
3D Game Alchemy
For DOOM, DOOM II, Heretic and Hexen

Hexen Reference

Click on one of the chapter titles:

Programming The Action

Making Moving Scenery

Hexen’s Special Codes

Hexen’s Scripting Language

1

p2v6sqc7 DOOM,HERETIC ALCHEMY 30935-1 mww 3.13.96 CH21 LP#3

PROGRAMMING THE
ACTION

— By Steve Benner

Passing reference has been made in chapters in the book to Hexen’s im-
proved programmability. This chapter takes a closer look at the new fea-
tures of this particular game variant.

HEXEN’S NEW FEATURES
To provide improved programmability, the designers of Hexen had to alter
some of the basic ways in which the game engine operates and also restruc-
ture the way data is stored within WAD files. These were the main changes:

■ A completely revamped special action code scheme.

■ A new linedef structure, permitting more versatile action
specification and triggering.

■ A new Thing structure, permitting greater control over their
actions and allowing them to initiate actions.

■ A new scripting capability, to permit total control over
individual triggered events.

■ A new MapInfo resource, enabling maps to be linked in a
new way and providing increased control over the use of sky
textures and other level-wide characteristics.

■ A new PolyObj construct to provide programmable moving
scenery elements.

I’ll take a look at each of these changes in turn.

HEXEN’S NEW ACTION CODE SCHEME
At the heart of the changes made to Hexen lies its new action code scheme.
Instead of using the fixed, restrictive system of the earlier DOOM variants,

p2v6sqc7 DOOM,HERETIC ALCHEMY 30935-1 mww 3.13.96 CH21 LP#3

2

the programmers at Raven Software have devised a neat and sophisticated new scheme that allows all the fa-
miliar DOOM actions to be invoked, but in a much easier way, and with far greater control and flexibility. The
basis of the new scheme is an ability to parameterize each action. No longer is the triggering nature and control
of the action tied to the action itself, as it is in earlier variants. In Hexen, the WAD designer can specify not
only how each individual action should be triggered, but also how the action is to progress.

Actions in Hexen are now controlled by supplying up to five arguments (or parameters) when the action is trig-
gered. These arguments are used by each action to control certain aspects of its operation. The new Door_Raise
action, for instance, which replaces DOOM’s simple line-type 1 (Door: Open and Close), uses the arguments
passed to it to determine the speed with which it operates and how long it stays open, as well as determining
which sectors it operates on.

NOTE: Full details of each of Hexen’s new action codes, and the parameters they take, can be
found in “Hexen’s Special Codes” on the CD-ROM.

To support this new action code scheme, and to take full advantage of it, other structures within the WAD file
have had to be changed—principally the linedef and the Thing resources.

CHANGES TO THE LINEDEF STRUCTURE
Hexen’s linedefs have gained the following items:

■ A new flag

■ A new attribute field

■ An extended special action characteristic

All of these changes are designed to make the specification and control of the actions that lines trigger easier
and more flexible.

REPEATABLE FLAG
The new line flag in Hexen is the Repeatable flag. The setting of this flag determines whether the line’s special
action can be triggered more than once. This flag replaces the hard-coded nature of an action’s repeatability
found in earlier game variants.

ACTIVATION TYPE
The new line attribute is its Activation Type field. This attribute determines how the line’s special action code
will be triggered. The possible values of this field are given in Table 1.

3

p2v6sqc7 DOOM,HERETIC ALCHEMY 30935-1 mww 3.13.96 CH21 LP#3

Table 1. Values for Hexen’s Activation Type line attribute.

Value Line Activated By

0 Player crossing the line

1 Player using the line (with spacebar)

2 Monster crossing the line

3 Projectile impacting the line (includes fist)

4 Player pushing the line (by walking into it)

5 Projectile crossing the line (includes fist)

This attribute replaces the hard-coded nature of this characteristic of line triggerings used in earlier versions of
the game.

EXTENDED SPECIAL ACTION CHARACTERISTIC
To be able to pass parameters to its special action, each linedef now has five argument fields in addition to the
Special Action Code field.

CHANGES TO THE THING STRUCTURE
One of the most exciting changes to Hexen is its new capability to allow Things to trigger actions by means
other than walking across lines. This action is achieved through a new Special Action Characteristic within
the Thing structure. This is identical to the new, extended Special Action Characteristic of lines; it consists of
a Special Action Code field and five arguments, passed to the special action when it is triggered.

In addition to triggering special actions, Hexen’s Things can themselves be the subject of special actions. This
requires additional changes to the structure of a Thing, as detailed shortly.

TRIGGERING THING ACTIONS
Things have access to exactly the same set of special actions as do lines. It is now possible, therefore, to use
Things to trigger actions that traditionally needed players to move to particular locations—or that required the
rather cumbersome and inflexible use of specific strange sector tags, such as DOOM’s 666.

In Hexen, the Special Action Characteristic of a Thing is triggered in the following circumstances:

■ When the Thing is killed, if it is a monster.

■ When the Thing is banished, using the Banishment Device, if it is a monster.

■ When the Thing is destroyed, if it is a destructible object, such as an urn or a tree.

■ When the Thing is picked up, if it is a gettable object, such as a power-up artifact or puzzle piece.

p2v6sqc7 DOOM,HERETIC ALCHEMY 30935-1 mww 3.13.96 CH21 LP#3

4

NOTE: Some special types of Thing do not fall into any of the preceding categories, and they
use their Special Action fields for other purposes. Details of all of these types of Things are in

Chapter 34, “Essential Thing Information.”

THING PARTICIPATION IN SPECIAL ACTIONS
For Things to be subjected to special actions themselves, individual Things need to be capable of being iden-
tified. They therefore have a new attribute: their Thing Identification (or tid, for short). This attribute operates
in exactly the same way as a sector’s tag field; it is an arbitrary value, which can be shared by any number of
Things if they are required to participate in some group action. Some actions require Things to be tagged to
lines or to sectors (or both). This tagging is achieved through the Thing’s tid field. I will return to the actions
that affect Things later in this chapter.

OTHER CHANGES TO THINGS
Raven Software has made several other changes to the Thing structure in Hexen that affect the way Things are
used within a WAD. These changes will be examined shortly.

HEXEN’S SCRIPTING FACILITY
In addition to the increased flexibility of Hexen’s special actions, this DOOM variant also provides unprec-
edented control of the game through its unique scripting language, ACS. Full details of this language are
reserved for “Hexen’s Scripting Language” on the CD-ROM. For now, the important points to note are how
this facility both expands the versatility of Hexen’s special actions and binds all of Hexen’s new features into a
coherent control scheme. ACS achieves this result through its own unique capabilities and its interaction with
the other new features of the game:

■ ACS scripts have full access to the special action codes.

■ ACS scripts can themselves be triggered by other scripts, by special action codes triggered from lines,
or from Things.

■ ACS scripts can be virtually any length (provided that there is sufficient memory), enabling complex
actions to be triggered and controlled.

■ ACS provides full conditional control of the execution of its scripts.

■ ACS scripts have access to many of the game’s internal parameters, allowing game-time decisions to
be made and special actions controlled accordingly.

■ ACS scripts have access to many of the game’s internal control functions, enabling them to control
many aspects of game behavior that were previously inaccessible.

Many people regard Hexen’s scripting language as the single most important advance in the continuing evolu-
tion of DOOM. It is certainly very powerful, and it will amply repay any time spent studying it.

5

p2v6sqc7 DOOM,HERETIC ALCHEMY 30935-1 mww 3.13.96 CH21 LP#3

THE MAPINFO RESOURCE
Hexen’s new MapInfo resource controls the way maps are arranged to provide Hexen’s new notion of level
clusters around a series of hubs. It also controls various other aspects of each map. Unlike other map resources
in a WAD, the MapInfo resource occurs only once for an entire WAD. Any MapInfo placed in a PWAD must
therefore contain information about every map that the player can visit. If your map replaces only selected
maps of the original game, and you want to change the default MapInfo information, you need to duplicate the
original (unchanged) settings and supply these in your new MapInfo alongside your new settings.

Table 2 details the contents of this resource. Each map that a player can visit must have an entry in the MapInfo
resource matching the information given in this table.

Table 2. Hexen’s MapInfo contents.

Entry Name Contains

map Number (1 to 60) of the map followed by its name; for example, 1 “Winnowing Hall”.

warptrans The number of this map if the -warp command-line parameter (or cheat key equiva-
lent) is used. This enables you to create a map with one number in the editor and then
reassign its position in the WAD through the MapInfo resource without renumbering.
It also enables you to get around having gaps in the map numbering sequence. Only
values in the range 1 to 31 are valid here.

next The number of the map to teleport to next on exit of a timed Deathmatch.

cdtrack The CD track to play as background music while the map is active.

cluster The cluster to which the map belongs (clusters are explained shortly).

sky1 The name of the texture to use for standard sky in this map, followed by the speed at
which it should be scrolled; for example, SKY1 2.

sky2 The name of the texture to use for the alternative sky, and its scrolling speed. This sky
is used in sectors with the special sector characteristic 200: Alternate Sky.

doublesky If specified, this causes the display of sky2 behind sky1, allowing layered cloud effects.

lightning If specified, this causes periodic lightning flashes (and crashes of thunder) while the
map is active. The sky texture switches from sky1 to sky2 for the duration of the
lightning flash.

fadetable The name of the fade table, or fog map, used while the map is active.

Listing 1 gives a sample MapInfo entry for a Hexen map.

p2v6sqc7 DOOM,HERETIC ALCHEMY 30935-1 mww 3.13.96 CH21 LP#3

6

Listing 1. A sample MapInfo entry.
map 1 “Winnowing Hall”
warptrans 1
next 2
cluster 1
sky1 SKY2 2
sky2 SKY3 0
lightning
doublesky
cdtrack 13

MAP CLUSTERS
Hexen’s capability to enable players to move freely backward and forward between maps has serious implica-
tions for the engine’s capability to keep track of the status of the game. To limit the amount of information that
must be tracked and saved, Hexen requires that its maps be divided into clusters. You nominate which cluster
(identified by number) a map belongs to in the MapInfo resource. After a player has moved from one cluster to
another, return is not permitted. (The map starts over if the player ever does return—it is up to you to ensure
that your maps link correctly.) It is recommended that the number of maps assigned to any one cluster should
not exceed 6 or 7, unless your maps are particularly small. Larger maps might require smaller clusters.

A new Hexen backdrop and milestone text message are given at the end of each cluster.

HEXEN’S PROGRAMMABLE SCENERY
The final new item in Hexen’s WAD files is the PolyObj, or Polygonal Object. This construct provides Hexen’s
unique sliding and rotating walls. This feature of the game is dealt with in full in “Making Moving Scenery” on
the CD-ROM.

HEXEN’S THINGS
After the extended action-control features and scripting capabilities of Hexen, one of the most noticeable
improvements to its programmability is the enhanced flexibility of the use of Things. These are the additional
features of the Thing structure in Hexen:

■ A new Thing identification field (tid) to enable Things to be the subject of special actions

■ A new Special Action Characteristic to enable Things to trigger special actions

■ A new Starting Altitude attribute

■ A new Dormant attribute

■ New uses for the Facing Angle

■ New controls to determine a Thing’s appearance in single-player games

■ Improved control over Things’ appearance in multiplayer games

Some of these new features have already been examined. I’ll now look at the rest.

