CA666 Sexy Code Week 8:

A.I. and Other Good Ways To Kill Players

Introduction

The quest to build intelligent machines is really, really difficult. A whole bunch of very intelligent men have spent vast amounts of time and money creating supposed A.I.s who, when all is said and done, are about as clever as a bag of sprouts.

The good news is that we don’t need to build HAL or Skynet in order to give the player a run for their money. Game AI is much simpler than the player ever thinks, and most of what the gribblies seem to be thinking or feeling are a cross between our natural instincts to anthropomorphosise every grunt we see, and clever tricks employed by the graphics artists, animators and sound designers.

Let’s take a quick look at a very simple A.I.

Space Invaders

Okay, so they weren’t exactly rocket science. I said it would be simple to begin with! Space invaders followed a simple loop, which would look a bit like this in code.

If (sprite has hit the screen edge)

{

//change direction of sprite (either Left or Right)

//move sprite down one cell

}

else

{

//continue moving in the current direction

//maybe think about shooting

	}

So we’re looking at a very simple piece of code to control how each alien moves. The only attention it pays to the outside world is whether or not it has hit the screen edge. They are totally oblivious to the player, totally predictable, but strangely hypnotic. We need to remember that this piece of code has earned the programmers somewhere between $50 and $100 million!

Okay, enough of the kiddies stuff, let’s move on to one of the most sophisticated Artificial Intelligences we’ve seen in computer games, the benchmark against which everything else is measured…

�
Pac Man

�

No, I’m serious… Even today, most programmers don’t do much more than the makers of Pac man. Remember that processing time is still precious, and programmers today have a third dimension (and more importantly, deadlines) to contend with. If they can slap something together that seems to kill the players quite well then that’s good enough. It’s up to the artist hippies to make the things seem human (or alien, or ghosts, or whatever).

Here’s how Pac Man worked: the four different ghosts had different goals but worked as a team. The aggressor would try to follow the shortest path to you, making you directly avoid him. The interceptor would try to go to a junction that was closest to where you would have to move to avoid the aggressor. A second interceptor would try to stay more towards the middle and try to cut you off from using the tunnel through the sides. The last ghost would sort of wander aimlessly about which often kept him staying in a section you needed to finish the map. And, of course, as soon as you munched on one of those power pills they would all turn tail and run for their ghostly lives. This was brilliant design because it was incredibly simple to program, but was the element that MADE the game play.

So how can we make good A.I.s which are relevant today? We should begin by dissecting Pac Man a bit more to discover some of the principles behind Game AI, and then look at slightly more complex stuff.

Chase and Evasion Algorithms

Shockingly enough, this is code that involves gribblies chasing or running away from the player. Here’s an example of a chase:

	While(game is running)

	{

		if (player_x < gribbly_x)

			gribbly_x --;

		else if (player_x > gribbly_x)

			gribbly_x ++;

		if (player_y < gribbly_y)

			gribbly_y --;

		else if (player_y > gribbly_y)

			gribbly_y ++;

	}

�
Ridiculously simple again, but this will make a creature which will hunt down the player forever, until it catches them. This has a tendency to look a bit robotic (do some Yaroze code and watch it in action) and strange. A more realistic way of doing things would be to work in vectors and adjust the gribbly vector every so often so they “curve” towards the player.

��

An evasion algorithm, predictably, is the same sort of idea but with reversed logic.

if (player_x < gribbly_x)

gribbly_x ++;

… etc etc etc… So now we know how the aggressor attacked, how all the ghosts were able to run away, and how the interceptor might have worked (by chasing the junction the player was heading to rather than the player himself). Obviously we’re not taking into account the walls of the maze of how the ghosts might have navigated that. We’ll come to that in a bit.

�
Random Movement and Patterns

Pac Man had a randomly moving guy. This is easy. He would have chosen a random direction every time he came to a junction. In our example without the maze, maybe a new direction will be selected after a set (or, in fact randomly chosen) number of cycles.

