
Architecture Level Prediction of Software Maintenance

Abstract

A method for the prediction of software maintainability dur-
ing software architecture design is presented. The method
takes (1) the requirement specification, (2) the design of the
architecture (3) expertise from software engineers and, pos-
sibly, (4) historical data as input and generates a prediction
of the average effort for a maintenance task. Scenarios are
used by the method to concretize the maintainability re-
quirements and to analyze the architecture for the predic-
tion of the maintainability. The method is formulated based
on extensive experience in software architecture design and
detailed design and exemplified using the design of software
architecture for a haemo dialysis machine. Experiments for
evaluation and validation of the method are ongoing and fu-
ture work.

1 Introduction

One of the major issues in software development to-
day is the software quality. Rather than designing and im-
plementing the correct functionality in products, the main
challenge is to satisfy the software quality requirements,
e.g. performance, reliability, maintainability and flexibility.
The notion of software architecture has emerged during the
recent years as the appropriate level to deal with software
qualities. This because, it has been recognized [1,2] that the
software architecture sets the boundaries for the software
qualities of the resulting system.

Traditional object-oriented software design meth-
ods, e.g. [5,14,21] focus primarily on the software function-
ality and give no support for software quality attribute-
oriented design, with the exception of reusability and flexi-
bility. Other research communities focus on a single quality
attribute, e.g. performance, fault-tolerance or real-time.
However, real-world software systems are never just a real-

time system or a fault-tolerant system, but generally require
a balance of different software qualities. For instance, a
real-time system that is impossible to maintain or a high-
performance computing system with no reliability is of little
use.

To address these issues, our ongoing research efforts
aim on developing a method for designing software archi-
tectures, i.e. the ARCS method [6]. In short, the method
starts with an initial architecture where little or no attention
has been given to the required software qualities. This archi-
tecture is evaluated using available techniques and the result
is compared to the requirements. Unless the requirements
are met, the architect transforms the architecture in order to
improve the software quality that was not met. Then the ar-
chitecture is again evaluated and this process is repeated un-
til all the software quality requirements have been met or
until it is clear that no economically or technically feasible
solution exists.

The evaluation of software architectures plays a cen-
tral role in architectural design. However, software archi-
tecture evaluation is not well understood and few methods
and techniques exist. Notable exceptions are the SAAM
method discussed in [15] and the approach described in
[10]. In this paper, we propose a method for predicting
maintainability of a software system based on its architec-
ture. The method defines a maintenance profile, i.e. a set of
change scenarios representing perfective and adaptive
maintenance tasks. Using the maintenance profile, the ar-
chitecture is evaluated using so-called scenario scripting
and the expected maintenance effort for each change sce-
nario is evaluated. Based on this data, the required mainte-
nance effort for a software system can be estimated. The
method is based on our experience in architectural design
and its empirical validation is part of ongoing and future
work.

PerOlof Bengtsson & Jan Bosch
Department of Computer Science and Business Administration

University of Karlskrona/Ronneby
S-372 25 Ronneby, Sweden

+46 457 787 41
[PerOlof.Bengtsson | Jan.Bosch] @ide.hk-r.se

PerOlof Bengtsson
in Proceedings of Third European Conference on Software Maintenance and Reengineering, Amsterdam, Netherlands, March 1999, pp. 139-147.

The remainder of this paper is organized as follows.
In the next section, the maintenance prediction method is
presented in more detail. The architecture used as an exam-
ple is discussed in section 3 and the application of the meth-
od in section 4. Related work is discussed in section 5 and
the paper is concluded in section 6.

2 Maintenance Prediction Method

The maintenance prediction method presented in this
paper estimate the required maintenance effort for a soft-
ware system during architectural design. The estimated ef-
fort can be used to compare two architecture alternatives or
to balance maintainability against other quality attributes.

