

Exercice 1. Soient α un réel strictement positif et X la variable aléatoire de densité f_X définie par (loi de Pareto):

$$f_X(x) = \begin{cases} \frac{1}{\alpha} x^{-\frac{1+\alpha}{\alpha}} & \text{si } x \ge 1\\ 0 & \text{sinon.} \end{cases}$$

- 1. Vérifier que f_X est bien une densité de probabilité.
- 2. Déterminer la fonction de répartition F_X de X. Calculer : $\mathbb{P}(0 < X \leq 2)$.
- 3. Pour quelles valeurs de α , X admet une espérance et une variannce. Les calculer quand elles existent.
- 4. On pose $Y = \ln(X)$.
 - (a) Calculer $\mathbb{P}(Y \leq 0)$.
 - (b) Calculer la fonction de répartition F_Y de Y et en déduire la loi de Y.

Exercice 2. Soit X la variable aléatoire de densité f définie par:

$$f(x) = \begin{cases} xe^{-\frac{x^2}{2}} & \text{si } x \ge 0\\ 0 & \text{sinon.} \end{cases}$$

- 1. Vérifier que f est bien une densité de probabilité.
- 2. Déterminer la fonction de répartition F_X de X.
- 3. Calculer l'espérance mathématique $\mathbb{E}(X)$ de X.
- 4. On pose $Y = X^2$.
 - (a) Déterminer la fonction densité g de la variable aléatoire Y.
 - (b) Donner la loi de Y. En déduire la variance de X.

Exercice 3. Soit X une variable aléatoire de densité f nulle sur $]-\infty,0[$, continue sur \mathbb{R}_+ et strictement positive sur $]0,+\infty[$.

Pour tout $x \in \mathbb{R}_+$, on pose

$$D(x) = 1 - F(x)$$
, et $\pi(x) = \frac{f(x)}{D(x)}$.

où F est la fonction de répartition de X.

1. Soit $x \in \mathbb{R}_+$. Pour tout réel h > 0, on pose

$$G(x,h) = \mathbb{P}\Big[x < X \le x + h \mid X > x\Big].$$

(a) Montrer que pour tout h > 0

$$G(x,h) = \frac{D(x) - D(x+h)}{D(x)}.$$

- (b) Justifier que la fonction D est dérivable sur \mathbb{R}_+ et préciser sa fonction dérivée D'.
- (c) Calculer

$$\lim_{\substack{h\to 0\\h>0}}\frac{G(x,h)}{h}.$$

- 2. On suppose maintenant que X suit une loi exponentielle de paramètre $\lambda > 0$.
 - (a) Montrer que pour tout $x \ge 0$, $\pi(x) = \frac{1}{\mathbb{E}(X)}$.
 - (b) En utilisant la question 1.(c), retrouver la valeur de $\pi(x)$.

Exercice 4. Soient X et Y deux variables aléatoires indépendantes. X est une variable discrète telle que

$$\mathbb{P}(X = -1) = \mathbb{P}(X = 1) = \frac{1}{2}.$$

Y suit la loi normale centrée réduite $\mathcal{N}(0,1)$. On considère la variable aléatoire définie par Z=XY. On note F_Z la fonction de répartition de Z et F_Y celle de Y.

- 1. Montrer que, pour tout z réel, $F_Z(z) = \frac{1}{2}F_Y(z) + \frac{1}{2}(1 F_Y(-z))$.
- 2. Déterminer la loi de Z.

Exercice 5. 1. Soit X une variable aléatoire de loi géométrique de paramètre $p \in]0,1[$,

$$\mathbb{P}(X = k) = p(1 - p)^{k - 1}, \ k > 0.$$

- (a) Calculer $\mathbb{P}(X > n)$, pour $n \in \mathbb{N}^*$.
- (b) Calculer pour tout $(k, n) \in \mathbb{N}^*$, $\mathbb{P}(X > n + k \mid X > k)$.
- 2. Soit Y une variable aléatoire discrète indépendante de X de loi géométrique de paramètre $q \in]0,1[$. On pose $Z=\min(X,Y)$ et R=X+Y.
 - (a) Calculer $\mathbb{P}(Z > n)$, pour $n \in \mathbb{N}^*$.
 - (b) En déduire que Z suit une loi géométrique dont on déterminera le paramètre.
 - (c) Donner les valeurs de la variable aléatoire R et déduire sa loi.

Exercice 6. On rappelle que la densité d'une variable aléatoire de loi exponentielle de paramètre $\lambda > 0$ est donnée par:

$$f(x) = \lambda e^{-\lambda x} 1_{[0, +\infty[}(x).$$

- 1. Soit X une variable aléatoire de loi exponentielle de paramètre $\lambda > 0$. Calculer $\mathbb{P}(X \ge t)$ pour $t \in \mathbb{R}$.
- 2. Calculer la fonction de répartition F_X de X.
- 3. Soit maintenant $t > s \ge 0$. Montrer que: $\mathbb{P}(X \ge t \mid X \ge s) = \mathbb{P}(X \ge t s)$.
- 4. Calculer $\mathbb{E}(X)$ et Var(X).

- 5. **Application** : on suppose maintenant que X représente la durée de vie en années d'une télévision et $\lambda = \frac{1}{8}$.
 - (a) Calculer la probabilité que la télévision que vous venez d'acheter ait une durée de vie supérieure à 8 ans.
 - (b) Vous possédez une télévision depuis 2 ans. Quelle est la probabilité que sa durée de vie soit encore supérieure 8 ans à partir de maintenant? Conclusion.
- 6. Soit Z et Y deux variables aléatoires indépendantes de même paramètre $\lambda > 0$.
 - (a) Calculer $\mathbb{E}(Z+Y)$ et Var(Z+Y). En déduire que la variable aléatoire Z+Y ne suit pas la loi exponentielle.
 - (b) On note H = min(Z, Y).
 - i. Ecrire l'événement $\{H \ge t\}$ en fonction des événements $\{Z \ge t\}$ et $\{Y \ge t\}$.
 - ii. Calculer $\mathbb{P}(H \ge t)$ pour $t \ge 0$ et t < 0.
 - iii. En déduire la fonction de répartition F_H de H, puis la loi de H.

Exercice 7. Soit un couple de variables aléatoires (X,Y) à valeurs dans \mathbb{N}^2 , et $p \in]0,1[$ telles que pour tous k,n de \mathbb{N}

$$\mathbb{P}\Big[X=k,\,Y=n\Big]=\left\{\begin{array}{ll} C_n^k a^n p (1-p)^n & \text{si} \quad k\leq n\\ 0 & \text{sinon} \end{array}\right.$$

- 1. Calculer $\sum_{k=0}^{n} C_n^k$.
- 2. Calculer a
- 3. Déterminer la loi de Y.

Exercice 8. Soit un couple de variables aléatoires (X,Y) à valeurs dans \mathbb{N}^2 , telles que pour tous i,j de \mathbb{N}

$$\mathbb{P}\Big[X=i,\,Y=j\Big]=\frac{a}{i!j!}.$$

- 1. Calculer a
- 2. Déterminer les lois marginales de X et Y et les identifier avec les lois usuelles.
- 3. X et Y sont-elles indépendantes?