7

p2v6sqc7 DOOM,HERETIC ALCHEMY 30935-1 mww 3.13.96 CH21 LP#3

NEW THING ATTRIBUTES
Hexen has introduced two new attributes of Things: a Starting Altitude and Dormancy.

STARTING ALTITUDE
All Things in Hexen can be assigned a Starting Altitude. This attribute determines how far above its sector
floor the Thing is placed when the map starts. The Thing is subjected to gravity immediately when the player
enters the map for the first time, so this attribute is of any real use only for Things placed close to a Player Start
position—unless you can think of a special use for it.…

DORMANT THINGS
Dormancy in monsters is a concept new to Hexen. It relies on the interrelationships between Things and other
actions for its effectiveness. Things with the Dormant attribute cannot be awakened by any of the normal means,
but wake up only when activated by a Thing_Activate special action. Thus, you can hold back particular mon-
sters until specific points during play. A more detailed look at the special codes acting on monsters and other
Things follows shortly.

CONTROLLING THINGS’ APPEARANCES
Hexen provides new flags to determine when Things should appear in Hexen games. The difficulty level flags
used in earlier game variants have been extended to include Player Class flags—controlling whether Things
appear during different types of single-player games—and also better control over appearances in multiplayer
games. These are the complete appearance control flags for Things in Hexen:

■ Appears on Easy skill settings (1 and 2)

■ Appears on Normal skill setting (3)

■ Appears on Hard skill settings (4 and 5)

■ Appears for players of Fighter class

■ Appears for players of Cleric class

■ Appears for players of Mage class

■ Appears in single-player games

■ Appears in Cooperative games

■ Appears in Deathmatch games

Any of these flags can be set independently of any other, allowing much better control over each Thing’s ap-
pearance in the game than was possible in the earlier game variants.

p2v6sqc7 DOOM,HERETIC ALCHEMY 30935-1 mww 3.13.96 CH21 LP#3

8

NOTE: For multiplayer games involving more than one player class, all Things flagged for
appearance for each participating class are present in the game and equally visible to all players.

Figure 1 shows the increased capabilities and attributes of Things in Hexen. Only players of Fighter class play-
ing alone will meet this particular Ettin. They might regret killing it, too.

Figure 1.
Setting a Hexen Thing’s attributes.

NEW USES FOR THE FACING ANGLE
Some of Hexen’s Things have a new use for their Facing Angle field. These are specifically tied to the con-
struction of PolyObjs; the details are presented in “Making Moving Scenery” on the CD-ROM.

ACTIVATING THINGS
As already noted, Things in Hexen can be subjected to special actions, in a similar way to sectors. Full details
of these actions are given in Table 12 in “Hexen’s Special Codes” on the CD-ROM. It is worth looking in a
little detail at the codes to control a Thing’s dormancy, however. Any Thing flagged as Dormant can be acti-
vated only by a special action of type Thing_Activate. In keeping with all other Hexen action codes, this spe-
cial action can be triggered from any of the following items:

■ A line, triggered by player, projectile, or monster

■ Another Thing, being killed, destroyed, or acquired

■ An Action Control Script, which can itself have been triggered by any of the preceding items

9

p2v6sqc7 DOOM,HERETIC ALCHEMY 30935-1 mww 3.13.96 CH21 LP#3

As you can see, the potential for activating monsters has suddenly become very large indeed!

After a monster has been activated, it behaves as any other awakened monster.

Any monster can also be made dormant during play if it is subjected to the Thing_Deactivate special. This spe-
cial causes the monster to freeze its activity immediately and revert to a dormant state. It can then be reacti-
vated only with the Thing_Activate special action.

EXIT: MOPPING UP AND MOVING ON
This chapter has introduced you to the principal enhancements made to the control of actions and Things in
Hexen. The other major addition to that game is its capability to create moving scenery elements. This aspect
of the game is the subject of “Making Moving Scenery” on the CD-ROM.

1

p2v6sqc 7 DOOM,HERETIC ALCHEMY 30935-1 mww 3.13.96 CH22 LP#3

MAKING MOVING
SCENERY

— By Steve Benner

In this chapter, the attention is turned to another of Hexen’s new
features—the PolyObj, or Polygonal Object. This new structure is pro-
vided to enable the construction of some rather special scenery elements
in Hexen—walls that can slide sideways or rotate (or both)!

INTRODUCING THE POLYOBJ
The Polygonal Object—more properly termed merely the PolyObj—is a
brand-new construct, developed by Raven Software for use in Hexen. From
the outset, it is important to realize that the PolyObj is, in fact, only a no-
tional (or functional) construct. It is built from a collection of lines and
special Things and is activated by means of some special action codes,
in the same way that a door or a lift or a teleport might be, for ex-
ample. Like most of DOOM’s other functional constructs, the
PolyObj has some fairly strict constructional requirements.

A POLYOBJ’S COMPONENT PARTS
In essence, a PolyObj consists of the following components:

■ A series of lines, marking out a closed shape.

■ Appropriate codes on some or all of these lines, assigning
them to a particular PolyObj.

■ An anchor point, to define the center of rotation of the
PolyObj.

■ A starting point, to define where on the map the PolyObj will be
when the map loads.

p2v6sqc 7 DOOM,HERETIC ALCHEMY 30935-1 mww 3.13.96 CH22 LP#3

2

In addition, there are some fairly stringent requirements for the arrangements of these components. I’ll look in
some detail at the nature of each of these components, though, before considering the actual steps that need to
be taken to build one.

A POLYOBJ’S LINES
The series of lines that mark out a PolyObj must form a closed shape. This shape is always viewed from its out-
side—like looking at a solid door, or a pillar, for example. Lines marking out a PolyObj therefore are normally
one-sided, facing out from the shape. To be treated as a PolyObj, these lines need to be marked in some way.

MARKING THE LINES OF A POLYOBJ
Lines can be marked as belonging to a PolyObj in two ways, both of them involving special action codes on the
lines. The first (and easiest) method is to place the special action code PolyObj_StartLine on just one of the
PolyObj’s lines. The presence of this code signals to the Hexen game engine that the line belongs to a PolyObj.
Hexen locates the remaining lines of the PolyObj for itself by following lines from vertex to vertex from one
end of the marked line until a return is made to the other end of that line. For most simple, convex shapes, this
method is adequate and it can be used most of the time.

NOTE: Hexen’s special actions were introduced in “Programming the Action” on the
CD-ROM. The values for these special action codes are given in “Hexen’s Special Codes” on

the CD-ROM.

If the shape is too complex for the game engine to pick up by line-following, a second method needs to be
employed. In this method, the special code PolyObj_ExplicitLine must be placed on every line of the PolyObj.
The second argument of this special code provides each line’s position in the rendering sequence of the PolyObj.
This sequence must start at 1 on the first line to be rendered and must run without gaps and in steps of 1, through
each of the lines that make up the shape. This second method provides total control over which lines are in-
corporated into the PolyObj, as well as the order in which they are rendered by the graphics engine. It is more
tedious to use, however, and has the disadvantage of preventing any other special action codes from being used
on any of the lines of the PolyObj.

DEFINING A POLYOBJ
To distinguish among the various PolyObjs in use in the level, each PolyObj must be assigned a unique iden-
tifying number. This designation is made through the first argument of the special code used to assign its lines.
In addition, each PolyObj can be assigned a partner, in the form of another PolyObj. The partner is termed its
mirror. Provided that the mirror is not already moving at the time, the pair of PolyObjs will operate in concert
when the main PolyObj is triggered. The mirror will move in the opposite direction of the primary PolyObj,
however, rotating counterclockwise to its partner’s clockwise motion, and vice versa. Horizontal motion of the
primary PolyObj will be matched by movement of the mirror in the opposite direction.

3

p2v6sqc 7 DOOM,HERETIC ALCHEMY 30935-1 mww 3.13.96 CH22 LP#3

Each PolyObj is assigned its mirror when it is defined, through one of the arguments of the defining special
code. In this way, each PolyObj can have only one mirror. A mirror PolyObj must itself be defined as a PolyObj
in the usual way, and it can, of course, be treated as a primary PolyObj in its own right. Two PolyObjs can act
as mutual mirrors of each other, but there is rarely any need for this action, and Raven Software cautions against
it. Generally, though, it seems to cause no problems.

Finally, when a PolyObj is defined by means of either of the special codes just outlined, a sound can be at-
tached to it. This is the sound that will be used when the PolyObj is made to move. Again, this information is
passed to the engine via an argument of the defining special action code. Details of the sounds available are
given in Table 4 of “Hexen’s Special Codes” on the CD-ROM.

POLYOBJ ANCHOR POINTS
To define the point around which a PolyObj will rotate (when asked to do so), it is necessary to place a special
Thing, called a PolyObj Anchor Spot, on the map and associate this with its particular PolyObj. Note that after
it is assigned to a PolyObj, the Anchor Spot is considered to be part of that object, so it also takes part in any
subsequent moves imposed on it. If you place the Anchor Spot in the center of a PolyObj, for example, that is
where it will remain—at the center of the shape—no matter where subsequent movements take the PolyObj.

A PolyObj’s Anchor Spot need not be placed at its center, though, nor within it, nor even close by it! The
purpose of the Anchor Spot is merely to provide a single point of reference to the PolyObj when one is needed.
When rotational movements are imposed on a PolyObj, for instance, the Anchor Spot provides its axis of ro-
tation. You can therefore make a PolyObj carry out its rotations (literally) on the spot by placing its Anchor
Spot at its center. Or you can make it follow the arc of a circular path by placing the Anchor Spot some dis-
tance outside of the shape. The choice is yours. You just need to ensure that there is sufficient space for the
PolyObj to carry out the motions you intend to subject it to.

Each PolyObj must have one and only one Anchor Spot associated with it.

POLYOBJ START SPOTS
In addition to its Anchor Spot, each PolyObj needs to have one more special Thing associated with it: its Start
Spot. To understand the need for this item, it is necessary to consider something of the game engine’s use of the
Binary State Partition (or nodes tree) and the implication this has on the use of walls that can be asked to
move.

POLYOBJS AND THE NODES TREE
Little has been said about the nodes tree in the book. Largely, this is because this structure is not easily under-
stood, and in any case, an understanding of it is not essential to the understanding of the building of WADs.
Fortunately, it isn’t necessary to delve too deeply into this structure even now.

You should be aware that the purpose of the nodes tree is to provide the graphic engine with a quick way of
determining which surfaces are in view at any given time. Now, DOOM’s nodes tree is a strictly two-dimensional

p2v6sqc 7 DOOM,HERETIC ALCHEMY 30935-1 mww 3.13.96 CH22 LP#3

4

one. It provides DOOM with information only about which walls are hidden by other walls; no ceiling or floor
information is provided. Because of this, the information it contains remains valid only as long as a wall does
not alter its horizontal position. Floor and ceiling height can change with complete impunity, however. You
have probably realized this fact from using a map editor. The nodes are usually rebuilt if you have moved a
vertex (and, therefore, a line) but not if the only changes you have made are to sector information. Now you
know why all of DOOM’s doors open vertically: it saves the game engine from having to decide what to do
about the fact that a horizontal wall movement will make the nodes tree invalid!