The method has a number of inputs: (1) the require-
ment specification, (2) the design of the architecture (3) ex-
pertise from software engineers and, possibly, (4) historical
maintenance data. The main output of the method is, obvi-
ously, an estimation of the required maintenance effort of
the system built based on the software architecture. The
maintenance profile is a second output from the method.
The profile contains a set of scenario categories and a set of
scenarios for each category with associated weighting and
analysis (scripting) results.

The maintenance prediction method consists of six
steps:

1. Identify categories of maintenance tasks
2. Synthesize scenarios
3. Assign each scenario a weight
4. Estimate the size of all elements.
5. Script the scenarios
6. Calculate the predicted maintenance effort.

The steps are discussed in more detail in the follow-
ing sections.

2.1 Identify categories of maintenance tasks

Software maintainability is defined by IEEE [13] as:

The ease with which a software system or component
can be modified to correct faults, improve performance
or other attributes, or adapt to a changed environment.

This definition renders three categories of mainte-
nance, i.e. corrective, perfective and adaptive. The predic-
tion method focuses only on perfective and adaptive
maintenance and does not predict efforts required for cor-
rective maintenance. Nevertheless, the remaining catego-
ries are too abstract to be relevant in this process step.
Instead, the categories are defined based on the application
or domain description. For example, a haemo dialysis ma-

chine might have maintenance scenarios concerned with
treatment maintenance, hardware changes, safety regulation
changes, etc. These categories reflect the meaning of the
maintainability requirement in the context of this applica-
tion or domain and give the designer a better understanding
of the requirements posed on the architecture.

2.2 Synthesize scenarios

For each of the maintenance categories, a represent-
ative set of concrete scenarios is defined. The software ar-
chitect, or the domain expert, is responsible for selecting the
scenarios such that the set is representative for the mainte-
nance category. The number of scenarios in the set is de-
pendent on the application and the domain, but in our
experience we define about ten scenarios for each category.
Scenarios should define very concrete situations. Scenarios
that specify types of maintenance cases or sub categories is
to be avoided. For example, a scenario could be, “Due to
changed safety regulations, a temperature alarm must be
added to the hydraulic module in the dialysis machine”. An-
other example is, “Due to a new type of pump, the pump in-
terface must be changed from duty cycle into a digital
interface, with a set value in kP (kilo Pascal)”.

It is important to note that our use of the term ‘sce-
narios’ is different from Object-Oriented design methods
where the term generally refers to use-case scenarios, i.e.
scenarios describing system behavior. Instead, our scenari-
os describes an action, or sequence of actions that might oc-
cur related to the system. Hence, a change scenario,
describes a certain maintenance task. In addition, due to rea-
sons of space, in this paper we present scenarios as vignettes
[15] rather than in their full size representation.

2.3 Assign each scenario a weight

Change scenarios have different likelihood of actu-
ally occurring during the lifetime of the system. In order to
generate an accurate measure for maintainability, the pre-
diction method requires probability estimates, i.e. weights,
for each scenario. These probabilities are used for balancing
the impact on the prediction of more occurring and less oc-
curring maintenance tasks. We define the weight measure
as the relative probability of this scenario resulting in a
maintenance task during a particular time interval, e.g. a
year, or between two releases. Consequently, scenarios that
describe often-recurring maintenance tasks will get higher
probabilities and therefore impact the predicted value more
and the architecture will generally be optimized for incorpo-
rating those maintenance tasks with minimal effort.

The weight of scenarios is produced in two ways. If
no historical maintenance data is available from similar ap-
plications or earlier releases, the software architect, or the
domain expert, estimates the scenario weights. If empirical
data about maintenance of the product exists in the organi-
zation, the probability data of earlier maintenance efforts
should be used as basis for weighting. Based on the proba-
bility data for the individual scenarios, it is possible to cal-
culate a probability figure for each category as well. The
exact calculation of probabilities is illustrated in section 4.

