CHAPTER 12

12.1. A uniform planewaveinair, E+ = E+0cos(1010t—,8z) V/m, isnormally-incident on acopper surface

12.2.

at z = 0. What percentage of the incident power density is transmitted into the copper? We need to
find the reflection coefficient. The intrinsic impedance of copper (a good conductor) is

1019(47 x 107) )
\/ =1+ ),/ —( J)\/ 2G8 107, = (L0104

Note that the accuracy here is questionable, since we know the conductivity to only two significant
figures. We nevertheless proceed: Using ng = 376.7288 ohms, we write

Ne = M0 _ .0104 — 376.7288 + j.0104
Ne+no 0104+ 376.7288+ j.0104

I'=

—.9999 + j.0001

Now |T'|2 = .9999, and so the transmitted power fraction is 1 — |I'|2 = .0001, or about 0.01% is
transmitted.

Theplaney = Odefinestheboundary between two different dielectrics. Fory < 0, €%, = 1, u1 = o,
and e}, = 0;andfor y > 0, €, =5, u2 = o, and €j, = 0. Let £} = 150cos(wr — 8y) V/m, and
find

a) w Havep=8=w/c = w =8 =24x10°sec” L.

b) Hf: With E inthez direction, and propagation in theforward y direction, H will lieinthe positive
x direction, and its amplitude will be H, = E /ng inregion 1.
ThusH} = (150/n0) cos(wt — 8y)a, = 0.40cos(2.4 x 10% — 8y)a, A/m.

c) Hi: First,
- +_no/\/§—no/1 1- \/_ +
E;=TE} = E} = —0.38E}
no/v5+mno/1  1++5
Then 0.38(150)
H =+(. 38/;70)EZl = T cos(wt + 8y)

Sofinally, H_; = 0.15c0s(2.4 x 10% + 8y)a, A/m.

12.3. A uniform planewavein region lis normally inci dent on the planar boundary separating regions 1 and

2. If €] = ) = 0, while €y = p3; and eh, = 13, find the ratio €, /€4 if 20% of the energy in
the incident wave is reflected at the boundary. There are two possible answers. First, since |T'|2 = .20,
and since both permittivities and permeabilitiesarereal, I' = +0.447. we then set up

wo—m oy (R2/€hg) = 10y (er1/€y)

I' =+0.447 = =
12H I o [(ira/elg) + oy (k1 €Ry)

B \/(MRZ/Msl;z) - \/(MRl//Lil) kL — o
\/(ILRZ/,U«:;;Z) + \/(HRl/lLs;gl) MR1+ UR2
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12.3. (continued) Therefore

17 0.447 / 3
pr2 _ 1F — (0.382,2.62) = 6ﬂ:(@) = (0.056, 17.9)
wr1 1£0.447 €r1 MR1 -

12.4. The magnetic field intensity in aregion wheree” = Oisgiven asH = 5coswr cosz a, A/Im, where
w = 5 Grad/sand 8 = 30 rad/m. If the amplitude of the associated electric field intensity is 2kV/m,
find

@ w and ¢’ for the medium: In phasor form, the magnetic field is Hy, = Hoe /#* + Hpe™F? =
5cosfz = Ho = 2.5. The electric field will be x directed, and is E,;, = n(2.5)e /F* —
n(2.5)etiP? = (2j)n(2.5) sin Bz. Giventheelectricfield amplitudeof 2kV/m, wewrite2x 10° =

5n, or n = 4002. Now n = 400 = no,/ i, /€, and we also have B = 30 = (w/c),/LreR. We
solve these two equations simultaneously for ug and €} to find g = 1.91 and €}, = 1.70.
Therefore u = 1.91 x 47 x 1077 = 2.40 uH/m and ¢’ = 1.70 x 8.854 x 1012 = 15.1 pF/m.

b) E: From part a, electric field in phasor form is E,; = j2sin Bz kV/m, and so, in real form:
E(z,t) = Re(E,se/?)a, = 2sin Bz Sinwt a, kV/m with  and B as given.

