(

11[M ′ 6=0] +
∫

Rk
| g(x) |p dx+

∫
Rk

∫ T

0

η′(s, x)
p
2∨1dsdx+

∫
Rk

∫ T

0

f0′(s, x)pdsdx

)

where δ′ = δ + κ′ + 11[M ′ 6=0] and κ′ :=
ppM ′T

(p− p)
sup(4, 2p

p−1 ).

4.4 Proof of Theorem 4.1.

A) Existence.

Lemma 4.1. 1) There exists κ > 0 depending only on |σ|∞, |b|∞ and T such that

sup
t,x

E[exp(κ sup
t≤s≤T

| Xt,x
s − x |2)] <∞. (4.0)

In particular, for every r > 0 there is a constant C(r, κ) such that for each (t, x)

E[exp(r sup
t≤s≤T

| Xt,x
s |)] ≤ C(r, κ) exp(r | x |)

2) For every δ ≥ 0 there exists a constant Cδ,T > 1 such that for every ϕ ∈ L0(Rk), t ∈ [0, T ] and
s ∈ [t, T ]

C−1
δ,T

∫
Rk
|ϕ(x)|e−δ|x|dx ≤ E

∫
Rk
|ϕ(Xt,x

s )|e−δ|x|dx ≤ Cδ,T
∫

Rk
|ϕ(x)|e−δ|x|dx. (4.2)

Moreover for every δ ≥ 0 there exists a constant Cδ,T > 1 such that for every ψ ∈ L0([0, T ] × Rk),
t ∈ [0, T ] and s ∈ [t, T ]

C−1
δ,T

∫
Rk

∫ T

t

|ψ(s, x)|dse−δ|x|dx ≤ E
∫

Rk

∫ T

t

|ψ(s,Xt,x
s )|dse−δ|x|dx ≤ Cδ,T

∫
Rk

∫ T

t

|ψ(s, x)|dse−δ|x|dx.

Proof. The first assertion is well known. Its particular case follows by using triangular and Young’s
inequalities. Indeed

E[exp(r sup
t≤s≤T

| Xt,x
s |)] ≤ exp(r | x |)E[exp(r sup

t≤s≤T
| Xt,x

s − x |)]

≤ exp(r | x |)E[exp(
r√
κ

√
κ sup
t≤s≤T

| Xt,x
s − x |)]

≤ exp(
r2

κ
) exp(r | x |)E[exp(κ sup

t≤s≤T
| Xt,x

s − x |2)].

For the second assertion, see [40].
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Lemma 4.2. Let p ∈]α∨α′, p[ if M ′ > 0 and p = p̄ if M ′ = 0. Let t ∈ [0, T ]. There exists Dt ⊂ Rksuch
that
i)
∫
Dct

1 dx = 0

ii) for every x ∈ Dt

E(| g(Xt,x
T ) |p e

p
2

∫ T
t
λt,xs ds) + E

(∫ T

t

η′(s,Xt,x
s )e

∫ s
t
λt,xr drds

) p
2

+ E

(∫ T

t

f0′(s,Xt,x
s )e

1
2

∫ s
t
λt,xr drds

)p
+ E

∫ T

t

η′(s,Xt,x
s )qds < +∞,

where λt,xs := (M +M ′|Xt,x
s |) sup(4, 2p

p−1 ).

Proof . Using Hölder’s inequality, Young’s inequality and Lemma 4.1 we get

E(| g(Xt,x
T ) |p e

p
2

∫ T
t
λt,xs ds) + E

(∫ T

t

η′(s,Xt,x
s )e

∫ s
t
λt,xr drds

) p
2

+E

(∫ T

t

f0′(s,Xt,x
s )e

1
2

∫ s
t
λt,xr drds

)p
+ E

∫ T

t

η′(s,Xt,x
s )qds

≤ C

(
E(| g(Xt,x

T ) |p) + E
∫ T

t

η′(s,Xt,x
s )

p
2∨1+ E

∫ T

t

f0′(s,Xt,x
s )p + E

∫ T

t

η′(s,Xt,x
s )qds+ 11[M ′ 6=0]e

κ′|x|

)
for some constant C depending only on M,M ′, p, p̄, |σ|∞, |b|∞ and T .