So how does Hexen (which is, after all built on the same game engine) manage? The answer is that it cheats!
But it cheats very cleverly. The only problem is that it requires you to help it cheat.

Now, it so happens that there are fewer problems with nodes tree inaccuracies if walls are interposed in views
that should be open than if walls that should be blocking a view are removed. In the former case, the game
engine merely needs to be told that there are now some new walls in the way. The view is being restricted, not
increased, so there is no extra work to do, merely work being prevented. Hexen makes use of this fact in its
handling of PolyObjs.

To make sure that the nodes tree reflects the maximum visibility around PolyObjs, Hexen requires that all
PolyObjs be built away from real game space. The area in which they will operate must be created in the com-
pletely empty and open state. The business of moving the PolyObj into place is then handled by the game as
the level loads.

All of this no doubt makes the PolyObj sound like a very complicated structure. In reality, however, it is sur-
prisingly easy to build, provided that you follow a few simple rules.

BUILDING A POLYOBJ
Following is a step-by-step look at the process of creating a PolyObj.

MAKING SPACE
The first step in creating a PolyObj is to provide it with some space in which to perform its functions. Nor-
mally, this simply means creating an open sector into which the PolyObj will be moved at runtime. Do not
create complicated areas for your PolyObjs; straightforward rectangles and regular polygonal areas are best. You
should also make sure that you build one sector for each PolyObj you use; Hexen crashes back to DOS with a
More than one PolyObj in the same subsector message if you don’t.

DRAWING THE LINES
After you have the spaces the PolyObjs will occupy, you can think about drawing whatever PolyObjs are needed
for the task you had in mind.

Because PolyObjs are simply collections of lines, they can be drawn anywhere on the level map, provided that
they are located in areas where they will not confuse the binary nodes partition when they move. Essentially,

5

p2v6sqc 7 DOOM,HERETIC ALCHEMY 30935-1 mww 3.13.96 CH22 LP#3

this means that they should be kept well away from any areas into which the player can ever see. Usually, it is
best to assign an area of the map well away from the actual game space.

You should draw the lines of the PolyObj in the orientation in which you want it to first appear. You need not
assign these lines to any sector, though, unless you need to in order to satisfy your editor. You might find it
convenient to create a sector out of the way somewhere in which you can construct all of your PolyObjs. This
method can save you confusion and accidents later. Make sure that all the lines are single-sided and flagged
that way. Their lines should face out from the shape; it is meant to be a solid structure, remember.

Put whatever texture you want to appear on each PolyObj line on its right main texture slot. All other textures
are ignored because the line is single-sided. The final rendered height of the PolyObj is derived from the sector
in which it is placed by the game at runtime. You don’t need to do anything to ensure that it fits.

DEFINING THE POLYOBJ
If your PolyObj is simple in shape (as most should be), you can use the PolyObj_StartLine method of defining
it. This is much simpler than the other method, and it alone is a good reason to keep PolyObjs simple in form.
To use this method, just place a special action code of this type on any one of the PolyObj’s lines. Set this
action’s first argument to the number by which you want the PolyObj to be referenced. Any value will do, in
the range 1 to 255, but make sure that each PolyObj in any one map is assigned a unique number. Set the sec-
ond argument to reference this PolyObj’s mirror, or leave it as zero if no mirror is required. You will later need
to create the mirroring PolyObj and assign it this identifying number so that the game can find it when it comes
to move the first. The third argument of the PolyObj_StartLine special specifies the sound to be used to accom-
pany movements of the PolyObj—Table 4 of “Hexen’s Special Codes” on the CD-ROM has details.

More complex PolyObj shapes need to be defined with the PolyObj_ExplicitLine special instead. This is more
tedious to use, but no more complicated. The special must be placed on every line of the PolyObj, with an
identical first argument to identify the lines as belonging to the same PolyObj. This argument is the PolyObj’s
unique identifying number. The second argument specifies the rendering order of the lines; mark these in se-
quence from 1. The third and fourth arguments specify the mirror and associated sound.

NOTE: A full specification of the parameterization of these PolyObj specials is given in Table
13 of “Hexen’s Special Codes” on the CD-ROM.

PLACING THE SPOTS
The next step is to attach the Anchor Spot to your new PolyObj. Place the Anchor Spot at the point about
which you want the PolyObj to rotate when activated. If you want the PolyObj to only slide, place the Anchor
Spot at some convenient location, coincident with one of its vertices, say.

Having done this, you need a Start Spot. Place this at the point on the map (in the real game space) where you
want the PolyObj to appear. More specifically, it marks the point at which the Anchor Spot (with the PolyObj

p2v6sqc 7 DOOM,HERETIC ALCHEMY 30935-1 mww 3.13.96 CH22 LP#3

6

attached to it) is moved by Hexen when the map loads. Don’t worry about positioning these Spots so as to
make your PolyObj fit exactly up to the other walls of your map, by the way. It won’t matter to Hexen if your
PolyObj passes into existing walls, because the nodes tree takes care of correct rendering of this—the map walls
clip the PolyObj as necessary. Watch out for overlapping PolyObjs, though. Chaos results if overlapping oc-
curs!

Two different sorts of Start Spots are available to choose from: a standard Start Spot and a crushing Start Spot.
PolyObjs located with standard Start Spots stop their movement if they catch a player in them. The crushing
variety pushes the player along and causes a high rate of damage if the player has nowhere to go!

ASSIGNING THE SPOTS TO THE POLYOBJ
The final step in the construction of the PolyObj is to attach the Anchor and Start Spots to the PolyObj. You
achieve this task by matching the facing angle of both of the Spots to the identifying number of the PolyObj. To
do this, you need an editor that allows you direct access to this field so that you can enter a number, rather than
specify one of eight map directions. This nonstandard use of the facing angle field dates from before Raven
Software had implemented Thing tagging.

ACTIVATING A POLYOBJ
After a PolyObj has been constructed, it becomes simplicity itself to activate. All you need to do is use an ac-
tivation special of an appropriate type to put it through its paces. Special codes are provided to make PolyObjs
rotate, move sideways, or combine these motions. Table 14 in “Hexen’s Special Codes” on the CD-ROM pro-
vides full details of these codes.

CAUTION: Hexen will happily move PolyObjs through “solid” walls, and if properly
constructed, this effect will not look odd. Indeed, there are even times when you might want this
effect—with doors that slide open and disappear into walls, for instance. Unlike standard DOOM

doors, which are just a shrinking upper texture, PolyObjs don’t change size, however. Sliding doors
really do move through the walls. If there is a corridor on the other side, it might end up blocked!

Figure 1 shows the map necessary to construct two rooms separated by a pair of doors that slide open when
activated from either side. The game area is the area on the right, consisting of four sectors: one for each of the
rooms, and one for each of the PolyObjs that make up the doors. These have been built in the sector shown in
the left side of the figure. Note the placements of the Anchor Spots (one in each PolyObj) and the Start Spots
(in the game space). Special lines to activate these doors (with a PolyObj_DoorSlide action) can be placed ei-
ther on each door face or on the lines marking their destination sectors. You can find this sample WAD,
HEXDOOR.WAD, on the accompanying CD-ROM.

7

p2v6sqc 7 DOOM,HERETIC ALCHEMY 30935-1 mww 3.13.96 CH22 LP#3

Figure 1.
Implementing sliding doors in Hexen.

CONSTRUCTION SUMMARY
Here, in summary, are the steps involved in building a Hexen PolyObj:

1. Draw the empty sector the PolyObj will occupy when the game is played.

2. Draw the lines making up the object. Most PolyObjs will be viewed only from their “outside,” so draw
a complete shape, with the right sides facing out. Place this shape in unused space, well away from
normal map lines.

3. Assign the PolyObj_StartLine code to one of the lines of your PolyObj if it is a simple convex shape.
Alternatively, use PolyObj_ExplicitLine codes on all of its lines if the shape is more complex.

4. Set the first argument byte of the lines to which you just assigned the defining PolyObj specials to a
number unique for this PolyObj. If you’re using the PolyObj_ExplicitLine method, make sure that all
lines have the same number here.

5. If using the PolyObj_ExplicitLine method, work around the lines of the PolyObj, setting each line’s
second special argument byte to the rendering order for that line.

6. Put the identifying number of the PolyObj’s mirror in the appropriate special argument byte of each of
the preceding defining lines.

7. Place an Anchor Spot at your PolyObj’s center of rotation. Set its facing angle to the identifying
number of the PolyObj.

8. Place a Start Spot of the desired type (crushing or noncrushing) where you want the PolyObj’s
Anchor Spot (and the PolyObj with it!) to be placed as the level loads. Set the Start Spot’s facing
angle to the identifying number of the PolyObj.

9. Finally, set up appropriate trigger events to activate your PolyObj, using the suitable PolyObj special
action codes.

p2v6sqc 7 DOOM,HERETIC ALCHEMY 30935-1 mww 3.13.96 CH22 LP#3

8

EXIT: MOPPING UP AND MOVING ON
This concludes the training mission for those who want to become Grand Masters in the art of Hexen editing.
“Programming the Action” and this chapter have done little more than provide an introduction to the exten-
sions of the DOOM game engine provided within the Hexen game variant. You will find more details of its
advanced programming features in the book.

1

P2/V6sqc 7 DOOM,HERETIC ALCHEMY 30846-0 mww 3.14.96 CH39 LP#3

HEXEN’S SPECIAL
CODES

— By Steve Benner

This chapter takes a detailed look at the way in which the system of spe-
cial action codes has been extended in the game variant Hexen. The com-
plete range of codes available in Hexen is presented, along with details of
the other codes that the designer will need to know to utilize the main
actions.

CONTROLLING HEXEN’S ACTIONS
The designers of Hexen have seen fit to change completely the way in which
events are triggered and controlled within the game. These changes give the
designer unprecedented control over the way events are handled by the
game engine. No longer are triggering mechanisms hard-coded into the
action type; individual triggerings can now be controlled by means
of a line’s attribute flags. In addition, Hexen’s special actions can be
triggered in other ways, not just from lines, as was the case in earlier
variants of the game engine. And finally, as well as the extended
triggering mechanism, Hexen also provides the designer with the
ability to parameterize each available action. Up to five numerical
values can be passed to an action each time it is triggered. Each of
Hexen’s special actions uses these parameters in particular ways to
control certain aspects of their operation.

SPECIAL ACTION PARAMETERS
Many of the actions have parameters in common, so it is helpful to look
first at the more general parameters that can be used.

P2/V6sqc 7 DOOM,HERETIC ALCHEMY 30846-0 mww 3.14.96 CH39 LP#3

2

TAGS AND TIDS
As in DOOM, many special action codes rely on tags to provide them with the target of their attentions. Sec-
tors are tagged via their tag field, just as they are in DOOM. Lines no longer have a specific tag, though; their
Special Attribute has been extended to allow a tag to be specified as one of the five arguments passed to the
line’s special action. Another change in Hexen is that Things can now be tagged. This task is achieved through
a new Thing Attribute, called either their tag or their Thing Identification (tid, for short) field. A Thing’s tag
(or tid) acts just like a sector’s tag: it marks the Thing as a target of an action. As with DOOM, if an action
requires a tag to be specified, and a value of zero is used, most actions will apply their effect to all untagged
targets, with the usual spectacular results!

