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Abstract

Electroencephalograms (EEGs) reflect the electrical activity of the brain. Even when they are analyzed from healthy individuals,
they manifest chaos in the nervous system. EEGs are likely to be produced by a nonlinear system, since a nonlinear system with
at least 3 degrees of freedom (or state variables) may exhibit chaotic behavior. Furthermore, such systems can have multiple stable
states governed by “chaotic” (“strange”) attractors. A key feature of chaotic systems is the presence of an infinite number of unstable
periodic fixed points, which are found in spontaneously active neuronal networks (e.g., epilepsy).

The brain has chemicals called neurotransmitters that convey the information through the 1016 synapses residing there. However,
each of these neurotransmitters acts through various receptors and their numerous subtypes, thereby exhibiting complex interactions.

Albeit in epilepsy the role of chaos and EEG findings are well proven, in another condition, i.e., depression, the role of chaos
is slowly gaining ground. The multifarious roles of exercise, neurotransmitters and (cerebral) hemispheric lateralization, in the case
of depression, are also being established. The common point of reference could be nonlinear dynamics.

The purpose of this review is to study those nonlinear/chaotic interactions and point towards new theoretical models incorporating
the oscillation caused by the same neurotransmitter acting on its different receptor subtypes. This may lead to a better understanding
of brain neurodynamics in health and disease. 2001 IPEM. Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction

Electroencephalograms (EEGs) reflect the electrical
activity of the brain. Even when they are analyzed from
healthy individuals, they manifest chaos in the nervous
system [1,2]. A comprehensive review of quantified
EEG or qEEG is available in Gevins [3].

EEGs are likely to be produced by a nonlinear system.
The basis for this conjecture is that a nonlinear system
with at least 3 degrees of freedom (or state variables)
may exhibit chaotic behavior. As an example of chaotic
activity, the waxing and waning ofa-EEG activity in
alert subjects may be considered. Albeita-EEG activity
closely resembles a sine wave, it is (i) certainly not per-
iodic (i.e., does not repeat itself after a periodT), (ii) is
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bounded (i.e. amplitudes are generally confined up to
100 µV) and (iii) is too regular to qualify as a noise.
Therefore, it is more likely to be chaotic.

A key feature of chaotic systems is an infinite number
of unstable periodic fixed points. Similar points are
present in spontaneously active neuronal networks in
epilepsy [4]. Oscillations in hippocampal theta rhythm
are also characteristic of chaos [5–7]. Similarly typical
EEGs are also found in the thalamus [8–10]. Skarda and
Freeman [11] have demonstrated that chaos can be gen-
erated in a model of the olfactory system. The model
incorporates a feedback loop among the “neurons” and
a delay in responsive times. Similar observations were
also made by Kay et al. [12] who postulated that preaf-
ferent input from the limbic system can serve to bias the
landscape in such a way as to facilitate the capture of
the system by a basin of an attractor corresponding to
the goal of the intended observation.

When bathed in artificial cerebrospinal fluid contain-
ing excess potassium (K+), the brain exhibits spon-
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taneous bursts of synchronized neuronal activity, which
can trigger seizure-like discharges in the neighboring
region. However, controlling these bursts to make them
more periodic may actually increase the seizure activity.
Alternately, by “anticontrol” of chaos, the system can be
kept away from low period orbits [13–15].

Chaotic dynamics offer many functional advantages.
These dynamics operate under a wide range of con-
ditions and are therefore adaptable and flexible (i.e.,
plastic). This plasticity allows systems to cope with the
exigencies of an unpredictable and changing environ-
ment. The stochastic chaotic activity has certain benefits,
like, (i) continuous aperiodic activity needed by neurons
to stay fit, (ii) exhibit rapid state transition without
“ ringing” attending departures from limit cycle attrac-
tors, (iii) contains broad spectrum carrier waves, (iv)
minimizes tendencies to parasitic phase locking and (v)
is a source of unstructured activity for driving Hebbian
synapses during learning, so as to create new basins of
attraction instead of reinforcing existing attractors in
complex landscapes [16–18].

The nervous system may show loss of variability and
the appearance of pathological periodicities in many dis-
orders like epilepsy, Parkinsonism (pill-rolling tremor)
and manic depressive psychosis [19]. Thus the study of
nonlinear dynamics is useful in understanding their
pathophysiology and thereby modifying the treatment.

In the three subsequent sections we discuss (i) the
present use of EEG, (ii) the present methods of quan-
tifying EEG and (iii) the future prospects.

1.1. Present use of EEG

The domain of EEG, with all of its related fields,
covers clinical medicine, psychophysiology, neurophysi-
ology, general electrophysiology and certain areas of
basic EEG research. Now there seems to be a gap
between the “classical EEG” and the “sophisticated,
modern, 21st century oriented EEG” . But classical EEG
has not become obsolete as long as this clinical method
is carried out with proper technique, a good training
background and some ingenuity. Evoked potentials (EP),
event-related EEG changes are now seen in a broad view
that practically integrates EEG and EP approaches. In
the highest degrees of sophistication, these methods are
now playing a major role in neurocognitive research —
though in hot competition with fMRI (functional mag-
netic resonance imaging) and PET (positron emission
tomography) scanning. It is now fair to state that the
psychophysiologic orientation of Hans Berger (founder
of human EEG) has successfully been revived and prom-
ises a better comprehension of neurocognitive functions
[20]. However, a detailed description of the various
applications of EEG is beyond the scope of this review.

