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Abstract

The PID controller enjoys the honor of being the most commonly used dynamic
control technique. Over 85% of all dynamic (low-level) controllers are of the PID
variety. The purpose of this report is to provide a brief overview of the PID
controller.

1 Introduction

In the control of dynamic systems, no controller has enjoyed both the success and the
failure of the PID control. Of all control design techniques, the PID controller is the
most widely used. Over 85% of all dynamic controllers are of the PID variety. There is
actually a great variety of types and design methods for the PID controller.

What is a PID controller? The acronym PID stands forProportio-Integro-Differential
control. Each of these, the P , the I and the D are terms in a control algorithm, and
each has a special purpose. Sometimes certain of the terms are left out because they are
not needed in the control design. This is possible to have a PI, PD or just a P control.
It is very rare to have a ID control.

2 The Problem Setup

The standard PID control configuration is as shown. It is also sometimes called the “PID
parameter form.”

G(s)

Kds

Kp

U(s)E(s) Y(s)R(s) Ki
s

PID Controller

Plant

Figure 1: PID Controlled System

In this configuration, the control signal u (t) is the sum of three terms. Each of these
terms is a function of the tracking error e (t) . The term Kp indicates that this term is
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proportional to the error. The term Ki/s is an integral term, and the term Kds is a
derivative term. Each of the terms works “independently”1 of the other.

2.1 Interpretation of the Terms

We now consider each of the terms, assuming that the others are zero. With Ki = Kd = 0,
we simply have u (t) = Kpe (t) . Thus at any instant in time, the control is proportional
to the error. It is a function of the present value of the error. The larger the error, the
larger the control signal. One way to look at this term is that the farther away from the
desired point we are, the harder we try. As we get closer, we don’t try quite as hard.
If we are right on the target, we stop trying. As can be seen by this analogy, when we
are close to the target, the control essentially does nothing. Thus, if the system drifts a
bit from the target, the control does almost nothing to bring it back. Thus enters the
integral term.

Assuming now that Kp = Kd = 0, we simply have

u (t) = Ki

∫ t

0
e (τ ) dτ

The addition of this integral makes the open-loop forward path of Type I. Thus, the
system, if stable, is guaranteed to have zero steady-state error to a step input. This can
also be viewed as an application of the internal model principle. If e (t) is non-zero for
any length of time (for example, positive), the control signal gets larger and large as time
goes on. It thus forces the plant to react in the event that the plant output starts to
drift. We can think of the integral term as an accumulation of the past values of the
error. It is not uncommon for the integral gain to be related to the proportional gain by

Ki =
Kp

τ i

where τ i is the integral time. Generally, by itself, the I term is not used. It is more
commonly used with the P term to give a PI control.. The I term tends to slow the
system reactions down. In order to speed up the system responses, we add the derivative
term.

Assuming now that Kp = Ki = 0, we have

u (t) = Kd
de (t)

dt

that is that the control is based on the rate of change of the error. The more quickly
the error responds, the larger the control effort. This changing of the error indicates
where the error is going. We can thus think of the derivative term as being a function

1This is not exactly true since the whole thing operates in the context of a closed-loop. However,
at any instant in time, this is true and makes working with the PID controller much easier than other
controller designs.
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of the future values of the error. In general, a true differentiator is not available. This is
because true differentiation is a “wide-band” process, i.e., the gain of this term increases
linearly with frequency. It is a non-causal process. It tends to amplify high-frequency
noises. In addition, if the error undergoes a sharp transition, for example, when a step
input is applied, the derivative skyrockets, requiring an unreasonably large control effort.
Generally, the control signal will saturate all amplifiers etc. To deal with the impractical
nature of the D term, it is not uncommon to use the modified derivative

ẋ (t) =
1

τ1
(e (t)− x (t)) , u (t) = Kdẋ (t) (1.1)

where τ 1 limits the bandwidth of the differentiator. In terms of Laplace transform vari-
ables, we have

L{ė (t)} = sE (s) ≈
(

s

τ 1s + 1

)
E (s) (1.2)

Thus, for τ 1 − small, the approximation is better. This corresponds to the “pole” of the
differentiator getting larger. It is common to let

τ 1 =
Kd

NKp
(1.3)

where N is typically in the range from 10 to 20. This matter of the differentiator could
also be viewed using the Taylor expansion of e (t) .