NOTE: The alterations to the way special actions are specified and controlled in Hexen is bound
up inextricably with that game’s new scripting capabilities. It is therefore difficult to describe one of

these mechanisms without constant reference to the other. If you would like to know more about
Hexen’s scripting language before becoming involved in its special codes, read “Hexen’s Scripting
Language” on the CD-ROM before reading this chapter.

TICS
Some actions can be made to occur for specific durations. Hexen uses two principal units of time: the second,
and a division of the second called the tic. There are 35 tics to the second. (Don’t ask why!) Some special ac-
tions are parameterized in seconds; others, in tics. Occasionally, a unit of eight tics (the octic) is also used. Details
are given in the tables that follow.

BYTE ANGLES
Some special actions need to be given a map direction (or vector) along which to act. This angle usually needs
to be specified more accurately than the coarse settings used to provide Things with their map facings. A new
unit of measurement, called a byte angle, is therefore used. This system divides a circle into 256 “degrees,” work-
ing counterclockwise from the east. Under this scheme, therefore, the main directions are as given in Table 1.

Table 1. Principal byte angle directions.

Direction Byte Angle

East 0

Northeast 32

North 64

Northwest 96

3

P2/V6sqc 7 DOOM,HERETIC ALCHEMY 30846-0 mww 3.14.96 CH39 LP#3

West 128

Southwest 160

South 192

Southeast 224

KEYS
Some actions require a player to have acquired a particular key before they will operate. Instead of matching
keys to the action codes, as in DOOM, Hexen allows the key to be specified as a parameter. The codes for each
key present in the game are given in Table 2.

Table 2. Hexen’s key codes.

Key Code Type of Key

1 Steel key

2 Cave key

3 Axe key

4 Fire key

5 Emerald key

6 Dungeon key

7 Silver key

8 Rusted key

9 Horn key

10 Swamp key

11 Castle key

PUZZLE ITEMS
In addition to keys, Hexen requires players to acquire certain puzzle pieces. These are also coded for use as pa-
rameters to certain special actions. These codes are given in Table 3. This table also lists the predefined names
of these items that can be used in ACS scripts.

Direction Byte Angle

P2/V6sqc 7 DOOM,HERETIC ALCHEMY 30846-0 mww 3.14.96 CH39 LP#3

4

Table 3. Hexen puzzle-piece codes.

Code ACS Identifier Item

0 ZZ_Skull Yorick’s skull

1 ZZ_BigGem Heart of D’Sparil

2 ZZ_GemRed Ruby planet

3 ZZ_GemGreen1 Emerald planet 1

4 ZZ_GemGreen2 Emerald planet 2

5 ZZ_GemBlue1 Sapphire planet 1

6 ZZ_GemBlue2 Sapphire planet 2

7 ZZ_Book1 Daemon codex

8 ZZ_Book2 Liber oscura

9 ZZ_Skull2 Flame mask

10 ZZ_FWeapon Glaive seal

11 ZZ_CWeapon Holy relic

12 ZZ_MWeapon Sigil of the Magus

13 ZZ_Gear Clock gear

14 ZZ_Gear2 Bronze clock gear

15 ZZ_Gear3 Clock gear with bronze hub

16 ZZ_Gear4 Clock gear with bronze ring

SOUNDS
A few special actions can have the sounds associated with them specified via their parameters also. The codes
for the various sounds available are given in Table 4.

Table 4. Hexen’s special sound codes.

Code Sound Name Description

1 Heavy Heavy stone moving

2 Metal Metallic slam

3 Creak Hinges creaking

4 Silence Silence

5 Lava Lava flowing

6 Water Water bubbling

5

P2/V6sqc 7 DOOM,HERETIC ALCHEMY 30846-0 mww 3.14.96 CH39 LP#3

7 Ice Ice creaking

8 Earth Earth rumbling

9 Metal2 Metallic clang

TIP: Most actions have a sound associated with them that is determined by the game engine during
play. Usually, this sound is determined by the combination of the type of action and the speed of its
operation. If you don’t like the type of sound that accompanies the action you are using, try varying
the speed a little to see whether you can make Hexen choose another!

NOTE: All Hexen’s sounds can also be invoked through its scripting language. See “Hexen’s
Scripting Language” on the CD-ROM for details.

THING SPAWNING CODES
In addition to the standard Thing identification codes used when laying out a map (which are given in Chap-
ter 34, “Essential Thing Information”), Hexen also has another set of codes for spawnable Things. These Things
can be spawned by the appropriate spawning actions (detailed later in this chapter). Table 5 lists these codes
for spawned objects and also gives their ACS identifier codes.

Table 5. Hexen’s spawnable Things.

Spawn Code ACS Identifier Description

1 T_CENTAUR Centaur

2 T_CENTAURLEADER Centaur Leader

3 T_DEMON Gas Chaos Serpent

4 T_ETTIN Ettin

5 T_FIREGARGOYLE Afrit

6 T_WATERLURKER Stalker

7 T_WATERLURKERLEADER Stalker Leader

8 T_WRAITH Reiver

9 T_WRAITHBURIED Reiver Leader

10 T_FIREBALL1 Fireball

continues

Code Sound Name Description

P2/V6sqc 7 DOOM,HERETIC ALCHEMY 30846-0 mww 3.14.96 CH39 LP#3

6

11 T_MANA1 Blue Mana

12 T_MANA2 Green Mana

13 T_ITEMBOOTS Boots of Speed

14 T_ITEMEGG Porkelator

15 T_ITEMFLIGHT Wings of Wrath

16 T_ITEMSUMMON Dark Servant

17 T_ITEMTPORTOTHER Banishment Device

18 T_ITEMTELEPORT Disc of Repulsion

19 T_BISHOP Dark Bishop

20 T_ICEGOLEM Wendigo

21 T_BRIDGE Glitter Bridge

22 T_DRAGONSKINBRACERS Dragonskin Bracers

23 T_ITEMHEALTHPOTION Health Vial

24 T_ITEMHEALTHFLASK Quartz Flask

25 T_ITEMHEALTHFULL Mystic Urn

26 T_ITEMBOOSTMANA Krater of Might

27 T_FIGHTERAXE Timon’s Axe

28 T_FIGHTERHAMMER Hammer

29 T_FIGHTERSWORD1 Quietus Piece 1

30 T_FIGHTERSWORD2 Quietus Piece 2

31 T_FIGHTERSWORD3 Quietus Piece 3

32 T_CLERICSTAFF Serpent Staff

33 T_CLERICHOLY1 Wraithverge Piece 1

34 T_CLERICHOLY2 Wraithverge Piece 2

35 T_CLERICHOLY3 Wraithverge Piece 3

36 T_MAGESHARDS Frost Shards

37 T_MAGESTAFF1 Bloodscourge Piece 1

38 T_MAGESTAFF2 Bloodscourge Piece 2

39 T_MAGESTAFF3 Bloodscourge Piece 3

40 T_MORPHBLAST Blast from Porkelator

41 T_ROCK1 Rock

Table 5. continued

Spawn Code ACS Identifier Description

7

P2/V6sqc 7 DOOM,HERETIC ALCHEMY 30846-0 mww 3.14.96 CH39 LP#3

42 T_ROCK2 Rock

43 T_ROCK3 Rock

44 T_DIRT1 Rubble

45 T_DIRT2 Rubble

46 T_DIRT3 Rubble

47 T_DIRT4 Rubble

48 T_DIRT5 Rubble

49 T_DIRT6 Rubble

50 T_ARROW Arrow

51 T_DART Dart

52 T_POISONDART Poison Dart

53 T_RIPPERBALL Ripperball

54 T_STAINEDGLASS1 Glass Shard

55 T_STAINEDGLASS2 Glass Shard

56 T_STAINEDGLASS3 Glass Shard

57 T_STAINEDGLASS4 Glass Shard

58 T_STAINEDGLASS5 Glass Shard

59 T_STAINEDGLASS6 Glass Shard

60 T_STAINEDGLASS7 Glass Shard

61 T_STAINEDGLASS8 Glass Shard

62 T_STAINEDGLASS9 Glass Shard

63 T_STAINEDGLASS0 Glass Shard

64 T_BLADE Barbed Blade

65 T_ICESHARD Ice Shard

66 T_FLAME_SMALL Small Flame

67 T_FLAME_LARGE Large Flame

68 T_MESHARMOR Mesh Armor

69 T_FALCONSHIELD Falcon Shield

70 T_PLATINUMHELM Platinum Helm

71 T_AMULETOFWARDING Amulet of Warding

72 T_ITEMFLECHETTE Fletchette

73 T_ITEMTORCH Torch

Spawn Code ACS Identifier Description

continues

P2/V6sqc 7 DOOM,HERETIC ALCHEMY 30846-0 mww 3.14.96 CH39 LP#3

8

74 T_ITEMREPULSION Chaos Device

75 T_MANA3 Combined Mana

76 T_PUZZSKULL Yorrick’s Skull

77 T_PUZZGEMBIG Heart of D’Sparil

78 T_PUZZGEMRED Ruby Planet

79 T_PUZZGEMGREEN1 Emerald Planet 1

80 T_PUZZGEMGREEN2 Emerald Planet 2

81 T_PUZZGEMBLUE1 Sapphire Planet 1

82 T_PUZZGEMBLUE2 Sapphire Planet 2

83 T_PUZZBOOK1 Daemon Codex

84 T_PUZZBOOK2 Liber Obscura

85 T_METALKEY Steel Key

86 T_SMALLMETALKEY Cave Key

87 T_AXEKEY Axe Key

88 T_FIREKEY Fire Key

89 T_GREENKEY Emerald Key

90 T_MACEKEY Dungeon Key

91 T_SILVERKEY Silver Key

92 T_RUSTYKEY Rusted Key

93 T_HORNKEY Horn Key

94 T_SERPENTKEY Swamp Key

95 T_WATERDRIP Drip of Water

96 T_TEMPSMALLFLAME Temporary Small Flame (very short-lived!)

97 T_PERMSMALLFLAME Small Flame

98 T_TEMPLARGEFLAME Temporary Large Flame (very short-lived!)

99 T_PERMLARGEFLAME Large Flame

100 T_DEMON_MASH Ghost Gas Chaos Serpent

101 T_DEMON2_MASH Ghost Fire Chaos Serpent

102 T_ETTIN_MASH Ghost Ettin

103 T_CENTAUR_MASH Ghost Centaur

104 T_THRUSTSPIKEUP Rising Spike

Table 5. continued

Spawn Code ACS Identifier Description

9

P2/V6sqc 7 DOOM,HERETIC ALCHEMY 30846-0 mww 3.14.96 CH39 LP#3

105 T_THRUSTSPIKEDOWN Hidden Spike

106 T_FLESH_DRIP1 Splash of Flesh 1

107 T_FLESH_DRIP2 Splash of Flesh 2

108 T_SPARK_DRIP Spark

CAUTION: Any attempt to spawn items other than those listed in Table 5 will crash the game
engine.