1.2. Present methods of quantifying EEG

There are two contradictory conjectures for the gener-
ation of EEG signals. The most well known conjecture
has been that the EEG is a very complex-looking, vir-
tually unpredictable signal; therefore, it must be pro-
duced by a very complex system [2]. The statistical pat-
tern recognition [21] for complex system analysis has
been based on extraction of quantitative features from
EEG intervals. These features are supposed to be rep-
resentative of the test segment and usually include para-
meters related to the frequency content of the signal. The
second conjecture is that the EEG is a very complex-
looking, virtually unpredictable signal; therefore, it must
be produced by a relatively simple, nonlinear system [2].
The second conjecture will be dealt with in Section 2.

Nearly 200 years ago Joseph Fourier (contemporary of
Galvani, Volta, Euler and Bernoullis) defined the Fourier
Series as an expansion of a periodic function into sinus-
oid (i.e., sine and cosine waves) functions according to
a rule. The Fourier series is a special case of Fourier
Transform. The EEG signal can be considered as a func-
tion as it is composed of numerous waveforms. By this
method, the original signal (amplitude as a function of
time) is converted to an amplitude spectrum — a graph
of amplitude as a function of frequency. Usually the
amplitude values are squared to give rise to “Power
(Density) Spectra” [22,23]. It may be a continuous spec-
trum in which the graph is a continuous line over a range
of frequencies or a discrete spectrum (sometimes known
as a line spectrum) in which only specific frequencies
are present and their amplitudes are represented by verti-
cal lines at those points on the frequency axis. This is
the DFT (discrete Fourier transform) of the signal.

Cooley and Tukey [24] presented an algorithm for the
computation of DFT applicable when N is a composite
number (product of two or more integers) and called it
FFT (fast Fourier transform) algorithm. Presently FT can
be done with the help of a personal computer using the
FFT algorithms [25]. The advantages of spectra are their
transparency and reversibility (by inverse DFT the orig-
inal signal can be regained). A sinusoidal function X(t)
is completely described by three parameter-amplitude
A, frequency f and the phase f as X(t)=A sin (2ft+f),
where t is time. Spectral analysis is a method of calculat-
ing the amplitude An and phase fn corresponding to each
frequency component fn that is contained in the EEG
epoch. The power spectrum of the EEG is a measure of
the relative magnitudes of the A2

ns, with no account taken
of the phase information. In the case of a complete direct
evaluation of an N-point DFT, 4N2 real multiplications
and (4N2�2N) real additions are required. For the direct
computation of the DFT, the amount of computation, and
thus the computation time, is approximately proportional
to N2 and can become very great for large values of N.
The basic principle is decomposing the computation of
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the DFT of a sequence of length N into successively
smaller DFTs. It may be either decimation-in-time,
where the sequence X(t) is decomposed into successively
smaller subsequences or decimation-in-frequency, where
the DFT coefficient X(k) is decomposed into smaller sub-
sequences. The decimation-in-time algorithm is best
applicable when N is an integral power of 2 i.e., N=2r.

FFT is not superior to time-domain transforms, rather
it is more informative than the conventional analog rec-
ordings which are still preferred by clinicians. Any trans-
form, being derived from the original signal, is always
likely to lose some information. However, frequency
domain processing makes the findings more objective
(quantified) and hence, observer independent. Power
density spectra measurement is a form of quantitative
EEG (qEEG), albeit not the only one. Duffy [26] dis-
cusses the role of quantified EEG or quantified neuro-
physiology (qNP) or neurometrics or BEAM (Brain
Electrical Activity Mapping) which gives color coded
topographical representation of the FFT values in differ-
ent regions of the brain. The darker sides of it are that
controlling the artifacts are quite difficult, huge data sets
have to be managed, classic EEG and multivariate stat-
istics are essential for proper inferences.

Another tool for the analysis of signals like EEG,
“bispectrum” [27], is the Fourier Transform (FT) of the
Third Order Cumulant (TOC) sequence generally used
(a) to extract information in the signal pertaining to devi-
ations from Gaussianity and (b) to detect the presence of
nonlinear properties and quadratic phase coupling. Since
TOC and bispectrum are both zero for a stationary Gaus-
sian process, bispectrum purveys a natural measure of
Gaussianity. Also, bispectrum can detect phase coupling
(i.e., presence of quadratic nonlinearity) and the degree
of phase coupling can be quantified using the bicoher-
ence index, i.e., a normalized bispectrum. Bispectra have
been computed to detect phase coupling in the cortical
and hippocampal EEG of rat during various vigilance
states. For EEG recordings from the hippocampus, sig-
nificant phase coupling was obtained during REM sleep
between the frequency components at 6–8 Hz associated
with q rhythm. During slow wave sleep (SWS), EEGs
from frontal cortex or hippocampus exhibit a larger devi-
ation from Gaussian distribution than those of quiet wak-
ing and REM sleep. So, bispectral analysis yields extra
information not obtainable from the power spectrum.