12.5. Theregion z < Oischaracterized by €}, = ugr = 1and e, = 0. Thetotal E field hereis given as the
sum of the two uniform plane waves, E; = 150e /1% a, + (50/20°)e/1% a, V/m.
a) What is the operating frequency? In free space, 8 = ko = 10 = w/c = w/3 x 108. Thus,
w=3x10%s1 or f = w/27m = 4.7 x 108 Hz

b) Specify the intrinsic impedance of the region z > 0 that would provide the appropriate reflected

wave: Use e
E,  50e/ 1 0 -
P= = 2¢ 2,02 _031+ j011= 110
Eme 150 3 n+ 0
14T 1+0.31+0.11
o (21 ) = 377 — 691+ j177 Q
7 ’7°<1—r) (1—0.31—]'0.31) S S

c) At what value of z (—10cm < z < 0) isthe total electric field intensity a maximum amplitude?
We found the phase of the reflection coefficient to be ¢ = 20° = .349rad, and we use
—¢ —.349

max = =—=-0017m=-17cm
¢ 28~ 20 —===

12.6. Region 1, z < 0, and region 2, z > O, are described by the following parameters: €7 = 100 pF/m,
pu1=25uH/m, €] =0, e, = 200 pF/m, 2 = 50 uH/m, and €5 /¢5 = 0.5.
If Ef = 600e=%% cos(5 x 107 — B1z)a, V/m, find:
@) a1: From Eq. (35), Chapter 11, we note that since ] = 0, it follows that o1 = 0.
b) B1: 1 = wy/p1€] = (5 x 10%9),/(25 x 10-6)(100 x 10-12) = 2.50 x 10° rad/m.

0) Ej; = 600¢ /250104, v/ /m,

d) E,;: Tofindthis, we need to evaluate the refl ection coefficient, which means that we first need the
two intrinsic impedances. First, n1 = /j11/€; = /(25 x 10-6)/(100 x 10-12) = 500.
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12.6d) (continued) Next, using Eq. (39), Chapter 11,

12 1 50x 106 1 .
_ K2 — = 460 + j109
12 €5 /11— j(ey/€h) 2x 10710 y1-j05 !
Then
- 460 4 j109 — 500 104°
polezm _ 40+ = —2.83x 1072 + j1.16 x 107! = 0.120¢/1%*

n2+n1 460+ j109 + 500

Now we multiply Ejl by I" and reverse the propagation direction to obtain

E;p = 71.8¢/104 ¢/25:10% v /m

e) E/,: Thiswave will experience lossin region 2, along with a different phase constant. We need
to evaluate oz and B». First, using Eq. (35), Chapter 11,

1/2
ILZG/ el 2
o) =W £e2 1+ (—3) -1
2 €

6 —12 1/2
= (5x 1010)\/(50 < 10 )(2200 x 1077 [\/1 t (0572 — 1] "% _ 1,21 x 10° Np/m

Then, using Eq. (36), Chapter 11,

1/2
/ 7N 2
B2 = w/’“‘zTez |:\/l+ C—Z) + 1} — 5.15 x 10° rad/m
2

Then, the transmission coefficient will be

1=14T=1-283x10"2+ j1.16 x 101 = 0.972¢/"
The complex amplitude of Ejz is then found by multiplying the amplitude of Ejl by z. Thefield
in region 2 is then constructed by using the resulting amplitude, along with the attenuation and
phase constants that are appropriate for region 2. Theresult is

E+2 — 587, 121x10% ,j7° ,—j5.15x10%; V/m
N

12.7. The semi-infiniteregionsz < 0Oandz > 1 marefreespace. For0 < z < 1m, e}e =4, ug =1,

and e = 0. A uniform plane wave with w = 4 x 108 rad/sistravelling in the a, direction toward the
interfaceat z = 0.

a) Find the standing wave ratio in each of the three regions. First we find the phase constant in the
middle region,
O\[€R  2(4 x 108)

P2 = c  3x108

= 2.67rad/m
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12.7a. (continued) Then, withthemiddlelayerthicknessof 1 m, Sod = 2.67 rad. Also, theintrinsicimpedance

12.8.