We put,

Γt,x := C
(
E(| g(Xt,x

T ) |p)+E
∫ T

t

η′(s,Xt,x
s )

p
2∨1+E

∫ T

t

f0′(s,Xt,x
s )p+E

∫ T

t

η′(s,Xt,x
s )qds+11[M ′ 6=0]e

κ′|x|).
Using Lemma 4.1-2) and assumptions (A.0)-(A.3), one can show that∫

Rk
Γt,xe−δ

′|x|dx < ∞

where δ′ = δ + κ′ + 1. The set Dt := {x; Γt,x <∞}. Lemma 4.2 is proved.

Lemma 4.3. Assume (A.0)-(A.4). Let p ∈]α∨α′, p[ if M ′ > 0 and p = p̄ if M ′ = 0. Then, for every
t ∈ [0, T ] and every x ∈ Dt, the BSDE (E(ξt,x,ft,x)) has a unique solution (Y t,x, Zt,x) which satisfies,
for every t ∈ [0, T ] and every x ∈ Dt,

E
(

sup
t≤s≤T

| Y t,xs |p
)

+ E
( ∫ T

t

| Zt,xs |2 ds
) p

2

≤ C
[
E(| g(Xt,x

T ) |p)+ E
∫ T

t

η′(s,Xt,x
s )

p
2∨1ds+ E

∫ T

t

f0′(s,Xt,x
s )pds+ 11[M ′ 6=0]e

κ′|x|] (4.3)

for some constant C depending only on M,M ′, p, p̄, |σ|∞, |b|∞ and T .

Proof. For every t ∈ [0, T ] and x ∈ Dt, (ξt,x, f t,x) satisfies (H.0)-(H.4) with γ = inf{1
4
,
p− 1

4
},

Ms = M + M ′|Xt,x
s |, Ks =

√
M +M ′|Xt,x

s |, ηs = η′(s,Xt,x
s ), f0

s = f0′(s,Xt,x
s ), ηs = η′(s,Xt,x

s ),
vs = exp(r|Xt,x

s |) and AN = N . Hence, Lemma 4.3 follows from Theorem 2.1 and Lemma 4.2.

Set,
gn(x) := g(x)11{|g(x)|≤n},

Fn(t, x, y, z) := (n2pe|x|)(d+dr)(c1e)211{η′(t,x)+η′(t,x)+f0′ (t,x)+|x|≤n}ψ(n−2|y|2)ψ(n−2|z|2)×∫
Rd

∫
Rdr

F (t, x, y − u, z − v)Πd
i=1ψ(n2pe|x|ui)Πd

i=1Πr
j=1ψ(n2pe|x|vij)dudv,
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ξt,xn := gn(Xt,x
T )

and
f t,xn (s, y, z) := 11{s>t}Fn(s,Xt,x

s , y, z).

It is not difficult to see that the sequence (gn, Fn) satisfies (A.0)-(A.3) uniformly in n. Hence (ξt,xn , f t,xn )
satisfies (H.0)-(H.3) uniformly in n. Moreover, for every n ∈ N∗, (ξt,xn , f t,xn ) is bounded and f t,xn is
globally Lipschitz.
Let (Y t,x,n, Zt,x,n) be the unique solution of BSDE (E(ξt,xn ,ft,xn )). Let p ∈]α∨α′, p[ if M ′ > 0 and p = p̄
if M ′ = 0. Arguing as in Lemma 4.3, we show that for every t, x ∈ Dt and every n ∈ N∗

E( sup
t≤s≤T

| Y t,x,ns |p) + E
( ∫ T

t

| Zt,x,ns |2 ds
) p

2 ≤ C
(

E
∫ T

t

e−( p2∨1)|Xt,xs |ds+ E(| g(Xt,x
T ) |p)+

+E
∫ T

t

η′(s,Xt,x
s )

p
2∨1ds+ E

∫ T

t

f0′(s,Xt,x
s )pds+ 11[M ′ 6=0]e

κ′|x|
) (4.4)

for some constant C = C(p̄) not depending on (t, x, n). To see this, use proposition 3.5 (with hs :=
e−|X

t,x
s |), Proposition 3.1 and the proof of proposition 3.4-a).