2.4 Estimate the size of all elements

To estimate the maintenance effort, the size of the ar-
chitecture needs to be known and the sizes of the affected
components need to be known. The component size influ-
ences the effort required to implement a change in the com-
ponent. At least three techniques can be used for estimating
the size of components. First, the size of every component
can be estimated using the estimation technique of choice.
Secondly, an adaptation of an Object-Oriented metric
(SIZE2 [8]) metric may be used (SIZE2’) [2]. Finally, when
historical data from similar applications or earlier releases
is available, existing size data can be used and extrapolated
to new components.

2.5 Script the scenarios

Based on the selected scenarios from each mainte-
nance category, the weights defined for each scenario and
the categories and the size data for the components, we es-
timate the maintainability of the architecture by scripting
[16] the scenarios. For each scenario, the impact of the real-
ization of that scenario in the architecture and its compo-
nents is evaluated. Thus, find what components are affected
and to what extent will they be changed.

For example, implementing the earlier described
scenario of adding a temperature alarm in the dialysis ma-
chine would require changes to the hydraulic module com-
ponent and addition of three new components of type device
and controlling algorithm. In addition, the components for
system definition and the protective system need to be
changed.

2.6 Calculate the predicted maintenance effort

The prediction value is a weighted average for the
effort (expressed as size of modification) for each mainte-
nance scenario. Based on that, one can calculate an average
effort per maintenance task. To predict the required mainte-
nance effort for a period of time, an estimation or calcula-
tion of the number of maintenance tasks has to be done.

That figure is then multiplied with the average effort per
maintenance task. Note that the above is only necessary
when predicting maintenance effort for a period of time.
When comparing two alternative architectures, it is suffi-
cient to compare the weighted average effort per mainte-
nance task.

Figure 1: Assessment Calculation Equation

3 Example Application Architecture

Haemo dialysis systems present an area in the do-
main of medical equipment where competition has been in-
creasing drastically during recent years. The aim of a
dialysis system is to remove water and certain natural waste
products from the patient’s blood. Patients that have, gener-
ally serious, kidney problems and consequently produce lit-
tle or no urine use this type of system. The dialysis system
replaces this natural process with an artificial one.

An overview of a dialysis system is presented in fig-
ure 2. The system is physically separated into two parts by
the dialysis membrane. On the left side the dialysis fluid cir-
cuit takes the water from a supply of a certain purity (not
necessarily sterile), dialysis concentrate is added using a
pump. A sensor monitors the concentration of the dialysis
fluid and the measured value is used to control the pump. A
second pump maintains the flow of dialysis fluid, whereas a
third pump increases the flow and thus reduces the pressure
at the dialysis fluid side. This is needed to pull the waste
products from the patient’s blood through the membrane
into the dialysis fluid. A constant flow of dialysis fluid is
maintained by the hydro mechanic devices denoted in the
figure with rectangles with curls.

On the right side of figure 2, the extra corporal cir-
cuit, i.e. the blood-part, has a pump for maintaining a spec-
ified blood flow on its side of the membrane. The patient is
connected to this part through two needles usually located
in the arm that take blood to and from the patient. The extra
corporal circuit uses a number of sensors, e.g. for identify-
ing air bubbles, and actuators, e.g. a heparin pump to avoid
cluttering of the patients blood while it is outside the body.

Mtot P Sn() V Sn C,
m

()
m 1=

kc

∑⋅

n 1=

ks

∑=

ks = number of scenarios

P(Sn) the probability weight of scenario n
V(Sn,Cm) the affected volume of component m in scenario n

kc = number of components in architecture

However, these details are omitted since they are not needed
for the discussion in this paper.

Figure 2: Schematic of Haemo Dialysis Machine

The dialysis process, or treatment, is by no means a
standard process. A fair collection of treatments exists in-
cluding, for example, Haemo Dialysis Filtration (HDF), Ul-
tra Filtration (UF) and other variations, such as single
needle/single pump, double needle/single pump. Treat-
ments are changed due to new research results but also since
the effectiveness of a particular treatment decreases when it
is used too long for a patient. Although the abstract function
of a dialysis system is constant, a considerable set of varia-
tions exists already. Based on experience, the involved
company anticipates several additional changes to the soft-
ware, hardware and mechanical parts of the system that will
be necessary in response to developments in medical re-
search.