12.9.

of the middle layer isn2 = no/,/€x = no/2. We now find the input impedance:

2

_— [nocos(ﬁzd)—i-jnzsin(ﬁzd)] 377 [2cos(2.67)+jsin(2.67)

— = —— ] =231+ j141
n2 CoS(Bad) + jno SiN(Bad) C0S(2.67) + j29In(2.67)
Now, at the first interface,

Nin —no0 _ 231+ j141—-377
Nin +n0 231+ j1414+377

o = —.176 + j.273 = .325/123°

The standing wave ratio measured in region 1 is thus

1+ | 1+ 0.325
1+ 1+ _ 196

LT M 1-03% =

In region 2 the standing wave ratio is found by considering the reflection coefficient for wavesincident
from region 2 on the second interface:

_Mmo—m/2 _1-1/2 1

r — _ =
B o+no/2 1412 3
Then
1+1/3
§2 = =2
1-1/3 -~

Finally, s3 = 1, since no reflected waves exist in region 3.

b) Find the location of the maximum |E| for z < O that is nearest to z = 0. We note that the phase
of ' is¢ = 123° = 2.15rad. Thus

—¢ 215

Zmax = — = =—.81m
28 24/3) —

A wave starts at point a, propagates 100m through a lossy dielectric for which o = 0.5 Np/m, reflects
at normal incidence at a boundary at which I' = 0.3 + 0.4, and then returns to point a. Calculate the
ratio of thefinal power to the incident power after thisround trip: Final power, Py, and incident power,
P;, are related through

P
Pp = Pe LD Re 2L = 7{” — |0.3 4 j0.42.7209100 _ 35, 10-881)
Try measuring that.

Region 1, z < 0, and region 2, z > 0, are both perfect dielectrics (u = g, €’ = 0). A uniform plane
wave traveling in the a, direction has aradian frequency of 3 x 10%° rad/s. Its wavelengths in the two
regionsare A1 = 5cmand A2 = 3 cm. What percentage of the energy incident on the boundary is

a) reflected; We first note that
27c\ 2 27c)\ 2
ri=—] and e =—
€R1 (Mw) €R2 <A2w)
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12.9a. (continued) Therefore €y, /€, = (A2/11)2. Then with i = uo in both regions, we find

p_m—m _ noy/1/€ga = ’70\/1/le _ \/6321/6}32_ 1 _ (2/a) -1
2T g 1/6532""70\/1/6;31 \/eﬁel/ffez"‘l (Ga/r) +1
_)\.2_)\.1_3_5_ 1
2+ 345 4

The fraction of the incident energy that is reflected isthen |I'|2 = 1/16 = 6.25 x 102,

b) transmitted? We use part ¢ and find the transmitted fraction to be
1—|T')?2 = 15/16 = 0.938.

¢) What isthe standing wave ratio in region 1? Use

_1+r 1+1/4
S 1—-r 1-1/4

12.10. InFig. 12.1, let region 2 be free space, while ug1 = 1, €, = 0, and €, isunknown. Find e, if
a) theamplitude of E] isone-half that of Ef: Since region 2 is free space, the reflection coefficient

IS
ETl  mo—m M0 M0/\/€rr  yer—1 1 /
YT T orm o =2 7 m=2
1 770+770/ €Rr1 €R1+1

b) Pi,,, isone-halfof P’ : Thistime

2
/ JR—
|F|2 — —VeRll — }

€p1+1 2

/

= €R1=3—4

C) |E1lmin isone-haf |E1|pq: Use

|El|max — = 1+ |F| _
|E1lmin 1T

m
=~
[y

-1
= — = E;elzé
1+1

1N

Il
!
|
wl -
m
o

12.11. A 150 MHz uniform planewavein normally-incident fromair onto amaterial whoseintrinsicimpedance
is unknown. Measurements yield a standing wave ratio of 3 and the appearance of an electric field
minimum at 0.3 wavelengths in front of the interface. Determine the impedance of the unknown
material: First, the field minimum is used to find the phase of the reflection coefficient, where

1
Zmin:_%(¢+ﬂ)=—0.3)n = (]5:027[

where 8 = 27 /) has been used. Next,




12.11. (continued) Sowe now have
I = 0.5/02r — 10
Nu + Mo
We solve for 5, to find
ny = no(L.70+ j1.33) = 641 + ;501 Q2