An alternate form of the PID controller is called the “non-interacting form.” In this
form, we have Ki =

Kp

τi
, and Kd = Kpτ d. In this case, we can factor Kp out of the overall

controller

u (t) = Kp

(
e (t) +

1

τ i

∫ t

0
e (τ) dτ + τ d

de (t)

dt

)
(1.4)

The PID control thus considers past, present and future values of the error in assign-
ing its control value. This partly explains its success in usage.

2.2 Setpoint Weighting

It is common for the closed-loop system to track a constant reference input. In this case,
the input is called a setpoint. This being the case, it is often advantageous to consider an
alteration of the overall control law for the sake of this problem. We noted, for instance,
that it is not particularly good to differentiate step changes in the error signal. Changing
the configuration will give basically the same behavior, without having to do such things.
The setpoint weighted PID is thus a generalization of the PID, and has

u (t) = Kpep (t) + Ki

∫ t

0
ei (τ ) dτ + Kd

ded (t)

dt
(1.5)

where
ep = apr (t)− y (t) , ei (t) = r (t)− y (t) , ed (t) = adr (t)− y (t) (1.6)
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where constants ap and ad are as yet undetermined. Each of the terms thus has a different
“error” associated with it. Note that when ap = ad = 1, that we have the original PID
design. Note also that when r (t) is a piecewise constant signal (only step changes), then
for all time (except at the actual step locations), ṙ (t) = 0, and thus,

ded (t)

dt
=

d

dt
(adr (t)− y (t)) = −ẏ (t) (1.7)

which is independent of r (t) and ad. In general, since y is the output of the plant, it
will be a smooth function and thus ẏ will be bounded. It is thus not uncommon to let
ad = 0. This eliminates spikes in the term Kd

ded(t)
dt

, without substantially affecting the
overall control performance.

A block diagram for this is shown. As it appears, it seems much more complicated.
However, it is actually not much more complicated.

G(s)

Kds

Kp
ap

ad

U(s)Ei(s)

Ep(s)

Ed(s)

Y(s)R(s) Ki
s

PID Controller

Plant

Figure 2: The Setpoint Weighting Configuration

As we have seen, changing ad doesn’t change the overall design. Changing ap, how-
ever, may change the design. The rationale behind ap is that if, for example, ap = 0.5,
then a large step change in r (t) doesn’t create such a large control magnitude. However,
in general, ep does not go to zero when y = r. Thus, there is a persistent control applied
even when it is not necessary. The use of this, then is of questionable value. Setting
ap = 1, however, brings us back to the original error.

2.3 Overall Usage

The PID controller performs especially well when the system has first order dynamics
(a single pole). Actually, in this case, the P controller is a state-feedback control! In
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general, for the system with first-order dynamics the PI control is sufficient, and the D
is not needed.

For the system with essentially second-order dynamics, the PD control corresponds
to state feedback. The PID control generally works well for these systems.

The PID controller can also work for some systems of higher order. Generally speak-
ing, the derivative term is beneficial when the time constants of the system differ by
orders of magnitude. It is sometimes helpful when tight control of higher-order dynamics
is required. This is because the higher order dynamics prevent the use of high propor-
tional gain. The D provides damping and speeds up the transient response.

The PID controller, of course, is not the end-all of controllers. Sometimes the con-
troller just won’t work very well. The following are cases when the PID control doesn’t
perform well. In general, these require the use of more sophisticated methods of control.

• Tight control of higher order process

• Systems with long delay times. In this case, the derivative term is not helpful. A
“Smith predictor” is often used in this case.

• Systems with lightly damped oscillatory modes

• Systems with large uncertainties or variations.

• Systems with harmonic disturbances

• Highly coupled multi-input, multi-output systems—especially where coordination
is important.