According to [10], we have

Lemma 4.4. There exists a unique solution un to the problem,

(P(gn,Fn))

{
∂un(t, x)

∂t
+ Lun(t, x) + Fn(t, x, un(t, x), σ∗∇un(t, x)) = 0, t ∈]0, T [, x ∈ Rk

un(T, x) = gn(x), x ∈ Rk

such that for every t

un(s,Xt,x
s ) = Y t,x,ns and σ∗∇un(s,Xt,x

s ) = Zt,x,ns a.e (s, ω, x).

From Proposition 3.4-(ii) we have

Lemma 4.5. (Stability) For every t ∈ [0, T ], x ∈ Dt and p′ < p̄,

lim
n

E( sup
0≤s≤T

| Y t,x,ns − Y t,xs |p
′
) + E

(∫ T

t

| Zt,x,ns − Zt,xs |2 ds

) p′
2

 = 0.

Using Lemma 4.1−2), inequality (4.4), Lemma 4.4, Lemma 4.5 and the Lebesgue dominated con-
vergence theorem, we obtain

Lemma 4.6. (Covergence of PDE) For every p′ < p̄,

lim
n,m

sup
0≤t≤T

∫
Rk
| un(t, x)− um(t, x) |p

′
e−δ

′|x|dx = 0

lim
n,m

∫ T

0

∫
Rk
| σ∗∇un(t, x)− σ∗∇um(t, x) |p

′∧2 e−δ
′|x|dtdx = 0.

Using Lemma 4.1, Lemma 4.6 and the fact that H1+ is complete, we prove that exists u ∈ H1+ such
that for every p′ < p̄,

i) sup0≤t≤T
∫

Rk | u(t, x) |p′ e−δ′|x|dx+
∫ T

0

∫
Rk | σ

∗∇u(t, x) |p′∧2 e−δ
′|x|dtdx <∞

ii) limn sup0≤t≤T
∫

Rk | u
n(t, x)− u(t, x) |p′ e−δ′|x|dx = 0
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iii) limn E
∫

Rk

(∫ T
t
| σ∗∇un(s,Xt,x

s )− σ∗∇u(s,Xt,x
s ) |2 e−δ′|x|ds

) p′
2
dx = 0 ∀t ∈ [0, T ]

iv) (u(s,Xt,x
s ), σ∗∇u(s,Xt,x

s )) = (Y t,xs , Zt,xs ) a.e.

In another hand, from Proposition 3.2 and Proposition 3.4 we respectively have for every t ∈ [0, T ]
and x ∈ Dt

E
∫ T

t

|Fn(s,Xt,x
s , un(s,Xt,x

s ), σ∗∇un(s,Xt,x
s )|β̂ds ≤ C

(
1 + Θt,x,n

p + E
∫ T

t

|η′(s,Xt,x
s )|qds

)
and

lim
n

E
∫ T

t

|Fn(s,Xt,x
s , un(s,Xt,x

s ), σ∗∇un(s,Xt,x
s ))− F (s,Xt,x

s , u(s,Xt,x
s ), σ∗∇u(s,Xt,x

s ))|β̂ds = 0

where β̂ is some real in ]1,∞[, C is some constant not depending on (t, x, n) and

Θt,x,n
p = E sups |Y t,x,ns |p + E

( ∫ T

t

|Zt,x,ns |2ds
) p

2 .

We deduce from Lemma 4.1, the Lebesgue dominated convergence theorem and inequality (4.4) that

lim
n

∫ T

0

∫
Rd
|Fn(s, x, un(s, x), σ∗∇un(s, x))− F (s, x, u(s, x), σ∗∇u(s, x))|β̂e−(1+δ′)|x|dxds = 0.

As a consequence of Lemma 4.3 and the proof of Proposition 3.4, we get the following existence
result for the problem (P(g,F )).

Proposition 4.1. Under assumptions (A.0)-(A.4), the PDE (P(g,F )) has a unique solution u such
that u(s,Xt,x

s ) = Y t,xs and σ∗∇u(s,Xt,x
s ) = Zt,xs . Moreover, letting p ∈]α ∨ α′, p[ if M ′ > 0 and p = p̄

if M ′ = 0, then there is a constant C depending only on δ′,M,M ′, p, p̄, |σ|∞, |b|∞ and T such that

sup0≤t≤T

∫
Rk
| u(t, x) |p e−δ

′|x|dx+
∫ T

0

∫
Rk
| σ∗∇u(t, x) |p∧2 e−δ

′|x|dtdx

≤ C
(

1 +
∫

Rk
| g(x) |p dx+

∫
Rk

∫ T

0

η′(s, x)
p
2∨1dsdx+

∫
Rk

∫ T

0

f0′(s, x)pdsdx

)

where δ′ = δ + κ′ + 1 and κ′ :=
ppM ′T

(p− p)
sup(4, 2p

p−1 ).