12.12. A 50MHz uniform plane wave is normally incident from air onto the surface of a calm ocean. For
seawater, o =4 S/m, and ¢, = 78.
a) Determine the fractions of the incident power that are reflected and transmitted: First we find the
loss tangent:
o 4
we’  2m(50 x 10°)(78)(8.854 x 10-12)

This value is sufficiently greater than 1 to enable seawater to be considered a good conductor
at 50MHz. Then, using the approximation (Eq. 65, Chapter 11), the intrinsic impedance is
ns = /mfu/o L+ j), and the reflection coefficient becomes

_ ATIT A+ ) = o
VETIT L+ ) + 110

184

where /7 fiujo = /7 (50 x 108) (4 x 10-7)/4 = 7.0. The fraction of the power reflected is

P pp = WEIRG - nol2 +7fujo  [7.0— 3772 +49.0

P, WA fnjo + o2+ rfujo  [7.04+ 37712 +49.0 =093

The transmitted fraction is then

P
F’:l_|r|2:1—0.93=0._07

i

b) Qualitatively, how will these answers change (if at all) as the frequency is increased? Within
the limits of our good conductor approximation (loss tangent greater than about ten), the reflected
power fraction, using theformuladerived in part a, isfound to decrease with increasing frequency.
The transmitted power fraction thus increases.

12.13. A right-circularly-polarized plane wave is normally incident from air onto a semi-infinite slab of plex-
iglas (e, = 3.45, ¢ = 0). Calculate the fractions of the incident power that are reflected and trans-
mitted. Also, describe the polarizations of the reflected and transmitted waves. First, the impedance of
the plexiglaswill ben = ng/+/3.45 = 2032. Then

203 — 377
==~ _030
203 + 377

The reflected power fraction is thus [I'|2 = 0.09. The total eectric field in the plane of the interface
must rotate in the same direction as the incident field, in order to continually satisfy the boundary
condition of tangential electric field continuity across the interface. Therefore, the reflected wave will
haveto beleft circularly polarized in order to make this happen. The transmitted power fraction is now

1—|T'|? = 0.91. The transmitted field will be right circularly polarized (as the incident field) for the
same reasons.
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12.14. A left-circularly-polarized plane wave is normally-incident onto the surface of a perfect conductor.
a) Construct the superposition of the incident and reflected waves in phasor form: Assume positive
z travel for the incident electric field. Then, with reflection coefficient, I' = —1, the incident and
reflected fields will add to give the total field:

Eior = Ei + Er = Eo(ac + jay)e /P — Eo(a, + jay)et/F*

=Ep (e_j’sz — ejﬁz) a, +Jj (e_jﬂZ — ejﬁz) a, | = 2Epsin(Bz) [ay — jax]
~— —_—
—2jsin(Bz) —2jsin(Bz)

b) Determine thereal instantaneous form of the result of part a:

E(z,1) = Re{Ew,ef“”} = 2Epsin(Bz) [cos(wt)ay + sin(wt)ax]

¢) Describe the wave that is formed: This is a standing wave exhibiting circular polarization in
time. At each location along the 7 axis, the field vector rotates clockwise in the xy plane, and has
amplitude (constant with time) given by 2Eqsin(8z).

12.15. Consider theseregionsinwhiche” = 0: region 1, z < 0, u1 = 4uH/m and €; = 10 pF/m; region 2,
O<z<b6em, ux=2uH/m,e,=25pF/m;region3,z > 6cm, u3 = pu1 and eg = €.
a) What is the lowest frequency at which a uniform plane wave incident from region 1 onto the
boundary at z = 0 will have no reflection? This frequency gives the condition 8>d = 7, where
d = 6.¢cm, and B2 = w,/ 26, Therefore

1
Bod =1 = w=

T
- = f= = 1.2 GHz
(.06) /1126 0.12/(2 x 10-6)(25 x 10-12) —

b) If f = 50 MHz, what will the standing wave ratio be in region 1? At the given frequency,
B2 = (2r x 5 x 107),/(2 x 10-6)(25 x 10-12) = 2.22 rad/m. Thus B2d = 2.22(.06) = 0.133.
The intrinsic impedance of regions 1 and 3isn; = n3 = /(4 x 10-6)/(10-11) = 632Q. The
input impedance at the first interface is now

pin = 2 3[632cos(.133) + j283sin(.133)
" 283 c0s(.133) + j632sin(.133)
The reflection coefficient is now