HEXEN’S SPECIAL ACTIONS
For convenience, the list of special actions available in Hexen is divided here into various categories:

■ Door actions

■ Other ceiling actions

■ Moving platform actions

■ Simple floor actions

■ Combined floor and ceiling actions

■ Stair-building actions

■ Lighting actions

■ Thing actions

■ PolyObject actions

■ Script actions

■ Teleporting actions

■ Various additional Hexen-specific effects

In the sections that follow, each of these categories is examined in detail. Tables provide a full list of the pa-
rameters taken by each action as a series of arguments (Arg1 to Arg5). Also given are the names of the function
to call in an ACS script to initiate each action.

DOOR ACTIONS
Details of Hexen’s door actions are given in Table 6. Apart from the way they are controlled through their
parameters (and the added flexibility that ensues), they all operate in the same way as DOOM’s doors.

Spawn Code ACS Identifier Description

P2/V6sqc 7 DOOM,HERETIC ALCHEMY 30846-0 mww 3.14.96 CH39 LP#3

10

Table 6. Hexen’s door actions.

Code Function Name Arg1 Arg2 Arg3 Arg4 Arg5 Action

10 Door_Close tag speed – – – Close door

11 Door_Open tag speed – – – Open door

12 Door_Raise tag speed delay – – Open, pause, close
door

13 Door_LockedRaise tag speed delay key – Open, pause, close
(keyed) door

These are the arguments used to control these actions:

tag Specifies which sectors should respond. If this value is nonzero, sectors with this value in
their tag field carry out the specified action. If this argument is zero, the sector on the left
side of the triggering line responds, as with standard DOOM doors.

speed Specifies the speed at which the door opens. If this value is zero, the door never opens. A
value of 1 creates a door that moves at about 4 pixels per second. A value of 255 produces
a door that moves rather faster than one of DOOM’s turbo doors.

delay Specifies the amount of time (in tics) that the door remains open. If a zero delay is
specified, the door remains open until closed by some other action.

key Specifies which key is required to open the door. The key codes are given in Table 2.

CEILING-MOVING ACTIONS
Hexen’s other special codes that carry out actions just on ceilings are given in Table 7.

Table 7. Hexen’s codes for moving ceilings.

Code Function Name Arg1 Arg2 Arg3 Arg4 Arg5 Action

40 Ceiling_LowerByValue tag speed distance – – Lower ceiling by
specified amount

41 Ceiling_RaiseByValue tag speed distance – – Raise ceiling by
specified amount

42 Ceiling_CrushAndRaise tag speed damage – – Start perpetual
crushing ceiling(s)

43 Ceiling_LowerAndCrush tag speed damage – – Lower ceiling to
floor with crush

11

P2/V6sqc 7 DOOM,HERETIC ALCHEMY 30846-0 mww 3.14.96 CH39 LP#3

44 Ceiling_CrushStop tag – – – – Pause a crushing
ceiling

45 Ceiling_CrushRaiseAndStay tag speed damage – – Perform one cycle
of lower, crush,
and raise

69 Ceiling_MoveToValueTimes8 tag speed height neg – Move ceiling to
new height (neg ×
–1 × height × 8)

The arguments used to control these actions are similar to those for doors, except for the following arguments:

tag Specifies which sectors should respond. Sectors with this value in their tag field carry
out the specified action. A value of zero should not be used here.

distance Specifies the vertical distance to move (in pixels).

neg Allows negative floor heights to be specified by use of a value of 1.

damage Specifies the amount of damage to apply at each crush.

MOVING PLATFORM ACTIONS
Hexen’s lifts and moving platforms offer a wider range of options than do DOOM’s, but they operate much the
same way. The codes are given in Table 8.

Table 8. Hexen’s codes for moving platforms.

Code Function Name Arg1 Arg2 Arg3 Arg4 Arg5 Action

60 Plat_PerpetualRaise tag speed delay – – Start a perpetual down,
wait, up, wait action

61 Plat_Stop tag – – – – Pause a perpetual
moving platform

62 Plat_DownWaitUpStay tag speed delay – – Perform lift action
(down to lowest
adjacent, wait, up,
stay)

Code Function Name Arg1 Arg2 Arg3 Arg4 Arg5 Action

continues

P2/V6sqc 7 DOOM,HERETIC ALCHEMY 30846-0 mww 3.14.96 CH39 LP#3

12

63 Plat_DownByValue tag speed delay distance – Perform lift action
(down specified
amount, wait, up, stay)

64 Plat_UpWaitDownStay tag speed delay – – Perform lift action (up
to highest adjacent,
wait, down, stay)

65 Plat_UpByValue tag speed delay distance – Perform lift action (up
specified amount, wait,
down, stay)

The arguments used with these actions are as given for the preceding category.

FLOOR-MOVING ACTIONS
Hexen’s special codes for moving floors in single, one-off movements are given in Table 9.

Table 9. Hexen’s codes for moving floors.

Code Function Name Arg1 Arg2 Arg3 Arg4 Arg5 Action

20 Floor_LowerByValue tag speed distance – – Lower floor by
specified amount

21 Floor_LowerToLowest tag speed – – – Lower floor to level
of lowest adjacent

22 Floor_LowerToNearest tag speed – – – Lower floor to level
of next lower
adjacent

23 Floor_RaiseByValue tag speed distance – – Raise floor by
specified amount

24 Floor_RaiseToHighest tag speed – – – Raise floor to level
of highest adjacent

25 Floor_RaiseToNearest tag speed – – – Raise floor to level
of next higher
adjacent

28 Floor_RaiseAndCrush tag speed damage – – Raise floor to ceiling
with crush

Table 8. continued

Code Function Name Arg1 Arg2 Arg3 Arg4 Arg5 Action

13

P2/V6sqc 7 DOOM,HERETIC ALCHEMY 30846-0 mww 3.14.96 CH39 LP#3

35 Floor_RaiseByValueTimes8 tag speed distance – – Raise floor by 8 ×
distance units

36 Floor_LowerByValueTimes8 tag speed distance – – Lower floor by 8 ×
distance units

46 Floor_CrushStop tag – – – – Stop a crushing floor

66 Floor_LowerInstant tag – distance – – Lower floor by
specified distance
instantaneously

67 Floor_RaiseInstant tag – distance – – Raise floor by
specified distance
instantaneously

68 Floor_MoveToValueTimes8 tag speed height neg – Move ceiling to new
height (neg × –1 ×
height × 8)

Again, the parameterization of these actions is as given for moving ceilings.

SIMULTANEOUS FLOOR AND CEILING ACTIONS
Hexen has additional special codes to move a floor and ceiling simultaneously. These are listed in Table 10.

Table 10. Hexen’s codes for simultaneous floor and ceiling movements.

Code Function Name Arg1 Arg2 Arg3 Arg4 Arg5 Action

95 FloorAndCeiling_LowerByValue tag speed distance – – Lower both
floor and
ceiling by
specified
amount

96 FloorAndCeiling_RaiseByValue tag speed distance – – Raise both
floor and
ceiling by
specified
amount

continues

Code Function Name Arg1 Arg2 Arg3 Arg4 Arg5 Action

P2/V6sqc 7 DOOM,HERETIC ALCHEMY 30846-0 mww 3.14.96 CH39 LP#3

14

29 Pillar_Build tag speed distance – – Raise floor,
lower ceiling
to specified
distance above
starting floor

30 Pillar_Open tag speed f_dist c_dist – Raise ceiling
and lower
floor by
specified
amounts

94 Pillar_BuildAndCrush tag speed distance damage – Act as
Pillar_Build

but with crush

Parameterization is as given previously, except for these parameters:

f_dist Specifies the vertical distance to move the floor.

c_dist Specifies the vertical distance to move the ceiling.

STAIR-BUILDING ACTIONS
The sector arrangement required for self-building stairs in Hexen is much simpler than in earlier variants of the
game. The stair-building specials all operate by first finding the sector with a tag that matches the first argu-
ment of the action, then creating stairs by traversing adjacent sectors marked with the StairSpecial1 and
StairSpecial2 special characteristic (see Chapter 35, “Special Sector Types,” for the values). These specials
must alternate between the two, and the sector chain must not branch. This is exactly like using Hexen’s Pulsed
Lighting effect discussed in Chapter 13, “Special Sectors.”

Table 11 gives the codes for these actions in Hexen.

Table 11. Hexen’s codes for self-building stairs.

Code Function Name Arg1 Arg2 Arg3 Arg4 Arg5 Action

26 Stairs_BuildDown tag speed height delay reset Build stairs leading
down

27 Stairs_BuildUp tag speed height delay reset Build stairs leading up

Table 10. continued

Code Function Name Arg1 Arg2 Arg3 Arg4 Arg5 Action

15

P2/V6sqc 7 DOOM,HERETIC ALCHEMY 30846-0 mww 3.14.96 CH39 LP#3

31 Stairs_BuildDownSync tag speed height reset – Build stairs leading
down, all steps moving
at once

32 Stairs_BuildUpSync tag speed height reset – Build stairs leading up,
all steps moving at once

These are the new arguments used to control these actions:

height Specifies the vertical height of each step.

reset Specifies how long (in tics) the staircase remains standing. If this value is nonzero, the
entire staircase reverts to its original configuration after this time. If a zero is specified
here, the staircase does not reset.

LIGHTING ACTIONS
Hexen’s special actions that act on sector lighting levels are detailed in Table 12.

Table 12. Hexen’s codes for producing lighting changes.

Code Function Name Arg1 Arg2 Arg3 Arg4 Arg5 Action

109 Light_ForceLightning tag – – – – Trigger a lightning flash
and accompanying
thunder-crash

110 Light_RaiseByValue tag change – – – Increase lighting level by
specified amount

111 Light_LowerByValue tag change – – – Reduce lighting level by
specified amount

112 Light_ChangeToValue tag value – – – Change lighting to
specified level

113 Light_Fade tag value tics – – Change lighting to
specified level over
specified period

114 Light_Glow tag upper lower tics – Cycle lighting between
specified levels over
specified period

Code Function Name Arg1 Arg2 Arg3 Arg4 Arg5 Action

continues

P2/V6sqc 7 DOOM,HERETIC ALCHEMY 30846-0 mww 3.14.96 CH39 LP#3

16

115 Light_Flicker tag upper lower – – Flicker lighting at
random between
specified levels

116 Light_Strobe tag upper lower u-tics l-tics Switch lighting between
two levels, spending
specified times at each

These are the arguments used to control these actions:

tag Specifies which sectors respond to the action.

value Specifies a new lighting level.

change Specifies the amount by which the lighting is to change.

lower Specifies the lower level of lighting.

upper Specifies the upper level of lighting.

tics Specifies the time to be taken to perform the change.

u-tics Specifies the time to be spent at the upper lighting level.

l-tics Specifies the time to be spent at the lower lighting level.

THING ACTIONS
In Hexen, actions can now be made to happen to Things. Many of these actions can be initiated in the normal
way, although some can be activated only by the Things themselves. Details are given in Table 13.

Table 13. Hexen’s codes for actions affecting Things.