3.1 Requirements

The aim during architectural design is to optimize
the potential of the architecture (and the system built based
on it) to fulfil the software quality requirements. For dialy-
sis systems, the driving software quality requirements are
maintainability, reusability, safety, real-timeliness and de-
monstrability. Below, we elaborate on the maintainability
requirement.

Maintainability. Past haemo dialysis machines produced
by our partner company have proven to be hard to maintain.
Each release of software with bug corrections and function
extensions have made the software harder and harder to
comprehend and maintain. One of the major requirements
for the software architecture for the new dialysis system
family is that maintainability should be considerably better
than the existing systems, with respect to corrective but es-
pecially adaptive maintenance:

• Corrective maintenance has been hard in the existing
systems since dependencies between different parts of
the software have been hard to identify and visualize.

• Adaptive maintenance is initiated by a constant stream
of new and changing requirements. Examples include
new mechanical components as pumps, heaters and
AD/DA converters, but also new treatments, control
algorithms and safety regulations. All these new
requirements need to be introduced in the system as
easily as possible. Changes to the mechanics or hard-
ware of the system almost always require changes to
the software as well. In the existing system, all these
extensions have deteriorated the structure, and conse-
quently the maintainability, of the software and subse-
quent changes are harder to implement. Adaptive
maintainability was perhaps the most important
requirement on the system.

Figure 3: The relations of the logical archetypes

3.2 Logic Archetypes

One of our main concerns when we designed the
software architecture for the haemo dialysis machine was
maintainability. The logical archetypes are based on device
hierarchy (figure 3). The archetypes are central to the design
and important for understanding the haemo dialysis applica-
tion architecture when doing the scripting, i.e. change im-
pact analysis.

Device. The system is modeled as a device hierarchy, start-
ing with the entities close to the hardware as leaves, ending
with the complete system as the root. For every device,
there are zero or more sub-devices and a controlling algo-
rithm. The device is either a leaf device or a logical device.

ControllingAlgorithm. In the device archetype, informa-
tion about relations and configuration is stored. Computa-
tion is done in a separate archetype, the
ControllingAlgorithm, which is used to parameterize De-
vice components.

Patient

H20

The extra

The dialysis fluid circuit

corporal circuit

Filter

sensorheater

dialysis fluid
concentrate

= pump

AlarmHandler

activate()
reset()

*

0

AlarmDetectorDevice

reset() Sends alarm events

1 ControllingAlgortihm

calculate()
0

Normaliser

normalise()
denormalise()

Device

getValue()
setValue()

*

0

hazard surveillance

10

Normaliser. To convert from and to different units of
measurement the normalization archetype is used.

AlarmDetectorDevice. Is a specialization of the Device ar-
chetype. Components of the AlarmDetectorDevice arche-
type are responsible for monitoring the sub devices. When
threshold limits are crossed an AlarmHandler component is
invoked.

AlarmHandler. The AlarmHandler is the archetype re-
sponsible for responding to alarms by returning the haemo
dialysis machine to a safe-state or by addressing the cause
of the alarm.

3.3 Scheduling Archetypes

Haemo dialysis machines are required to operate in
real time. However, haemo dialysis is a slow process that
makes the deadline requirements on the system less tough to
adhere to. A treatment typically takes a few hours and dur-
ing that time the system is normally stable. Since the timing
requirements are not that tight we designed the concurrency
using the Periodic Object pattern [19]. It has been used suc-
cessfully in earlier embedded software projects.

Scheduler. The scheduler archetype is responsible for
scheduling and invoking the periodic objects. Only one
scheduler element in the application may exist and it han-

dles all periodic objects of the architecture. The scheduler
accepts registrations from periodic objects and then distrib-
utes the execution between all the registered periodic ob-
jects.