B) Uniqueness.

Due to the degeneracy of the diffusion coefficient, the solution of the homogeneous linear PDEs is
not sufficiently smooth and hence we can not use it as a test function. In order to construct a suitable
test function, we need the following lemma. This lemma is interesting in itself since it gives a uniform
estimate for a regularized degenerate PDE.

LetW1,2
q ([0, T ]×Rd) denotes the Sobolev space of all funcions u(t, x) defined on R+×Rd such that

both u and all the generalized derivatives Dtu, Dxu, and D2
xxu belong to Lq([0, T ]× Rd).

Lemma 4.7. Let ε ∈]0, 1[, g ∈ C∞c ([0, T ]× Rk; R). Then, the PDE

(Pε(g))

{
∂φε(t, x)

∂t
− 1

2
div(σσ∗∇φε)− ε4 φε(t, x) + 〈b̃(x);∇φε(t, x)〉 = g(t, x)

φε(0, x) = 0 x ∈ Rk
has a unique solution φε which satisfies :

(i) φε ∈
⋂
q> 3

2

W1,2
q ([0, T ]× Rk; R) ∩ C1,2([0, T ]× Rk; R)

(ii) sup
(ε,t,x)

{
|∂φ

ε

∂t
(t, x)|+ |∇φε(t, x)|+ |φε(t, x)|

}
<∞.
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Proof. The existence and uniqueness, of the solution φε, follow from [34] (p. 318 and pp. 341− 342).
We shall prove an uniform estimates for φε and for their first derivatives. These estimates can be
established by adapting the proofs given in Krylov [33] pp. 330 − 344. However, we give here a
probabilistic proof which is very simple. We assume that the dimension k is 1. Let Xε

t (x) denotes the
diffusion process associated to the problem (Pε(g)). For simplicity, we assume that g does not depend
from t and the drift coefficient of Xε

t (x) is zero. The process Xε
t (x) is then the unique (strong) solution

of the following SDE

Xε
t (x) = x+

∫ t

0

σε(Xε
s (x))dWs, 0 ≤ t ≤ T

Let M := sup(ε,t,x)(|g′(Xε
t (x))|+ |σ(t, x)|+ |σ′(t, x)|). Since the coefficients σε is smooth and uniformly

elliptic, then the solution φε belongs to C1,2. Hence, Itô’s formula shows that,

φε(t, x) = −E
∫ T

t

g(Xε
s (x))ds.

Since g ∈ C∞c , we immediately get

sup
(ε,t,x)

{
|∂φ

ε

∂t
(t, x)|+ |φε(t, x)|

}
<∞.

Since σε ∈ C3
b , we can show that

|∂φ
ε(t, x)
∂x

| ≤ME
∫ T

t

|∂X
ε
s (x)
∂x

|ds

It remains to show that sup
(ε,t,x)

E(|∂X
ε
t (x)
∂x

|) <∞.

Since |σ′ε(t, x)| ≤ |σ′(t, x)| ≤ sup(t,x) |σ′(t, x)| ≤M , we have

E(|∂X
ε
t (x)
∂x

|2) ≤ 1 + E
∫ t

0

|σ′ε(Xε
s (x))|2|∂X

ε
s (x)
∂x

|2ds

≤ 1 +M2E
∫ t

0

|∂X
ε
s (x)
∂x

|2ds

The Gronwall Lemma gives now the desired result.
In multidimensional case, the proof can be performed similarly since it is based on the fact that the
first derivative of σε is bounded uniformly in ε, which is valid in multidimensional case also, see Freidlin
[29], III § 3.2, pp. 188-193. Lemma 4.7 is proved.

Remark 4.1. (i) According to Krylov estimate (because σε is uniformly elliptic), the previous proof
(in dimension one) remains valid also when the coefficients σ and b are Lipschitz only.