Another type of quantification has been done with
cepstrum (power spectrum of the logarithmic power
spectrum) and bicepstrum analyses of EEG [28,29].

Apart from these, an approach to visual evaluation of
long-term EEG recordings has been based on multi-
channel adaptive segmentation, subsequent feature
extraction, automatic classification of acquired segments
by fuzzy cluster analysis (fuzzy c-means algorithm) and
on distinguishing of the segments so identified by color
directly in the EEG record [30].

The Lyapunov spectrum of EEG has also been ana-
lyzed [31]. The FFT dipole approximation algorithm has
been applied for localizing the sources of various EEG
waves [32]. Another approach to measure the scalp
potentials due to dipole sources has been a finite-element
modeling of the human head [33].

ANNs (Artificial Neural Networks) are also now
being used to automatically recognize EEG patterns in
various sleep states [34,35]. One may question the need
of automated diagnosis from EEG recordings. The
answer lies in the following. EEG paper recordings have
not only great inter-observer variations, but also a lot of
intra-observer variations. Unlike ECG (electro-cardi-
ography for heart), it is not very specific either. For a
long time, qEEG has been trying to overcome these
problems. However, we shall limit this article only to
the nonlinear analysis of qEEG, and specific to the topics
mentioned in the title.

1.3. Future prospects

In the subsequent sections we are going to discuss the
role of chaos theory in providing physiological insights,
examples of EEG changes that satisfy chaotic conditions,
changes in epilepsy, exercise, depression, neurotransmit-
ters, and changes in (cerebral) hemispheric lateralization.

It should be investigated whether all the results
obtained from studies (described below) of nonlinear or
chaotic dynamics can be correlated with clinical and
behavioral changes in depression, especially with refer-
ence to hemispheric lateralization. Also, whether or not
the changes in exercise and depression are inversely
related, deserves investigation. Moreover, nonlinear
modeling on the basis of cellular neurotransmitter
changes may be able to predict our behavior more cor-
rectly, especially in cases of depression.

2. EEG as a product of nonlinear systems

EEG signals are assumed to be the output of a deter-
ministic system of relatively simple complexity but con-
taining non-linearities [2]. In many models of neural net-
works processing nonlinear wave pulse functions, the
nonlinear characteristic is approximated by a linearized
version, especially when the input signals have a small
range of amplitude. However, such oversimplification
may ignore essential nonlinear properties of the system,
like the generation of higher harmonics. Actually these
networks can be described by a number of coupled non-
linear differential equations as a function of time and
space. These sets of equations may purvey the knowl-
edge of genesis of any EEG activity [36–38]. An inter-
esting point is that all nonlinear dynamic systems with
more than 2 degrees of freedom can display unpredict-
able (chaotic) behavior over a prolonged period. Such



448 S.N. Sarbadhikari, K. Chakrabarty / Medical Engineering & Physics 23 (2001) 445–455

systems can have multiple stable states governed by
“equilibrium” , “ limit cycle” or “chaotic” (“strange” )
attractors. Whether the system will find itself in any
stable state depends on the system’s parameters and
input conditions.

The human brain is a rather superior information pro-
cessor compared to any artificial system devised so far.
Brain modeling comprises detailed study of different
processes involved in biological neural computation and
to incorporate the facts so learnt into more realistic mod-
els of brain function and make them more “ intelligent” ,
in comparison with presently available systems in per-
forming cognitive tasks. There have been artificial neural
networks of excitatory–inhibitory neural pairs exhibiting
chaotic behavior in certain parameter regions [39].
Hence a complete knowledge about the domains of sub-
harmonic behavior and chaos in the parameter space is
very important [40]. Chaotic systems are more flexible
than nonchaotic ones since the attractor spans a large
volume of the state space, and, with proper control, one
can rapidly switch among many different behaviors [41].
Using variable feedback control, the networks have been
made to converge to any possible periodic pattern. On
withdrawal of the control signal, the network reverted to
the chaotic state [42]. Similarly, the phenomenon of state
synchronization among elements of a coupled chaotic
network has also been studied, emulating the neural
basis of “attention” [42].