Periodic object. A periodic object is responsible for imple-
menting its task using non-blocking I/O and using only the
established time quanta. The tick() method will run to its
completion and invoke the necessary methods to complete
its task.

Figure 5: Push/Pull Update Connection

3.4 Connector Archetypes

Causal connections [18] implements the communi-
cation between the architecture elements. The principle is
similar to the Observer pattern [11] and the Publisher-Sub-
scriber pattern [7]. The usage of the connection allows for

Protective

Control System: Treatment Level

Control System: Hardware API Level

System

Figure 4: Example Haemo Dialysis Application Architecture

JouleToPercent PT100toCelsius

FluidHeater

TempCtrl

TempSensor

FluidAlarmHandler

FrequenceToRevolutions

TemperatureDevice

OverHeatAlarm

AcetatPump

ConcCtrl

ConcentrationDevice

ConductivitytSensor

mSTomMol

FlowDifferentialPump FluidPrePump FluidPostPump

ReversedFlowAlarm

WeightLossDevice DialysisFluidFlow

SetCtrl

HDFTreatment HaemoDialysisMachine

Observer
notify()

Target

update()

Link
update()
notify()
pushconnect()
pullconnect()

next push link

dynamic reconfiguration of the connection, i.e. push or pull.
(Figure 5)

Target. Maintains information that other entities may be
dependent on. The target is responsible for notifying the
link when its state changes.

Observer. Depends on the data or change of data in the tar-
get. Is either updated by a change or by own request.

Link. Maintains the dependencies between the target and
its observers. Also holds the information about the type of
connection, i.e. push or pull. It would be possible to extend
the connection model with periodic updates.

3.5 Application Architecture

The archetypes represent the building blocks that we
may use to model the application architecture of a haemo di-
alysis machine. In figure 4, the application architecture is
presented. The archetypes allow for the application archi-
tecture to be specified in a hierarchical way, with the alarm
devices being orthogonal to the control systems device hier-
archy. The description serves as input for scenario scripting,
which is architecture level impact analysis in the maintain-
ability case.

This also allows for a layered view of the system, not
meaning that the architecture is layered. For example, to
specify a treatment we only have to interface the closest lay-
er of devices to the HaemoDialysisMachine device (figure
4). There would be no need to understand or interfacing the
lowest layer.

4 PREDICTION Example

In this section, we will present an example predic-
tion for the architecture presented in section 3. It is present-
ed to illustrate the practical usage of the method, rather than
to give a perfect prediction of this particular case.

4.1 Scenario Categories

In the example domain we identify the following cat-
egories of maintenance tasks;

1. Hardware changes, i.e. additions and replacements of
hardware require changes to software.

2. Algorithm changes, i.e. algorithms become obsolete
and is replaced by new improved ones.

3. Safety changes, i.e. safety standards changes and sets
new requirements on the system.

4. Medical advances requires changes, i.e. new treatments
and parameters are introduced.

5. Communication and I/O change.

6. Market driven changes. Different markets or countries
require certain functionality.

We use these broad categories of maintenance task
in the next step of the method to ensure that we include all
the important aspects in the broad sense.

4.2 Change Scenarios

When we have the categories, we list a number of
scenarios for each category that describe concrete mainte-
nance tasks that may occur during the next maintenance
phase.

Scenarios describe a possible situation and change
scenarios, in particular, describe possible change situations
that will cause the maintenance organization to perform
changes in the software and/or hardware. For reasons of
space, the scenarios are presented very brief. In our real
world application of the method, the scenarios are generally
more verbose.

This list presented in table 1 represents a mainte-
nance profile, i.e. it profiles the relevant interpretation of
software maintenance for the resulting system.

Table 1: Maintenance Profile

Category Scenario Description Weight

Market
Driven

C1 Change measurement units
from Celsius to Fahrenheit for
temperature in a treatment.

0.043

Hardware C2 Add second concentrate pump
and conductivity sensor.

0.043

Safety C3 Add alarm for reversed flow
through membrane.