(ii) Since in our situation σ ∈ C3
b (Rk,Rkr) and b ∈ C2

b (Rk,Rk), we can estimate also the second
derivative of φε. More precisely we have

sup
(ε,t,x)

{
φε(t, x)|+ |∂φ

ε

∂t
(t, x)|+ |∇φε(t, x)|+ |D2φε(t, x)|

}
<∞.

Proof of Remark 4.1 . Let Bt be a d-dimensional Wiener process stochastically independent of Wt

and consider the SDE :

Xt,x
s (ε) = x+

∫ s

t

b̄(Xt,x
r (ε))dr +

∫ s

t

σ(Xt,x
r (ε))dWr +

√
2ε(Bs −Bt), t ≤ s ≤ T
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where b̄(x) := b̃(x)− 1
2

∑
j

∂j(σσ∗).j(x) = b(x)−
∑
j

∂j(σσ∗).j(x)

Itô’s formula shows that,

φε(T − t, x) = E
∫ T

t

g(r,Xt,x
r (ε))dr

Then

∂iφ
ε(T − t, x) = E

∫ T

t

〈∇g(r,Xt,x
r (ε)); ∂iXt,x

r (ε)〉dr

and

∂2
ijφ

ε(T − t, x) = E
∫ T

t

〈∇g(r,Xt,x
r (ε)); ∂2

ijX
t,x
r (ε)〉+ 〈D2g(r,Xt,x

r (ε)) ∂iXt,x
r (ε); ∂jXt,x

r (ε)〉dr

On other hand,

∂i(Xt,x
s )k(ε) = δik +

∫ s

t

〈∇b̄k(Xt,x
r (ε)); ∂iXt,x

r (ε)〉dr +
∑
n

∫ s

t

〈∇σkn(Xt,x
r (ε)); ∂iXt,x

r (ε)〉dWn
r

and

∂2
ij(X

t,x
s )k(ε) =

∫ s

t

〈∇b̄k(Xt,x
r (ε)); ∂2

ijX
t,x
r (ε)〉dr +

∑
n

∫ s

t

〈∇σkn(Xt,x
r (ε)); ∂2

ijX
t,x
r (ε)〉dWn

r

+
∫ s

t

〈D2b̄k(Xt,x
r (ε))∂jXt,x

r (ε); ∂iXt,x
r (ε)〉dr

+
∑
n

∫ s

t

〈D2σkn(Xt,x
r (ε))∂jXt,x

r (ε); ∂iXt,x
r (ε)〉dWn

r

Itô’s formula gives

E|∂i(Xt,x
s )k(ε)|4 = δik + 4E

∫ s

t

〈∇b̄k(Xt,x
r (ε)) ; ∂iXt,x

r (ε)〉 (∂i(Xt,x
r )k(ε))3dr

+6
∑
n

E
∫ s

t

|〈∇σkn(Xt,x
r (ε)) ; ∂iXt,x

r (ε)〉|2 (∂i(Xt,x
r )k(ε))2dr

≤ δik + supx (2|∇b̄k(x)|+
∑
n

|∇σkn(x)|2)
∫ s

t

E|∂iXt,x
r (ε)|4dr

and

E|∂2
ij(X

t,x
s )k(ε)|2 = 2E

∫ s

t

〈∇b̄k(Xt,x
r (ε)); ∂2

ijX
t,x
r (ε)〉 ∂2

ij(X
t,x
r )k(ε)dr

+
∑
n

E
∫ s

t

|〈∇σkn(Xt,x
r (ε)) ; ∂2

ijX
t,x
r (ε)〉|2dr

+2E
∫ s

t

〈D2b̄k(Xt,x
r (ε)) ∂jXt,x

r (ε) ; ∂iXt,x
r (ε)〉 ∂2

ij(X
t,x
r )k(ε)dr

+
∑
n

E
∫ s

t

|〈D2σkn(Xt,x
r (ε)) ∂jXt,x

r (ε) ; ∂iXt,x
r (ε)〉|2dr

≤ supx (2|∇b̄k(x)|+ 2|D2b̄k(x)|+
∑
n

|∇σkn(x)|2)E
∫ s

t

|∂2
ijX

t,x
r (ε)|2dr

+ supx (|D2b̄k(x)|+
∑
n

|D2σkn(x)|2)
∫ s

t

E|∂jXt,x
r (ε)|4 + E|∂iXt,x

r (ε)|4dr
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We deduce that

E|∂i(Xt,x
s )(ε)|4 ≤ k2 + k2

∑
j supx (2|∇b̄n(x)|+

∑
n

|∇σjn(x)|2)
∫ s

t

E|∂iXt,x
r (ε)|4dr

≤ k2ek
2T
∑
j supx (2|∇b̄n(x)|+

∑
n |∇σjn(x)|2) (Gronwall’s Lemma )