Since EEG signals may be considered chaotic, Non-
linear Dynamics and Deterministic Chaos Theory may
supply effective quantitative descriptors of EEG dynam-
ics and of underlying chaos in the brain. Karhunen–
Loeve (KL) decomposition of the covariance matrix of
the EEG signal has been used to analyze EEG signals
of four healthy subjects, under drug-free condition and
under the influence of diazepam. KL-complexity of the
signal differs profoundly for the signals registered in dif-
ferent EEG channels, from about 5–8 for signals in fron-
tal channels up to 40 and more in occipital ones. But no
consistency in the influence of diazepam administration
on KL-complexity is observed. The embedding dimen-
sion of the EEG signals of the same subjects was esti-
mated, which turned out to be between 7 and 11, thereby
supporting the presumption about the existence of a low-
dimensional chaotic attractor. Therefore nonlinear time
series analysis can be used to investigate the dynamics
underlying the generation of EEG signals. This approach
does not seem practical yet, but deserves further study
[43,44].

EEG signals have been considered to be generated by
nonlinear dynamic systems exhibiting chaotic behavior.
The system may behave as a deterministic chaotic attrac-
tor. The complexity of the attractor can be characterized
by the correlation dimension that can be computed from
one signal generated by the system. The nonlinear
properties of biological neural networks are the threshold

for spike generation and saturation phenomena. Also,
these populations interact by means of feedback loops
with time delays. For calculating the correlation dimen-
sion, the EEG signal to be analyzed comprises a set of
samples xn, defined from n=1,…,N+k. From this series,
one can construct m-dimensional vectors (in an N-
dimensional space) Vm(i) with i=1,…,N, defined by:

Vm(i)�(x(i�k0), x(i�k1),…,x(i�km−1)) (1)

using a fixed set of delays kl with 0�kl�k (l=0,…,m�
1) and kl�kp if p�1. The correlation integral C(r,m),
where r is the radius of a sphere with center Vm(i) in
Rm may be defined as

C(r,m)�1/N2�N�1

i�1

�N
j�i�1

h(r�d)(Vm(i),Vm(j)) (2)

where h is the Heaviside or step function (h(x�
0)=0, h(x�0)=1), and d is the distance between 2 vec-
tors, for which one may use the largest difference
between the corresponding components.

If an attractor is present in the time series, then, the
values C(r,m) should satisfy, for small r and large m and
N: C(r,m)�rD2 where D2 is the correlation dimension of
the attractor and is given by the slope of the plot of
logC(r,m) vs log(r) [45]. C(r,m) is calculated as per
Grassberger and Procaccia [46]. During epileptic seiz-
ures D2 is found to be low (between 2 and 4) [47].

2.1. Role of chaos theory in providing physiological
insights

Complex bodily rhythms are ubiquitous in living
organisms. These rhythms arise from stochastic, nonlin-
ear and biological mechanisms interacting with a fluctu-
ating environment. Disease often leads to alteration from
normal to pathological rhythm [48]. Mathematical and
physical techniques combined with physiological and
medical studies are transforming our understanding of
the rhythms of life [49,50]. Chaotic dynamics might be
easier for the body to control than stochastic dynamics
[51].

Electrical stimulation of complex dynamics in cardiac
and neural systems using chaos-control techniques has
led to the regularization of complex rhythms [14].

There is a wide spectrum of dynamical behavior asso-
ciated with both normal and pathological physiological
functioning. Extremely regular dynamics are often asso-
ciated with disease, including periodic (Cheyne–Stokes)
breathing, certain abnormally rapid heart rhythms, cycli-
cal blood diseases, epilepsy, neurological tics and tre-
mors. However, regular periodicity can also reflect heal-
thy dynamics — for example in the sleep–wake cycle
and menstrual rhythms. Finally, irregular rhythms can
also reflect disease. Cardiac dysrhythmias such as atrial
fibrillation and frequent ectopy, and neurological dis-
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orders like post-anoxic myoclonus, are often highly
irregular. The term “dynamical disease” captures the
notion that abnormal rhythms, which could be either
more irregular or more regular than normal, arise owing
to the modifications in physiological control systems that
lead to bifurcations in the dynamics. What is more
important in distinguishing health from disease is that
there is a change in the dynamics from what is normal,
rather than regularity or irregularity of dynamics [48].

3. Examples of EEG changes that satisfy chaotic
conditions

3.1. Changes in epilepsy

The theoretical models of epileptogenesis have
assumed oscillations in a network of neurons. Such mod-
els analyze the trajectories in the phase plane whose
coordinates are the potential and its first derivative. A
nonlinear system that goes into stable oscillation even
after the input stimulus has ceased will produce a closed
trajectory in the phase plane; i.e., a limit cycle. Models
attempting a precise waveform fit with recorded EEG
activity have been simulated [52–55]. Recently attempts
have been made to combine the local (internal) and the
global (scalp EEG) levels within a synthetic theoretical
framework [56,57]. However, proper interpretation of
nonlinearity in EEG is still not foolproof [58–60].