Code Function Name Arg1 Arg2 Arg3 Arg4 Arg5 Action

72† ThrustThing angle distance – – – Push the Thing the
specified distance
in the specified
direction

73† DamageThing damage – – – – Do the specified
amount of damage
to the Thing

130 Thing_Activate tid – – – – Activate the
specified Thing(s)

Table 12. continued

Code Function Name Arg1 Arg2 Arg3 Arg4 Arg5 Action

17

P2/V6sqc 7 DOOM,HERETIC ALCHEMY 30846-0 mww 3.14.96 CH39 LP#3

131 Thing_Deactivate tid – – – – Deactivate the
specified Thing(s)

132 Thing_Remove tid – – – – Remove the
specified Thing(s)
from the map

133 Thing_Destroy tid – – – – Kill the specified
Thing(s)

134 Thing_Projectile tid type angle speed vspeed Spawn projectile of
specified type,
moving along
given vector at the
specified speeds

136 Thing_ProjectileGravity tid type angle speed vspeed Spawn projectile
moving along
given vector and
subject to gravity

135 Thing_Spawn tid type angle – – Spawn a Thing of
specified type,
facing given
direction

137 Thing_SpawnNoFog tid type angle – – Spawn a Thing
without fizz and
glitter

Special codes marked † have meaning only when used as a special action triggered from a Thing.

These are the arguments used to control actions aimed at Things:

tid Specifies which Thing(s) should respond to the action. For the spawning actions, this
value specifies which of the map’s Spawn Spots should be used to determine the starting
location of the new Thing(s).

angle Specifies the direction in which the action is vectored. This is a Hexen byte angle, not a
normal DOOM map angle.

speed Specifies a spawned Thing’s initial horizontal speed.

vspeed Specifies a Thing’s initial vertical speed.

type Specifies the type of Thing to spawn.

Code Function Name Arg1 Arg2 Arg3 Arg4 Arg5 Action

P2/V6sqc 7 DOOM,HERETIC ALCHEMY 30846-0 mww 3.14.96 CH39 LP#3

18

NOTE: Only Things capable of being activated respond to the Thing_Activate and
Thing_Deactivate codes. Only Things of spawnable type can be made to appear with the spawning

actions. The codes used must be the special spawning codes presented previously in Table 5—not the
normal Thing identification codes used when laying out a map.

POLYOBJ ACTIONS
PolyObj special actions fall into two general categories:

■ Line specials, used to define a PolyObj to the game engine. (See Table 14.)

■ True PolyObj special action codes, used to trigger the operation of up to a pair of PolyObj’s. (See
Table 15.)

Table 14. Hexen’s codes for defining PolyObjs.

Code Function Name Arg1 Arg2 Arg3 Arg4 Arg5 Action

1 Polyobj_StartLine po mirror sound – – Define the start line of the
specified PolyObj and its
mirror

5 Polyobj_ExplicitLine po order mirror sound – Define the rendering order of
lines within the specified
PolyObj pair

Details of the use of these special codes are given in “Making Moving Scenery” on the CD-ROM.

Table 15. Hexen’s codes for controlling and activating PolyObjs.

Code Function Name Arg1 Arg2 Arg3 Arg4 Arg5 Action

2 Polyobj_RotateLeft po speed angle – – Rotate the PolyObj
the specified
distance counter-
clockwise

3 Polyobj_RotateRight po speed angle – – Rotate the PolyObj
the specified
distance clockwise

4 Polyobj_Move po speed direction distance – Move the PolyObj
the specified
distance in the given
direction

19

P2/V6sqc 7 DOOM,HERETIC ALCHEMY 30846-0 mww 3.14.96 CH39 LP#3

6 Polyobj_MoveTimes8 po speed direction distance – Move the PolyObj 8
times the specified
distance in the given
direction

7 Polyobj_DoorSwing po speed angle delay – Rotate the object
counterclockwise
and then back

8 Polyobj_DoorSlide po speed angle distance delay Move the object
along the specified
vector and back
again

90 Polyobj_OR_RotateLeft po speed angle – – Add specified
counterclockwise
rotation to the
PolyObj’s current
motion

91 Polyobj_OR_RotateRight po speed angle – – Add specified
clockwise rotation to
the PolyObj’s
current motion

92 Polyobj_OR_Move po speed angle distance – Add specified
movement along a
vector to PolyObj’s
current motion

93 Polyobj_OR_MoveTimes8 po speed angle distance – Add 8 times the
specified movement
along a vector to
PolyObj’s current
motion

These are the arguments used to control these actions:

po Specifies which PolyObj should respond to the action.

angle Specifies the angular change that the action acts through. This is a Hexen byte angle,
not a normal DOOM map angle.

direction Specifies the vector along which the action is directed. This is a Hexen byte angle,
not a normal DOOM map angle.

distance Specifies the number of map units to move the PolyObj.

Code Function Name Arg1 Arg2 Arg3 Arg4 Arg5 Action

P2/V6sqc 7 DOOM,HERETIC ALCHEMY 30846-0 mww 3.14.96 CH39 LP#3

20

SCRIPT ACTIONS
As well as using scripts to control sectors, script execution can itself be controlled from special triggers. The
codes for controlling scripts are presented in Table 16.

Table 16. Hexen’s codes for controlling scripts.

Code Function Name Arg1 Arg2 Arg3 Arg4 Arg5 Action

80 ACS_Execute script map s_arg1 s_arg2 s_arg3 Execute the specified
script, passing up to three
arguments

81 ACS_Suspend script map – – – Suspend execution of the
specified script

82 ACS_Terminate script map – – – Terminate execution of
the specified script

83 ACS_LockedExecute script map s_arg1 s_arg2 key Execute a specified script,
provided that the key is
present

These are the arguments used to control these actions:

script Specifies which script should respond.

map Specifies the map that contains the script.

s_argn The arguments to be passed to the script.

key Specifies which key must be in the player’s inventory before the script will respond.

delay Specifies the number of tics before the action reverses.

TELEPORTING ACTIONS
Hexen’s teleporters are rather more powerful than those of earlier variants of the game, as can be seen from
Table 17.

Table 17. Hexen’s codes for producing teleports.

Code Function Name Arg1 Arg2 Arg3 Arg4 Arg5 Action

70 Teleport tid – – – – Teleport triggering object to
specified map spot

71 Teleport_NoFog tid – – – – Teleport triggering object
silently, and without fog

21

P2/V6sqc 7 DOOM,HERETIC ALCHEMY 30846-0 mww 3.14.96 CH39 LP#3

Code Function Name Arg1 Arg2 Arg3 Arg4 Arg5 Action

74 Teleport_NewMap map player – – – Teleport player to appropri-
ate start spot on new map

75 Teleport_EndGame – – – – – End game and run finale
script

These are the arguments used to control these actions:

tid Specifies the destination map spot.

map Specifies the destination map.

player Specifies which player start spot is the destination.

MISCELLANEOUS LINE ACTIONS
As with DOOM, Hexen uses some codes that can act only on lines. Table 18 lists these codes.

Table 18. Hexen’s special line codes.

Code Function Name Arg1 Arg2 Arg3 Arg4 Arg5 Action

121 Line_SetIdentification line – – – – Identify the line to script
functions that require
line IDs

100 Scroll_Texture_Left speed – – – – Scroll the line’s
texture(s) to the left

101 Scroll_Texture_Right speed – – – – Scroll the line’s
texture(s) to the right

102 Scroll_Texture_Up speed – – – – Scroll the line’s
texture(s) upward

103 Scroll_Texture_Down speed – – – – Scroll the line’s
texture(s) downward

These are the arguments used in conjunction with these actions:

line Specifies the unique identifying number of the line.

speed Specifies the speed of scroll in pixels per tic.

P2/V6sqc 7 DOOM,HERETIC ALCHEMY 30846-0 mww 3.14.96 CH39 LP#3

22

MISCELLANEOUS HEXEN-SPECIFIC ACTIONS
The final category of actions are those that are highly specific to the game of Hexen. Two of these involve
more moving scenery. The floor waggling action moves a specified floor up and down over a specified range.
The action appears damped: it takes a time to work up to its full waggle range, and it fades out gradually after-
ward. The earthquake action, on the other hand, is sudden and does high damage to a player within its damage
radius. Details of these and other Hexen-specific codes are given in Table 19.

Table 19. Miscellaneous codes for Hexen-specific actions.

Code Function Name Arg1 Arg2 Arg3 Arg4 Arg5 Action

129 UsePuzzleItem item script s_arg1 s_arg2 s_arg3 Activate a script
on use of the
specified puzzle
item

140 Sector_ChangeSound tag sound – – – Change the sound
associated with a
sector

138 Floor_Waggle tag range speed offset duration Waggle the floor of
tagged sector(s)
over the specified
height range

120 Earthquake intensity tics damrad tremrad tid Create an earth-
quake at all
matching foci

These are the new arguments here:

item Specifies the puzzle item from the list of puzzle codes. These codes are detailed in
Table 3.

intensity Specifies the strength of an earthquake in the range 1 (weak) to 9 (strong).

tics Specifies duration of the event in tics.

tid Specifies the Things that are to be used as the foci of each quake (a minimum of
two seems to be needed).

damrad Specifies radius of damage in 64×64 cells.

tremrad Specifies radius of tremor in 64×64 cells.

range Specifies the operating range of the floor waggle when at maximum amplitude.
The starting floor height acts as the midpoint of this range.

23

P2/V6sqc 7 DOOM,HERETIC ALCHEMY 30846-0 mww 3.14.96 CH39 LP#3

offset Allows phasing offsets to be applied in the event of there being multiple floor
waggles going on at once.

duration Specifies duration of the event in seconds. Use zero for perpetual motion.

Using Hexen’s Puzzle Pieces

In order to serve any purpose in a level, Hexen’s puzzle pieces need to be associated with particular
locations. This is achieved by placing a UsePuzzlePiece special action code on the line(s) where a
particular puzzle piece is intended to be active. The action is keyed to its particular puzzle piece
(identified by a value of 0 to 16, as shown in the descriptions of the pieces in Table 3) by means of its
first argument. The action’s second argument specifies the number of the ACS script to execute if the
action is triggered when the specified puzzle piece is in the player’s inventory. The remaining three
arguments can be used to pass parameters to the script being activated.

You should note that only special actions triggered by Player Uses or Player Pushes events can be used
reliably with the UsePuzzlePiece special action. The action is only ever capable of being triggered
once, regardless of the state of the triggering line’s Repeatable flag.

EXIT: MOPPING UP AND MOVING ON
In this chapter, full details of the Special Action Codes available within Hexen have been presented. “Hexen’s
Scripting Language” on the CD-ROM continues the listing of Hexen-specific information with complete de-
tails of that game’s scripting language.

1

P2/V6sqc 7 DOOM,HERETIC ALCHEMY 30846-0 mww 3.13.96 CH40 LP#3

HEXEN’S SCRIPTING
LANGUAGE

— By Steve Benner and
Ben Morris

In this chapter, we offer a quick tour of Hexen’s scripting language, seen
by many as the most significant enhancement to the DOOM engine pro-
vided by that game variant.

