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Preface

These notes originally aroused as an attempt to summarize definitions and theorems one often uses
in everyday life as a practicing mathematician. Such a goal seemed vast, and I restricted the content
to the definitions and theorems that I use quite often. These notes could be handy for a wide range
of physicists and mathematicians.

About usage; I use distinct symbols for operations among objects, such as x, ®,H, ... for addition,
#,®,K,... for multiplication and ®,[],®,... for action of an object on other objects. The goal is to
distinguish operations among objects. In practice, one just simplifies it by replacing x with + and #
with nothing. It should be clear from the context that an operation pertains to a distinct object.

Varanasi, Paris, January 5, 2019 Saurav DWIVEDI
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Lists of Abbreviations

AB,.C,...
ab,c,...
*#,P5,Q,0...
CurClty...
A,B,C,...
S(A;*)

M (A;x;e,)
G(A;%;ex)
R(A;*,# e, ex)
<

<

Arbitrary sets.

Elements of a set.

Binary operations on a set A.

Identity elements corresponding to binary operations x,#,... .

Algebraic objects, such as group, ring, module.

A Semigroup, with underlying set .4, and binary operation * on it.

A Monoid, with underlying set A, binary operation x on it, and identity e, .

A Group, with underlying set .4, binary operation * on it, and identity e, .

A Ring, with underlying set A, binary operations *,# on it, and identities ey, e4 .
Subsemigroup, submonoid, subgroup, subring, submodule, subalgebra, subcate-

gory, ...
Normal subgroup, ideal of a ring, ...

x'x; = x'x' = x;x;, = Y x;x; Einstein’s summation convention.
i
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Part 1
Algebra



Notes inspired by Basic Algebra (N. Jacobson).



Chapter 1
Sets

1.1 Set

Definition 1.1.1 (Cartesian product) ..

1.2 Map

Let A and B be sets. A map f : A — B is a law that assigns to each element of 4 exactly one
element of B. For a € A, we write a — f(a) € B, and say f(a) is image of a under map f. The
preimage of b € B is subset of those elements of A, whose image is b, i.e., f~1(b) ={a € A|b=
Fa)}

An identity map id 4 : A — A identifies each element of A with itself: id g(a) =a,Va € A. Let
A C B. An inclusion map ¢ : A — B identifies every element of A as an element of B: 1(a) =a €
B,VYacA.

Definition 1.2.1 (Injection) A map f : A — B is termed injective if V f(a) = f(b) = a = b or equiv-
alently V.a # b = f(a) # f(b). If f : A — B is injection, every element of BB is image of at most one
element of A.

Definition 1.2.2 (Surjection) A map f : A — B is termed surjective if V b € B,3 a € A such that
b = f(a). Equivalently, a map f : A — B is surjective if all elements of 3 have non empty preimage, i.e.,
VbeB,f1(b) #@.If f: A — B is surjection, every element of B is image of at least one element of
A.

Definition 1.2.3 (Bijection) A map f : A — B is bijective if it is both injective and surjective. A bijec-
tion is invertible, i.e., if f : A — B is bijective, 3 g: B — A such that go f =id gy and f o g =idg. Such
a map is unique, and called inverse map of f .

Ilustrations. The following law f : {a,b} — {x,y}, such that

fla)=x (1.1)
fla)=y (1.2)
fb)=0 (1.3)

is not a mapping because b has no image and a has multiple images. The law f : {a,b} — {x,y},
defined as

fla)=x (14)
f(b) = x (15)

is a map, but it is neither injective nor surjective.
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If f: A — Bis surjective, then Im(f) = B. Let {p} be a singleton and A be a non empty set. A
map f: {p} — A is injective but not surjective, and its image is singleton. A map f : A — {p} is
surjective but not injective.

Identity map is both injective and surjective. Inclusion map is injective, but not surjective.

1.3 Relation

A relation R on a set A is a subset of A x A. We say “a,b € A have a relation if (a,b) € R, and
write aRb.”