0.087

Hardware C4 Replace duty-cycle controlled
heater with digitally interfaced
heater using percent of full effect.

0.174

Medical
Advances

C5 Modify treatment from linear
weight loss curve over time to
inverse logarithmic.

0.217

Medical
Advances

C6 Change alarm from fixed flow
limits to follow treatment.

0.087

Medical
Advances

C7 Add sensor and alarm for
patient blood pressure

0.087

Sum 1.0

In section 2.2, a total number of ten scenarios per
category were suggested. Both for reasons of space and il-
lustrativeness, we will however only use a total of ten sce-
narios in this example.

4.3 Assign Weights

Each scenario has a certain likelihood of appearing
during the next phase of maintenance. Each scenario is
therefore assigned a value for the probability of which any
arbitrary maintenance task from the maintenance phase will
be like this (see table 1, column 3). The sum of all the
weights must be exactly 1.

For assigning each weight we can use two approach-
es. First, we can make qualified guesses that some changes
are more likely than others. Domain experts or software en-
gineers can support the estimation with experiences from
the earlier maintenance phases. Second, we can collect and
categorize historical data from other similar development
projects.

4.4 Component Size Estimates

There are two ways of estimating the size of compo-
nents. First, the component sizes are estimated using the es-
timation technique of choice. In most organizations, some
estimation technique is used and could also be used for the
method presented in this paper. In many cases the project
planning already use and require size estimates of the sys-
tem for work division. These estimates are either equivalent
to those or, the estimates for the architecture are one level
more fine grained.

Second, a prototype implementation or a previous
release may be available which can be used as basis for the

Hardware C8 Replace blood pumps using
revolutions per minute with
pumps using actual flow rate (ml/
s).

0.087

Com.
and I/O

C9 Add function for uploading
treatment data to patient’s digital
journal.

0.043

Algorithm
Change

C10 Change controlling algo-
rithm for concentration of dialysis
fluid from PI to PID.

0.132

Table 2: Estimated Component Size

Component
Size

(LOC)

HDFTreatment 200

HaemoDialysisMachine 500

ConcentrationDevice 100

TemperatureDevice 100

Sum 2805

Table 1: Maintenance Profile

Category Scenario Description Weight

Sum 1.0

WeightlossDevice 150

DialysisFluidFlowDevice 150

ConcCtrl 175

TempCtrl 30

SetCtrl 30

AcetatPump 100

ConductivitySensor 100

FluidHeater 100

TempSensor 100

FlowdifferentialPump 100

FluidPrePump 100

FluidPostPump 100

mSTomMol 20

JouleToPercent 20

PT100toCelsius 40

FrequenceToRevolutions 40

OverHeatAlarm 50

ReversedFlowAlarm 300

FluidAlarmHandler 200

Table 2: Estimated Component Size

Component
Size

(LOC)

Sum 2805

estimation. The size estimates presented in table 2 are syn-
thesized using the size data from an early prototype imple-
mentation.

4.5 Script the Scenarios

The scenario scripting, or change impact analysis, is
done by investigating the required changes to the compo-
nents of the application architecture and the severity of the
change in percent. To this stage we have not investigated if
any particular method for scripting is to prefer over others.
An introduction to change impact analysis can be found in
[4]. The result of scripting the scenarios in our example is
shown in table 3.

4.6 Calculation

The prediction is calculated using the formula pre-
sented in figure 1:

0.043*60 + 0.043*127.5 + 0.087*350 + 0.174*10 +
0.217*100 + 0.087*190 + 0.087*350 + 0.087*120 +
0.043*290 + 0.132*100 = 145 LOC / Change

Given that we estimate around 20 maintenance task
for the predicted period of time, either from first to second
release or for the coming year. Assuming that we also have
an estimated or historical data of maintenance productivity
we are able to extrapolate the estimate from this method to
a total maintenance effort estimate. We assume that we have
a perfective maintenance productivity that are similar to the
median reported in [12], i.e. 1.7 LOC/day, which amounts
to about 0.2 LOC/hour. Then we get the following estimate:

20 changes per 145 LOC = 2900 LOC

2900 / 0.2 = 14 500 hours of effort

This would represent a medium project of about 6-7
persons working around 2300 hours per year.

