
PHP-workshop-7

	PHP/MySQL: Creating a guest book

	Olivier Roble

Creating a visitors' book is one of the simplest applications to implement with PHP and a database. The goal is to enable your visitors to enter comments via a HTML fill-in form, to store them in a database, and to display them in a new page. You will learn here how to pass data from a form into a database by using a simple query. So it's not really complicated, just follow us!

Creating the Database Table

In our example, we will use only one table to store the visitors' comments. Before designing any page, we must create this table. We will call it impression and it will be composed of six columns corresponding to the various pieces of information entered by the visitors.

Create the table with the following structure:

	Data
	Column name
	Data type

	Unique identification number
	id
	UNSIGNED SMALLINT, Auto-incremented

	Name or nickname
	name
	VARCHAR, maximum 128 characters

	E-mail
	email
	VARCHAR, maximum 128 characters

	Date
	date
	DATE

	Feedback
	impression
	ENUM('like','dislike')

	Comments
	comments
	TEXT

Creating the Form

To enable your visitors to enter comments about your site, you must provide them with an input form. We will create it using regular HTML.

1 : <html>
2 : <head><title>PHP workshop on form management: impressions.html</title><head>
3 : <body>

[...]

10 : <form method="post" action="ajoutimp.php">
11 : Your name : <input type="text" name="nom">

12 : Your e-mail : <input type="email" name="email">

13 : Did you <input type="radio" name="impression" value="aime"> lode
14 : <input type="radio" name="impression" value="pasaime"> or not this Website.
15 :

16 : Your comments : <textarea name="commentaires"></textarea>
17 :

18 : <input type="submit" name="valider" value="Send">
19 : </form>

[...]

30 : </body>
31 : </html>

In this form, we ask the visitor to enter his name and e-mail address (lines 11 and 12). Next, we ask him whether he liked or disliked the site by using two radio buttons (lines 13 and 14). And, lastly, a text field is used to collect his comments (line 16).

Once these data have been collected, they are forwarded to a PHP script for processing (line 10). They are then sent to the ajoutimp.php file using the HTTP post method. We have chosen this method for reasons of confidentiality, since the collected data are sent via the HTTP request body. You can obtain the same results through the get method. The data are then sent as part of the URL in the following form:

ajoutimp.php?nom=xxxxx&email=xxxxx...

If you use post, the data are hidden from the visitor.

Checking Input Validity

Our form data will be sent to the ajoutimp.php page that will connect to our database and run a SQL query to insert them. But before doing this, we must make sure that the expected data are valid. The checking process is simple. The goal is to know if the mandatory fields (nom, e-mail and impression) have been correctly filled in. If not, we display a warning message.

1 : <?php
2 : $continu = 1;
3 : if ($nom == "")
4 : {
5 : print ("Your name is needed !
");
 $continu = 0 ;
6 : }
7 : else
8 : {
9 : print ("Thank you for giving your name");
10: }
11: ?>

The various pieces of information collected through our form are accessible through different variables. These have the same name as the form controls used to collect data. For instance, the value of the nom text field is stored in a variable called $nom.

We just need to test the presence of a value in the variables. For this, we must first compare the variable $nom with an empty string, "" (line 3), using the equality operator ==.

If the result of the comparison is true (the variable is indeed empty), we display an error message and assign 0 to the $continu variable (line 5). We use this variable as a flag for the script operation. If its value is 1, we can continue with the script execution. If it is 0, the insertion of the data into the database is cancelled.

We follow the same method to check the presence of an e-mail address.

Inserting User Data into the Table

Once the validity of the user data is confirmed, we can insert them into our database. We need to build a complete SQL query, using the following structure:

INSERT INTO [tablename] ([column1], [column2]) VALUES ([value1], [value2])

By doing so, we ask the database engine to insert a new row (INSERT) in the tablename table, using the value1 and value2 values for the column1 and column2 columns, respectively. In our case, we get the following query:

INSERT INTO impression (name, email, impression, date, comments) VALUES ('$name', '$email', 'impression', '$date', '$comments')

To run this query, you must first store the query string in a variable before submitting it to the MySQL server through the mysql_query function. Here is the final insertion page:

1 :<html>
2 : <head><title>PHP workshop for form management: ajoutimp.php</title><head>
3 : <body>
4 : <?php
5 : $db = mysql_connect();
6 : $continu=1;
7 : if ($nom == "")
8 : {
9 : print("Your name is needed !
");
10: $continu=0;
11: }

[...]

22: if ($continu == 1)
23: {
24: $date=date("Y-m-d");
25: $sql="INSERT INTO impression (name, email, impression, date, comments) VALUES ('$name', '$email', 'impression', '$date', '$comments')";
26: mysql_query($sql, $db);
27: print("Thank you for giving me your impressions !") ;
28: }
29: else
30: {
31: print("back");
32: }
33: ?>
34: </body>
35: </html>

If all the input fields have received a value, the $continu variable contains the value 1. Once this value has been checked (line 22), we can execute the query to insert the data (lines 25 and 26) and display a message to thank the visitor (line 27).

Conversely, if the $continu variable holds 0, we simply display a link to revert to the fill-in form (line 29). The error messages due to bad input will have been displayed as the data are checked.

Displaying the comments

Collecting comments from visitors is all very well, but useless if you cannot display them. We will use another SQL query to retrieve and display the table data. This is what it looks like:

SELECT [columns] FROM [tablename] ORDER BY [sort_column]

In our example, we will display the collected comments sorted by date. And to improve the page layout and readability, we will display them in a table. Here is our display script:

1 : <html>
2 : <head><title>PHP workshop for form management: adminimp.php</title><head>
3 : <body>
4 : <table align="center" cellspacing="0" cellpadding="0" border="1" width="80%">
5 : <tr>
6 : <td bgcolor="black">DATE</td>
7 : <td bgcolor="black">NAME</td>
8 : <td bgcolor="black">EMAIL</td>
9 : <td bgcolor="black">IMPRESSION</td>
10: <td bgcolor="black">COMMENTS</td>
11: </tr>
12: <?php
13: $db = mysql_connect();
14: $sql="SELECT * FROM impression ORDER BY date";
15: $res=mysql_query($sql, $db);
16: while ($ligne = mysql_fetch_object ($res))
17: {
18: print "<tr>";
19: print "<td>$ligne->date</td>";
20: print "<td>$ligne->nom</td>";
21: print "<td>$ligne->email</td>";
22: print "<td>$ligne->impression</td>";
23: print "<td>$ligne->comments</td>";
24: print "</tr>";
25: }
26: mysql_free_result ($res);
27: ?>
28: </table>
29: </body>
30: </html>

Our visitors' book is now finished.

As you can see, it is simple to implement. Besides, if you have read our workshop on creating a dynamic summary page, all the instructions used to display query results should be familiar to you.

Page 2 of 4