Because of its high versatility, nonlinear time series
analysis has already gone beyond the physical sciences
and, at present, is being successfully applied in a variety
of disciplines, including cardiology, neurology, psy-
chiatry, and epileptology. However, it is well known that
different influencing factors limit the use of nonlinear
measures to characterize EEG dynamics in a strict sense.
Nevertheless, when interpreted with care, relative esti-
mates of, e.g., the correlation dimension or the Lyapunov
exponents, can reliably characterize different states of
normal and pathologic brain function. In epileptology,
extraction of nonlinear measures from the intracranially
recorded EEG promises to be important for clinical prac-
tice. In addition to an immense reduction of information
content of long-lasting EEG recordings, previous studies
have shown that these measures enable (a) localization
of the primary epileptogenic area in different cerebral
regions during the interictal state, (b) investigations of
antiepileptic drug effects, (c) analyses of spatio-temporal
interactions between the epileptogenic zone and other
brain areas, and (d) detection of features predictive of
imminent seizure activity. Nonlinear time series analysis
provides new and supplementary information about the
epileptogenic process and thus contributes to an
improvement in presurgical evaluation [61]. Now non-
linear analysis of EEG is being used for prediction of
seizures too [62,63].

Silva et al. [64] calculated correlation dimension maps
for 19-channel EEG data from 3 patients with a total of
7 absence seizures. The signals were analyzed before,
during and after the seizures. Phase randomized surro-
gate data was used to test chaos. In the seizures of two
patients two dynamical regions on the cerebral cortex
could be distinguished, one that seemed to exhibit chaos
whereas the other seemed to exhibit noise. The pattern
shown is essentially the same for seizures triggered by
hyperventilation, but differ for seizures triggered by light
flashes. The chaotic dynamics that one seems to observe
are determined by a small number of variables and have
low complexity. On the other hand, in the seizures of
another patient no chaotic region was found. Before and
during the seizures no chaos was found either, in all
cases. The application of non-linear signal analysis
revealed the existence of differences in the spatial
dynamics associated to absence seizures. This may con-
tribute to the understanding of those seizures and be of
assistance in clinical diagnosis.

3.2. Changes in exercise

Regularly performed exercise is associated with
diminished cardiovascular responses to environmental
stress, even in animals [65]. However, there is a paucity
of information regarding the potential mechanism(s) by
which exercise training might blunt the response of
stress. Exercise increases slow wave sleep [66], which,
in turn, is associated with elevated mood. Again, how
does exercise increase SWS and how does SWS alleviate
depression — these are yet to be properly understood.
Some evidence [67] suggests that physical training can
alter b1 and b2 adrenoceptor population and reduce a-
adrenergic responsiveness. Cross sectional studies based
on national surveys done in the USA and Canada have
shown a positive association between physical activity
and affect (mood, depression, anxiety). The association
seems to be most positive for self-reported and transient
changes in affect and also of self-esteem [67].

Moore [68] has studied the effects of exercise on
body-image, self-esteem and mood, in Australian female
college students, testing with “Profile of Mood States”
(and Levenson Locus of Control) scales. Exercisers
reported a higher quality of life, better mood states,
greater concentration and reduced confusion. Hays [69]
advocates the use of exercise (in accordance with the
need and capacity of the subject) in psychotherapy.

Schlicht [70], performing a meta-analysis of 20 stud-
ies published between 1980 and 1990, has observed 22
effect-sizes based on 1306 subjects. The age of the sub-
jects served as a weakly moderating variable. For
middle-aged (31–50 years), the relation between physi-
cal exercise and anxiety was closer than for younger
adults. The marginal moderating effect of age correlated
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also with meta-analytical results of relationship between
physical exercise and mental health.

The interactions of physical activity and fitness with
anxiety and depression have been stressed as an integral
part of health [71].

3.3. Changes in depression

Depression is a psychosomatic (psychobiosocial) dis-
order, which affects every aspect of human physiology.
Yet under-diagnosis and under-treatment in general
medical practice is all pervasive [72].

Nandrino et al. [73] reported a decrease of complexity
in EEG as a sign of depression. Nonlinear methods can
predict major depression because of the reduced com-
plexity. In healthy systems, there is a high level of com-
plexity in the dynamics. The diminished complexity of
brain function, in depression, may be due to a low level
of environmental interaction. Later they found that first
episode and recurrent patients strongly differ in their
dynamical response to therapeutic interventions [74].

Vogel et al. [75] had surmised “REM sleep depri-
vation” as the mechanism of action of most of the antide-
pressant drugs. Oniani et al. [76] had speculated that dur-
ing active wakefulness (it can logically be extrapolated
to exercise) and REM sleep, other neurobiological brain
processes (particularly on the level of the forebrain) also
proceed similarly, thus making these two states competi-
tive. The impression is created that, on the one hand,
episodes of forced wakefulness/activity restrict the for-
mation of a biological need for REM sleep during SWS,
and on the other, they can utilize the REM need already
formed thereby reducing the depressive tendency. Heart
rate variability of sinus rhythm in healthy individuals has
characteristics suggestive of low-dimensional chaos-like
determinism, which is modulated but not eliminated by
inhibition of autonomic tone or by exercise. The domi-
nant Lyapunov exponent characterizes heart rate varia-
bility independent of other investigated measures [77].