Definition 1.3.1 (Equivalence Relation) An equivalence relation £ on a set A is a relation such that:

1. a&a (Reflexivity),
2. a€b = b&a (Symmetry),
3. afband béc = a&c (Transitivity),

VabceA.

An equivalence class of an element a € A is defined to be set of all elements of .4 equivalent to
it: [a] = {b € A|bEa}.

1.4 Quotient Set

Lemma 1.1 (Quotient Set). An equivalence relation £ on a set A makes a partition of A into equivalence
classes, called quotient set of A by relation £ , denoted A/E .

Proof. Vaec A, [a] CA = Useula] C A.Further, Vac A, ac€[a] = a € Useyla] = AC
Uaseala], which eventually implies A = (J,c 4[] . It only remains to prove that equivalence classes
are mutually disjoint. Now, leta,b,c€ A, a#b.Letc € [a]N[b]. Thusc€a = a€c = a € [c] =
[a] = [c]. Also c€b = [b] =[c]. Thusifc € [a] N [b], [a] = [b] = a = b, a contradiction. Therefore,
[a] N [b] = @. Thus & partitions A into set of nonempty disjoint subsets of A, called blocks, which
are equivalence classes. O

We also use ~ for £, and A/ ~ for A/E.



Chapter 2
Algebraic Structures on Sets

Abstract

2.1 Algebraic Objects with One Binary Operation

Definition 2.1.1 (Semigroup) The construct S(A;*) with underlying non-empty set A, and associative
binary operation x on A,

it AxA— A, (2.1)
forms a semigroup.
Definition 2.1.2 (Monoid) A semigroup S(.A; ) with two-sided identity e, ,

Axe,=e,*xa=da, Vac A, (2.2)

forms a monoid M(A;x;e,).






Chapter 3
Groups

Abstract Groups are categorical objects with one binary operation.

3.1 Group
Definition 3.1.1 (Group) A monoid M(A;*;e,) with two-sided inverse,

axa t=alxa=e,, VaaleA, (3.1)
forms a group G(A;*;ey) .

One-sided identity, and one-sided inverse suffice to form a group. A group G(.A;*;e,) has unique
identity ey .

Corollary 3.1. A finite monoid forms a group.

Lemma 3.1. [Uniqueness] Let a,b, c be unique elements of a group G(.A;*;e,) . The binary operation of any
two is unique,
axb#axc, Vab,ceA.

Proof. [Contradiction] Leta,b,c,d € A.axb=candaxd=c = b=d. O
Corollary 3.2. Let a group G(A; *;e) with order n = | A, be represented by
A={eay,as,...,a,}.

G(A; %;e,) can alternatively be represented by
A = {exajay*a;,a3xaj,...,a,*a;}, or (3.2)
A= {a;xe,a;xaz,a;%as,...,a;xa,}, (3.3)

Vie{1,2,3,...,n}, except for order.

Proof. Leta; € Aina group G(A;*;e,) . From Theorem 3.1, g; *ajis unique V'j € {1,2,3,...,n},and
|A| = n is definite, implying |{a; xa;| Vj€ {1,2,3,...,n}}[=n.a;xa; € AVje€{1,23,... n} =
A={a;xaj|Vje{1,23,...,n}}. |

3.1.1 Subgroup

Definition 3.1.2 (Subgroup) For H C A in G(A;x;es), if H forms a group under (the same) binary
operation x , then G(H;*;ey) is termed subgroup of G(.A;*;e, ), abbreviated

G(H;xex) < G(A;%;ex).



8 3 Groups

3.1.2 Product Group

3.1.3 Cosets

Definition 3.1.3 (Coset) A left [right] coset of a subgroup G(H;*;e.) < G(A;%;ex) in G(A;%;e) is,
COSETL (G(H;*;ex)) =axH ={axhlh € H}, (3.4)
COSETR (G(H;x;e)) =H*xa={hxalhe€ H}. (3.5)

Definition 3.1.4 (Conjugate) The element b ax b~ is termed conjugate of a € A, ¥ b € A in a group

G(A;x;e,).