and

E|∂2
ij(X

t,x
s )(ε)|2 ≤ k supx (2|∇b̄k(x)|+ 2|D2b̄k(x)|+

∑
n

|∇σkn(x)|2)E
∫ s

t

|∂2
ijX

t,x
r (ε)|2dr

+k3T supx (|D2b̄k(x)|+
∑
n

|D2σkn(x)|2)k2ek
2T
∑
j supx (2|∇b̄n(x)|+

∑
n |∇σjn(x)|2)

≤ k3T supx (|D2b̄k(x)|+
∑
n

|D2σkn(x)|2)k2ek
2T
∑
j supx (2|∇b̄n(x)|+

∑
n |∇σjn(x)|2)

× ekT supx (2|∇b̄k(x)|+2|D2b̄k(x)|+
∑
n |∇σkn(x)|2) (Gronwall’s Lemma )

Since g ∈ C∞c , σ ∈ C3
b (Rk,Rkr) and b ∈ C2

b (Rk,Rk) we get

sup
(ε,t,x)

{
φε(t, x)|+ |∂φ

ε

∂t
(t, x)|+ |∇φε(t, x)|+ |D2φε(t, x)|

}
<∞.

Lemma 4.7 is proved.

Lemma 4.8. 0 is the unique solution of the PDE

(P(0,−div(b̃)(x)y))

{
∂w(t, x)
∂t

+ Lw(t, x) + div(b̃)(x)w(t, x) = 0 t ∈]0, T [, x ∈ Rk

w(T, x) = 0 x ∈ Rk

satisfying for some β > 1

sup
0≤t≤T

∫
Rk
| w(t, x) |β + | w(t, x) | dx+

∫ T

0

∫
Rk
| σ∗∇w(t, x) |β + | σ∗∇w(t, x) | dtdx <∞. (4.1)

Proof. Let w be a solution of (P(0,−div(b̃)(x)y)) satisfying (4.1) and consider wn ∈ C∞c (Rk) such that∫ T

0

∫
Rk
|w(s, x)− wn(s, x)|dxds+

∫ T

0

∫
Rk
|σ∗∇(w(s, x)− wn(s, x))|dxds→ 0.

Let ε ∈]0, 1[, g ∈ C∞c ([0, T ]× Rk; R) and consider the unique solution φε ∈ ∩q> 3
2
W1,2
q ([0, T ]× Rk; R) ∩

C1,2([0, T ]× Rk; R) of the following problem

(Pε(g))

{
∂φε(t, x)

∂t
− 1

2
div(σσ∗∇φε)− ε4 φε(t, x) + 〈b̃(x);∇φε(t, x)〉 = g(t, x)〉

φε(0, x) = 0 x ∈ Rk

The existence and uniqueness of φε follows from Lemma 4.7.

Let (ψi)i∈N ⊂ C∞c (Rk) be such that ψi ∈ [0, 1], ψi → 1 uniformly on every compact set and ∇ψi → 0
uniformly on Rk. By considering φεψi as a test function, we have

∫ T

0

∫
Rk

[
w
∂φε

∂t
+

1
2
〈σ∗∇w;σ∗∇φε〉+ w〈b̃;∇φε〉

]
ψidxdt+∫ T

0

∫
Rk

[
1
2
〈σ∗∇w;σ∗∇ψi〉+ w〈b̃;∇ψi〉

]
φεdxdt = 0.
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Introducing wn and integrating by part we obtain∫ T

0

∫
Rk
wnψi

[
∂φε

∂t
− 1

2
div(σσ∗∇φε) + 〈b̃;∇φε〉

]
dtdx = χε,i1 (n) + χε,n2 (i),

where

χε,i1 (n) := −
∫ T

0

∫
Rk

[
(w − wn)

∂φε

∂t
+

1
2
〈σ∗∇(w − wn);σ∗∇φε〉+ (w − wn)〈b̃;∇φε〉

]
ψidxdt

and

χε,n2 (i) := −
∫ T

0

∫
Rk
〈1
2
φεσσ∗∇w + φεwb̃− 1

2
wnσσ

∗∇φε ; ∇ψi〉dxdt.