2.4 Example

Consider the system given by the transfer function

G (s) =
20 (s + 2)(

s + 1
2

)
(s2 + s + 4)

(1.8)

If we use the (modified) PID controller

C (s) = Kp +
Ki

s
+

Kds

τ1s + 1

=
(Kpτ 1 + Kd) s2 + (Kp + Kiτ 1) s + K1

s (τ1s + 1)

where
Kp = 9, Ki = 4, Kd = 1, τ 1 = 1

100
(1.9)

We use the following MATLAB code to simulate the system:
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num=20*[1 2];den=conv([1 .5],[1 1 4]);

Kp=9;Ki=4;Kd=2;t1=1/100;

numc=[Kp*t1+Kd,Kp+Ki*t1,Ki]/t1;denc=[t1,1,0]/t1;

numf=conv(num,numc);denf=conv(den,denc);

dencl=denf+[0 0 numf];

numy=numf;

syso=tf(num/20,den);sysy=tf(numy,dencl);

t=[0:.002:10]’;

yo=step(syso,t);yc=step(sysy,t);

figure(1);plot(t,[yo yc]);grid

xlabel(’time (sec)’);ylabel(’y(t)’)

We thus obtain the plot shown. This plot compares the open-loop response with that
of the PID controlled response. For the open-loop, we simply scaled the step input so
that the overall system output settled out to 1.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 1 2 3 4 5 6 7 8 9 10
time (sec)

y(
t)

closed loop

open loop

Figure 3: Step Response for PID and Open-Loop Systems

We see that the PID controlled system performs much better than the open loop. It
is often advantageous to make a comparison with the open-loop system, since that shows
what would happen using the simplest kind of control. Indeed, the open loop requires
no sensors and is thus much less costly to build and maintain than the PID system. If
the PID system did not perform so much better, it might not be worthwhile.
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3 Plant Modeling

In general, the more we know about a system, the better we will be able to control it.
If we know nothing about a system, we better not be trying to control it. A logical
question, then, is how much (or little) do we need to know, and how will we obtain that
data?

3.1 Information Required

The more information available about the system, the better it can be controlled2. Many
processes to be controlled are either difficult to model or else it is difficult to obtain
the parameters for the model. For example, the dynamic inductance of a dc motor is
very difficult to obtain. Generally, to obtain a model, it is necessary to perform some
experiments to obtain actual parameter values. The type of experiments will determine
what data is obtained. Here, we consider three types of experiments. Each will give a
different type of information. That information will be used to design the PID controller.

In general, the experiments to be performed require that the system be stable. If not,
the experiments won’t work. This, of course, is a great restriction. Unless the exact model
of the unstable system is known, there is no known way to tune a PID controller. Some
controllers, such as adaptive controllers are able to compensate for unstable systems,
however their complexity excludes them from consideration in this course.

3.2 Step Response Information

A simple experiment to perform is the step response test. Here, we assume a unit step
is applied to the system, although it is also possible to scale the whole experiment is
necessary. From the results of this test, the data may be used to obtain approximations
of the system.

Figure 4 shows example step responses for a number of different possibilities. The
tuning rules were essentially developed for a step response of type A. The rules, however,
may work for responses of type B and E. The responses C and D are for unstable
systems. If the plant is exactly known, it might be possible to design a PID controller,
but there is no guarantee. As for the system with response F, the system has a zero in
the RHP (unstable zero). A PID controller may reduce the settling time of the system,
but is likely to accentuate the undershoot.

The PID controller rules are thus essentially designed for a first or second-order, non-
oscillatory system with possibly some time-delay. An example plot is shown in Figure
5.

The step response has several values that are of importance in obtaining an approx-
imate transfer function for the system. First, we see yss which is the steady-state value
for the step input. Next, we see y0, τ 0, and m, which gives a linear approximation of the

2There are limits, of course, as to what can be achieved.
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Figure 4: Six Possible Step Responses
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Figure 5: A Typical Step Response

transient portion of the step response. Given only the step response data, we first find
the point at which the derivative of y is at a maximum. This value is ẏmax and occurs
at time tmax. The equation of the line that passes through the point y (tmax) with slope
m = ẏmax is given by