Definition 3.1.5 (Class) Conjugates of a € A form its class in the group G(A;*;e,).

Crass(a) = {bxaxb |Vbec A}. (3.6)

3.1.4 Normal (Invariant) Subgroup

Let (H;%;ex) < (G;%;ex) . We define a relation on G by
a="b (mod H) 3.7)

ifalxbeH Vabe . It turns out to be an equivalence relation if (#;*;e,) satisfies one of the
following properties:

1. g7 'xhxgeH,VgeG,heH.
2. gxH=H*g,Vgeg.

A subgroup satisfying any of these properties is called a normal or invariant subgroup, designated

as (N;x;ex) < (G;%;ey).

3.1.5 Quotient Group

Let (NV;*;e,) < (G;%;ex) . We define an equivalence relation on G by

a=b (mod N) (3.8)
ifa~'xbe N Va,beG.The equivalence class of any element ¢ € G is give by

gl=g*xN ={grnlneN}. (3.9)
which is called left coset of N in G . The set of all (left) cosets is the quotient set

G/N ={g*N|geG}={grn|geG,neN}. (3.10)

The quotient set G /N forms a group under associative binary operation

#:G/N xG/N —G/N (3.11)
defined by

(a*x N)#b*N) = (axb)xN, (3.12)
or

[a]#[b] = [ax b], (3.13)

with identity [e,]. We observe [e,] = N . Thus, (G/N;#;[e.]) is the quotient group of (G;*;e.)
by (N;*;e4) .
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3.2 Homomorphism

Definition 3.2.1 (Homomorphism) A map f : A — B between groups G(A;%;e,) and G(B;#;e4),
with binary operations

* AxA— A, (3.14)
4:BxB— B, (3.15)

is homomorphism of groups, with
flaxb)=f(a)#f(b) VabeA. (3.16)






Chapter 4
Rings

Abstract Rings are categorical objects with two associative binary operations.

4.1 Ring

Definition 4.1.1 (Ring) A construct R(A;*,#;e,.,ey) with underlying non-empty set A, associative bi-
nary operations x and # on A,

*H#H:AXxA— A, 4.1)
forms a ring, when
1. Ga(A;*;ey) is a abelian group,
2. M(A;# ex) is a monoid, and
3. #is two-sided distributive over *,
a#t(bxc) = (a#b) x (a#hc), (4.2)
(axD)#c = (a#c) x (bic), (4.3)

VabcecA.

R(A;*,#e4,e4) is abelian ring when 3 abelian monoid M (A;#;e4) . R(A; *,#;e,) is ring with-
out identity ey, when S(A*;#), A* = {Ales ¢ A}, is a semigroup.
An observation in rings, of a prime relevance, is

’ exfta = atte, = e, VacA. ‘ 4.4

4.1.1 Subring

Definition 4.1.2 (Subring) Let (R;*,#es,e4) be a ring and H C R. (H;*,# e, ex) is a subring of
(R *,#ex,e4) if,

(Hixex) < (Gixsex), (4.5)
(H;#e4) < (G;#e4). (4.6)

11



12 4 Rings

4.1.2 Product Ring

4.1.3 Types of Rings

Definition 4.1.3 (Zero Divisor) a € A is termed left [right] zero divisor of the ring R(A; %, #;e,,ex), when
3b € A(b # ey) such that a#b = e, [= b#a]. Both left and right zero divisor is termed zero divisor of the
ring.

e, is a trivial zero divisor of all rings R(A; %, #;e,,e4) with | A| > 2.

Definition 4.1.4 (Domain) A ring with no non-trivial zero divisors is termed a domain. Let A* =
{Ale, & A}. The ring R(A;*,#;e,,ex) forms a domain, when M(A*;#;es) < M(A;#;es) . This implies
that, for a,b # e, = a#b # e,V a,b € A; there is no zero divisor in A* .

e, is one and only zero divisor of a domain Rp (A; x, #;¢e.,ex) .