From Lemma 4.7, we have

sup
ε

sup
(t,x)

{
|∂φ

ε

∂t
(t, x)|+ |∇φε(t, x)|+ |φε(t, x)|

}
<∞.

Hence
sup
ε,i
|χε,i1 (n)| −→n→∞ 0

and
sup
ε,n
|χε,n2 (i)| −→i→∞ 0.

Observe that an integrating by part shows that
∫ T

0

∫
Rk wnψi 4 φεdxdt = −

∫ T
0

∫
Rk ∇(wnψi)∇φεdxdt,

then use the Lebesgue dominated convergence theorem to deduce that∫ T

0

∫
Rk
wg(t, x)dxdt = lim

n
lim
i

lim
ε

∫ T

0

∫
Rk
wnψi(g(t, x) + ε4 φε)dxdt

= lim
n

lim
i

lim
ε

(χε,i1 (n) + χε,n2 (i))

= 0.

Lemma 4.8 is proved.

Proof of uniqueness for (P(g,F )). The proof is divided into three steps.

Step1. 0 is the unique solution of (P(0,0)) satisfying the inequality (4.1) Lemma 4.8.

Let w1 be a solution of (P(0,0)) satisfying the inequality (4.1) Lemma 4.8. Then, by Lemma 4.8
it is also the unique solution of (P(0,divb̃(x)y−divb̃(x)w1(t,x))) satisfying the inequality (4.1) Lemma 4.8.
Indeed, if u is a solution of (P(0,divb̃(x)y−divb̃(x)w1(t,x))), then u − w1 is a solution of (P(0,divb̃(x)y)) and
hence u− w1 = 0 by Lemma 4.8.
From Proposition 4.1, the process (w1(s,Xt,x

s ), σ∗∇w1(s,Xt,x
s )) is the unique solution of BSDE

(E(0,divb̃(Xt,xs )y−divb̃(Xt,xs )w1(s,Xt,xs )). Thanks to the uniqueness of this BSDE and Lemma 4.1-2), we get
w1 = 0.

Step2. 0 is the unique solution of (P(0,0)).

Let w1 be a solution of (P(0,0)). Since w1 ∈ H1+, then there exist β′ > 1, δ′ ≥ 0 such that,

sup
0≤t≤T

∫
Rk
| w1(t, x) |β

′
e−δ

′|x|dx+
∫ T

0

∫
Rk
| σ∗∇w1(t, x) |β

′
e−δ

′|x|dxdt <∞.

Let δ > δ′ and set w̃1 := w1f(x) where f ∈ C2(Rk; R∗+) such that f(x) = e−δ|x| if | x |> 1.
By Lemma 4.8, w̃1 is the unique solution to the PDE
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(P(0,0)
1 )

{
∂w(t, x)
∂t

+ Lw(t, x) + div(b̃)(x)w(t, x) +H(x)w̃1(t, x) + 〈H(x), σ∗∇w̃1(t, x)〉 = 0

w(T, x) = 0

satisfying the inequality (4.1) Lemma 4.8, where H and H are some bounded and continuous functions.
Proposition 4.1 implies that (w̃1(s,Xt,x

s ), σ∗∇w̃1(s,Xt,x
s )) is the unique solution of the BSDE

(E(0,div(b̃)(Xt,xs )y+H(Xt,xs )w̃1(s,Xt,xs )+〈H(Xt,xs ),σ∗∇w̃1(s,Xt,xs )〉)). Hence w̃1 = 0, which implies that w1 = 0.

Step 3. (P(g,F )) has a unique solution if and only if 0 is the unique solution of (P(0,0)).

By Proposition 4.1, there exists a unique solution u of the problem (P(g,F )) such that, u(s,Xt,x
s ) =

Y t,xs and σ∗∇u(s,Xt,x
s ) = Zt,xs .

Let u′ be another solution of (P(g,F )) and set

F̂ (t, x) = F (s, x, u(s, x), σ∗∇u(s, x))− F (s, x, u′(s, x), σ∗∇u′(s, x)).