Line: (ẏmax) t + y (tmax)− (ẏmax) (tmax) (1.10)

which is indeed a linear function of time t. From this, we may determine

y0 = (ẏmax) (tmax)− y (tmax) (1.11)

τ 0 =
y0

ẏmax
(1.12)

Here, τ 0 is often called the apparent dead time. In this case, we may approximate the
plant by the model

Ga1 (s) =
(

y0

τ0

)
e−sτ0

s
(1.13)

which doesn’t match the steady-state characteristics very well, but does match the tran-
sient portion in a linear fashion. A model that approximates the system’s steady-state
behavior is given by

Ga2 (s) =
yss

1 + (τ ar) s
(1.14)

where yss is the steady-state value of y and τ ar is the so-called average residence time,
and is given by

τ ar =
A0

yss

(1.15)
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and where A0 is the area between yss and y (t)

A0 =
∫ ∞

0
|yss − y (t)| dt (1.16)

Note that even though the integral is all the way to ∞, actually the integral may be
approximated for a shorter time since the difference |yss − y (t)| becomes small after a
certain point. The approximation Ga2 generally doesn’t match the transient portion
extremely well, but is a good first-order approximation. It has been observed that the
quantity

κ1 =
τ 0

τ ar
(1.17)

is a measure of the difficulty of control. Generally 0 ≤ κ1 ≤ 1, and the closer κ1 is to 1,
the more difficult the system is to control using the PID. Still another approximation is
given by

Ga3 (s) = (yss)
e−τ0s

1 + τ ats
(1.18)

where
τat = τar − τ 0 (1.19)

is called the apparent time constant. This is the better of the three approximations.
Generally speaking, τat is less susceptible to noise in the step response.

3.3 Frequency Response Information

Another type of experiment that actually provides more useful (in terms of designing
the PID controller) information is a frequency response test. Here, we do a simple test.
Again, we assume that the system is stable. We also let r (t) = ε, a very small value.

There are two variations on the Frequency response tests. Both yield essentially the
same information. The first test, illustrated in Figure 6(a) is that of a P controller. Here,
the gain Kp is increased from zero until the system begins to oscillate. When Kp is set
such that there is a constant oscillation (neither increasing nor decreasing), that value
is called the ultimate gain and is denoted Ku. The oscillation will generally be periodic
with some period Tu.

This approach is generally risky since the plant is operated near instability. Also,
generally, it is difficult to keep the control amplitude bounded (important for safety!).
Thus, in general, this method is difficult to automate.

The second variation is based on the diagram in Figure 6(b). Here, a relay is em-
ployed, giving the control signal

u (t) =

{
�, e (t) ≥ 0
−�, e (t) < 0

(1.20)

This control, for most systems of interest, will result in an oscillation. Eventually the
control input will be a square wave of amplitude �, and have a period approximately
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G(s)Kp
U(s)E(s) Y(s)R(s)

Plant

G(s)
U(s)E(s) Y(s)R(s)

PlantRelay

(a)

(b)

Figure 6: Frequency Response Test Setups

equal to Tu from the previous version of the test. The output of the system will settle
out to be a sinusoid of amplitude α. In this case, we may obtain the ultimate gain from
the formula3

Ku =
4�

πα
(1.21)

This Ku and Tu are close to the actual values of Ku and Tu found in the previous variation,
the previous values being actually more accurate.

Thus, regardless of which variation we choose, we end up with Tu and Ku. The nice
thing about this test is that the control signal is bounded for all time. The threat of
instability is also reduced.

3.4 System Identification

System Identification is a method of obtaining a transfer function by applying a known
test signal to a system, observing the output, and comparing it with the input to deter-
mine the transfer function of the system. This test is generally quite a bit more involved
than either the step response test or the frequency response test. It yields, however,
an actual transfer function, rather than just a few values of an approximate transfer
function.

Because of the complexity, this topic will not be considered here, but will be relegated
to another course.

3This value is obtained by a type of nonlinear analysis called describing functions.
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3.5 Example

Consider the plant

G (s) =
10000

s4 + 126s3 + 2725s2 + 12600s + 10000
(1.22)

We use the following SIMULINK model to perform the step response experiment. Note
that in this setup, we have blocks added to help compute the necessary constants. Per-
forming the simulation once, we obtain

ẏmax = 0.6632 (1.23)

This value is plugged back into the diagram.