Nin =11 _ 589 — ]:138— 632 12/ 17

nin +m1 589 — j138 + 632

The standing wave ratio is now

] — 589 — j138 = 605/ — .23

I' =

1 .
RS
1—|1 1-.12 ==

12.16. A uniform plane wave in air is normally-incident onto alossless dielectric plate of thickness A/8, and
of intrinsic impedance n = 260 2. Determine the standing wave ratio in front of the plate. Also find
the fraction of the incident power that is transmitted to the other side of the plate: With the athickness
of 1/8, we have Bd = m/4, and so cos(B8d) = sin(Bd) = 1+/2. The input impedance thus becomes

377 + j260

=60 | 2L/
in [26o+ 377

]:243—]'929
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12.16. (continued)
The reflection coefficient is then

(243 j92) - 377
T (243- j92) + 377

—0.19 — j0.18 = 0.26/ — 2.4rad

Therefore
_1+.26

= — 2: — 2:
T og =L7and 1-|P?=1-(26%=09

N

12.17. Repeat Problem 12.16 for the casesin which the frequency is
a) doubled: If thisistrue, thend = /4, andthusn;, = (260)2/377 = 179. Thereflection coefficient

becomes
179 — 377 _ 1+.36_

=————=-036 = s=
179 + 377 g
Thenl— |12 =1— (.36)2 = 0.87.

=21
1-36

b) quadrupled: Now, d = A/2, and so we have a half-wave section surrounded by air. Transmission
will betotal, andsos = 1and1— |T|2 = 1.

12.18. InFig. 12.6, let n1 = n3 = 37722, and n2 = 0.4n1. A uniform plane wave is normally incident from
the left, as shown. Plot a curve of the standing waveratio, s, in the region to the | eft:
a) asafunction of [ if f = 2.5GHz: With n1 = n3 = no and with n2 = 0.4no, Eq. (41) becomes

04 cos(Bl) + jO.4sin(Bl) 0.4cos(Bl) — jsin(Bl)
Nin = 710 [0.4cos(ﬂl) ¥ jsin(/Sl)] x [0.4cos(ﬂl) - jsin(ﬁl)]
B 1— j1.05sin(281)
=0 [cosz(ﬂl) n 6.255in2(ﬂl)]

ThenT = (n;, — no)/(Min + no), from which we find

| = T = {[1 — co(Bl) — 6.255n%(BD)]% + (1.05)Zsin2(2[31):|1/2

[1+ co?(Bl) + 6.25sin%(B1)]° + (1.05)2 sin?(2p1)

Thens = (1 +|I"|)/(1 — |T']). Now for auniform plane wave, 8 = w./ite = nw/c. Given that
n2 = 0.4no = no/n, wefindn = 2.5 (assuming i = o). Thus, at 2.5 GHz,

2.5)(27)(2.5 x 10° _ .
pr ="y = 2DE@OECSXA0), ) 051 (inm) = 0.12951 (f in cm)
c 3% 10°

Using thisin the expression for |T°|, and calculating s asafunction of 7 in cm leadsto the first plot
shown on the next page.

b) asafunction of frequency if I = 2cm. In this case we use

_(25)(27)(0.02)

— -10 - _ _
Bl = 3% 108 f=104x10"" f (finHz) =0.104 f (f in GHz)

Using thisinthe expression for |T"|, and calculating s asafunction of f in GHz leadsto the second
plot shown on the next page. MathCad was used in both cases.
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12.18 (continued) Plotsfor partsa and b

Problem 12.18a Problem 12.18b
3 T T T T 8 T T T
ol ot - 7 — -
8 [}
g B=1
& 2
L o
3 5
3 =
£ 2
b= =]
5 8
Lz 7
0 i | ] i 0 } | i
0 10 20 30 40 50 0 20 40 60
Length (cm) : Frequency (GHz)