The theory of dynamical systems allows one to
describe the change in a system’s macroscopic behavior
as a bifurcation in the underlying dynamics. From the
example of depressive syndrome, the existence of a cor-
respondence between clinical and electro-physiological
dimensions and the association between clinical
remission and brain dynamics reorganization (i.e.,
bifurcation) can be shown. On the basis of this experi-
mental study, such results concerning the question of
normality vs pathology in psychiatry and the relationship
between mind and brain have been discussed [78,79].

3.4. Changes due to neurotransmitters

There are various chemicals called neurotransmitters
that convey the information to be passed and processed
through the 1016 interconnections between the 1010 neu-

rons in our brain. However, each of the several (many
perhaps yet to be discovered) neurotransmitters act
through various receptors and their numerous subtypes.
So much so that the same neurotransmitter acting
through a different receptor subtype may have opposing
actions. To cite an example, serotonin or 5-HT (5-
hydroxytryptamine) receptor subtype 5HT4 increases a
“second messenger” adenylate cyclase (AC), thereby
modulating cognition and causing anxiety. On the other
hand, 5HT1A receptor subtype reduces AC activity, thus
leading to antidepressant and anxiolytic action. Most of
the antidepressant medications utilize this property and
are called SSRI or Selective Serotonin Reuptake Inhibi-
tors. Therefore, the same chemical serotonin, acting
through a different receptor subtype, can both produce
and reduce anxiety. It is this sort of interaction that
causes chaotic oscillations in the brain. Now, there are
also other neurotransmitters. Another group of drugs,
with relative selectivity for the neurotransmitter norepi-
nephrine’s transporter molecule, also have antidepressant
property, as they too reduce AC activity. To continue
with the conundrum, a medicine to reduce high blood
pressure (hypertension), reserpine, blocks vesicular
monoamine transporter, and therefore, simultaneously
depletes brain levels of serotonin, norepinephrine and
dopamine and, in the process, gives rise to depression.
We also have neuropeptides, colocalized in neurons that
also contain classic neurotransmitters, other neuropep-
tides or both. One such neuropeptide, neurotensin, is
found in neurons containing the dopamine synthetic
enzyme tyrosine hydroxylase. Therefore, reserpine
causes a decrease in both neurotensin and dopamine,
albeit not in human and non-human primates [80]. So,
many of the psychotropic drugs exert their therapeutic
effects through various neurotransmitters, mainly
through their several specific receptor subtypes.

3.5. Changes in (cerebral) hemispheric lateralization

Interestingly, there are greater right sided (non-domi-
nant hemispheric) EEG abnormalities in depression due
to impaired cerebral lateralization [81–83]. Thus,
females are more prone (because of earlier cerebral
lateralization) and males are less predisposed to
depression. Therapeutically too, better antidepressant
results are obtained with nondominant unilateral electro-
convulsive shock [84].

Shagass et al. [85], testing “eyes open” and “eyes
closed” awake EEGs, in 12 leads, in different psychiatric
patients, found that depressives, like the personality dis-
order group, had a low level of EEG activation. Later,
they [86] performed time series analysis of amplitude,
frequency and wave symmetry. Differences between
eyes open and closed were adjusted for “eyes closed”
values to obtain measures of reactivity. These reactivity
measures yielded the main difference between the
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unmedicated and non-patients. Depressives were more
reactive. Reactivity differences were eliminated or
reversed in medicated patients. The EEGs of unmedi-
cated depressives were over-reactive and with medi-
cation, EEG reactivity declined.

Nyström et al. [87] had chosen 5-s epochs from 5-
min awake-EEG recordings and averaged to a total of
60-s recordings. In primary major depressive disorder
(MDD), they found an increase in ‘d’ amplitude and in
retarded MDD, increased ‘d’ and ‘q’ amplitude along
with EEG variability. In cases of recurrent unipolar
MDD, a reduction of total alpha symmetry was found.
Symmetry was measured by left/right ratio in amplitude
values (mean amplitude=square root of power). The
number of former depressive episodes was positively
correlated with ‘b’ amplitude and negatively correlated
with EEG symmetry for ‘d’ .

It is generally claimed that “affect” processing is a
right hemisphere (RH) function. It is also claimed that
RH dysfunction is characteristic of depressive illness.
Both these claims are controversial and it has been found
that the relationship between affect processing and
affective illness, in terms of intra- and inter-hemispheric
role play, is not straight forward. There is an exchange
of information and action between the two hemispheres
(inter-hemispheric, i.e., between left and right; intra-
hemispheric i.e., between anterior and posterior; and also
cross-hemispheric coupling i.e., similarities among the
left anterior and right posterior quadrants) [83,88]. Sum-
marily, sad mood is a function of positive coupling
(stimulation) of left posterior and right anterior areas
and/or negative coupling (depression) of left anterior and
right posterior areas of the brain. Interestingly, in Alzhei-
mer’s disease, significant nonlinear changes in the left
hemisphere (O1 lead of EEG) has been found in qEEG
[89].