1

yss

0.6632

ydotmax
.1076

y0

s  +126s  +2725s  +12600s+100004 3 2
10000

Transfer Fcn
Step

Scope2

Scope

max

MinMax

Memory

.6632

MaxYdot

1
s

Integrator1

1
s

Integrator

du/dt

Derivative

|u|

Abs

1.26

A0

y(t)

y(t)

ydot

Figure 7: SIMULINK Diagram for the Step Response Test

In addition, looking at Scope2, we can find the time at which the maximum slope
occurs. Zooming in, we obtain

tmax = 0.5 (1.24)

Zooming into Scope, we find that

y (tmax) = y (0.5) = 0.224 (1.25)
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From this we may calculate

y0 = (ẏmax) (tmax)− y (tmax)

= (0.6632) (0.5)− (0.224) = 0.1076 (1.26)

This is also plugged back into the diagram. We also compute

τ 0 =
y0

ẏmax

=
0.1076

0.6632
= 0.1622 (1.27)

We note from Scope that yss = 1. This is plugged back into the diagram and the simu-
lation is performed again. Doing so, we find the line displayed as in Figure 5 in Scope.
We also obtain the integral value

A0 = 1.26 (1.28)

We thus may compute

τ ar =
A0

yss
=

1.26

1
= 1.26 (1.29)

τ at = τ ar − τ0 = 1.26− 0.1622 = 1. 0978 (1.30)

and find that

κ1 =
0.1622

1.26
= 0. 1287 (1.31)

indicating that this system is not too hard to control using a PID controller.
For the Frequency Response Test, we use the following SIMULINK diagram.

s  +126s  +2725s  +12600s+100004 3 2
10000

Transfer Fcn

Scope1

ScopeRelay

0

Constant

Figure 8: SIMULINK Frequency Response Test Configuration

This is simulated for 100 seconds. The relay has amplitude � = 1. Looking at either
Scope or Scope1, we find the period of oscillation to be

Tu ≈ 0.64 (1.32)
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and looking near t = 100, at Scope, we find that the steady-state amplitude is

α = 0.0527 (1.33)

From this we find the ultimate gain

Ku ≈ 4�

πα
=

4 (1)

π (0.0527)
= 24.16 (1.34)

Note that the actual values for this are Tu = 2π
10

= 0.6283, and Ku = 101
4

= 25.25.4

4 PID Tuning

Having obtained a basic system information, from either of the tests, we are now in a
position to perform some designs on the system. These designs are based upon the data
obtained by the above experiments.

4.1 Ziegler-Nichols Step Response Method

This is the earliest design method for the PID controller. It was originally developed
in 1942, so its not exactly state-of-the-art. It does, however, work effectively for many
systems. This method is based on the approximate model Ga1 (s) . Once this model has
been determined by the step response test, we may design controllers according to the
following table. Note that only y0 and t0 are used.

Controller Kp Ki Kd

PI 9
10y0

3
10y0τ0

0

PID 6
5y0

3
5y0τ0

3τ0

5y0

These formulae are heuristic rules based upon the response of many different systems.
The design criteria was to ensure that the amplitude of closed-loop oscillation decay at
a rate of 1/4. This is actually often too lightly damped. It is also often too sensitive.

4.2 Ziegler-Nichols Frequency Response Method

From the Frequency Response Test (or Relay Test), we obtained the ultimate gain Ku

and Tu. From these values, we obtain the following table.

Controller Kp Ki Kd

PI 2Ku

5
Ku

2Tu
0

PID 3Ku

5
6Ku

5Tu

3KuTu

40

4These were obtained analytically because we actually know the system exactly. They are close
enough to the approximations which don’t require exact knowledge to obtain.
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We note that in this case as in the previous case,

KiKd

K2
p

=
1

4
(1.35)

This appears to be common in PID tuning. Both methods also often give too high a Kp,
which is related to the designed decay ratio. The ZNSR method generally gives a higher
Kp than the ZNFR method.