Definition 4.1.5 (Units) The set U of #-invertible elements of monoid M (A; #; ex) is called units of monoid,
defined asU = {u € A|Fv € A:u#v =ey}.

A domain R (A; *,#; e,, ex) with #—invertible elements u € U C A, is termed a domain of units
Rp (U, #;ex,e4) with M(U;#;e5) < M(A;#;es) .
Definition 4.1.6 (Division Ring) Let (R;*,#e.,ex4) be a ring . It is a division ring if 3 a group
(R*;#;e4) where R* = R\ {ex}. This implies that, fora € R, ey # e,, Ib € R :a#b = ey = b#a,V a,b €
R.

All division rings are domain, but not conversely.

4.1.4 Field

Definition 4.1.7 (Field) An abelian division ring is termed a field. The ring (R;,#;e.,e4) is a field, if
3 a abelian group (R*;#;e4), where R* = R \ {e.}. Note that e, does not belong to a field since it has no
inverse.

4.1.5 Ideal

Definition 4.1.8 (Ideal) Let (Z;x;e.) < (R;*;ey) be (additive) subgroup for the ring (R;*,#;e.,e4). T is
termed left [resp. right] ideal of the ring (R;*,#;e.,e4) ,ifVa € R,i € T = atti[ittale T . An ideal which
is both left and right is termed ideal of the ring, and we write T Q'R .

e, and R are trivial ideals of the ring R(R; *,#; e, e4) . ey does not belong to any proper ideal.
Lemma4.1.IfZ,7J <RthenZUJ,INJ, I+ J,IJ <R.

Lemma 4.2. An ideal is a subring.

Lemma 4.3. A field has no nontrivial ideal.
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4.1.6 Quotient Ring

Let Z C R be an ideal of the ring (R;*,#e,,ex). We have (Z;x;e.) < (R;%;ex) (since (R;*;ey) is
abelian). We define equivalence relation on R as

a=b(modT) (4.7)
Vab,c,decR,if
a=b,c=d = axc=bxd,and a#ic = b#d, (4.8)

which is a consequence of Z being an ideal of the ring R . The equivalence class of a € R is given

by

[al=axZ={axiliecT}. (4.9)

The quotient set

R/I={axIlacR}={axilacR,icl}, (4.10)
forms a ring under associative binary operations

D:R/LxR/T—TR/I, (4.11)

®:R/ILXxR/T—R/Z, (4.12)
defined by

[a] @ [b] = [axb], (4.13)

[a] @ [b] = [a#b], (4.14)
or

(axT)® (bxT)=(axb)*xZT, (4.15)

(axZT)R (bxT)= (a#b) x T, (4.16)

with identities [e,] and [es] . We observe that [e,] = Z and [es] = ex x Z. However, (R/Z;®;[e4]) is
quotient (abelian) group, and (R /Z;®; [e,]) is monoid.
It is easily checked that ® is (two sided) distributive over &,

[a] © ([b] @ [c]) = [a#(b* c)] = [(a#D) * (akc)] = [a#b] © [a#c] = ([a] @ [b]) ® ([a] @ [c]),  (4.17)
([a] @ [b]) @ [e] = [(a x b)#c)] = [(atc) x (bhc)] = [athc] © [bhc] = ([a] @ [c]) @ ([D] @ [c]).  (4.18)
Thus (R/Z;®,®; [e«], [e4]) is a ring, called the quotient ring of (R;*,#; ¢4, e4) by ideal Z .

4.1.7 Graded Ring

4.2 Homomorphism
Let (A;x,#e.,e4) and (B;®,®;eq,en) be two rings. f : A — B is a homomorphism of rings if
Vabe A,

flaxb) = f(a) & f(b), (4.19)
f(a#tb) = f(a) ® f(b). (4.20)

Lemma 4.4. Let f : A — B be a ring homomorphism. Then ker(f) is an ideal in ring A.