The electrophysiological measures of MEG
(magnetoencephalography) consisting of 6 spectral band
measures together with spectral edge frequency and
spectral entropy, plus the time-domain-based entropy of
amplitudes (ENA) and the nonlinear measures corre-
lation dimension D2 and Lyapunov exponent L1 has
been measured during cognitive tasks. The results indi-
cate a pronounced task-dependent difference between the
anterior and the posterior region, but no lateralization
effects. Though the nonlinear measures ranged in the
middle field compared to the number of significant con-
trasts, they were the only ones to be partially successful
in discriminating the mental tasks from each other [90].

Neuroimaging studies of memory have consistently
shown that episodic retrieval is associated with right
frontal activation, whereas semantic retrieval is associa-
ted with left frontal activation. Various hypotheses have
been proposed to account for this lateralization in terms
of underlying psychological processes. Alternatively,
this lateralization may reflect the complexity of infor-

mation retrieved: retrieval of complex, contextual infor-
mation accompanying episodic retrieval invokes right-
lateralized processes preferentially. This hypothesis was
tested by manipulating the type and complexity of infor-
mation retrieved. Initial increase in complexity of both
episodic and semantic information was associated with
right inferior frontal activation; further increase in com-
plexity was associated with left dorsolateral activation.
That implies that frontal activation during retrieval is a
non-linear function of the complexity of retrieved infor-
mation [91].

Whether a correct lateralization of the primary epilep-
togenic area by means of neuronal complexity loss
analysis can be obtained from interictal EEG recordings
using semi-invasive foramen ovale electrodes has been
investigated. In a previous study with recordings from
intrahippocampal depth and subdural strip electrodes it
was shown that the dynamics of the primary epileptog-
enic area can be characterized by an increased loss of
neuronal complexity in patients with unilateral temporal
lobe epilepsy (TLE). In this study [92] neuronal com-
plexity loss analysis was applied. This analysis method
is derived from the theory of nonlinear dynamics and
provides a topological diagnosis even in cases where no
actual seizure activity can be recorded. Interictal EEG
recorded intracranially from multipolar foramen ovale
electrodes in 19 patients with unilateral TLE undergoing
presurgical evaluation was examined. The primary epi-
leptogenic area was correctly lateralized in 16 of the 19
investigated patients. The misclassification of the side of
seizure onset in three patients might be attributed to the
larger distance between the foramen ovale electrodes and
the mesial temporal structures as compared to intrahip-
pocampal depth electrodes. These results confirm the
previous findings and provide further evidence for the
usefulness of nonlinear time-series analysis for the
characterization of the spatiotemporal dynamics of the
primary epileptogenic area in mesial temporal lobe epi-
lepsy.

4. Summary and conclusions

In general, definitive evidence has hardly been found
for the existence of nonlinear determinism in EEG sig-
nals except for those recorded during epileptic seizures.
So, a given neuronal network may present essentially
different modes of activity (different dynamics)
depending on specific conditions. For some values of
control parameters, a neuronal network may change its
dynamical mode of activity, e.g., instead of a random
noisy state, a limit cycle or even a chaotic attractor may
occur. This is called a bifurcation — representing a
qualitative change and depends on a set of control para-
meters that define the operating regime of the system. It
can be hypothesized that the main difference between a
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normal and epileptic brain is that the operating regimen
of a neuronal network in the epileptic brain is much
closer to a bifurcation point than the normal brain, lead-
ing to a low-dimensional chaotic mode of behavior. In
other words, in an epileptic neuronal network, the dis-
tance between operating and bifurcation points is so
small that the system may easily switch from a stable
equilibrium to a chaotic attractor despite a very weak
(undetectable) stimulus. Therefore, in case of epilepsy,
the basic question is which factors are responsible for the
change in the operating point of the involved neuronal
networks. This nonlinear behavior has been identified at
neuronal level [93] where apparently chaotic oscillation
was observed near transition from sub-threshold to burst-
ing oscillations in thalamic neurons.

All the facts depicted in this article make us aware of
our far from complete knowledge and understanding of
definitive diagnostic and prognostic values of EEG
especially with reference to depression and the role of
nonlinear activities of the brain. Even today the text-
books of medicine, neurology and psychiatry do not
attach as much importance to EEG as they do regarding
the ECG or electrocardiogram. The EEG is considered
to be quite nonspecific except in a few cases of epileptic
disorders. Moreover the same recording elicits a differ-
ent interpretation not only from different experts (inter-
observer variations), but also from the same expert
(intra-observer variations) at different times. On the
other hand, the journals, specialized textbooks and refer-
ence books on EEG are stressing the various new com-
puter-aided (quantitative or qEEG) methods for analysis.

As yet there is no consensus on the appropriate math-
ematical analysis. Each method has its inherent advan-
tages and disadvantages. A neuropsychiatrist is less
likely to afford the time to learn all of those techniques.
In the near future, that may lead to laboratory dependent
qEEG diagnosis. Initially what had started with the aim
of simplifying and standardizing the EEG interpret-
ations, have, with time, grown into a much more com-
plex and over expanding exercise. However, without
these computations, we could not have known the finer
details of EEG and brain functions.