5 Related work

Architecture assessment is important for achieving
the required software quality attributes. A well-known
method is the scenario-based architecture assessment meth-
od (SAAM) [15]. The SAAM method of assessing software
architecture is primarily intended for assessing the final ver-
sion of the software architecture and involves all stakehold-
ers in the project. The method we propose differs in that it
does not involve all stake holders, and thus requires less re-
sources and time, but instead provides an instrument to the
software architects that allows them to repeatedly evaluate
architecture during design. We recognize the need for stake-
holder commitment and believe that these two methods
should be used in combination.

In addition, a method based on an ISO standard has
been proposed in [10], which suggests a rigorous metrics
approach to the problem of software quality evaluation of
software architectures. The method make a clear distinction
on internal and external views, where the external view is
the view important to or seen by the clients of the resulting
products. The rigorous ambition makes it hard to believe
that the method will be suitable for usage in every cycle in
an iterative and incremental software architecture design
process.

Within the software maintenance community efforts
have been made to predict maintainability. A set of object
oriented metrics was validated in [17] to be good predictors

Table 3: Impact Analysis per Scenario

Scenario Dirty Components Volume

C1 HDFTreatment (20% change) +
new Normaliser type component

,2*200+
20 = 60

C2 ConcentrationDevice (20%
change) + ConcCtrl (50% change)
+ reuse with 10% modification of
AcetatPump and ConductivitySen-
sor

,2*100+
,5*175+
,1*100+
,1*100 =
127,5

C3 HaemoDialysisMachine (10%
change) + new AlarmHandler +
new AlarmDevice

,1*500+
200+100
=350

C4 Fluidheater (10% change),
remove DutyCycleControl and
replace with reused SetCtrl

,1*100
= 10

C5 HDFTreatment (50% change) ,5*200
= 100

C6 AlarmDetectorDevice (50%
change) + HDFTreatment (20%
change) + HaemoDialysisMa-
chine (20% change)

,5*100+
,2*200+
,2*500
= 190

C7 see C3 = 350

C8 new ControllingAlgorithm + new
Normaliser

100+20
= 120

C9 HDFTreatment (20% changes) +
HaemoDialysisMachines (50%
changes)

,2*200+
,5*500
= 290

C10 Replacement with new
ControllingAlgorithm

= 100

of the software maintenance effort for each module in a
software system. However, the metrics suite used requires
data that can only be collected from the source code and
thus cannot be used for software architecture when no or
only prototype source exist.

Software change impact analysis is an established
research area within the software maintenance community
[4]. A variety of models and techniques exist. However, the
techniques are often based on having the software available
and its source code and this prohibits their application to
software architectures. To the best of our knowledge, no im-
pact analysis method exists that is specific to software ar-
chitecture.

6 Conclusions

We have presented a method for prediction of main-
tainability from software architecture. The method provides
a number of benefits: First, it is practical and has been used
during architectural design. Second, its use provides bene-
fits for more than just the prediction, e.g. improved require-
ments understanding. Third, it combines the usage of design
expertise and historical data for validation of scenario pro-
files. This way the method more efficiently incorporates the
uniqueness of the changes for the predicted period of time.
Fourth, the method is very slim in terms of effort and pro-
duced artifacts. Finally, it is suitable for design processes
that iterate frequently with evaluation in every iteration, e.g.
as in the ARCS method [3].

Weaknesses of the method include its dependency
on a representative maintenance profile and the problem of
validating that a profile is representative. In our future work
we aim to address this in a number of ways. First, we are
planning a study investigating how individual knowledge
and expertise affects the representativeness of a mainte-
nance profile and thus how the activities concerned with
generating maintenance profiles should be staffed. Second,
we will continue to study industrial maintenance practice
and intend to incorporate that knowledge can be incorporat-
ed into the method. Finally, we intend to study the sensitiv-
ity of the method for variation of the input variables, e.g. if
the method is more or less sensitive to the representative-
ness of the maintenance scenario profile than we currently
think, or if the size estimates are more significant for the re-
sults.