Chapter 5
Modules

Abstract Modules over rings are generalization of Vector Spaces over fields.

5.1 Module

Definition 5.1.1 (Left Module) Let (R;*,#e.,ex) be a ring. A left module over R is an abelian group
(M, @, eq) with left ring action
O:RXxM-—M, (5.1)

such thatVr,s €¢ R, myn € M,

Lromen)=rom) e (ron),
2. (rxs)Om=(rom)® (som),
3. (rs)Oom=ro (sOom),

4. esOm=m.

A left module is abbreviated as r M .

Definition 5.1.2 (Right Module) Let (R;*,#;e,,ey) bearing. A right module over R is an abelian group
(M, ®,eq) with right ring action
OMXR—M, (5.2)

such thatVr,s €¢ R, myn € M,

1. men)er=mor)®nor),
2me(rxs)=(moOr)d(mos),
3. moO(r#s)=(mor)os,

4. mOes=m.

A right module is abbreviated as My, .

5.1.1 Submodule

Definition 5.1.3 (Submodule) Let M be a left [resp. right] module over ring (R;,#;e.,e4). A subset
N C M is a left [resp. right] submodule of M if it is an abelian subgroup

(N,@,e@) < (M,@,€@>, (5.3)

and satisfies axioms of a left [vesp. right] module over ring R .

15
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5.1.2 Product Module

Definition 5.1.4 (Product Module) Let (M, ®,eq) and (N,B,exm) be two left modules over ring R,
with left ring actions

O:RXM—M, (54)
O:RxN—N. (5.5)
The product set M x N is a left module (M x N, ®, e ) over ring R with left action
®:RXMxN)—MxN, (5.6)
such thatVr € R, m,mqy,my € M, n,ny,ny €N
(my,n1) @ (mg,na) = (my & my,ny Bny), (5.7)
r® (mn) = (rOm,rHOn). (5.8)

A product of right modules is seen to be a right module in similar setting.
By induction, a family of left [resp. right] modules {M,};c7 forms a left [resp. right] product
module [T;c7z M,;.

5.1.3 Direct sum

Definition 5.1.5 (Direct sum of Modules) ...

5.1.4 Finitely generated module

A R— module (M, ®,eq) is finitely generated if there exist finitely many elements my,my,ms, - - - €
M such that M = {(a1 ©mq1) & (ap @ mp) & --- | a; € R,m; € M}. We say M is generated by its
subset S = {mq,my,ms,...}.

5.1.5 Quotient Module

5.2 Homomorphism

Let (M, ®,eq) and (N, H,em) be two left modules over ring R , with left ring actions

O:RXxM—M, (5.9)
O:RxN—N. (5.10)
A module homomorphism f : M — N is a R-linear map such thatV m,n e M,r e R,
Flm e n) = F(m) B f(n), 5.11)
from)=rQf(m). (5.12)
Similarly, let (M, ®,eq ) and (N, B, eg) be two right modules over ring R , with right ring actions
O MxR—M, (5.13)
O: N xR—N. (5.14)
A module homomorphism f : M — A is a R-linear map such thatV m,n e M,r e R,
Flm e n) = F(m) B f(n), (5.15)

flmor)=f(m)Ur. (5.16)



5.3 Tensor product

5.3 Tensor product

Definition 5.3.1 (Tensor product of Modules) ...

17






Chapter 6
Algebras

Abstract Algebras over rings are modules with a ring structure.

6.1 Algebra over a ring

19






Chapter 7
Categories

Abstract Categories are further generalization of Sets.