First [94] has discussed potential applications of com-
puter technology to diagnostic assessment and two basic
design axioms for computerized assessment. The first
axiom: given the current state of computer technology,
a human clinician must remain a necessary component
of diagnostic procedure to ensure a sufficiently high
level of diagnostic validity. The second axiom, for a suc-
cessful diagnostic computer program, is that the clinician
must understand completely the strengths and the limi-
tations of the computer-assisted assessment procedure.
Two basic approaches are the use of computers as an
expert-system and the use of computers to collect data
directly from patients by administering a diagnostic
interview or questionnaire. Butcher [95] believes that

computer-generated procedures for psychiatric assess-
ment remove subjective bias from the interpretation pro-
cess. However, computerized assessments (CAs) can
also lead clinicians to make serious errors unless the
potential problems are recognized and avoided. The CAs
can encourage a passive stance in clinical evaluation,
mystify the assessment process and may lend an
unwanted aura of scientific precision to test interpret-
ations through impressive printouts. Also, it may not be
specific or sensitive for each patient or disease. It should
be considered as raw test data or hypothesis and not as
final clinical evaluation. Clinical acumen and automated
diagnostic decision support systems are not mutually
exclusive; rather they reinforce each other [96,97].

Sarbadhikari [35] has shown that automated differen-
tiation of qEEG (power density spectra) is possible in
case of depression and exercise, albeit it is not entirely
unambiguous. Moreover, because of the inherent nonlin-
earities in EEG, the fractal nature of self-similarity can
be usefully employed in EEG signal compression for
transmission [98].

Another report [99] reviews and compares all ther-
apies that have shown efficacy in depression and Parkin-
son’s disease, although some are not in current use and
others are at the experimental stage. They include phar-
macological modification of neurotransmitter pathways,
electroconvulsive therapy (ECT), sleep deprivation, psy-
chosurgery, electrical stimulation through cerebral elec-
trodes, and transcranial magnetic stimulation. Stemming
from a pathophysiological model that stresses the brain
as an open, complex, and nonlinear system, all therapies
have been attributed a common mechanism of action.
This report suggests that the therapeutic isomorphism is
related to their ability to help the CNS (central nervous
system) deactivate cortical-subcortical circuits that are
dysfunctionally coupled. These circuits are self-
organized among neurons of their informational subsys-
tem (rapid conduction) and modulating subsystem (slow
conduction). Finally, this report extends the analysis and
comparison of these therapies to some cardiac arrhyth-
mias.

Neuropharmacological investigations aimed at under-
standing the electrophysiological correlates between
drug effect and action potential trains have usually been
carried out with the analysis of firing rate and bursting
activity. In this study [100], a selective alteration of neu-
ral circuits providing inputs to ventral tegmental area
dopaminergic neurons has been produced, and the corre-
sponding electrophysiological correlates have been
investigated by nonlinear dynamical analysis. The non-
linear prediction method combined with Gaussian-scaled
surrogate data has been used to show the chaotic struc-
ture in the time-series corresponding to the electrical
activity of ventral tegmental area dopaminergic neurons,
extracellularly recorded in vivo. A decrease in chaos of
ventral tegmental area dopaminergic neurons was found
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in a group of rats lesioned with 5,7-dihydroxytryptam-
ine, a neurotoxin, which selectively destroys serotonergic
terminals. The chaos content of ventral tegmental area
dopaminergic neurons in the control group and the
decrease of chaos in the lesioned group cannot be
explained in terms of standard characteristics of neuronal
activity (firing rate, bursting activity). Moreover, in the
control group a positive correlation has been found
between the density–power-spectrum of the interspike
intervals and the chaos content measured by nonlinear
prediction S score; this relation was lost in the lesioned
group. It is concluded that the impaired serotonergic tone
induced by 5,7-dihydroxytryptamine reduces the chaotic
behavior of the dopaminergic cell firing pattern, while
retaining many standard interspike interval character-
istics. The functional role of this behavior in a neuronal
coding problem context and the implications for the
pathophysiology of some mental disorders are discussed
in the paper [100].

However, some pitfalls still remain. Jeong et al. [101]
have raised a suspicion that the determinism in the EEG
may be too high-dimensional to be detected with cur-
rent methods.

To sum up, whether the complex dynamics are an
essential feature or if they are secondary to internal feed-
back and environmental fluctuations is not known [48].
Because of the complexity of biological systems and the
huge jump in scale from a single ionic channel to the
cell to the organ to the organism, for the foreseeable
future all computer models will be gross approximations
to the real system.

Despite that shortcoming, better theoretical models
incorporating the oscillation caused by the same neuro-
transmitter acting on its different receptor subtypes may
lead to a better understanding of brain neurodynamics.
Therefore, we can hopefully look forward to some
reliable nonlinear techniques for evaluating qEEG, in
health and disease, in the near future.
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