12.19. You are given four slabs of lossless dielectric, al with the same intrinsic impedance, », known to
be different from that of free space. The thickness of each slab is A /4, where A is the wavelength as
measured intheslab material. Thedabsareto bepositioned parallel to oneanother, and the combination
liesin the path of a uniform plane wave, normally-incident. The slabs are to be arranged such that the
air spaces between them are either zero, one-quarter wavelength, or one-half wavelength in thickness.
Specify an arrangement of slabs and air spaces such that

a) the waveistotaly transmitted through the stack: In this case, we look for a combination of half-
wavesections. Lettheinter-dabdistancesbeds, d», andds (fromlefttoright). Two possibilitiesare
i.) d1 = d> = d3 = 0, thuscreating asingle section of thickness A, orii.) dy = d3 =0, d» = 1/2,
thus yielding two half-wave sections separated by a half-wavelength.

b) the stack presents the highest reflectivity to the incident wave: The best choice here is to make
d1 = do = d3 = A /4. Thusevery thicknessisone-quarter wavelength. Theimpedancestransform

asfollows: First, theinput impedance at the front surface of the last slab (dlab 4) isn;,.1 = n%/no.
We transform this back to the back surface of slab 3, moving through a distance of A/4 in free
SPace: nin,2 = 13/nin,1 = n3/n> Wenext transform thisimpedance to the front surface of dab 3,
producing nin.3 = n?/nin,2 = n*/n3. We continue in this manner until reaching the front surface
of slab 1, where we find 7, 7 = 18/ng. Assuming < no, theratio n” /n~* becomes smaller as
n increases (as the number of slabsincreases). The reflection coefficient for wavesincident on the
front slab thus gets close to unity, and approaches 1 as the number of slabs approaches infinity.

12.20. The 50MHz plane wave of Problem 12.12 is incident onto the ocean surface at an angle to the normal
of 60°. Determine the fractions of the incident power that are reflected and transmitted for
a) spolarization: To review Problem 12, we first we find the loss tangent:

4
o _ =184
we'  2m(50 x 108)(78)(8.854 x 10-12)

This value is sufficiently greater than 1 to enable seawater to be considered a good conductor at
50MHz. Then, using the approximation (Eq. 65, Chapter 11), and with © = o, the intrinsic
impedanceisn, = o/mfu/o(1+ j) =7.0(1+ j).
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12.20a. (continued)
Next we need the angle of refraction, which means that we need to know the refractive index of
seawater at 50MHz. For auniform plane wave in a good conductor, the phase constant is

ﬂzwivnf,uo— = Nfgeq =C ﬂ:268
c 4r f

Then, using Snell’s law, the angle of refraction is found:

Nsea

ni

sinfy =

Sinfy = 26.8sN(60°) = 6, = 1.9°

Thisangle is small enough so that cos@, = 1. Therefore, for s polarization,

o—ns1  7.0(1+ j) — 377/ cos60°
o M2 — st _ 70+ ) / — —0.98 + j0.018 = 0.98/179°

I', = = =
ST 2+ m1 7.0(L+ j) + 377/ cos60°

The fraction of the power reflected is now |Ty|? = 0.96. The fraction transmitted is then 0.04.
b) p polarization: Again, with the refracted angle close to zero, the relection coefficient for p polar-
izationis
ro= np2 —np1 _ 1.0(1+ j) —377cos60°
P 2+ mp 7.0(1+ j) + 377cos60°

= —0.93 + j0.069 = 0.93/176°

The fraction of the power reflected isnow |I"), |2 = 0.86. Thefraction transmitted is then 0.14.

