
PHP-workshop-4

	PHP/MySQL: How to retrieve and display a record in a MySQL database

	Jean Guillaume Birot

Now that your database has been filled up with article records and you know the basics of PHP, we can tackle more serious things. The first step will be to access the database and then display a complete article on a Web page.
Connecting to the Database

As its name implies, MySQL supports SQL, the standard Structured Query Language. SQL allows you to select and sort table rows based on certain criteria. So we will use it to read our database content, and, more specifically, to retrieve a specific article record. We will use PHP4 to run queries against the database from within our Web page.

[image: image1.png]

 Warning
	[image: image2.png]

	[image: image24.png]

Filling your database. This workshop presumes that your MySQL database hosts a table called article, containing at least one article with an ID of 1.

	[image: image3.png]

	[image: image4.png]

First of all, we must connect to the database.

1: <html>
2: <head>
3: <title> PHP Workshop 4 - testDb.php </title>
4:
5: <?php
6: $db = mysql_connect("localhost","user","password");
7: mysql_select_db("user_uk_db",$db);

[...]

13: ?>
14:
15: </head>

We need just two lines to open a MySQL database session. The first one is used to connect to the MySQL server (line 6). To do this, we will call up the mysql_connect() function passing it two arguments: your user id to this site (user) and the associated password (password). After the connection, the $db variable will contain either a link identifier or a NULL value.

[image: image5.png]

 Warning
	[image: image6.png]

	[image: image25.png]

Variable names. Beware! PHP variable names always begin with the $ character.

	[image: image7.png]

	[image: image8.png]

This link identifier will be useful to us for selecting the database to access (line 7). Since we will be using one database only throughout the page, we will call up the mysql_select_db() function, passing it the database name made up of your user id followed by the suffix _uk_db (user_uk_db) and the link identifier.
Building a SQL query

After having successfully connected to the database, we can retrieve an article to display. For this, we will construct a SQL query, which is not as difficult as it sounds.

9: $requete = "SELECT * FROM article WHERE id=1";
10: $result = mysql_query ($requete,$db);
11: $article =mysql_fetch_object($result);
12: mysql_free_result($result);

The query is first composed in the form of a character string (line 9), as shown below:

SELECT [column list] FROM [table name] WHERE [condition]

In our case, we will use * for our column list, which means that we want all the columns of the matching rows to be selected. We will use here the only table we have, article. The WHERE condition is used to define a search criterion in order to select only the records we want to display. In our example, we want to retrieve only the first table row. So our criteria is id=1 (meaning the article with an id of 1).

Running the query against the database is child's play. We will use the mysql_query() function which returns an identifier that is used afterwards to refer to the result set (made up of only one record in our example) which is stored in the memory after the SQL query run. This identifier is stored in the $result variable (line 10). To read our results, we will call on one of the PHP functions that begin with mysql_fetch. The mysql_fetch_object function (line 11) returns a so-called object, which represents one record fetched from the specified result set. This object is a complex structure and each field is stored as one of the object's properties.

[image: image9.png]

 Note
	[image: image10.png]

	[image: image26.png]

Free the memory. If you are concerned about memory cluttering, you can use the mysql_free_result, passing it the result identifier, as we did in line 12 for $result.

	[image: image11.png]

	[image: image12.png]

Displaying the Result

Now that our article data are ready, we just need to display them on the page. This occurs in the page body, in the form of three small PHP instructions:

16: <body>
17: <?php echo $article->titre ?>
18:

19: <?php echo $article->chapeau_long ?>
20:

21: <?php echo $article->corps ?>
22: </body>
23: </html>

As we said earlier, the $article variable contains our record object. To access the various fields, we use the following construction: object-> property name. By doing so, we display the title (line 17), the short description (line 19) and the body (line 21) of the article.

[image: image13.png]

 Warning
	[image: image14.png]

	
Several results ... All the table rows retrieved after a call to mysql_query are returned in the form of a result set. In our basic example, the search criterion based on the primary key (the ID column) gives us the guarantee that the result set will only encompass one record. If several rows are returned, they will have to be read successively in a loop containing a (fetch) function.

	[image: image15.png]

	[image: image16.png]

Error Management

Programs are seldom totally free from mistakes or bugs that can cause errors at run time. Supposing that a mistake creeps into the code for connecting to the base or building the query. Then it is wise to foresee a possibility for terminating the program in the best way possible, if such a situation occurs.

To write an error management routine, change the script as follows:

· Add the routine at the beginning of the script, after line 5:
[image: image17.png]

function mysql_die($error = "unknown")
{
echo "<H1>Error:". $error."</H1>";
 exit;
}

All this routine does is simply to end the program (exit function) after having displayed the message assigned to the $error parameter. If no message is passed during the call, PHP enables a default value to be used. In our example, the value "unknown" is assigned to the variable.

· Change the connection instructions as follows:
[image: image18.png]

$db = mysql_connect("localhost","user","password") or mysql_die("Unable to connect");
· Change the query submission line:
[image: image19.png]

$result = mysql_query ($requete,$db)or mysql_die("No record");
In these two lines, we use the logical operator or. The assessment of this logical expression stops if the first condition is true (i.e. a result other than zero). The error routine mysql_die will only be executed when no results are returned, which simplifies the code so that we avoid having to write a code such as if (function() == 0) error_function();.

[image: image20.png]

 Advice
	[image: image21.png]

	
Do not overuse OR. It is advisable not to overuse this OR construction if is used for something other than a simple error test.

	[image: image22.png]

	[image: image23.png]

You can test your error routine by changing the tested lines and calling up the page.

Setting up the Page

We have seen how to construct a query to retrieve a specific record using a hardcoded ID as the search criteria, which lacks some flexibility. We will now change our page so it can display any article.

Just change the line that builds the query as follows:

$requete = "SELECT * FROM article WHERE id=".$id;

The MySQL server is now asked to retrieve the article with an ID equal to the value of the $id variable. Where does this variable come from? One of PHP's strengths is that it can easily handle HTTP requests. When the browser issues such a request, it includes the desired resource URL (together with some protocol headers), but also any data collected from an input form, as follows: http://my_address?parameter1=value¶meter2=value ...

PHP automatically creates for each parameter a variable having the same name and containing the associated value.

Our script should therefore be called up in the following manner: http://www.oursite.com/personalsite/testDb.php?id=1, for instance, in order to retrieve our first article.

Once your article page meets your expectations, you can think of doing a summary containing various links to our PHP script for accepting different id values.

Page 4 of 4