	While (game is running)

	{

		if (gribbly_trajectory_counter == 10)

		{

			gribbly_x_velocity = a_random_number;

			gribbly_y_velocity = another_random_number;

			gribbly_trajectory_counter = 0;

		}

		gribbly_x_coord += gribbly_x_velocity;

		gribbly_y_coord += gribbly_y_velocity;

		gribbly_trajectory_counter ++;

	}

This sort of thing often creates really nice insect simulations, flies just randomly buzzing around. It’s worth mentioning here that random numbers are your friends. Even with simple stuff, like the chase algorithm, it’s worth sticking in some random factors to throw a “spanner in the works” and make things less predictable. After all, humans aren’t perfect, and do always do the same things in the same situations, so why should A.I?

There are loads of ways to store patterns and it will depend on the implementation of your game. For now, just think of them as a sequence of pre-defined velocities that a gribbly could move through to trace out a “path” in the game world. The second interceptor who hung out in the middle of the screen might have been following a path, or a selection of paths. Obviously, one path repeated will be pretty dull and predictable, and useless as A.I as soon as the player figures out what’s going on. Here’s how you might choose randomly between a bunch of predefined paths, maybe stored in arrays containing changes in x and y velocity.

While(game is running)

{

if(next == END_OF_PATH)

{

next = 0;

gribbly_current_path = a_random_number;

		}

gribbly_x_coord += path_x[gribbly_current_path][next];

gribbly_y_coord += path_y[gribbly_current_path][next];

next ++;

	}

Got all that? If you imagine that patterns can relate to things like animations as well, you can see that almost all beat-em-up A.I.s are made from pre-defined patterns and some algorithm to decide which one to play next (probably not random but you get the idea).

�
Finite State Machines (FSMs)

See this complicated looking diagram:

�

Imagine that each of the circles is a state for a gribbly (chasing, evading, pattern, random, stop, dead etc), and each of the arrows is labelled with criteria that would move the gribbly from one state to another. We could use this to create one super-gribbly that chases the player until it reaches a certain distance, then selects a pattern, runs away if the player eats a power pill, and moves randomly if none of the above criteria are met. How do we do this? Simple. If we’re dealing with state machines then the switch/case is our friend. If we put in a counter to determine when the gribbly should re-evaluate what its doing and maybe change states then we have a truly vicious killer.

While(game is running)

{

switch(gribbly_state)

{

case STATE_CHASE:

	// Chase player

counter ++;

if (counter == 50)

change_state_flag = 1;

break;

case STATE_EVADE:

	// Run away from player

counter ++;

if (counter == 50)

change_state_flag = 1;

break;

case STATE_PATTERN:

	// Select and follow a pattern

counter ++;

if (counter == 50)

change_state_flag = 1;

break;

case STATE_RANDOM:

	// Move randomly

counter ++;

if (counter == 50)

change_state_flag = 1;

break;

		}

�
if (change_state_flag == 1)

		{

			if (player is more than a set distance away)

				gribbly_state = STATE_CHASE;

		else if (player has eaten a power pill)

				gribbly_state = STATE_EVADE;

		else if (player is less than a set distance away)

			gribbly_state = STATE_PATTERN;

		else

			gribbly_state = STATE_RANDOM;

		change_state_flag = 0;

}

}

Probability Machines

Okay… So we have our incredibly dangerous gribbly A.I.s now (and remember that these rules apply as much to the bad guys in the latest FPS as they do to Pac Man), and we want to populate a whole game with them. Problem is, they all act the same. They seem intelligent enough, but they lack individual “personalities”. We want all of the grunts to perform actions from the same basic list but we want them to react differently, some kind of weighted random element. We sort of looked at this in the C++ coursework last year, so hopefully some of it will be familiar. Let’s say there are 5 states:

NUMBER�
DESCRIPTION�
�
1�
Chase�
�
2�
Evade�
�
3�
Pattern�
�
4�
Random�
�
5�
Nothing�
�
Option 5, “do nothing”, sounds dull but will add suspense to the game as the gribblies appear to consider the situation for a moment before pouncing, or freezing to the spot in fear before running away. Now if we want to give personalities to grunts, we can give them an array of say 20 elements, maybe looking like this:

Behaviour[20] = {1,1,1,1,1,1,1,1,1,1,2,2,2,3,4,4,4,4,5,5};

This represents a very aggressive guy, with a 50% chance of attacking you, whereas this guy…

	Behaviour[20] = {1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,4,5,5,5,5};

… Is much more cautious and scared, more likely to run away or stop and think than charge in all guns blazing. How does this work? Well…

	if (change_state_flag == 1)

	{

		lookup = random_number_between_0_and_20;

		gribbly_state = Behaviour[lookup];

		change_state_flag = 0;	

	}

�
Each gribbly will react differently depending on the contents of their behaviour array. You could have several arrays for each gribbly, so they could cope with different situations. Both of the above arrays could apply to the same grunt, the first one for when the player is some distance away and not looking threatening, and the second when the player is firing back and causing wounds. Suddenly you have an army of very flexible individuals who can adapt to their situation and really convince the player that they’re real.