7.1 Category

Definition 7.1.1 (Category) A category C is a quadruple (Obj(C), Hom(e,e),0,1d, ), where

1. Obj(C) := {Class of objects X,Y,Z ... such as sets, groups, rigs, modules, algebras etc.},

2. Homg/(e,e) := {Class of sets Hom¢(X,Y') of morphisms of objects V X,Y € Obj(C)},

3. o:={Homg¢(e,e) x Homg(e,e) —> Homc(e,e) | Home(X,Y) x Home(Y,Z)=Home(X,Z) ¥ X,Y,Z €
Obj(C)},

4. Ide :={Idx : X — X | Idx is identity morphism ¥ X € Obj(C)},

such that the composition in associative
ho(gof)=(hog)of, V f € Home(X,Y),g € Home(Y,Z),h € Home(Z,W), (7.1)
and identity morphisms satisfy

Idyof=f=foldyx, VY feHome(X,Y), VXYeObjC). (7.2)

7.1.1 Subcategory
7.1.2 Product Category

7.2 Functor

Definition 7.2.1 (Functor)

21
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7.2.1 Natural Transformations
7.2.2 Functor Category
7.3 Coproduct and Product

7.4 Additive and Abelian Categories



Chapter 8
Homological Algebra

23






Chapter 9
Representation Theory

Abstract Based on Serre’s classic.

9.1 Linear Representations of Finite Groups

Let V: M" — K be n—dimensional vector space over a manifold M" , with basis {€;} . Linear

[:y—V, 9.1)
maps vector to vector,
(@) =3, 1§ =ul(E) =ve, ijelln], 9.2)
Or
- v]‘, 1 i ] ]
l(el-):ﬁej:w;ej, u', o, w; e K. (9.3)

Being a bijection, | entails unique {w/} for each &;. Thus, | generates square n x n matrix {w) } for the
whole basis {é;} .

The bijections I € L form a group GIL(L;®;1) of square (non singular) matrices under matrix
multiplication, termed general linear group. The binary operation @ : £ x £ — L is defined as,

I(e;) @ 1(¢;) = wfwj-?k ®e = wi-‘w;ékl = wfwf =A; € K. (9.4)
Definition 9.1.1 (Linear Representation) Let G(A;%;e,) be an arbitrary group. The homomorphism
p:A—L, playxaz)=p(a)®p(az)=h@hLeL, (9.5)

turns elements of the group into square matrices. p is termed linear representation of G(A;%;e.) in V of
degree n, and vector space V is termed representation space of G(A;x;e) .

25






Part 11
Topology



Based on General Topology, Bourbaki, N.



Chapter 10
Homeomorphism

29






Part I11
Geometry



Based on Nakahara’'s classic text.



Chapter 11
Differential Geometry

Abstract Vectors are multilinear objects over a manifold IM" . Tensors are multilinear objects from
product vector spaces and product one forms to an arbitrary field K.

11.1 Vector Space

Definition 11.1.1 (Vector Space) A vector ¥ € V over a manifold M" is a multilinear from M" to an
arbitrary field K,

7:M" — K. (11.1)
Any vector can be expanded into linear combination of basis vectors {€, },
7 =o'e,, (sum over u), (11.2)

where v* € K are termed components of the vector T for the basis {€, } .

In the context of physics, each reference frame has its own basis.

11.2 One Form/Dual Vector Space

Theorem 11.1 (One Form). The set of linears from V to an arbitrary field K ,
V:V—K, (11.3)

form a vector space with basis {&"} .

Proof. LetV:V — K be a vector space with basis {@"} . An arbitrary vector 7 € V can be expanded
to,

o(it) =v,@" (i), VeV, K. (11.4)
For a trivial case il = &, , we have 7(¢,) = v,@"(€,). Our choice

@’ (&) = oy, (11.5)
makes 0(¢y) = v,d;, = v, € K. For vector space V with basis {éu}, our choice @ (€,) = 6, makes

V:V — K to be a vector space with basis {@"} . O

The vector space V is termed one form, and is dual to vector space V. It turns out that V 22V and

dim(V) = n = dim(V).
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11.3 Tensor