References
1. L. Bass, P. Clements, R. Kazman, ‘Software Architecture In

Practise’, Addison Wesley, 1998.
2. P. Bengtsson, ‘Towards Maintainability Metrics on Software

Architecture: An Adaptation of Object-Oriented Metrics’,
First Nordic Workshop on Software Architecture (NOSA'98),

Ronneby, August 20-21, 1998.
3. P. Bengtsson, J. Bosch, ‘Scenario Based Software Architec-

ture Reengineering’, Proceedings of International Confer-
ence of Software Reuse 5 (ICSR5), 1998.

4. Bohner, S. A, Arnold, R.S., Software Change Impact Analy-
sis, IEEE Computer Society Press, 1996.

5. G. Booch, Object-Oriented Analysis and Design with Appli-
cations, (2nd edition), Benjamin/Cummings Publishing Com-
pany, 1994.

6. J. Bosch, P. Molin, ‘Software Architecture Design: Evalua-
tion and Transformation’, submitted, 1997.

7. F. Buschmann, R. Meunier, H. Rohnert, M.Stahl, Pattern-
Oriented Software Architecture - A System of Patterns, John
Wiley & Sons, 1996.

8. S.R. Chidamber and C.F. Kemerer, ‘Towards a metrics suite
for object-oriented design,’ in proceedings: OOPSLA'91,
pp.197-211, 1991.

9. CEI/IEC 601-2 Safety requirements standard for dialysis
machines.

10. J.C. Dueñas, W.L. de Oliveira, J.A. de la Puente, ‘A Software
Architecture Evaluation Method,’ Proceedings of the Second
International ESPRIT ARES Workshop, Las Palmas, LNCS
1429, Springer Verlag, pp. 148-157, February 1998.

11. E. Gamma, R. Helm, R. Johnson, J.O. Vlissides, Design Pat-
terns Elements of Reusable Design, Addison.Wesley, 1995.

12. Henry, J. E., Cain, J. P., “A Quantitative Comparison of Per-
fective and Corrective Software Maintenance”, Journal of
Software Maintenance: Research and Practice, John Wiley &
Sons, Vol 9, pp. 281-297, 1997

13. IEEE Standard Glossary of Software Engineering Terminol-
ogy, IEEE Std. 610.12-1990.

14. I. Jacobson, M. Christerson, P. Jonsson, G. Övergaard,
‘Object-oriented software engineering. A use case approach’,
Addison-Wesley, 1992.

15. R. Kazman, L. Bass, G. Abowd, M. Webb, ‘SAAM: A
Method for Analyzing the Properties of Software Architec-
tures,’ Proceedings of the 16th International Conference on
Software Engineering, pp. 81-90, 1994.

16. P.B. Krutchen, ‘The 4+1 View Model of Architecture’, IEEE
Software, pp. 42-50, November 1995.

17. W. Li, S. Henry, ‘Object-Oriented Metrics that Predict Main-
tainability’, Journal of Systems and Software, vol. 23, no. 2,
pp. 111-122, November 1993.

18. C. Lundberg, J. Bosch, “Modelling Causal Connections
Between Objects”, Journal of Programming Languages,
1997.

19. P. Molin, L. Ohlsson, ‘Points & Deviations - A pattern lan-
guage for fire alarm systems,’ to be published in Pattern Lan-
guages of Program Design 3, Addison-Wesley.

20. L. H. Putnam, ‘Example of and Early Sizing, Cost and Scehd-
ule Estimate for an Application Software System’, Proceed-
ings of COMPSAC’78, IEEE , pp. 827-832, Nov 1978.

21. J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, W.
Lorensen, Object-oriented modeling and design, Prentice
Hall, 1991.