Teamwork: Flocking and Synchronous Motion

So far we’ve been designing A.I.s for creatures that basically work alone. Admittedly if you threw a lot of them at the player at once he’d have trouble fighting them off, but why not take it a step further and have them behave as an organised unit? This is much more intimidating to the player, has obvious tactical advantages and is really easy to do.

Flocking means gribblies grouping together. They all move towards a centroid, a meeting place so that they can move on from there as a unit. The centroid represents the centre of mass. We can take this point to be the average of all the points of the gribblies we want to gather together. Then all we need to do is compute the vectors from each gribbly to the centroid and tell them to walk.

�

Once we have the gribblies grouped, we can do what we want with them. A common application is to have them move towards the player as a unit, then break off as they come close and become independent again. Synchronous Motion describes the process of all the gribblies moving together. This is easy to do: simply take a “leader” and treat him as independent – he will move and attack as he sees fit (maybe with a nudge from the programmer) (and everyone else in the group will exactly copy his actions until it is deemed time to break off and think for themselves again. This is another really good example of where you should throw in some random numbers, though – obviously things will look more realistic if the enemies aren’t all doing EXACTLY the same thing. Tweak a direction vector here and there and it’ll look lovely.

�
Memory and Learning

Still not enough to make the ultimate killing machine? Well why don’t we let gribblies learn from their mistakes and improve? Why not give them a memory so they know how they were beaten before, or where they can find a nearby ammo crate if they run out?

All you need to do to implement memory and learning is to decide what you want the gribblies to learn. At suitable points in your code, add some statistics to a structure somewhere, which the grunt can look at later to make better decisions. If we were making a deathmatch grunt, he might remember information relating to each room he has visited – How many people he has killed in there, how much damage he has taken from the player there, whether there is any ammo to be found, how long he spent there. (Blimey, I’m doing it myself now – my grunt is suddenly a “he”… See how easy it is to fool people?) (. Areas where the grunt had been badly hurt might be places to avoid, but somewhere with a big store for ammo, or health will be a great place to go if the grunt is running low on these things. Remember that ideally each grunt should have his own store of memory information based on his experiences, but maybe they could exchange that information if they ran into each other in a corridor.

�

How you implement memory and learning will depend on your game, and what you think will be useful for the AI to know and process. Remember that all of this only adds factors to the function that choose the next state and enables it to make a better choice – in terms of code structure nothing changes but in terms of results it becomes possible to have extremely complex-seeming enemies just by adding more information for the gribbly to process before deciding what to do.

�
Pathfinding

This is the bit we’ve been ignoring: Chasing players or finding ammo is all well and good if your game has no landscape features: buildings, walls and other stuff you can’t walk through. But how do you get your gribblies to walk around stuff instead of through stuff?

One method involves trial and error: begin heading straight towards the goal, but if you hit something, back up and try a new direction for a bit to avoid it. After a while, calculate a new vector to the goal and try to continue:

Calculate vector to goal;

	While(!(gribbly has reached goal))

	{

		if (gribbly has hit an obstacle)

		{

			//back up;

//choose a random direction; //(between 45 and 90 degrees to the

}													// left or right)

		

		//move along current vector;

if ((current vector does not point to goal) && (gribbly has moved this way for a set number of frames))

			//calculate vector to goal;

	}

This is fine but doesn’t look very intelligent and doesn’t cope with concave surfaces very well. On the other hand, the random element involved in choosing a new direction means that this method is quite likely to reach the goal eventually.

A slightly nicer method is called contour tracing. Again, head on a vector towards the goal, but this time, if you hit a wall, follow it until it’s not in your way any more, then continue.