Definition 11.3.1 (Tensor of type (0,4)) A tensor t € 7770 of type (0,q) is a multilinear from product vec-
tor spaces to an arbitrary field K,

q -
7): 0V — K. (11.6)

Definition 11.3.2 (Tensor of type (p,0)) A tensort e 76’7 of type (p,0) is a multilinear from product one
forms to an arbitrary field K,

T 6P K. (11.7)

Definition 11.3.3 (Tensor of type (p,q)) A tensor t € T} of type (p,q) is a multilinear from product
vector spaces and product one forms to an arbitrary field IK,

P~q
T @VeV —K. (11.8)

11.3.1 Homomorphism

Leta (0,2) type tensor

: V0V —K (11.9)
be a homomorphism,

t(il,7) = t(il) @ t(F),  Vi#,7eV,&t(il),t(7) e K. (11.10)
The homomorphism allows a (0,2) type tensor to decompose into two (0,1) type tensors,

toz2) = to1) ® Ho1)- (11.11)
Generalizing further, a (0,4) type tensor decomposes into g (0,1) type tensors,

Hog) = étm) . (11.12)

A tensor of type (0,1) is a one form ¢ : V —K, expanded as

Fo) = tu@", 11.13)
for basis {@"} . A tensor of type (0,2),t:V ® V — K, decomposes as

top) =to) @t = ! @ b =t @ @, (11.14)

where t,, = t,t,,V t,,t, € K. Generalizing further, A tensor of type (0,q9) decomposes as
q ~u;
t0,9) = turpang E’lw h (11.15)

where tuapnepg = tmtm...tyq,v tuy by -ty € K.

11.3.2 Raising/Lowering

... Heuristic!

DO: ... Heuristic!



Chapter 12
Algebraic Geometry

12.1 Some Commutative Algebra

Definition 12.1.1 (Commutative Ring) Let (R;*,# e, e4) be a ring. It is called a commutative ring if
(R, #,e4) is commutative monoid.

Definition 12.1.2 (Integral Domain) A commutative domain is termed integral domain.

Definition 12.1.3 (Principal Ideal) An ideal generated by one element of the ring is termed principal
ideal. For a € R, principal ideal generated by a is (a) = a#R = {a#r |V r € R}. Note that a € (a).

Definition 12.1.4 (Ideal generated by a set) Let R be aring, and S C R with S = {ay,az,a3,...}. The
ideal generated by set S is (S) = (a1,a3,...) =Y icz(a;) ={Licrai#ri|a; € S,r; € R}. An ideal is termed
finitely generated if it is generated by a finite set.

Definition 12.1.5 (Prime Ideal) Let R be a ring and a,b,c € R. a is a prime if a|b#c = a|b or a|c. We
observe that if b#c € (a) then a|bic. Since a is prime, a|b or a|c which implies that b € (a) or ¢ € (a). An
ideal T AR is termed prime if Vr,s € R, r#ts € L =r € L ors € I. Suchan ideal is generated by a prime
element.

Lemma 12.1. Every principal ideal is prime.

Lemma 12.2. Every maximal ideal is prime.

Lemma 12.3. 7 < R is a prime ideal iff R /T is an integral domain.

Lemma 12.4. A field has no nontrivial ideal.

Lemma 12.5. Z < R is a maximal ideal iff R /T has no nontrivial ideal, and so is a field.

Definition 12.1.6 (Principal Ideal Domain (PID)) A domain is termed PID if every ideal in it is princi-
pal.

Lemma 12.6. The ring of polynomials k[x1,x2,x3,...] over a field k is a PID.

Definition 12.1.7 (Unique Factorization Domain (UFD)) A UFD/factorial/GaufSian domain is an inte-
gral domain such that every element can be factored into irreducible elements upto reordering or factors with
units.

Definition 12.1.8 (Ascending chain condition) A ring R entails ascending chain condition on principal
ideals if every sequence of principal ideals terminates somewhere: (a1) G (a2) G (a3) G -+ G (an) = (an11)
for somelargen € Z,Va; € R.