4.3 Chein-Hrones-Reswick Method

Amodification of the Ziegler-Nicholsmethod is the Chein-Hrones-Reswick (CHR)method.
This is based more on a setpoint response. This is a step-response method and uses y0,
τ 0 and τat. In this case, we have the following table.

Controller Kp Ki Kd

PI 7
20y0

7
24y0τat

0

PID 3
5y0

3
5y0τat

3τ0
10y0

4.4 Example

Consider the example given in the previous section. Here, we consider only PID con-
trollers. There, we obtained the values y0 = 0.1076, τ 0 = 0.1622, τ at = 1. 0978, Tu ≈ 0.64,
and Ku ≈ 24.16. We thus obtain the controller designs

Controller Kp Ki Kd

ZNSR 11.1524 34.3786 0.9045
CHR 5.5762 5.0794 0.4522
ZNFR 14.496 45.300 1.1597

MATLAB is used to perform the simulations of the systems. We thus obtain the plot
shown below. We note that the CHR design is the best overall. That is partially due to
the fact that it is tailored to the setpoint problem.
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Figure 9: Example Step Responses

5 Integrator Windup

In general, the actuator for any system is limited, i.e., there is a maximum exertion that
the actuator can accomplish. If the actuator is a power amplifier, it generally has “rails.”
Thus, the design for a linear system is not sufficient since the real system is not linear, but
has a nonlinear saturation term. A controller designed for a linear system will often not
work on a nonlinear system. This configuration is illustrated below. Here, a disturbance
input is also added.

G(s)C(s)
U(s) V(s)

W(s)

E(s) Y(s)R(s)

Plant

Disturbance

SaturationController

Figure 10: Nonlinear System with Disturbance

When the actuator saturates, the loop is effectively open. In particular, if the control
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is such that a long period of saturation exists, it is possible for the integral term to keep
integrating even when it is not reasonable to do so. the integrator itself is open-loop
unstable, and the integrator output will drift higher. This is called integrator windup. In
order for the integrator to “unwind,” the error signal must actually change sign before
the output of the integrator will start to return to zero. Thus, the actuator remains
saturated even after error changes sign since the controller’s output stays high until the
integrator resets.

This is difficult to visualize, so we give our example next.

5.1 Example

Consider the problem of the previous example, using the ZNSR method. Suppose we
have a saturation limit � where we may have � = 1, 1.5, 2 or 5. Suppose also that the
disturbance w (t) is a negative unit step input that turns on at time t = 15. A plot of this
is shown below, and is compared with the open-loop system. Note that the open-loop
system goes to zero after the disturbance enters because the disturbance “cancels” the
reference signal.
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u(t)
v(t)

Figure 11: Integrator Windup Effects when � = 1, 1.5, 2, 5

When � = 1, the control signal quickly saturates and thus the system behaves essen-
tially as the open-loop system. We have shown the control signal u (t) and the actuation
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signal v (t) for � = 1.5 in the bottom graph. Here, the input immediately saturates, but
finally resets at around t = 3, in which case the system begins to act like a linear sys-
tem. When the disturbance comes, the integrator again saturates the actuator, and the
integrator value drives u (t) off to infinity, never to return. The net effect on the output
is that the output does not return to the setpoint value, but settles at 0.5. This is better
than the case of � = 1, however. For � ≥ 2, the system recovers from the disturbance
and continues tracking. When � = 5, the output looks identical to the original ZNSR
response.

5.2 Back Calculation

The idea of an anti-windup technique is to mitigate the effects of the integrator continuing
to integrate due to the nonlinear saturation effect. In the Back-Calculation method, when
the actuator output saturates, the integral is recomputed such that its output keeps the
control at the saturation limit. This is actually done through a filter so that anti-windup
is not initiated by short periods of saturation such as those induced by noise.