12.21. A right-circularly polarized plane wave in air is incident at Brewster's angle onto a semi-infinite slab
of plexiglas (e, = 3.45, €z =0, u = o).

a) Determine the fractions of the incident power that are reflected and transmitted: In plexiglas,
Brewster's angle is 05 = 61 = tan (e} /€py) = tan~1(+/3.45) = 61.7°. Then the angle of
refraction is 6> = 90° — 0p (see Example 12.9), or 6, = 28.3°. With incidence at Brewster’s
angle, al p-polarized power will be transmitted — only s-polarized power will bereflected. This
is found through

m2s —n1s _ -614no — 2.11ng

$T m2s +m1s  -61dng + 2.11ng

where n1, = n15ec61 = 1o sec(61.7°) = 2.11x,

and n2;, = n2seclr = (no/+/3.45) sec(28.3°) = 0.614n9. Now, the reflected power fraction
is|I'|2 = (—.549)2 = .302. Since the wave is circularly-polarized, the s-polarized component
represents one-half the total incident wave power, and so the fraction of the total power that is
reflected is .302/2 = 0.15, or 15%. The fraction of the incident power that is transmitted is then
the remainder, or 85%.

I = —0.549

b) Describe the polarizations of the reflected and transmitted waves: Since all the p-polarized com-
ponent is transmitted, the reflected wave will be entirely s-polarized (linear). The transmitted
wave, while having all the incident p-polarized power, will have areduced s-component, and so
this wave will be right-elliptically polarized.
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12.22.

12.23.

12.24.

12.25.

A dielectric waveguide is shown in Fig. 12.18 with refractive indices as labeled. Incident light enters
the guide at angle ¢ from the front surface normal as shown. Once inside, the light totally reflects
a the upper n1 — n» interface, where n1 > n». All subsequent reflections from the upper an lower
boundaries will be total as well, and so the light is confined to the guide. Express, in terms of n; and
n2, the maximum value of ¢ such that total confinement will occur, with ng = 1. The quantity sin¢ is
known as the numerical aperture of the guide.

From the illustration we see that ¢ maximizes when 61 is at its minimum value. This minimum will
be the critical angle for the ny — n2 interface, wheresinf, = sin61 = na/nj. Let the refracted angle
to the right of the vertical interface (not shown) be ¢, where ngsings = n1 Sin¢2. Then we see that
¢2 + 61 = 90°, and so Sinf; = cos¢2. Now, the numerical aperture becomes

. ny . .
SING1max = n—OS|n¢2 =n1C0801 =niy/1— sm291 = nl\/l— (np/n1)? = \/n% — n%

Finaly, ¢1nax = Sin~t ( n% — n%) isthe numerical aperture angle.

Suppose that ¢1 in Fig. 12.18 is Brewster’s angle, and that 6; is the critical angle. Find ng in terms of
n1 and no: With the incoming ray at Brewster's angle, the refracted angle of this ray (measured from
the inside normal to the front surface) will be 90° — ¢1. Therefore, ¢1 = 61, and thussing; = sin6;.
Thus

SN¢g1 = ——— =9NnbH; = = no = (n1/n2)y/n7 —n5

/.2 2 ni
no—l-n1

Alternatively, we could have used the result of Problem 12.22, in which it was found that sin¢; =

(1/n0),/n? — n3, which we then set equal to sinf; = n/n1 to get the same result.

A Brewster prismis designed to pass p-polarized light without any reflective loss. The prism of Fig.
12.19 ismade of glass (n = 1.45), and isin air. Considering the light path shown, determine the apex
angle, «: With entrance and exit rays at Brewster's angle (to eliminate reflective |0ss), the interior ray
must be horizontal, or parallel to the bottom surface of the prism. From the geometry, the angle between
the interior ray and the normal to the prism surfaces that it intersectsis «/2. Since this angle is also
Brewster’s angle, we may write:

azzsin—1<

1 1
—2sn 1 —— ) =121rad = 69.2°
Vit n2) (,/1+ (1.45)2> -

In the Brewster prism of Fig. 12.19, determine for s-polarized light the fraction of the incident power
that is transmitted through the prism: Weuse I'y = (52 — n51)/(ns2 + ns1), Where

12 n2 n %
Ng2 = = = —=V1+n
Y cosp2)  n/V1t+nZ  n?

and

n n J1gn2
Ns1 = = =novl+n
cos(0p1)  1/v/1+ n2
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12.25.

12.26.

12.27.