Lemma 12.7. Ascending chain condition on ring R <= R is factorial.

Lemma 12.8. Every PID is UFD.
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Definition 12.1.9 (Notherian Ring) A ring is termed Nétherian if it entails following equivalent condi-
tions on its ideals,

1. Every ideal is finitely generated,

2. Every ascending chain of ideals terminates somewhere,
3. Every collection of ideals has a maximal ideal,

4. It is factorial.

12.2 Local Rings

Definition 12.2.1 (Local Ring) A ring R is termed local if it contains a unique maximal ideal T , and we
write (R, ) for a local ring.

Lemma 12.9. If (R,Z) is a local ring, R \ Z = U is set of units.

Lemma 12.10 (Nakayama). Let (R,Z) be a local ring. Let M be finitely generated R—module. Then
M=IM=s M= ea .

Lemma 12.11. If (R, Z) is Notherian local ring, then Z is finitely generated R—module.

Definition 12.2.2 (Integral dependence) Let S < R be a subring. r € R is integral over S if it is root
of a monic polynomial with coefficients in S , i.e., if 1" % ar#r" 1 x ... xa, =e., Va;eS.

Definition 12.2.3 (Algebraic dependence) Let k be a field and A be a k—algebra. Elements ay,a;,--- € A
are algebraically dependent over k if 3 f € k[x1,x2,...] such that f(ay,az,...) =0.

12.3 Algebraic Sets and Varieties

12.4 Schemes



Chapter 13
Complex Geometry

13.1 Complex Numbers

Define I := i#R with i> = —1, and call it set of imaginary numbers.
Lemma 13.1. I is a R—module.

Definition 13.1.1 (Complex Number Field C) The R—module defined as the direct sum C := R @ 1 is
a field, called field of complex numbers. A complex number is explicitly written as z = x +iy,Vx,y € R. x
and y are termed real and imaginary parts of z.

Definition 13.1.2 (Equality Principle) Two complex numbers z = x + iy and z' = x' + iy’ are equal iff
x=xandy=y".
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Chapter 14
Geometric Algebra

Geometric algebra is algebra constructed from geometric operations.

Thesis 1 (Euclid) Magnitude (or measure) is a line segment.

Thesis 2 (Descartes) A line segment corresponds to a unique number.

Thesis 3 (Grafsmann) A line segment possesses unique number and unique direction.

Definition 14.0.1 (Scalar, Descartes) A scalar is equivalence class of line segments that are congruent
modulo translation and/or rotation.

Definition 14.0.2 (Vector, Gralmann) A vector is equivalence class of (directed) line segments that are
congruent modulo translation.

Definition 14.0.3 (Inner Product) The dilatation of perpendicular pro]ectlon of vector @ onto vector b by
the magnitude of b is termed inner product of @ with b, abbreviated @ o b.

Definition 14.0.4 (Outer Product) The oriented plane segment obtained by sweeping vector @ along vector
b is termed outer product of @ with b, abbreviated @ A b, and termed bivector.

Definition 14.0.5 (k-Vector) The outer product @ A bAC... of k-vectors corresponds to oriented space seg-
ment, termed k-vector or k-blade.

A (generic) binary operation (or product) of two elements decomposes into symmetric and anti-
symmetric parts,

1 1 1 1
A*B:E(A*B—FB*A)—%E(A*B—B*A) = E{A,B}+§[A,B} (14.1)

However, the outer product has alternate symmetry: bivector is anti-symmetric, trivector is sym-
metric, 4-vector is anti-symmetric and so on. Thus, it is not a generic product. Adding a term with
opposite symmetry, it becomes a generic product.

Definition 14.0.6 (Geometric ProdocY) ... Finish this section.
14.1 Operational Geometry

Definition 14.1.1 (Spinor)

DO: ... Heuristic!
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