This method can be viewed as supplying a supplementary feedback path around the
integrator that only becomes active during saturation. This stabilizes the integrator when
the main feedback loop is open due to saturation. In this case, we have the setpoint-
weighted control law

u (t) = Kpep (t) +
∫ t

0
ēi (τ ) dτ + Kd

ded (t)

dt
(1.36)

where

ep = apr (t)− y (t) , ed (t) = adr (t)− y (t) (1.37)

and where we have the integral error

ēi (t) = Ki (r (t)− y (t)) +
1

Tt
(v (t)− u (t)) (1.38)

Note that if there is no saturation, then v (t) = u (t) and ēi corresponds to ei given
previously. When v (t) �= u (t) , then the tracking time constant Tt determines how
quickly after saturation the integrator is reset.

In general, the small Tt is better as it gives a quicker reset. However, if it is too small,
noises may prevent it from actually resetting the integrator. As a general rule, we choose

τ d < Tt < τ i (1.39)

where τ d is the derivative time and τ i is the integral time referred to earlier. A typical
choice will be

Tt =
√

τ dτ i (1.40)
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We revisit the previous example. In this case, we use the Back-Calculation in per-
forming the integration, with

Tt =
√

τdτ i =

√
Kd

Ki
(1.41)

again with � = 1, 1.5, 2 and 5. A plot of the response is shown below.
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Figure 12: Back-Calculation Responses

Here, we see that for � = 1, there is effectively no change in the response. This is
because the saturation is so close to the boundary for the step input that there is no
“headroom.”

For � = 1.5, we also have a comparable disturbance response to that above. This is
due to the fact that the combination of the setpoint and the disturbance are past the
saturation limit. We note, however, two beneficial aspects of the back-calculation. The
first is that the response to the initial setpoint change is significantly better than when
the back-calculation is not used. We have virtually no overshoot, and a much faster
settling time. This is because the back-calculation resists the tendency of the controller
to initially saturate. The second benefit is that when the disturbance hits, the control
signal u (t) does not head off to infinity, but remains bounded.

For � ≥ 2, we see a comparable disturbance rejection to that of the original problem.
However, as with the � = 1.5 case, we see a significantly improved transient response to
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the setpoint change. Overall, the back-calculation has improved the performance of the
system.

5.3 Conditional Integration

In this case, we switch the input to the integrator to zero whenever a “crisis” condition
exists. A crisis may be

• when the error signal is large

• when the actuator is already saturated

• when the actuator is close to saturation and the present value of the control signal
is driving it toward saturation.

Any of these definitions may be used to define when the integrator is integrating the
error and when it is not. Thus,

u (t) = Kpep (t) +
∫ t

0
ẽi (τ ) dτ + Kd

ded (t)

dt
(1.42)

where ep and ed are as before, and we have the integral error

ẽi (t) =

{
Ki (r (t)− y (t)) , no “crisis”
0, “crisis”

(1.43)

One example of this is to use the “crisis” error function

ẽi (t) = Ki (r (t)− y (t)) e−(100(u(t)−v(t)))2 (1.44)

which is equal to Ki (r (t)− y (t)) when u (t) = v (t) . When u (t) �= v (t) , Ki (r (t)− y (t))
is multiplied by a number that is closer to zero the further u (t) and v (t) are from each
other. If u (t) is far enough from v (t) , then ẽi (t) effectively becomes zero. This function
does this in a “smooth” way that doesn’t create “chattering” associated with nonsmooth
nonlinear (switching) functions.

Using this function on the previous example, in place of the Back-Calculation method,
we obtain essentially the same plots. One difference, however, is that unlike the Back-
Calculation method, this method may have a larger control value when the system is
saturated and the anti-windup method doesn’t do as much to control this.

6 Conclusion

PID controllers can work surprisingly well, especially considering how little information is
provided for the design. Several methods for tuning the controllers have been presented.
There can be vast differences in the results produced by different tuning procedures. The
quality of the tuning is very much dependent on the compatibility of the tuning method
with the plant behavior and the performance goals.
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[2] Åström, K. and T. Hagglund, (1995) PID Controllers: Theory, Design, and Tuning,
2nd Edition, Instrument Society of America

[3] Knospe, C.R. (2000), PID Control: Tuning and Anti-Windup Techniques, “Practical
Control Techniques for Control Engineering” workshop at the 2000 American Control
Conference.

23