While(!(gribbly has reached goal))

{

		if (gribbly is in contact with an obstacle)

		{

			follow line of obstacle;

			counter++;

			if (counter == 10)	// or whatever number

			{

calculate vector to goal;

if (!(this vector passes through the obstacle))

	path is clear: use this vector to goal;

else

	obstacle still in the way: keep current vector;

		}

		move gribbly along selected vector;

	}

�
This works and is much better at finding the goal, but looks a bit dumb because gribblies follow walls around instead of heading along the most obvious route to the goal. A good compromise is to have things try trial and error for a bit first, and switch to this method if it doesn’t seem to be working.

Remember that your AI design is going to depend on your game. In a FPS you probably won’t notice too much if enemies have some trouble navigating, but if you have a C & C style God’s eye view then you’ll need to be more careful to stop things looking poo.

Collision avoidance is similar to contour tracing, only instead of following the walls, gribblies follow invisible paths laid down around the walls by either the level designer or calculated by tools in the game engine. When an enemy hits an obstacle, they move to the nearest entry point to a path, and head along it to the exit point closest to the goal. It’s almost like an invisible tube route (only the gribblies have to walk!). This combines the high success rate of contour tracing but makes everything look a bit more natural.

Finally, waypoint pathfinding. To put it bluntly, it’s the daddy. But it’s a bit of a bitch to put together. Basically, you specify a whole bunch of nodes (waypoints) within your game level which are connected together by straight lines (which don’t go through obstacles) to take gribblies to all the important locations. This is more like a tube network that a series of single tracks. To get somewhere, the gribbly simply picks up the nearest waypoint and follows the path until it gets to a waypoint near the goal. Easier said than done… First, you have to find the first waypoint – remember that this might involve avoiding obstacles! Then we have to move from waypoint to waypoint. Basically every time we reach one, we calculate the vector to the next one we want to travel to – ideally, the journey should be laid out first as an array of structures, each structure representing the location of a waypoint we need to get to.This is where the problem lies: Once we have all these points in our game, how do the gribblies decide which way to go to get where they need to? Well, you could define nodes multiple times, that is, create a separate path from every possible location to every other possible location and not allow gribblies to switch from one path to another once they’ve started. This would work but would leave you with a ridiculous number of multiply-defined nodes, and all the memory and processing overheads this implies. Or we could somehow search from the first node towards the goal to actually calculate the shortest path.

Briefly, the Breadth-First search draws a circle around the gribbly, and slowly extends it, first checking and labelling every node connected to the current one, then every node which is 2 nodes away, then 3 etc, until the circle encompasses the goal. This will find the shortest path, but is inefficient because it searches in directions away from the goal, which is not necessary. Bidirectional Breadth-First is better, because it draws 2 circles: one extending from the gribbly, and one from the goal. The quickest path will be found when the two circles overlap. The Depth-First search Chooses a path, then follows it all the way until it hits a dead end, then goes back and tries another branch till it finds the goal. It’s kinda similar to the “brute force” technique of the backtracking algorithm we used to find the Knight’s Tours last year. Two other methods, the Dijkstra’s Search and the A* Search are more complex and efficient, and involve testing the “cost” (distance) between the nodes as the search progresses. More information about pathfinding (and AI in general) can be found in Trick of the Windows Game Programming Gurus. Game Programming Gems has a couple of very very detailed articles on advanced A* style pathfinding for those who are interested.

Vision

Our gribblies now feel almost completely at home in their digital environment, and can move around and use all the tactics they need to find ammo, health and the player (who they kill). Only problem is, it’s a bit unfair. The AI is cheating by always knowing where the player is even though the gribblies are effectively blind! We need to build “senses” for the creatures so they can absorb information about the world in a realistic way. Vision is the most obvious one to implement because it’s the most important sense to humans. In a tile based game like the one we’re making, we could implement this by drawing a triangle of squares from the front of the enemy, and testing to see if the player (or any other relevant object) was over these squares. If so, then we can see them. In 3D, we need to get a bit more advanced. In Cutting Edge 3D Games Programming For C++, John De Goes describes a mathematical test (which I’m not going into here – you can look it up yourselves!) (to see if an object falls within the bounds of a frustum, exactly the same kind of frustum the player is likely to be looking through.