There is insufficient space in this book to do more than provide you with
a cursory glance at the capabilities of Hexen’s scripting language. All the
language’s main elements are presented here, but we had to assume that
you have at least a passing acquaintance with the main concepts of high
level programming languages. If you find the notion of variables and their
scope, for instance, something of a mystery, you might care to review a
beginner’s text on the C programming language (on which Hexen’s script-
ing language is modeled).

Sadly, there is also insufficient space to show you many examples of
the wonderful effects that can be achieved using scripts in Hexen.
The best way to discover many of these is to examine the scripts in-
corporated into the main Hexen IWAD by Raven Software’s design-
ers. You can do this using a tool such as Luc Cluitmans’ De-ACC
Script Decompiler or the WadAuthor editor if you have Windows.
You will find both of these tools on the Alchemy CD-ROM that ac-
companies this book.

ACTION CODE SCRIPT
The Hexen Script Language is called the Action Code Script, or ACS.
Each map of a Hexen WAD needs to have a series of ACS scripts asso-
ciated with it to achieve the special effects specific to that map. The script
can either be stored separately in its own ACS file or can be contained
within the WAD in the script resource. Before Hexen can use the scripts,

P2/V6sqc 7 DOOM,HERETIC ALCHEMY 30846-0 mww 3.13.96 CH40 LP#3

2

however, you have to use a special compiler (ACC.EXE) to turn the text of the scripts into executable pseudo-
code, which is then bound to the WAD through its behavior resource, always the last lump of a Hexen PWAD.

NOTE: The script resource within a WAD file is an unofficial WAD resource, not supported by
Raven or id Software. This particular resource was proposed and adopted by the WAD-building

community to make the distribution of the text of ACS scripts easier.

To find out how to incorporate ACS scripts in your own Hexen WADs, consult the help files and
other documentation that came with your game editor.

IDENTIFYING AND USING SCRIPTS
Individual scripts within a map are identified by a number in the range 0 to 255. Individual scripts may be
activated in a number of ways. Firstly, they can be started by the special action ACS_Execute. Alternatively, a
script can be declared as OPEN, which causes it to start executing automatically as soon as a player enters the
map that contains that script. Thirdly, a script can be started by another script by means of the language’s
ACS_Execute() function. All active scripts run concurrently until they terminate or are suspended. A script started
with the ACS_Execute() function will run concurrently with its parent (and all other active scripts), which will
not pause to wait for its child script to conclude.

WRITING SCRIPTS
ACS is very similar to C (but rather simpler) so if you are familiar with that programming language you should
have no difficulty mastering Hexen scripts. Let’s take a closer look at the elements of the ACS language.

COMMENTS
Comments are ignored by the script compiler. Two forms are available—the multi-line (block) comment and
the single line comment:

/*
 This is an example of a block comment.
 It can occupy several lines.
*/

int a; // And this is a comment on the end of a line of code

DIRECTIVES
ACS supports two directives: #include and #define. The following sections explain their use.

3

P2/V6sqc 7 DOOM,HERETIC ALCHEMY 30846-0 mww 3.13.96 CH40 LP#3

#INCLUDE
The #include directive tells the compiler to include the specified file in the compilation.

#include “filename”

Map scripts should generally start with the line

#include “common.acs”

to bind in the predefined names and variables supplied by Raven Software and included with their ACS com-
piler, ACC.EXE. This allows you to use functions by means of their names (given in “Hexen’s Special Codes”
on the CD-ROM) rather than their code numbers. Once this line has been incorporated into a script, all of
Hexen’s special actions can be invoked by the script simply by calling them as functions, with the requisite
number of arguments supplied in parentheses. For instance, the following lines will cause a door to open, pause,
then close in one sector, while a moderate floor-waggle is produced in another for 10 seconds.

Door_Raise(20,128,128);
Floor_Waggle(99,30,64,0,10);

The standard include file COMMON.ACS also defines a group of world variables that need to be included by
all maps to ensure consistent indexing.

#DEFINE
The #define directive allows you to use an identifier to supply a constant expression in subsequent lines of
ACS. This can make your later lines of script easier to read and easier to fine tune.

#define identifier constant-expression

The constant-expression can be any decimal, hexadecimal (prefixed 0x) or fixed-point number. ACS also
supports <radix>_<digits> notation for people who like working in binary, octal, or other strange bases!

VARIABLES AND THEIR SCOPE
There is only one data type in ACS—a 4 byte integer. To declare a variable of this type, use the keyword int.
You may also use the keyword str to indicate that you’ll be using the variable as a string.

Here are some sample variable declarations:

str astring, anotherstr;
int myint;

NOTE: The int and str keywords don’t assign any value to the variables—they merely declare
them for later use.

P2/V6sqc 7 DOOM,HERETIC ALCHEMY 30846-0 mww 3.13.96 CH40 LP#3

4

A variable’s scope is one of the following:

■ World-scope: global variables, holding their value from map to map. World-scope variables are
declared by using the keyword world before the declaration. Each global variable must be assigned an
identifying number—see the example that follows shortly.

■ Map-scope: variables which can be accessed only within the map in which they are declared. Map-
scope is given to any variable declared outside of a script.

■ Script-scope: variables declared within a script, which are confined to use within that script.

Listing 1 shows how three such variables might be declared.

Listing 1. Sample ACS variable declarations of various scopes.
world int 2:WorldTimer; //declare global variable 2, accessed through the name Timer
int LocalTimer; //declare another variable local to the current map
script 1 (void)
{
 int x, y; //declare variables x and y known only to script 1
 ...
}

NOTE: There is a limit of 128 strings permitted in any one map’s scripts.

LANGUAGE KEYWORDS
The following is a complete list of ACS keywords. You must avoid these words when choosing names for your
variables.

break case const

continue default define

do else goto

if include int

open print printbold

restart script special

str suspend switch

terminate until void

while world

SCRIPT DEFINITIONS
To define a script, use one of two script definition forms:

5

P2/V6sqc 7 DOOM,HERETIC ALCHEMY 30846-0 mww 3.13.96 CH40 LP#3

script constant-expression (arglist) { statement; ...}

or

script constant-expression OPEN { statement; ...}

The arglist is a list of arguments to be passed to the script, or the keyword void if none are used. The keyword
OPEN indicates that the script is to be executed at the start of a map; no arguments can be passed to such scripts.

STATEMENTS
ACS supports several types of statements. Statements all end with a semicolon (;).

COMPOUND STATEMENTS
ACS allows compound statements with pairs of braces { } just like C.

{
 statement1;
 statement2;
 statement3;
}

DECLARATION STATEMENTS
Declaration statements declare variables and define their scope, as you have already seen.

ASSIGNMENT STATEMENTS
Assignment statements assign expressions to variables. ACS supports assignment operators that allow you to
modify the variable by the assignment expression, rather than complete replacement. For example, the follow-
ing line assigns the value 500 to the variable A:

A=500;

On the other hand, the next line doubles the current value of variable A:

A*=2;

ACS recognizes the following assignment operators:

= += -= *= /= %=

Like C, ACS also supports the use of ++ to increment a variable like this:

A++;

Similarly, –– can be used to decrement a variable.

P2/V6sqc 7 DOOM,HERETIC ALCHEMY 30846-0 mww 3.13.96 CH40 LP#3

6

SWITCH STATEMENTS
A switch statement enables an integral expression to control subsequent execution of a script. It uses the key-
words switch, case, break, and default as in the following simple example:

switch (a)
 {
 case 1: // when a = 1
 b = 1; // .. this is executed,
 break; // and this breaks out of the switch().

 case 2: // when a = 2
 b = 8; // .. this is executed,
 // but there is no break, so it continues to the next
 // case, even though a != 3.

 case 3: // when a = 3
 b = 666; // .. this is executed,
 break; // and this breaks out of the switch().

 default: // when none of the other cases match,
 b = 777; // .. this is executed.
 }

JUMP STATEMENTS
A jump statement passes control to another portion of the script. ACS provides three means of jumping:
continue, break, and restart. These will be further explained shortly.

SELECTION STATEMENTS
Selection statements permit one statement to be selected in preference to another, as a result of some condi-
tion. The general form of this type of statement is:

if (expression) statement [else statement]

ITERATION STATEMENTS
ACS provides five forms of iteration:

while (expression) statement

until (expression) statement

do statement while (expression) ;

do statement until (expression) ;

for (assignment-statement ; expression ; assignment-statement) statement

7

P2/V6sqc 7 DOOM,HERETIC ALCHEMY 30846-0 mww 3.13.96 CH40 LP#3

Readers unfamiliar with C might not immediately see from the definition given here how the for statement
operates. The three components of the construct used to control the iteration are as follows:

■ The first assignment statement of the construct is used to initialize the control variable prior to the
first iteration of the loop.

■ The central expression is used to specify the condition under which the iteration continues to be
carried out.

■ The second assignment statement of the construct is used to modify the control variable after each
iteration.

The following for statement could therefore be used to start each of scripts 1 to 10 executing in rapid succes-
sion:

for (x=1; x<10; x++) ACS_Execute(x, 0, 0, 0, 0, 0);

The continue, break, and restart keywords can be used within any iteration statement:

■ continue forces all subsequent statements to be skipped on the current iteration, but if the control
expression permits it, looping will continue.

■ break terminates execution of the iteration statement.

■ restart forces the entire iteration statement to be restarted.

FUNCTION STATEMENTS
A function statement calls either a Hexen special action code (detailed in the previous chapter), or an internal
(Hexen) function. The special action codes can be called by name if SPECIAL.ACS has been included in the
compilation. (This file is included automatically if COMMON.ACS is used.) Hexen’s internal functions are
detailed later in this chapter.

PRINT STATEMENTS
ACS allows text messages to be displayed on the screen to notify the player of various aspects of the way the
game is progressing. There are two print statements:

print (print-type : expression , ...) ;

printbold (print-type : expression , ...) ;

where print-type is one of:

s string

d decimal

c constant

P2/V6sqc 7 DOOM,HERETIC ALCHEMY 30846-0 mww 3.13.96 CH40 LP#3

8

CAUTION: Although, in general, case is not important in ACS scripts, the print-type identifi-
ers must be given in lowercase; otherwise, the ACC compiler will return an error.

Both of these functions display their arguments along the top of the screen during play. The difference is that
print displays any string arguments in lowercase, while printbold displays strings in uppercase.

CAUTION: Use only uppercase characters in strings passed to print and printbold. Any
lowercase characters you use will display as various odd symbols.

You can use this function to pass hints and tips (or just explanatory messages) to the players. For example, if
you don’t think that the Earthquake effect is obvious from its action, you can replace the use of an Earthquake
special on a trigger line with an ACS_Execute special, which calls the script in Listing 2.

Listing 2. Script to create an earthquake with warning message.
script 2 (void)
{
 print (s: “QUAKE!!!”);
 Earthquake (1, 128, 50, 100, 99);
}

NOTE: Some versions of SPECIAL.ACS have the Earthquake function entered as Radius_Quake
instead.

The result of triggering this script is illustrated in Figure 1 (although you will need to shake the book violently
to see the full effect!). Note the altered case for the message.

Figure 1.
Additional notification of an earthquake.