The function w := u− u′ is then a solution of the problem

(P(0,F̂ ))

{
∂w(t, x)
∂t

+ Lw(t, x) + F̂ (t, x) = 0 t ∈]0, T [, x ∈ Rk

w(T, x) = 0 x ∈ Rk

In other hand, since (0, F̂ ) satisfies assumptions (A.0)-(A.4), then Proposition 4.1 ensures the existence
of a unique solution ŵ to the problem (P(0,F̂ )) such that, ŵ(s,Xt,x

s ) = Ŷ t,xs and σ∗∇ŵ(s,Xt,x
s ) = Ẑt,xs ,

where (Ŷ t,xs , Ẑt,xs ) is the unique solution of

Ŷ t,xs =
∫ T

s

F̂ (r,Xt,x
r )dr −

∫ T

s

Ẑt,xr dWr

The uniqueness of (P(0,F̂ )) (which follows from step 2) allows us to deduce that

u′(s,Xt,x
s ) = Y t,xs − Ŷ t,xs and σ∗∇u′(s,Xt,x

s ) = Zt,xs − Ẑt,xs .

This implies that u′(t,Xt,x
s ) is a solution to BSDE (E(g,F )). The uniqueness of this BSDE shows that

u′(t,Xt,x
s ) = u(t,Xt,x

s ). We get that u(t, x) = u′(t, x) a.e. by using Lemma 4.1-2). Theorem 4.1 is
proved.

As consequence, we have : Let g ∈ Lp([0, T ] × Rk, e−δ|x|dx; Rd) for some p > 1 and δ ≥ 0. Let
A : [0, T ] × Rk −→ Rd×d, B : [0, T ] × Rk −→ (Rd)dr and C : [0, T ] × Rk −→ Rd×d be measurable
functions which satisfy :

There exists a positive constant K such that for all (t, x)

‖A(t, x)‖+ ‖B(t, x)‖2 ≤ K(1 + |x|), ‖C(t, x)‖ ≤ K and C(t, x) ≥ 0.

We then have

Proposition 4.2. Let g ∈ Lp([0, T ]×Rk, e−δ|x|dx; Rd) for some p > 1 and δ ≥ 0. Let A : [0, T ]×Rk 7−→
Rd×d, B : [0, T ] × Rk 7−→ (Rd)dr and C : [0, T ] × Rk 7−→ Rd×d be measurable functions. Assume that
there exists a positive constant K > 0 such that for every (t, x), 0 ≤ C(t, x) ≤ K and,
‖A(t, x)‖+ ‖B(t, x)‖2 ≤ K(1 + |x|), ‖C(t, x)‖ ≤ K
Then, the PDE{
∂w(t, x)
∂t

+ Lw(t, x) +A(t, x)w(t, x) + 〈〈 B(t, x); σ∗∇w(t, x) 〉〉 − C(t, x)w(t, x) log |w(t, x)| = 0,

w(T, x) = g(x) x ∈ Rk

has a unique solution w and (w(s,Xt,x
s ), σ∗∇w(s,Xt,x

s )) is the unique solution of

E

(
g(Xt,xT ), A(s,Xt,xs )y+〈〈B(s,Xt,xs );z〉〉−C(s,Xt,xs )y log |y|

)
,

where 〈〈B; z〉〉 :=
d∑
i=1

r∑
j=1

BijZij .

30



Set F (t, x, y, z) := A(t, x)y + 〈〈B(t, x); z〉〉 − C(t, x)y log |y|.
Arguing as in the introductory examples, we show the following claims 1)–3). The claim 2) follows by
using Young’s inequality.
1) 〈y, F (t, x, y, z)〉 ≤ K + (K +K|x|)|y|2 +

√
K +K|x||y||z|

2) for all ε > 0 there is a constant Cε such that

|F (t, x, y, z)| ≤ Cε(1 + |x|Cε + |y|1+ε + |z|1+ε)

3) for every N > 3 and every x, y, y′ z, z′ satisfying e|x|, | y |, | y′ |, | z |, | z′ |≤ N :

〈y − y′;F (t, x, y, z)− F (t, x, y′, z′)〉 ≤ K ′ logN
(

1
N

+ |y − y′|2
)

+
√
K ′ logN |y − y′||z − z′|,

where K ′ := 1 + 4Kd+K2.

So assumptions (A.0)-(A.4) are satisfied for (g, F ).
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