[DIAGRAM – BLACK ART P 397]

Of course, there is one problem with all of this. The same problem we ran into when we realised we needed to have pathfinding algorithms, that is walls and other obstructions. We need to make sure our enemies don’t have “X-Ray vision”. This is a case of doing some kind of depth testing within the enemies’ field of vision, in a similar way you would to implement back-face culling. To be honest, I have not found anywhere which describes exactly how you’d do this. I haven’t had time to look but I imagine that the Quake source would involve something like this. And as we all know, Quake Source is good for you!

[DIAGRAM – CUTTING EDGE P ? (FRUSTUM)]

The Future: Neural Nets, Genetic Algorithms and Fuzzy Logic

This is where we start going from established game techniques into proper hardcore AI. As the improvements in graphics technology begins to decelerate, and players are becoming harder to impress with nothing more than nice textures and smooth lighting, programmers will inevitably explore AI more and more to give their games an “edge” over the competition. To my knowledge, this stuff has only been touched on by games like Creatures (which was more of an AI demo than a game, anyway). Briefly, here’s what all the fuss is going to be about.

Neural nets are basically simplistic computer approximations of how real brains work. Our brains are made of neurons, which are weird spider-like cells that receive electrical impulses down certain “legs” (dendrites) and send off other impulses as a results of weird chemical reactions that happen inside them. A neurode is the machine version of this. It takes inputs (in this case in the form of binary signals), goes through some mathematical processes, and then produces an output. It is in fact possible to build neurodes to make logic circuits (AND, OR, XOR, NOT etc) but they’re also capable of processing inputs in a wide range of different ways. If you design them carefully and put enough of them together, you begin to have the functionality of a simple (and in the future, increasingly less simple) brain. Currently this is seen as as something of overkill for your average game enemy but for things with a higher need for intelligence they might become popular one day.

Genetic Algorithms are one of the things that excite me most about the future of computing. They simulate evolution. To take an example, lets go back to those grunts run on probability machines. We’ll begin by creating 20 grunts, and filling all their behaviour arrays randomly, and then we’ll set them off in a deathmatch to kill each other. Chances are, most of them will be rubbish, but if we have two survivors, we can write a genetic algorithm to splice their “DNA” (in this case, the information contained in their behaviour arrays) together by picking a random point in the arrays, and swapping all the data after this point. Now we have the two winners of the last round, and their two cyber offspring. The survivors of round 2 will breed again, and so on. Just by leaving this code running long enough, you will “evolve” the best AI for your game without having to work it out and tweak it yourself!

Fuzzy Logic is really horrible. Well, okay, I personally don’t like it ‘cos I don’t understand it. The basic premise is that in real life nothing is ever true(1) or false(0), and fuzzy logic sorts every entity it comes across into 1 or more “sets” (groups of objects), for each object deciding on some rough value which describes how much that object belongs in that set. So a monkey might fit into the set “hairy” with a value of 0.75, and also “likes climbing trees” at 0.42. How these values are decided is up to the programmer, and exactly what your AI does with this information would require another 14 pages of drivel another week. Try Trick of the Windows Game Programming Gurus or Game Programming Gems if you want to know more.

�
Only Human

So, you’ve had a not-so-brief overview of how computer games use AI to kill players, which is nice (. Of course, AI is not about building the ultimate fighting machine. It’s all too easy, especially if you take shortcuts and ignore the random elements then it’s possible to put together something unbeatable, but how fun is that? I remember playing an old spectrum racing game where all the cars followed the same path around the course, the one that gave them the tightest corners and fastest lap times possible. It was completely impossible to win… BAD GAME DESIGN. That goes without saying.

The aim of AI is to make players believe their enemies are real. Yes, they should be frightening and pose a challenge, but they should also be unpredictable and sometimes unreliable, like real humans are. I was recently watching my flatmate play Medal of Honour, a very realistic WWII FPS. Sneaking through a house in Normandy, my flatmate opened a door to discover an unprepared German soldier desparately trying to reload his gun before he was shot to ribbons. Admittedly, it made for an easy kill but it reflected perfectly the kind of thing that might happen if you were fighting REAL PEOPLE, and players will always walk away from an experience like that impressed. How much detail your AI contains is up to you, and will depend partly on the rules of your particular game universe. But, by building on the basic models I’ve talked about, it’s really easy to make something that might even stand a chance of blowing Pac Man out of the water!

Stephen McGreal 9904174