9

P2/V6sqc 7 DOOM,HERETIC ALCHEMY 30846-0 mww 3.13.96 CH40 LP#3

CONTROL STATEMENTS
Finally, ACS provides two control statements:

suspend suspends the script

terminate terminates the script

HEXEN’S INTERNAL FUNCTIONS
Hexen’s internal functions can be used in ACS scripts just as functions in the C programming language. They
can be used either as function statements to invoke an effect, or included in the expression part of an assign-
ment statement if they return a value. Most of Hexen’s internal functions return an int. Details of each of Hexen’s
internal functions follow.

SCRIPT CONTROL FUNCTIONS
void tagwait(int tag);

Suspends the current script until all sectors marked with tag are inactive.

void polywait(int po);

Suspends the current script until the PolyObj po is inactive.

void scriptwait(int script);

Suspends the current script until the specified script has terminated.

void delay(int tics);

Suspends the current script for the specified number of tics. (A tic is 1/35th of a second.)

SECTOR TEXTURE CHANGING FUNCTIONS
void changefloor(int tag, str flatname);

Changes the texture on the floor of all sectors marked with tag to the specified flatname.

void changeceiling(int tag, str flatname);

Changes the texture on the ceiling of all sectors marked with tag to the specified flatname.

LINE CHANGING FUNCTIONS
void clearlinespecial(void);

Clears the special code from the line that activated the script.

void setlinespecial(int line, int special, int arg1, int arg2, int arg3, int arg4, int arg5);

P2/V6sqc 7 DOOM,HERETIC ALCHEMY 30846-0 mww 3.13.96 CH40 LP#3

10

Sets the line special and arguments as specified on all lines identified by line. (This identification is provided
by means of the line having a special code of type Line_SetIdentification—see Table 17 in “Hexen’s
Special Codes” on the CD-ROM.)

void setlinetexture(int line, int side, int position, str texturename);

Changes the texture used on a specified texture slot on all lines identified by line. DEFS.ACS has the follow-
ing predefined macros for use with setlinetexture():

side: SIDE_FRONT

SIDE_BACK

position: TEXTURE_TOP

TEXTURE_MIDDLE

TEXTURE_BOTTOM

For texturename, supply the name of the texture as it appears in a map editor. The name is not case-sensitive.

void setlineblocking(int line, int blocking);

Sets the Impassable flag on all lines identified by line. Predefined macros for the blocking parameter are:

ON

OFF

SOUND CONTROL FUNCTIONS
Hexen is particularly rich in ways to control the sounds that players hear during the game.

void sectorsound(str name, int volume);

Plays the specified sound in the sector to the right of the line that activated the script. The volume parameter
must be in the range 0 to 127.

void soundsequence(str name);

Plays a specified sound sequence in the sector to the right of the line that activated the script.

void thingsound(int tid, str name, int volume);

Plays a sound at all Things marked with tid. Again, volume must be the range 0 to 127.

void ambientsound(str name, int volume);

Plays an ambient sound. These work like ambient sounds in Heretic—they are heard by all players at the same
volume.

The following sound functions use special predefined strings to identify the sounds that they produce. Their
names are generally sufficient to identify them.

11

P2/V6sqc 7 DOOM,HERETIC ALCHEMY 30846-0 mww 3.13.96 CH40 LP#3

General Player Sounds

PlayerFighterGrunt PlayerClericGrunt

PlayerMageGrunt PlayerFighterFailedUse

PlayerClericFailedUse PlayerMageFailedUse

PlayerFighterPain PlayerClericPain

PlayerMagePain PlayerFighterFallingScream

PlayerClericFallingScream PlayerMageFallingScream

PlayerFighterNormalDeath PlayerClericNormalDeath

PlayerMageNormalDeath PlayerFighterCrazyDeath

PlayerClericCrazyDeath PlayerMageCrazyDeath

PlayerFighterExtreme1Death PlayerClericExtreme1Death

PlayerMageExtreme1Death PlayerFighterExtreme2Death

PlayerClericExtreme2Death PlayerMageExtreme2Death

PlayerFighterExtreme3Death PlayerClericExtreme3Death

PlayerMageExtreme3Death PlayerFighterBurnDeath

PlayerClericBurnDeath PlayerMageBurnDeath

PlayerLand PlayerPoisonCough

PlayerFallingSplat PickupWeapon

PickupItem PickupKey

PickupPiece WeaponBuild

PickupArtifact UseArtifact

PuzzleSuccess PuzzleFailFighter

PuzzleFailCleric PuzzleFailMage

FighterGrunt FighterPunchMiss

ClericCStaffFire MageWandFire

FighterPunchHitThing ClericCStaffHitThing

MageLightningFire FighterPunchHitWall

ClericCStaffExplode MageLightningZap

FighterAxeHitThing ClericFlameFire

MageLightningContinuous FighterHammerMiss

ClericFlameExplode MageLightningReady

FighterHammerHitThing ClericFlameCircle

MageShardsFire FighterHammerHitWall

HolySymbolFire MageShardsExplode

FighterHammerContinuous SpiritActive

MageStaffFire FighterHammerExplode

SpiritAttack MageStaffExplode

FighterSwordFire SpiritDie

FighterSwordExplode

P2/V6sqc 7 DOOM,HERETIC ALCHEMY 30846-0 mww 3.13.96 CH40 LP#3

12

Monster Sounds

EttinSight EttinActive

EttinPain EttinAttack

EttinDeath PuppyBeat (Ettin being poisoned)
FireDemonSpawn FireDemonActive

FireDemonPain FireDemonDeath

FireDemonAttack FireDemonMissileHit

CentaurSight CentaurActive

CentaurPain CentaurAttack

CentaurDeath CentaurLeaderAttack

CentaurMissileExplode SerpentSight

SerpentActive SerpentPain

SerpentAttack SerpentMeleeHit

SerpentDeath SerpentBirth

SerpentFXContinuous SerpentFXHit

DemonSight DemonActive

DemonPain DemonAttack

DemonDeath DemonMissileFire

DemonMissileExplode WraithSight

WraithActive WraithPain

WraithAttack WraithDeath

WraithMissileFire WraithMissileExplode

IceGuySight IceGuyActive

IceGuyAttack IceGuyMissileExplode

BishopSight BishopActive

BishopPain BishopAttack

BishopDeath BishopBlur

BishopMissileExplode DragonSight

DragonActive DragonWingflap

DragonAttack DragonPain

DragonDeath DragonFireballExplode

SorcererSight SorcererActive

SorcererPain SorcererDeathScream

SorcererHeadScream SorcererSpellCast

SorcererBishopSpawn SorcererBallWoosh

SorcererBallPop SorcererBallBounce

SorcererBallExplode SorcererBigBallExplode

KoraxSight KoraxActive

KoraxStep KoraxAttack

KoraxCommand KoraxPain

KoraxDeath

13

P2/V6sqc 7 DOOM,HERETIC ALCHEMY 30846-0 mww 3.13.96 CH40 LP#3

Other Active Sounds

PigActive1 (snort) PigActive2 (squeal)
PigPain PigAttack

PigDeath MaulatorSight

MaulatorActive MaulatorPain

MaulatorHamSwing MaulatorHamHit

MaulatorMissileHit MaulatorDeath

General Sound Effects

PoisonShroomPain PoisonShroomDeath

ThrustSpikeRaise ThrustSpikeLower

FlechetteBounce FlechetteExplode

FreezeDeath FreezeShatter

MysticIncant PotteryExplode

GlassShatter SuitofArmorBreak

TreeBreak TreeExplode

BlastRadius Fireball

Ignite Teleport

Respawn SwitchOtherLevel

StartupTick Chat

MenuMove Switch1 (lock tumblers)
Switch2 (switch operating) PlatformStart

PlatformStartMetal PlatformStop

StoneMove MetalMove

DoorCreak DoorOpen

DoorLocked DoorOpenMetal

DoorCloseMetal DoorCloseLight

DoorCloseHeavy WaterMove

LavaMove IceStartMove

EarthStartMove WaterSplash

LavaSizzle SludgeGloop

ValveTurn RopePull

BellRing FlyBuzz

BatScream Drip

Earthquake ThunderCrash

ClockTick

P2/V6sqc 7 DOOM,HERETIC ALCHEMY 30846-0 mww 3.13.96 CH40 LP#3

14

Ambient Sound Effects

Wind Wind blowing
Ambient1 Wind rattle
Ambient2 Insect or snake hiss
Ambient3 Grasshopper song
Ambient4 Frog song
Ambient5 Cricket chirrup
Ambient6 Owl hoot
Ambient7 Bird cry
Ambient8 Slithering watery sound
Ambient9 Gloop
Ambient10 Water dripping
Ambient11 Rocks falling
Ambient12 Chains rattling
Ambient13 Gong sounding
Ambient14 Metal sheet sound
Ambient15 Rusty metal sheet sound

The Voice of Korax

KoraxVoiceGreetings “Greetings, mortal!”
KoraxVoiceReady “Are you ready to die?”
KoraxVoiceBlood “My servants can smell your blood, human.”
KoraxVoiceGame “You have played this game too long, mortal.”
KoraxVoiceBoard “I think I shall remove you from the board!”
KoraxVoiceWorship “Worship me, and I may yet be merciful.”
KoraxVoiceMaybe “Then again, maybe not!”
KoraxVoiceStrong “Are you strong enough…”
KoraxVoiceFace “…to face your own masters?”

MISCELLANEOUS FUNCTIONS
int thingcount(int type, int tid);

Returns a count of Things in the Hexen world. Use the Thing type definitions in DEFS.ACS for type. Either
(or both) type and tid can be set to 0 to force the counting to ignore that information, as in the following
examples:

c = thingcount(T_ETTIN, 28); // Count all Ettins that are marked with TID 28

c = thingcount(T_ETTIN, 0); // Count all Ettins, irrespective of TID

c = thingcount(0, 28); // Count all things with TID 28, irrespective of type

int random(int low, int high);

15

P2/V6sqc 7 DOOM,HERETIC ALCHEMY 30846-0 mww 3.13.96 CH40 LP#3

Returns a random number between low and high inclusive. The values for low and high must be in the range 0
to 255.

int lineside(void);

Returns the side of the line that the script was activated from. The macros LINE_FRONT and LINE_BACK, defined
in DEFS.ACS, provide the appropriate values to test for. This allows lines to behave differently, depending
upon which way a player moves across them.

int playercount(void);

Returns the number of active players.

int gametype(void);

Returns the type of game being played. Again, DEFS.ACS defines appropriate macros:

GAME_SINGLE_PLAYER

GAME_NET_COOPERATIVE

GAME_NET_DEATHMATCH

int gameskill(void);

Returns the game’s current difficulty setting:

SKILL_VERY_EASY

SKILL_EASY

SKILL_NORMAL

SKILL_HARD

SKILL_VERY_HARD

int timer(void);

Returns the time spent on the current level, in tics. (Again, a tic is 1/35 of a second.)

EXIT: MOPPING UP AND MOVING ON
In this chapter, you were presented with the details of Hexen’s Action Control Scripting language and given
some indication of its capabilities. This chapter concludes the round-up of vital hacking information in the
DOOM Data Dossier that started in the book. You should now have all the information at your fingertips to
produce virtually any WAD you desire. From now on, it’s all down to your imagination, creativity, and dedica-
tion to the task!