(continued) Thus, at thefirstinterface, I' = (1—n?)/(14n?). Atthe second interface, I" will be equal
but of opposite sign to the above value. The power transmission coefficient through each interface is
— |T"|2, so that for both interfaces, we have, with n = 1.45:

2
P 2 2_1\?
s :<1—|F|2> —l1-(2==) | =076
Pine n2+1

Show how asingle block of glass can be used to turn a p-polarized beam of iight through 180°, with the
light suffering, in principle, zero reflective loss. The light isincident from air, and the returning beam
(alsoin air) may be displaced sideways from the incident beam. Specify al pertinent angles and use
n = 1.45for glass. More than one design is possible here.

The prism below isdesigned such that light enters at Brewster’s angle, and onceinside, isturned around
using total reflection. Using the result of Example 12.9, we find that with glass, 65 = 55.4°, which, by
the geometry, is also the incident angle for total reflection at the back of the prism. For this to work,
the Brewster angle must be greater than or equal to the critical angle. Thisisin fact the case, since
0. = sin"Y(na/n1) = sin~1(1/1.45) = 43.6°.

Using Eg. (59) in Chapter 11 as a starting point, determine the ratio of the group and phase velocities
of an electromagnetic wave in a good conductor. Assume conductivity does not vary with frequency:
In agood conductor:

B=Jafuo = M7 ﬁ:%[w]—l/zﬂ

2 dw 2 2
Thus
< ,8) Za) and 1) 1) 2w
_— et = 1) = = = —
d no & P B Jouo /2 no
Therefore vg /v, =
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12.28. Over acertain frequency range, the refractive index of a certain material varies approximately linearly
with frequency: n(w) = n, + np(w — w,), wheren,, np, and w,, are constants. Using 8 = nw/c:
a) determine the group velocity as afunction (or perhaps not afunction) of frequency:
vy = (df/dw), where

do dow

g d |nqw n np(w — wg)w
c c

} = %[”a + np (20 — wq)]

s0 that
vg(@) = ¢[ng +np 2w — w,)] ™t

b) determine the group dispersion parameter, 3>:

d? d 1
= d_a)i v doc [na + np (20 — w4)] oy 2np/c

B2

¢) Discusstheimplicationsof theseresults, if any, on pulsebroadening: The point of thisproblemwas
to show that higher order terms (involving d®8/d® and higher) in the Taylor series expansion,
Eqg. (89), do not exist if the refractive index varies linearly with w. These higher order terms
would be necessary in casesinvolving pulses of exremely large bandwidth, or in media exhibiting
complicated variationsin their w-p curves over relatively small frequency ranges. With d28/dw?
constant, the three-term Taylor expansion of Eq. (89) describes the phase constant of this medium
exactly. The pulse will broaden and will acquire afrequency sweep (chirp) that is precisaly linear
withtime. Additionally, a pulse of agiven bandwidth will broaden by the same amount, regardless
of what carrier frequency is used.

12.29. A T = 5 ps transform-limited pulse propagates in a dispersive channel for which > = 10 ps?/km.
Over what distance will the pulse spread to twice its initial width? After propagation, the width is

T' = /T2 + (A1)2 = 2T. Thus At = /3T, where At = Boz/T. Therefore

2 2
@—@Torz:ﬁT _ /36ps°® _

= = =4.3Kk
T Bo 10ps?/km Skm

12.30. A T = 20 pstransform-limited pulse propagates through 10 km of a dispersive channel for which 8, =
12 ps?/km. The pulse then propagates through a second 10 km channel for which > = —12 ps?/km.
Describe the pulse at the output of the second channel and give a physical explanation for what hap-
pened.

Our theory of pulse spreading will allow for changesin g2 down the length of the channel. In fact, we
may writein genera:

1 L
AT = ?/(; B2(2) dz

Having B> change sign at the midpoint, yields a zero A, and so the pulse emerges from the output
unchanged! Physically, the pulse acquires a positive linear chirp (frequency increases with time over
the pulse envelope) during the first half of the channel. When B> switches sign, the pulse begins to
acquire a negative chirp in the second half, which, over an equal distance, will completely eliminate
the chirp acquired during the first half. The pulse, if originally transform-limited at input, will emerge,
again transform-limited, at its original width. More generally, complete dispersion compensation is
achieved using atwo-segment channel when oL = —B,L’, assuming dispersion terms of higher order
than 8> do not exist.
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